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Abstract: Dexterous manipulation is crucial for robots to interact with the physical1

world. While vision-based methods have advanced rapidly, tactile sensing remains2

essential for fine-grained control, especially under occlusion. We present ViTac-3

Former, a cross-modal framework that fuses vision and touch via cross-attention4

and predicts future tactile states with an autoregressive head. A curriculum gradu-5

ally shifts from ground-truth to predicted tactile inputs, stabilizing representation6

learning. On real-world benchmarks covering both short- and long-horizon tasks,7

ViTacFormer improves success rates by about 50% over strong baselines, and is the8

first to complete 11-stage dexterous manipulation with 2.5 minutes of continuous9

operation.10

Keywords: Dexterous Manipulation, Visuo-Tactile Fusion, Cross-Attention, Au-11

toregressive Tactile Forecasting, Imitation Learning12

1 Introduction13

Recent years have witnessed rapid advances in robotic manipulation [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], with14

behavior cloning (BC) [11, 12, 13] emerging as a promising paradigm for high-precision real-world15

tasks. However, most existing approaches remain restricted to simple hand configurations [14] and16

generalize poorly—largely due to the underutilization of tactile sensing [15, 16, 17, 18], which is17

indispensable for fine-grained control.18

While some studies have attempted to integrate tactile feedback into dexterous manipulation [19, 20],19

the learned tactile features are often shallow and underexplored. Self-supervised methods have20

also been applied to tactile data [21, 22, 23, 24, 25], but a unified cross-modal representation for21

visuo-tactile dexterous manipulation remains missing [26, 27].22

We introduce ViTacFormer, a visuo-tactile framework that addresses this gap. Our key idea is to23

fuse high-resolution vision and tactile cues with cross-attention layers at every stage of the policy,24

and to enforce predictive modeling of future tactile states. This tactile-prediction head drives the25

latent space to encode actionable touch dynamics, providing richer cues than perceiving only current26

signals.27

Since autoregressive tactile forecasting is inherently challenging, we design a two-phase curriculum:28

during the first 75% of training, ground-truth tactile signals stabilize learning; during the final 25%,29

predicted signals are used to promote robust cross-modal reasoning.30

To evaluate ViTacFormer, we construct the first comprehensive real-world benchmark for visuo-tactile31

dexterous manipulation, covering four short-horizon tasks and a very long-horizon, 11-stage task.32

Across all benchmarks, ViTacFormer achieves about 50% