
Competition-Level Problems are Effective LLM Evaluators

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-001
strated impressive reasoning capabilities, yet002
there is ongoing debate about these abilities003
and the potential data contamination problem004
recently. This paper aims to evaluate the reason-005
ing capacities of LLMs, specifically in solving006
recent competition-level programming prob-007
lems in Codeforces, which are expert-crafted008
and unique, requiring deep understanding and009
robust reasoning skills. We first provide a com-010
prehensive evaluation of GPT-4’s perceived011
zero-shot performance on this task, consider-012
ing various aspects such as problems’ release013
time, difficulties, and types of errors encoun-014
tered. Surprisingly, the perceived performance015
of GPT-4 has experienced a cliff like decline016
in problems after September 2021 consistently017
across all the difficulties and types of problems,018
which shows the potential data contamination,019
as well as the challenges for any existing LLM020
to solve unseen complex reasoning problems.021
We further explore various approaches such022
as fine-tuning, Chain-of-Thought prompting023
and problem description simplification, unfor-024
tunately none of them is able to consistently025
mitigate the challenges. Through our work, we026
emphasize the importance of this excellent data027
source for assessing the genuine reasoning ca-028
pabilities of LLMs, and foster the development029
of LLMs with stronger reasoning abilities and030
better generalization in the future.031

1 Introduction032

The rise of LLMs has generated significant inter-033

est in the artificial intelligence community. These034

models, notably GPT-4 (OpenAI, 2023), have dis-035

played impressive reasoning capabilities that are036

being harnessed in various fields (Bubeck et al.,037

2023). However, questions1 have been raised about038

how to accurately evaluate the reasoning abilities of039

1https://twitter.com/keirp1/status/
1724518513874739618

2010
2012

2014
2016

2018
2020

2022
2024

Problem Release Date

0.0

0.2

0.4

0.6

0.8

AC
C#

G

2021-09-30

GPT-4's Performance on Codeforces
D1
D2
D3

Figure 1: The perceived zero-shot performance of GPT-
4 sees a sharp decline on problems of varying difficulties
(D1, D2 and D3 means easy, medium and difficult, re-
spectively) in Codeforces after September 2021.

LLMs and the extent of data contamination issues 040

(Mialon et al., 2023; Zhou et al., 2023). 041

Regarding these issues, our study aims to as- 042

sess the reasoning capabilities of LLMs through 043

their ability to generate algorithms for solving 044

competition-level programming problems. These 045

questions are meticulously crafted by experts to 046

form rigorous competitions. They possess high 047

quality, are unique, and exhibit excellent discrim- 048

inative ability. The testing cases are also metic- 049

ulously prepared. This necessitates that LLMs 050

deduce the solution from the presented scenario, 051

which requires a thorough understanding of algo- 052

rithms, combined reasoning and coding skills, and 053

strong problem-solving abilities. These problems 054

thus present a significant challenge to both human 055

coders and LLMs. Consequently, competition-level 056

programming problems serve as effective tools 057

for evaluating the two issues previously discussed: 058

they assess the reasoning abilities of LLMs and, 059

due to the strict problem selection process in com- 060

petitions, reduce the likelihood of data contamina- 061

tion in new problems. 062

1

https://twitter.com/keirp1/status/1724518513874739618
https://twitter.com/keirp1/status/1724518513874739618

Our research provides an in-depth analysis of the063

zero-shot performances of GPT-4 and other code064

LLMs on competition-level programming prob-065

lems in Codeforces, considering factors such as as066

the release time, problem difficulty, and the types of067

errors encountered. The main insights of our study068

include: (1) GPT-4 performs significantly worse on069

programming problems released after September070

2021, casting doubt on its actual reasoning abili-071

ties. (2) GPT-4 shows limited capability to solve072

difficult problems, indicating potential weaknesses073

in complex problem-solving. (3) GPT-4 struggles074

with the first test case, suggesting errors may stem075

from its understanding of the problem at hand. (4)076

The related phenomenon can be also observed in077

other LLMs, indicating that insufficient reasoning078

ability may be a common problem.079

To explore possible ways to enhance the zero-080

shot performances of these LLMs on competition-081

level programming problems, we investigate sev-082

eral methods to improve performance on un-083

seen problems. These include supervised fine-084

tuning with CodeLlama (Rozière et al., 2023) and085

DeepSeek-Coder (AI, 2023), Chain-of-Thought086

prompting (Wei et al., 2022), and problem state-087

ment simplification. However, none of these meth-088

ods consistently mitigate the issue or result in no-089

ticeable performance improvements, particularly090

for more difficult problems. This finding indicates091

that the difficult and unseen programming prob-092

lems are effective evaluators of LLMs.093

Overall, the primary contributions of this094

study lie in proposing and validating that recent095

competition-level programming problems serve as096

an excellent data source for assessing the genuine097

reasoning capabilities of LLMs. We aim to fos-098

ter further research in this field by innovating new099

approaches to address the challenge of complex100

reasoning problems in LLMs and by establishing101

reliable evaluation benchmarks for AI models that102

minimize the risk of data contamination.103

2 Problem Setup104

2.1 Competition-level Programming105

Competition-level programming presents a unique106

arena for testing and developing the reasoning abil-107

ities of AI models. In these competitions, partici-108

pants must design algorithms and implement them109

in programming languages like C++ and Java. Ac-110

cepted programs must satisfy stringent testing con-111

ditions, including producing outputs that exactly112

match with test cases, executing within memory 113

limits, and terminating within time constraints. In 114

contrast to prior works (Chen et al., 2021a; Austin 115

et al., 2021; Cassano et al., 2023) focusing on basic 116

coding abilities, competition-level programming 117

problems require advanced reasoning and mathe- 118

matical modeling skills, essential for AI. 119

Unlike the previous works that focused on Leet- 120

Code2 (Bubeck et al., 2023; Shen et al., 2023; Sakib 121

et al., 2023), we follow AlphaCode (Li et al., 2022) 122

and choose Codeforces3. Codeforces is universally 123

acknowledged by competitors and enthusiasts in 124

the International Collegiate Programming Compe- 125

tition4 (ICPC) and the International Olympiad in 126

Informatics5 (IOI) as a popular and suitable plat- 127

form for developing abilities for algorithm contests. 128

The regular contests hosted on this platform are 129

crafted by human experts, and contain plenty of 130

intricate programming problems and contests of 131

high quality. These contests come with compre- 132

hensive and robust test cases and exhibit a low 133

degree of problem overlap. The unique nature of 134

these contest problems makes it highly unlikely to 135

find similar content on the internet before the com- 136

petition concludes. As a result, utilizing specific 137

time-segmented datasets, like those from contests 138

conducted post the introduction of LLMs, serves as 139

an effective strategy to prevent data contamination 140

(Zhou et al., 2023). 141

Codeforces employs the Elo rating system6 142

to rank its users and problems, categorizing all 143

problems into 28 distinct difficulties, ranging from 144

800 to 3500. Compared to commonly utilized 145

metrics such as the ratio of accepted submissions 146

or users, this difficulty rating mechanism is more 147

suitable as it is based on the ranking and perfor- 148

mance of the participants during the competition.7 149

Hence, it is not subject to inaccuracies stemming 150

from temporal changes, repeated submissions, 151

plagiarism, and other potential distortions. 152

2.2 Problem Definition 153

Figure 2 presents an example of the problem state- 154

ment π. The input of LLM is instantiated with the 155

problem statement π and a prompt ρ (like ρ1 in 156

Table 7). The LLM Γ takes the input to generate 157

2https://leetcode.com/
3https://codeforces.com/
4https://icpc.global/
5https://ioinformatics.org/
6https://codeforces.com/blog/entry/102
7https://codeforces.com/blog/entry/62865

2

https://leetcode.com/
https://codeforces.com/
https://icpc.global/
https://ioinformatics.org/
https://codeforces.com/blog/entry/102
https://codeforces.com/blog/entry/62865

Kefa and Park
The semester is already ending, so Danil
made an effort and decided to visit a lesson
on harmony analysis to know how does the
professor look like, at least. Danil was very
bored on this lesson until the teacher gave
the group a simple task: find 4 vectors in 4-
dimensional space, such that every
coordinate of every vector is 1 or  - 1 and
any two vectors are orthogonal. Just as a
reminder, two vectors in n-dimensional
space are considered to be orthogonal if and
only if their scalar product is equal to zero,
that is: \n.\nDanil quickly managed to come
up with the solution for this problem and the
teacher noticed that the problem can be
solved in a more general case for 2k vectors
in 2k-dimensinoal space. When Danil came
home, he quickly came up with the solution
for this problem. Can you cope with it?

Input
The only line of the input contains a single
integer k (0 ≤ k ≤ 9).

Output
Print 2k lines consisting of 2k characters
each. The j-th character of the i-th line
must be equal to ' * ' if the j-th coordinate
of the i-th vector is equal to  - 1, and must
be equal to ' + ' if it's equal to + 1. It's
guaranteed that the answer always
exists.\nIf there are many correct answers,
print any.

Time limit per test
3 seconds

Memory limit per test
256 megabytes

Example
input
2\n
output
++**\n+*+*\n++++\n+**+\n

Note
none

// generated by GPT4
#include<bits/stdc++.h>
using namespace std;
vector<vector<int>> v(1, vector<int>(1, 1));
void solve(int k) {
 if(k == 0) return;
 int sz = 1 << (k - 1);
 for(int i = 0; i < sz; i++) {
 for(int j = 0; j < sz; j++) {
 v[i].push_back(v[i][j]);
 v.push_back(v[i]);
 }
 }
 for(int i = 0; i < sz; i++) {
 for(int j = 0; j < sz; j++) {
 v[i + sz][j] *= -1;
 }
 }
 solve(k - 1);
}
int main() {
 int k;
 cin >> k;
 solve(k);
 int sz = 1 << k;
 for(int i = 0; i < sz; i++) {
 for(int j = 0; j < sz; j++) {
 cout << (v[i][j] == 1 ? '+' : '*');
 }
 cout << "\n";
 }
 return 0;
}

Online Jugde AC/WA/CE/…

Figure 2: The figure depicts the problem statement (left), comprising a problem set in a narrative context for
participants to decipher, detailed input and output format specifications, and one or more example input-output pairs.
In some cases, additional notes may be provided to assist competitors in understanding these example tests. This
information is fed into the LLM, aiming to generate relevant code (right). The generated code is then submitted to
an online judge for correctness evaluation.

the code as α = Γ(ρ(π)). The generated code α is158

then evaluated by an online judge (OJ). The evalu-159

ation process can be summarized in the following160

equation:161

OJ(α) = OJ(Γ(ρ(π))) ∈ {AC, WA, CE, ...}162

In this equation, Γ(ρ(π)) denotes the code gener-163

ated by LLM with the prompt ρ. The OJ platform164

then rigorously assesses the code for its correctness,165

computational efficiency, and adherence to speci-166

fied input/output formats. With an extensive testing167

mechanism, the platform employs a wide range of168

test cases and hidden scenarios to ensure the code’s169

robustness across diverse scenarios. The platform170

provides a spectrum of outcomes, OJ(Γ(ρ(π))),171

offering a holistic evaluation of the code’s perfor-172

mance. This includes results such as Accepted173

(AC), Wrong Answer (WA), and Compilation Er-174

ror (CE), among others.175

2.3 Dataset Collection176

The dataset is compiled from the Codeforces web-177

site, extracting all publicly available problem state-178

ments from completed contests spanning February179

2010 through November 2023. For simplicity, prob-180

lems requiring interaction, featuring non-standard181

Metric Definition
ACC#G Proportion of accepted solutions using

greedy sampling (temperature t = 0).
ACC#GN The number of accepted solutions using

greedy sampling (temperature t = 0)
within the sliding window.

ACCk#n Proportion of problems with k or more ac-
cepted solution with top-p samplings (t =
0.7, p = 0.95) for n times.

pass@k Estimated proportion of problems with at
least one accepted solution.

Table 1: Definitions of evaluation metrics.

input/output formats, or incompatible with C++ 182

submission are excluded. 183

The analysis is confined to problems with dif- 184

ficulty levels ranging from 800 to 2400. Based 185

on their difficulty levels, the dataset is divided 186

into three subsets: D1 (800-1100 difficulty, 1683 187

problems), D2 (1200-1600 difficulty, 1821 prob- 188

lems), and D3 (1700-2400 difficulty, 1453 prob- 189

lems). These problems encompass more than 20 190

distinct categories of algorithms, as illustrated in 191

Table 6. This diversity in problem types further 192

enhances the comprehensiveness of the dataset and 193

enables a comprehensive assessment of GPT-4’s 194

problem-solving abilities across a wide range of 195

competition-level programming problems. 196

3

Metric D1 D2 D3
Time1 Time2 ∆ Time1 Time2 ∆ Time1 Time2 ∆

ACC#G 81.42% 11.73% -69.69% 43.72% 0.00% -43.72% 11.41% 0.00% -11.41%
pass@1 78.11% 10.54% -67.57% 42.38% 0.61% -41.77% 9.45% 0.18% -9.27%
ACC1#1 78.05% 9.38% -68.68% 43.37% 0.00% -43.37% 8.48% 0.00% -8.48%
ACC1#5 94.03% 20.09% -73.94% 69.02% 3.06% -65.96% 21.24% 0.88% -20.36%
ACC2#5 88.34% 11.83% -76.51% 54.41% 0.00% -54.41% 12.36% 0.00% -12.36%
ACC3#5 81.82% 9.38% -72.44% 42.42% 0.00% -42.42% 7.51% 0.00% -7.51%

Table 2: Performance of GPT-4 on different groups of problems: Time1 is the problems released from October 2010
to September 2021, and Time2 is the problems released from October 2021 to November 2023.

2.4 Experiment Details197

In Codeforces, each problem belongs to a contest.198

Once the contest concludes, the problems are dis-199

closed and become publicly submittable. There-200

fore, we submit the solutions to the contests that201

have concluded for evaluation.202

To evaluate the results, we employ ACC#G,203

ACC#GN, ACCk#n and pass@k as defined in204

Table 1. Specifically, for ACCk#n metric, we205

consider two settings: (1) k = n = 1 and (2)206

k ∈ {1, 2, 3} with n = 5. Following Codex (Chen207

et al., 2021b), pass@k is computed as208

pass@k := E
Problems

[
1−

(
n−c
k

)(
n
k

)]
209

where n is defined as the total number of generated210

samples per problem used for evaluation, and c211

represents the count of correct samples out of n212

that have successfully passed the unit tests. Here213

we use k = 1 and n = 5 for pass@k.214

In our experiment, we follow the zero-shot set-215

ting. To select an appropriate prompt, we conduct216

preliminary experiments with three prompts, ρ1, ρ2,217

and ρ3, as listed in Table 7, using two subsets of D1218

problems: one from February to December 2010219

and the other from January to October 2023, each220

comprising approximately 100 problems. The stan-221

dard deviations are 0.015 and 0.018, respectively,222

indicating consistent performance. Therefore, we223

choose ρ1 as the prompt in the subsequent experi-224

ments. Furthermore, we employ a sliding window225

approach for all temporal analyses to smooth the226

data, addressing the sporadic release schedule of227

the problems. This ensures a sufficient number of228

test problems at each time point, using a window229

size of 51 (25 before and 25 after the time point).230

3 Insights and Implications231

3.1 Faltering on Unseen Problems232

In this section, we delve into a temporal analy-233

sis of GPT-4’s performance on programming prob-234

2012
2014

2016
2018

2020
2022

2024

Problem Release Date

0.0

0.2

0.4

0.6

0.8

Performance of GPT-4 on D2 Problems with Top-p Sampling

ACC1#5
ACC2#5
ACC3#5
ACC1#1

Figure 3: Random sampling enhances the probability of
generating correct solutions on previously encountered
problems, but offers no assistance for unseen problems.

lems. Figure 1 illustrates GPT-4’s performance 235

using the ACC#G metric. On problems released 236

prior to September 2021, GPT-4 exhibits minor 237

fluctuations at different levels across problems of 238

varying difficulty. However, for problems released 239

after September 2021, a significant deviation from 240

the normal fluctuation range is observed. Interest- 241

ingly, this timing coincides with the cut-off date for 242

the GPT-4 training data as announced by OpenAI8. 243

We then calculate the average performance on prob- 244

lems before and after September 2021, as shown 245

in Table 2. On D1 problems, GPT-4’s ACC#G 246

plummets from 81.42% to 11.73%, marking a 247

stark decrease of 69.69%. Even more strikingly, 248

the ACC#G drops to 0.00% on both D2 and D3 249

problems, from 43.72% and 11.41%, respectively. 250

To validate the reliability of the conclusion, we 251

also calculate the pass@1 metric, which exhibits 252

a similar trend. This observation raises thought- 253

provoking questions about the severity of the drop 254

and the correlation between the data cut-off date 255

and the performance decline. 256

8https://platform.openai.com/docs/models/
gpt-4-and-gpt-4-turbo

4

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo

To explore the model’s potential to generate cor-257

rect solutions, we perform random sampling multi-258

ple times and calculate the pass rate. The average259

pass rate are shown in Table 2. As observed, mul-260

tiple samplings can enhance the chances of gen-261

erating a correct solution. For instance, on the262

unseen simple D1 problems, ACC1#5 improved by263

10.71% compared to ACC1#1. However, across all264

problems, the performance gap before and after the265

cut-off date is more pronounced for ACC1#5 than266

for both ACC1#1 and ACC#G. Figure 3 depicts the267

performance on D2 problems over time. A notable268

decline in performance metrics is observed around269

September 2021. This observation underscores270

the challenges that LLMs, including the advanced271

GPT-4, face in addressing unseen programming272

problems without similar pretraining data.273

The observed decline in performance on prob-274

lems outside the model’s training range may stem275

from limitations in reasoning and generalization.276

As highlighted by Yadlowsky et al. (2023), when277

confronted with problems beyond their pretraining278

data, transformer models exhibit various failure279

modes and their generalization abilities deteriorate,280

even for simple problems. Similarly, Lu et al.281

(2023) suggest that the exceptional abilities282

of large language models primarily stem from283

in-context learning, and do not necessarily reflect284

the emergence of reasoning abilities.285

The observed performance drop on unseen286

problems raises serious questions about GPT-4’s287

intrinsic reasoning and generalization capabilities.288

This suggests a potential over-reliance on pattern289

recognition and reproduction from training, as290

opposed to grasping underlying principles and291

applying them to novel problems. This observation292

aligns with recent debates on large models’ data293

memorization tendencies (Carlini et al., 2023; Yang294

et al., 2023). Therefore, future evaluations should295

prioritize the minimization of overlap between test-296

ing and training data to accurately assess a model’s297

reasoning abilities, rather than simply its capacity298

for memorization. Furthermore, it’s crucial to299

explore methods that enhance model generalization300

and reduce reliance on pre-training data.301

3.2 Limited Ability to Solve Difficult302

Problems303

This section provides an analysis of performance304

in relation to the problem difficulty. The results305

of ACC#G for problems with different difficulties306

are reported for two distinct periods: from October307

800 1000 1200 1400 1600 1800 2000 2200 2400
Difficulty

0.0

0.2

0.4

0.6

0.8

AC
C#

G r=-0.98
=-0.99

GPT-4's Performance Across Various Difficulties
2021/10~2023/11
2010/10~2021/9

Figure 4: For problems released before September 2021,
GPT-4’s ACC#G showed a negative linear correlation
with difficulty, followed by consistently poor perfor-
mance afterwards.

2010 to September 2021, and from October 2021 308

to November 2023, as illustrated in Figure 4. 309

For the results from October 2010 to September 310

2021, we calculate Pearson correlation coefficient 311

(r = −0.97) and the Kendall rank correlation co- 312

efficient (τ = −0.88), which indicate strong linear 313

correlations. Notably, when the difficulty level 314

reaches 2400 (indicating greater challenge than ap- 315

proximately 57% of the problems on Codeforces), 316

the ACC#G drops to zero. However, from October 317

2021 to November 2023, ACC#G shows a dramatic 318

decrease across all difficulty levels. 319

These findings reveal a significant limitation in 320

the ability of GPT-4 to handle extremely complex 321

problems. Despite its vast knowledge on code and 322

algorithms, GPT-4 lacks of the competence in solv- 323

ing very challenging problems, particularly those 324

with higher difficulty levels, even in the context of 325

previously encountered problems. This indicates a 326

potential area for further improvement and devel- 327

opment in future iterations of the model. 328

3.3 Struggling with The First Test Case 329

In this section, we gather and analyze the errors 330

returned by GPT-4 upon submission to the Code- 331

forces website, as outlined in Table 5. The most 332

common error is "Wrong answer on test 1", which 333

on average accounts for 70% of the observed errors. 334

Test 1 is the first test case, which almostly corre- 335

sponds to or properly includes the example test case 336

provided in the problem statement. This suggests 337

that the model often struggles at the very beginning 338

of problem-solving, possibly due to difficulties in 339

5

0.0 0.2 0.4 0.6 0.8 1.0

2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010

Error Category of GPT-4 from 2010 to 2023

Wrong answer on test 1
Wrong answer on test 2
Wrong answer on test 3
Wrong answer on test 4+

Runtime error
Compilation error
Time limit exceeded
Memory limit exceeded

Figure 5: Error categories in GPT-4’s solutions on prob-
lems released from 2010 to 2023.

Figure 6: ACC#GN of CodeLlama and DeepSeek-
Coder on D1 problems.

understanding the problem’s requirements or gen-340

erating a correct solution based on the given test341

case. As depicted in Figure 5, there is a significant342

increase in the proportion of "Wrong answer on343

test 1" errors for problems released between 2021344

and 2023. This suggests that GPT-4 is more likely345

to face challenges in understanding and reasoning346

during at the onset of tackling unseen problems.347

Other types of errors account for a smaller pro-348

portion, with an average of 10%. They have shown349

little variation over time. This indicates that GPT-350

4 demonstrates strong fundamental code-writing351

capabilities of generating high-quality code.352

3.4 Similar Phenomenons of Other Code353

LLMs354

We investigate whether the perceived performance355

degradation on unseen programming problems is356

Problem Release Date CodeLlama DeepSeek-Coder
Before 2023.3 10.30% 32.74%
After 2023.3 4.52% (-5.78%) 9.03% (-23.71%)

Table 3: Comparison of ACC#G between CodeLlama
and DeepSeek-Coder on D1 problems before and after
March 2023.

Model 2020.1-2021.9 2021.9-2023.10
GPT-4 73.19% (+50.52%) 11.53% (-0.97%)

DeepSeek-Coder 22.67% 12.50%

Table 4: Comparison of ACC#G between GPT-4 and
DeepSeek-Coder over time intervals, on D1 problems.

observed for other popular code LLMs, such as 357

CodeLlama-34B-Instruct (Rozière et al., 2023) and 358

DeepSeek-Coder-33B-Instruct (AI, 2023). 359

We conduct tests on CodeLlama and DeepSeek- 360

Coder using D1 problems, following the settings 361

in §2.3, and the results are shown in Figure 6. The 362

experimental results indicate that CodeLlama con- 363

sistently underperforms compared to DeepSeek- 364

Coder on D1 problems. Furthermore, the perfor- 365

mance of DeepSeek-Coder on D1 problems has 366

been declining with the progression of the problem 367

release date. The ACC#GN of DeepSeek-Coder 368

has declined to a level that is on par with CodeL- 369

lama when dealing with newly released problems, 370

as highlighted in the red area of Figure 6. 371

To precisely and intuitively detect this phe- 372

nomenon, we calculate the ACC#G of CodeLlama 373

and DeepSeek-Coder on D1 problems, both before 374

and after March 2023, and present the results in Ta- 375

ble 3. The results reveal a significant difference in 376

the average accuracy of CodeLlama and DeepSeek- 377

Coder before and after March 2023. Regarding 378

the magnitude of the decrease, DeepSeek-Coder, 379

which previously exhibited superior performance, 380

demonstrates a more pronounced decline, with ac- 381

ceptance rates falling below 10% after March 2023. 382

Considering the release dates of CodeLlama and 383

DeepSeek-Coder, we speculate that most of the 384

programming problems after March 2023 are novel 385

to them, which suggests that they also not be able 386

to perform well on unseen programming problems 387

like GPT4 does. This finding indicates that a fun- 388

damental limitation of current code LLMs in gen- 389

eralizing effectively to complex reasoning tasks. 390

3.5 Evaluation Hallucination of LLMs 391

To further analyze the phenomenon, we compare 392

GPT-4 with DeepSeek-Coder on D1 problems as 393

shown in Figure 7 and Table 4. 394

6

Figure 7: Comparison of ACC#GN for GPT-4 and
DeepSeek-Coder on D1 problems after 2020.

It is noteworthy that while GPT-4 surpasses395

DeepSeek-Coder in terms of performance on prob-396

lems that were released prior to September 2021,397

an unexpected observation is that DeepSeek-Coder398

exhibits a performance that is on par with GPT-4399

when it comes to tackling problems that were re-400

leased after September 2021. Considering the pre-401

vious work (Yang et al., 2023; Zhou et al., 2023),402

although GPT-4 may perform particularly well on403

some previously seen problems due to its power-404

ful capacity, it cannot be well generalized on un-405

seen programming problems, and its performance406

is not significantly different from DeepSeek-Coder,407

which is specifically trained for code. This phe-408

nomenon merits attention, which is termed as “eval-409

uation hallucination”.410

Hence, a more equitable evaluation strategy411

would be to select evaluation sets that all the mod-412

els have not previously encountered. However, find-413

ing such data adhering to stringent conditions is414

challenging, as LLMs are typically pre-trained on415

extensive corpora containing diverse content, lead-416

ing to the potential issue of data contamination.417

Therefore, if we could devote more attention to the418

data source and timeline of the evaluation sets, such419

as the problems in Codeforces, it could potentially420

mitigate the effects of evaluation hallucination.421

4 One Step Forward422

In this section, we explore some approaches to423

mitigate the poor performance on unseen problems.424

4.1 Finetuning425

Fine-tuning is a commonly used method to improve426

the performance on a specific downstream task.427

Specifically, we use Description2Code (OpenAI428

and Sutskever, 2016) as fine-tuning dataset, which429

Figure 8: Comparison of ACC#GN for CodeLlama on
D1 problems before and after fine-tuning.

Figure 9: Comparison of ACC#GN on D1 problems
before and after fine-tuning DeepSeek-Coder.

contains approximately 7,000 problems released 430

before 2017. We use approximately 10 solutions 431

for each problem, resulting 70,000 pairs of input- 432

output sequences, and employ them for fine-tuning 433

both CodeLlama and DeepSeek-Coder in a super- 434

vised manner. 435

As shown in Figure 8 and Figure 9, we compare 436

the performances of the models before and after 437

fine-tuning on D1 problems. We observe that, 438

even after fine-tuning with the same type of data, 439

CodeLlama and DeepSeek-Coder do not exhibit 440

improved performance on recent problems, particu- 441

larly those post-2022. The significant improvement 442

in ACC#GN before 2017 may result from the 443

models recalling relevant or identical programming 444

problems, rather than mastering the underlying rea- 445

soning logic, leading to their inability to adapt well 446

to new programming challenges. Therefore, simple 447

fine-tuning does not effectively enhance the mod- 448

els’ performance on new programming problems. 449

4.2 Chain-of-Thought Prompting 450

In this section, we explore the application of Chain- 451

of-Thought (CoT) prompting (Wei et al., 2022) to 452

7

competition-level programming problems. CoT453

involves prompting GPT-4 to generate an explana-454

tion of the algorithm before coding, denoted as ρcot455

in Table 7. We conduct experiments on both the456

D1 and D3 problems released after October 2021.457

For D1 problems, employing CoT increases the458

ACC#G from 11.54% to 16.21%, demonstrating a459

noticeable improvement. However, for D3 prob-460

lems, using CoT fails to yield any improvement,461

leaving the ACC#G at 0.00%. This suggests that462

while CoT facilitates some improvement for sim-463

ple D1 problems, it is ineffective for the complex464

reasoning challenges presented by D3 problems.465

4.3 Problem Statement Simplification466

Intuitively, even experienced programming compe-467

tition competitors require time to understand prob-468

lem statements. Therefore, we conduct a simple469

experiment to assess whether comprehension of470

problem statements hinders LLMs’ ability to excel471

at programming problems. We first instruct GPT-4472

to simplify the problem statement with ρsip and473

then generate the code with ρsipgen as shown in474

Table 7. The results are also evaluated on both the475

D1 and D3 problems released after October 2021.476

However, for D1 problems, using the simplified477

problem statement even brings a slight decline in478

ACC#G from 11.54% to 11.14%. And the ACC#G479

for D3 problems still remains at 0.00%. Conse-480

quently, the challenge of genuinely improving the481

model’s reasoning ability and enhancing its perfor-482

mance on unseen problems represents a significant483

direction for future research.484

5 Related Work485

Code LLMs. Code intelligence is an important486

topic in AI research. Recently, code LLMs (Zhang487

et al., 2023b) have received widespread attention.488

Commercial LLMs (OpenAI, 2023) have achieved489

tremendous success. Meanwhile, research on490

open-source code LLMs is also thriving, such as491

CodeLlama (Rozière et al., 2023), StarCoder (Li492

et al., 2023), CodeGeeX (Zheng et al., 2023),493

CodeFuse (Di et al., 2023), WizardCoder (Luo494

et al., 2023) and Lemur (Xu et al., 2023).495

Reasoning on Code. Programming competition496

is a specialized domain within the broader land-497

scape of programming problems. Unlike simpler498

tasks on code, such as HumanEval (Chen et al.,499

2021a), MBPP (Austin et al., 2021), MultiPL-500

E (Cassano et al., 2023), competition-level pro-501

gramming problems necessitate an advanced un- 502

derstanding of data structures, algorithms, and 503

problem-solving techniques. Enabling models 504

to solve human-designed algorithmic competition 505

problems represents a meaningful research direc- 506

tion, as it reflects the models’ integrated capabil- 507

ities in reasoning, coding, and problem-solving. 508

AlphaCode (Li et al., 2022) simulate evaluations 509

on 10 programming competitions on the Code- 510

forces platform, which is the first work in this topic. 511

ALGO (Zhang et al., 2023a) can integrate with any 512

existing code LLMs in a model-agnostic manner, 513

enhancing its code generation performance. 514

Reasoning on Other Subjects. Researchers have 515

proposed many benchmarks requiring various rea- 516

soning skills, including commonsense reason- 517

ing (Talmor et al., 2018; Geva et al., 2021), nu- 518

merical reasoning (Dua et al., 2019), multi-hop 519

reasoning (Yang et al., 2018), arithmetic reason- 520

ing (Patel et al., 2021; Cobbe et al., 2021), struc- 521

tured reasoning (Yu et al., 2018; Lei et al., 2023), 522

inductive reasoning (Sinha et al., 2019) and logical 523

reasoning (Yu et al., 2020). LLMs are also widely 524

used in scientific research in other fields (Wang 525

et al., 2023), such as physics (Yeadon and Halliday, 526

2023), chemistry (Castro Nascimento and Pimentel, 527

2023; Bran et al., 2023), etc. 528

6 Conclusion 529

In this study, we utilize competition-level program- 530

ming problems from Codeforces to analyze the rea- 531

soning capabilities of LLMs. We find a significant 532

decrease in perceived performance of GPT-4 on un- 533

seen problems, consistent across a range of difficul- 534

ties, problem types, and experimental settings. This 535

decrease highlights concerns of data contamination 536

in benchmarks and the need for unseen tasks to 537

properly assess LLMs’ reasoning ability with com- 538

plex challenges. Our research also extends these 539

insights to other open-source LLMs, revealing the 540

common difficulties these models face with com- 541

plex, previously unencountered reasoning tasks. 542

This is indicative of the LLMs’ intrinsic limita- 543

tions in reasoning. As a primary probe, we explore 544

several straightforward strategies, but none of them 545

consistently mitigated the issues. Through our 546

work, we hope to emphasize the critical need for ro- 547

bust datasets to accurately evaluate LLMs’ reason- 548

ing abilities and to inspire advancements in LLMs 549

that demonstrate improved reasoning abilities. 550

8

Limitations551

This study identifies expertly-designed, high-552

quality competition-level programming problems553

as effective evaluation data for evaluating LLMs.554

However, comparing to the existing benchmarks,555

the quantity of such problems is limited. Con-556

structing uncontaminated, high-quality evaluation557

datasets and extending them to other tasks such as558

mathematics still poses a challenge to researchers.559

The identification and creation of such datasets560

are crucial for enhancing our understanding of the561

LLMs in complex reasoning tasks. We will en-562

deavor to achieve this goal in our future work.563

References564

DeepSeek AI. 2023. Deepseek coder: Let the code565
write itself. https://github.com/deepseek-ai/566
DeepSeek-Coder.567

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten568
Bosma, Henryk Michalewski, David Dohan, Ellen569
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.570
Program synthesis with large language models. arXiv571
preprint arXiv:2108.07732.572

Andres M Bran, Sam Cox, Andrew D White, and573
Philippe Schwaller. 2023. Chemcrow: Augmenting574
large-language models with chemistry tools. arXiv575
preprint arXiv:2304.05376.576

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-577
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,578
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-579
berg, et al. 2023. Sparks of artificial general intelli-580
gence: Early experiments with gpt-4. arXiv preprint581
arXiv:2303.12712.582

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,583
Katherine Lee, Florian Tramer, and Chiyuan Zhang.584
2023. Quantifying memorization across neural lan-585
guage models. In The Eleventh International Confer-586
ence on Learning Representations.587

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-588
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,589
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,590
Molly Q Feldman, et al. 2023. Multipl-e: a scal-591
able and polyglot approach to benchmarking neural592
code generation. IEEE Transactions on Software593
Engineering.594

Cayque Monteiro Castro Nascimento and André Silva595
Pimentel. 2023. Do large language models un-596
derstand chemistry? a conversation with chatgpt.597
Journal of Chemical Information and Modeling,598
63(6):1649–1655.599

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,600
Henrique Ponde de Oliveira Pinto, Jared Kaplan,601
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg602

Brockman, et al. 2021a. Evaluating large lan- 603
guage models trained on code. arXiv preprint 604
arXiv:2107.03374. 605

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 606
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 607
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 608
Brockman, et al. 2021b. Evaluating large lan- 609
guage models trained on code. arXiv preprint 610
arXiv:2107.03374. 611

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 612
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 613
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 614
Nakano, et al. 2021. Training verifiers to solve math 615
word problems. arXiv preprint arXiv:2110.14168. 616

Peng Di, Jianguo Li, Hang Yu, Wei Jiang, Wenting 617
Cai, Yang Cao, Chaoyu Chen, Dajun Chen, Hongwei 618
Chen, Liang Chen, Gang Fan, Jie Gong, Zi Gong, 619
Wen Hu, Tingting Guo, Zhichao Lei, Ting Li, Zheng 620
Li, Ming Liang, Cong Liao, Bingchang Liu, Jiachen 621
Liu, Zhiwei Liu, Shaojun Lu, Min Shen, Guang- 622
pei Wang, Huan Wang, Zhi Wang, Zhaogui Xu, Ji- 623
awei Yang, Qing Ye, Gehao Zhang, Yu Zhang, Zelin 624
Zhao, Xunjin Zheng, Hailian Zhou, Lifu Zhu, and 625
Xianying Zhu. 2023. Codefuse-13b: A pretrained 626
multi-lingual code large language model. CoRR, 627
abs/2310.06266. 628

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel 629
Stanovsky, Sameer Singh, and Matt Gardner. 2019. 630
Drop: A reading comprehension benchmark re- 631
quiring discrete reasoning over paragraphs. arXiv 632
preprint arXiv:1903.00161. 633

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 634
Dan Roth, and Jonathan Berant. 2021. Did aristotle 635
use a laptop? a question answering benchmark with 636
implicit reasoning strategies. Transactions of the 637
Association for Computational Linguistics, 9:346– 638
361. 639

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun 640
Zhao, and Kang Liu. 2023. S3eval: A synthetic, scal- 641
able, systematic evaluation suite for large language 642
models. arXiv preprint arXiv:2310.15147. 643

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 644
Muennighoff, Denis Kocetkov, Chenghao Mou, 645
Marc Marone, Christopher Akiki, Jia Li, Jenny 646
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 647
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 648
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 649
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 650
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 651
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 652
Zhiruo Wang, Rudra Murthy V, Jason Stillerman, 653
Siva Sankalp Patel, Dmitry Abulkhanov, Marco 654
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa- 655
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam 656
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku- 657
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee, 658
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai- 659
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 660

9

https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://github.com/deepseek-ai/DeepSeek-Coder
https://doi.org/10.48550/ARXIV.2310.06266
https://doi.org/10.48550/ARXIV.2310.06266
https://doi.org/10.48550/ARXIV.2310.06266

Alex Gu, Jennifer Robinson, Carolyn Jane Ander-661
son, Brendan Dolan-Gavitt, Danish Contractor, Siva662
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-663
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas664
Wolf, Arjun Guha, Leandro von Werra, and Harm665
de Vries. 2023. Starcoder: may the source be with666
you! CoRR, abs/2305.06161.667

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,668
Julian Schrittwieser, Rémi Leblond, Tom Eccles,669
James Keeling, Felix Gimeno, Agustin Dal Lago,670
et al. 2022. Competition-level code generation with671
alphacode. Science, 378(6624):1092–1097.672

Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva,673
Harish Tayyar Madabushi, and Iryna Gurevych.674
2023. Are emergent abilities in large language675
models just in-context learning? arXiv preprint676
arXiv:2309.01809.677

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-678
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,679
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:680
Empowering code large language models with evol-681
instruct. CoRR, abs/2306.08568.682

Grégoire Mialon, Clémentine Fourrier, Craig Swift,683
Thomas Wolf, Yann LeCun, and Thomas Scialom.684
2023. Gaia: a benchmark for general ai assistants.685
arXiv preprint arXiv:2311.12983.686

OpenAI. 2023. Gpt-4 technical report.687

E. Caballero OpenAI and I. Sutskever. 2016. Descrip-688
tion2Code Dataset.689

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.690
2021. Are nlp models really able to solve691
simple math word problems? arXiv preprint692
arXiv:2103.07191.693

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten694
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,695
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom696
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-697
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,698
Wenhan Xiong, Alexandre Défossez, Jade Copet,699
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-700
las Usunier, Thomas Scialom, and Gabriel Synnaeve.701
2023. Code llama: Open foundation models for code.702
CoRR, abs/2308.12950.703

Fardin Ahsan Sakib, Saadat Hasan Khan, and AHM704
Karim. 2023. Extending the frontier of chatgpt:705
Code generation and debugging. arXiv preprint706
arXiv:2307.08260.707

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,708
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan709
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-710
ing large language models for code with ranking feed-711
back. arXiv preprint arXiv:2307.14936.712

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle713
Pineau, and William L Hamilton. 2019. Clutrr: A di-714
agnostic benchmark for inductive reasoning from text.715

In Proceedings of the 2019 Conference on Empirical 716
Methods in Natural Language Processing and the 9th 717
International Joint Conference on Natural Language 718
Processing (EMNLP-IJCNLP), pages 4506–4515. 719

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 720
Jonathan Berant. 2018. Commonsenseqa: A question 721
answering challenge targeting commonsense knowl- 722
edge. arXiv preprint arXiv:1811.00937. 723

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao 724
Gao, Kexin Huang, Ziming Liu, Payal Chandak, 725
Shengchao Liu, Peter Van Katwyk, Andreea Deac, 726
et al. 2023. Scientific discovery in the age of artificial 727
intelligence. Nature, 620(7972):47–60. 728

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 729
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 730
et al. 2022. Chain-of-thought prompting elicits rea- 731
soning in large language models. Advances in Neural 732
Information Processing Systems, 35:24824–24837. 733

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian 734
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu, 735
Tianbao Xie, et al. 2023. Lemur: Harmonizing nat- 736
ural language and code for language agents. arXiv 737
preprint arXiv:2310.06830. 738

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. 739
2023. Pretraining data mixtures enable narrow model 740
selection capabilities in transformer models. arXiv 741
preprint arXiv:2311.00871. 742

Shuo Yang, Wei-Lin Chiang, Lianmin Zheng, Joseph E 743
Gonzalez, and Ion Stoica. 2023. Rethinking 744
benchmark and contamination for language mod- 745
els with rephrased samples. arXiv preprint 746
arXiv:2311.04850. 747

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 748
William Cohen, Ruslan Salakhutdinov, and Christo- 749
pher D Manning. 2018. Hotpotqa: A dataset for 750
diverse, explainable multi-hop question answering. 751
In Proceedings of the 2018 Conference on Empiri- 752
cal Methods in Natural Language Processing, pages 753
2369–2380. 754

Will Yeadon and Douglas P Halliday. 2023. Exploring 755
durham university physics exams with large language 756
models. arXiv preprint arXiv:2306.15609. 757

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 758
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 759
ing Yao, Shanelle Roman, et al. 2018. Spider: A 760
large-scale human-labeled dataset for complex and 761
cross-domain semantic parsing and text-to-sql task. 762
In Proceedings of the 2018 Conference on Empiri- 763
cal Methods in Natural Language Processing, pages 764
3911–3921. 765

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi 766
Feng. 2020. Reclor: A reading comprehension 767
dataset requiring logical reasoning. arXiv preprint 768
arXiv:2002.04326. 769

10

https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2305.06161
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
https://doi.org/10.48550/ARXIV.2306.08568
http://arxiv.org/abs/2303.08774
https://doi.org/10.5281/zenodo.5665051
https://doi.org/10.5281/zenodo.5665051
https://doi.org/10.5281/zenodo.5665051
https://doi.org/10.48550/ARXIV.2308.12950

Kexun Zhang, Danqing Wang, Jingtao Xia,770
William Yang Wang, and Lei Li. 2023a. Algo:771
Synthesizing algorithmic programs with generated772
oracle verifiers. arXiv preprint arXiv:2305.14591.773

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao,774
Zi Gong, Hang Yu, Jianguo Li, and Rui Wang. 2023b.775
A survey on language models for code.776

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan777
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,778
Yang Li, et al. 2023. Codegeex: A pre-trained model779
for code generation with multilingual evaluations on780
humaneval-x. arXiv preprint arXiv:2303.17568.781

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,782
Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong783
Wen, and Jiawei Han. 2023. Don’t make your llm784
an evaluation benchmark cheater. arXiv preprint785
arXiv:2311.01964.786

A More Results with Different Versions of 787

GPT-4 APIs 788

In this study, we conduct an evaluation of two dis- 789

tinct API versions: GPT-4 and GPT-4-turbo, to 790

assess their performance on D1 problems. The 791

training data for GPT-4 extends up to September 792

2021, while that for GPT-4-turbo reaches up to 793

April 2023. These evaluations are visually repre- 794

sented in Figure 10. Upon analysis of the results, 795

it is observed that on problems prior to September 796

2021, the GPT-4-turbo exhibits marginally inferior 797

performance compared to GPT-4. Between Septem- 798

ber 2021 and April 2023, GPT-4-turbo outperforms 799

GPT-4 on D1 problems, reflecting the benefits of its 800

more recent training data. Nonetheless, a decline in 801

GPT-4’s performance is observed for newer prob- 802

lems within this period, likely due to the scarcity 803

of such recent data in its training set. 804

Nevertheless, when faced with problems emerg- 805

ing after April 2023—thus unencountered dur- 806

ing their respective training periods—both APIs 807

demonstrate a decline in performance, albeit GPT- 808

4-turbo marginally outperforms GPT-4. Despite 809

this relative improvement, the performance of GPT- 810

4-turbo on problems post-April 2023 noticeably 811

regresses when compared to its performance on 812

problems covered by its training data. This finding 813

is consistent with the conclusions drawn in the §3.1 814

"Faltering on Unseen Problems", which elucidates 815

the challenges faced by these models when con- 816

fronted with novel questions that extend beyond 817

their training corpus. 818

2012
2014

2016
2018

2020
2022

2024

Date

0.0

0.2

0.4

0.6

0.8

AC
C#

G

2021-09-30

2023-04-30

Performance of Different Versions of GPT-4 on D1 Problems

GPT-4-Turbo
GPT-4

Figure 10: Comparison of ACC#G for GPT-4 and GPT-
4-turbo on D1 problems.

11

http://arxiv.org/abs/2311.07989

Year WA1 WA2 WA3 WA4+ RE CE TLE MLE
2010 0.49 0.15 0.04 0.19 0.04 0.03 0.01 0.04
2011 0.53 0.13 0.10 0.06 0.07 0.06 0.04 0.01
2012 0.55 0.14 0.05 0.12 0.04 0.04 0.03 0.02
2013 0.63 0.13 0.06 0.07 0.03 0.03 0.04 0.01
2014 0.53 0.18 0.05 0.09 0.04 0.05 0.04 0.01
2015 0.62 0.10 0.02 0.14 0.03 0.02 0.04 0.02
2016 0.68 0.09 0.02 0.10 0.02 0.05 0.04 0.00
2017 0.66 0.13 0.05 0.08 0.03 0.03 0.03 0.02
2018 0.58 0.12 0.06 0.13 0.01 0.03 0.05 0.01
2019 0.67 0.11 0.04 0.06 0.02 0.05 0.02 0.02
2020 0.77 0.06 0.01 0.01 0.05 0.06 0.03 0.01
2021 0.82 0.07 0.02 0.01 0.02 0.04 0.02 0.00
2022 0.91 0.05 0.00 0.00 0.02 0.00 0.02 0.00
2023 0.90 0.03 0.00 0.00 0.03 0.01 0.02 0.01

Average 0.70 0.10 0.03 0.06 0.03 0.03 0.03 0.01

Table 5: Error category of GPT-4 from 2010 to 2023. The abbreviations stand for: WA1, WA2, WA3, and WA4+
(Wrong Answers on Test 1, 2, 3, and 4 or above), RE (Runtime Error), CE (Compilation Error), TLE (Time Limit
Exceeded), and MLE (Memory Limit Exceeded).

B Dataset Details819

Statistics of the types of problems in D1, D2, and D3 are shown in Table 6.

Tag #Problems Tag #Problems
implementation 1746 greedy 1441

math 1382 brute force 825
constructive algorithms 783 dp 577

sortings 514 data structures 391
strings 381 binary search 342

number theory 309 graphs 263
dfs and similar 244 two pointers 197
combinatorics 179 bitmasks 154

geometry 142 trees 137
games 87 dsu 84

shortest paths 66 *special 58
probabilities 52 hashing 48

divide and conquer 35 flows 24
graph matchings 22 ternary search 22

matrices 22 expression parsing 19
string suffix structures 10 2-sat 7

chinese remainder theorem 5 schedules 4
meet-in-the-middle 4 fft 4

Table 6: Statistics of the types of problems in D1, D2, D3.

820

C Prompt Details821

Prompts used in this study are shown in Table 7.822

D Case Study823

Some examples generated by GPT4 are shown in Tables 8–11.824

12

ρ1 You are given a problem, you need to write a C++ solution and explain the algorithm.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
Please provide a C++ code in ```cpp\n...\n```

ρ2 Read the problem, write a C++ solution and explain the algorithm. {promblem_name}:
{promblem_description} Input specification is{input_format}. Output specification is
{output_format}. Note that {note}. Memory limit is{memory_limit}. Time limit is
{time_limit}. Example i input is{inputi}. Example i output is{outputi}. Please provide a C++
code in ```cpp\n...\n```

ρ3 Finish the solution of this programming problem.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
C++ code solution:
```cpp

ρcot You are given an algorithm problem. First, provide a detailed explanation of the algorithm solution,
including the logic behind it, the time and space complexity, and any important considerations or edge
cases. Then, implement the solution in C++ code, ensuring it is clean, efficient, and well-commented.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
Please provide a C++ code in ```cpp\n...\n```

ρsip Please extract the essential components from this algorithm problem for a C++ solution, removing any
superfluous narrative or context.
{promblem_name}
{promblem_description}
Input specification: {input_format}
Output specification: {output_format}
Note: {note}

ρsipgen You are given a problem, you need to write a C++ solution and explain the algorithm.
{promblem_simlified}
Memory limit: {memory_limit}
Time limit: {time_limit}
Example:
Input:
{inputi}
Output:
{outputi}
Please provide a C++ code in ```cpp\n...\n```

Table 7: Prompts used in this study.

13



Problem Name 1890 B: Qingshan Loves Strings Accepted

Problem Statement Problem Qingshan has a string s, while Daniel has a string t. Both strings
only contain 0 and 1. A string a of length k is good if and only if ai ̸= ai+1

for all i = 1, 2, . . . , k − 1. For example, 1, 101, 0101 are good, while 11,
1001, 001100 are not good. Qingshan wants to make s good. To do this,
she can do the following operation any number of times (possibly, zero):
insert t to any position of s (getting a new s). Please tell Qingshan if it is
possible to make s good.
Input Format The input consists of multiple test cases. The first line
contains a single integer T (1 ≤ T ≤ 2000) — the number of test cases.
The description of the test cases follows. The first line of each test case
contains two integers n and m (1 ≤ n,m ≤ 50) — the length of the
strings s and t, respectively. The second line of each test case contains a
string s of length n. The third line of each test case contains a string t of
length m. It is guaranteed that s and t only contain 0 and 1.
Output Format For each test case, print "YES" (without quotes), if it is
possible to make s good, and "NO" (without quotes) otherwise. You can
print letters in any case (upper or lower).

Code
1 # inc lude < b i t s / s t d c ++. h>
2 us ing namespace s t d ;
3
4 bool i sGood ( s t r i n g s ) {
5 f o r ( i n t i = 0 ; i < s . s i z e ( ) − 1 ; i ++) {
6 i f ( s [ i ] == s [ i + 1 ] ) {
7 re turn f a l s e ;
8 }
9 }

10 re turn true ;
11 }
12
13 s t r i n g s o l v e ( s t r i n g s , s t r i n g t ) {
14 i f ( isGood ( s ) ) {
15 re turn "YES" ;
16 }
17 i f ( ! isGood ( t ) ) {
18 re turn "NO" ;
19 }
20 f o r ( i n t i = 0 ; i < s . s i z e ( ) − 1 ; i ++) {
21 i f ( s [ i ] == s [ i +1] && t [ 0 ] != s [ i ] && t [ t . s i z e ( ) −1] != s [ i + 1 ] ) {
22 s . i n s e r t ( i +1 , t ) ;
23 i += t . s i z e ( ) ;
24 }
25 }
26 i f ( isGood ( s ) ) {
27 re turn "YES" ;
28 }
29 re turn "NO" ;
30 }
31
32 i n t main ( ) {
33 i n t T ;
34 c i n >> T ;
35 whi le ( T− −) {
36 i n t n , m;
37 c i n >> n >> m;
38 s t r i n g s , t ;
39 c i n >> s >> t ;
40 c o u t << s o l v e ( s , t ) << e n d l ;
41 }
42 re turn 0 ;
43 }

Table 8: An accepted example generated by GPT-4

14



Problem Name 1893 A: Anonymous Informant Wrong answer on test 1

Problem Statement Problem You are given an array b1, b2, . . . , bn. An anonymous informant
has told you that the array b was obtained as follows: initially, there
existed an array a1, a2, . . . , an, after which the following two-component
operation was performed k times: A fixed point† x of the array a was
chosen. Then, the array a was cyclically shifted to the left‡ exactly x times.
As a result of k such operations, the array b1, b2, . . . , bn was obtained. You
want to check if the words of the anonymous informant can be true or if
they are guaranteed to be false. †A number x is called a fixed point of the
array a1, a2, . . . , an if 1 ≤ x ≤ n and ax = x. ‡A cyclic left shift of the
array a1, a2, . . . , an is the array a2, . . . , an, a1.
Input Format Each test contains multiple test cases. The first line contains
an integer t (1 ≤ t ≤ 104) — the number of test cases. The description of
the test cases follows. The first line of each test case contains two integers
n, k (1 ≤ n ≤ 2 · 105, 1 ≤ k ≤ 109) — the length of the array b and
the number of operations performed. The second line of each test case
contains n integers b1, b2, . . . , bn (1 ≤ bi ≤ 109) — the elements of the
array b. It is guaranteed that the sum of the values of n for all test cases
does not exceed 2 · 105.
Output Format For each test case, output "Yes" if the words of the
anonymous informant can be true, and "No" if they are guaranteed to be
false.

Code
1 # inc lude < b i t s / s t d c ++. h>
2 us ing namespace s t d ;
3
4 void s o l v e ( ) {
5 i n t n , k ;
6 c i n >> n >> k ;
7 v e c t o r < i n t > b ( n ) ;
8 f o r ( i n t i =0 ; i <n ; i ++) c i n >> b [ i ] ;
9 v e c t o r < i n t > p r e f i x ( n ) , s u f f i x ( n ) ;

10 p r e f i x [ 0 ] = b [ 0 ] ;
11 s u f f i x [ n −1] = b [ n − 1 ] ;
12 f o r ( i n t i =1 ; i <n ; i ++) p r e f i x [ i ] = max ( p r e f i x [ i −1 ] , b [ i ] ) ;
13 f o r ( i n t i =n −2; i >=0; i − −) s u f f i x [ i ] = max ( s u f f i x [ i +1 ] , b [ i ] ) ;
14 bool ok = t rue ;
15 f o r ( i n t i =0 ; i <n ; i ++) {
16 i f ( b [ i ] > max ( ( i >0 ? p r e f i x [ i −1] : 0 ) , ( i <n−1 ? s u f f i x [ i +1] : 0 ) ) )

{
17 ok = f a l s e ;
18 break ;
19 }
20 i f ( i > 0 && b [ i ] − b [ i −1] > 1) {
21 ok = f a l s e ;
22 break ;
23 }
24 }
25 i f ( b [ 0 ] != b [ n − 1 ] ) ok = f a l s e ;
26 c o u t << ( ok ? " Yes " : "No" ) << " \ n " ;
27 }
28
29 i n t main ( ) {
30 i o s _ b a s e : : s y n c _ w i t h _ s t d i o ( f a l s e ) ;
31 c i n . t i e (NULL) ;
32 i n t t ;
33 c i n >> t ;
34 whi le ( t − −) s o l v e ( ) ;
35 re turn 0 ;
36 }

Table 9: An wrong example generated by GPT-4

15



Problem Name 1893 A: Anonymous Informant Compilation error

Problem Statement Problem You are given a set S, which contains the first n positive integers:
1, 2, . . . , n. You can perform the following operation on S any number
of times (possibly zero): Choose a positive integer k where 1 ≤ k ≤ n,
such that there exists a multiple of k in S. Then, delete the smallest
multiple of k from S. This operation requires a cost of k. You are given
a set T , which is a subset of S. Find the minimum possible total cost of
operations such that S would be transformed into T . We can show that
such a transformation is always possible.
Input Format The first line of the input contains a single integer t (1 ≤
t ≤ 10 000) — the number of test cases. The description of the test cases
follows. The first line contains a single positive integer n (1 ≤ n ≤ 106).
The second line of each test case contains a binary string of length n,
describing the set T . The i-th character of the string is ’1’ if and only if i
is an element of T , and ’0’ otherwise. It is guaranteed that the sum of n
over all test cases does not exceed 106.
Output Format For each test case, output one non-negative integer —
the minimum possible total cost of operations such that S would be trans-
formed into T .

Code
1 # inc lude < b i t s / s t d c ++. h>
2 us ing namespace s t d ;
3
4 i n t main ( ) {
5 i o s _ b a s e : : s y n c _ w i t h _ s t d i o ( f a l s e ) ;
6 c i n . t i e (NULL) ;
7
8 i n t t ;
9 c i n >> t ;

10 whi le ( t − −) {
11 i n t n ;
12 c i n >> n ;
13 s t r i n g s ;
14 c i n >> s ;
15 long long c o s t = 0 , max_num = 0 ;
16 f o r ( i n t i = n − 1 ; i >= 0 ; i − −) {
17 i f ( s [ i ] == ' 1 ' ) {
18 i f ( i + 1 > max_num ) {
19 c o s t += i + 1 ;
20 max_num = i + 1 ;
21 }
22 } e l s e {
23 max_num = max ( max_num , i + 1) ;
24 }
25 }
26 c o u t << c o s t << " \ n " ;
27 }
28 re turn 0 ;
29 }

Table 10: An example of compilation error generated by GPT-4

16



Problem Name 1890 B: Qingshan Loves Strings

Problem Statement Problem Qingshan has a string s, while Daniel has a string t. Both strings
only contain 0 and 1. A string a of length k is good if and only if ai ̸= ai+1

for all i = 1, 2, . . . , k − 1. For example, 1, 101, 0101 are good, while 11,
1001, 001100 are not good. Qingshan wants to make s good. To do this,
she can do the following operation any number of times (possibly, zero):
insert t to any position of s (getting a new s). Please tell Qingshan if it is
possible to make s good.
Input Format The input consists of multiple test cases. The first line
contains a single integer T (1 ≤ T ≤ 2000) — the number of test cases.
The description of the test cases follows. The first line of each test case
contains two integers n and m (1 ≤ n,m ≤ 50) — the length of the
strings s and t, respectively. The second line of each test case contains a
string s of length n. The third line of each test case contains a string t of
length m. It is guaranteed that s and t only contain 0 and 1.
Output Format For each test case, print "YES" (without quotes), if it is
possible to make s good, and "NO" (without quotes) otherwise. You can
print letters in any case (upper or lower).

Simplified
Statement

You are given a problem, you need to write a C++ solution and explain the
algorithm.
- You are given two strings s and t, both containing only 0s and 1s.
- A string a of length k is considered good if no two consecutive characters
are the same.
- You can insert string t at any position in string s any number of times.
- You need to determine if it is possible to make string s good.
- The input consists of multiple test cases. The first line contains an integer
T (1 ≤ T ≤ 2000) — the number of test cases. Each test case starts with
two integers n and m (1 ≤ n,m ≤ 50) — the lengths of the strings s and
t, respectively. The next two lines contain the strings s and t.
- For each test case, print "YES" if it is possible to make s good, and "NO"
otherwise. The output is case-insensitive.

Table 11: An simplified example generated by GPT-4

17


	Introduction
	Problem Setup
	Competition-level Programming
	Problem Definition
	Dataset Collection
	Experiment Details

	Insights and Implications
	Faltering on Unseen Problems
	Limited Ability to Solve Difficult Problems
	Struggling with The First Test Case
	Similar Phenomenons of Other Code LLMs
	Evaluation Hallucination of LLMs

	One Step Forward
	Finetuning
	Chain-of-Thought Prompting
	Problem Statement Simplification

	Related Work
	Conclusion
	More Results with Different Versions of GPT-4 APIs
	Dataset Details
	Prompt Details
	Case Study

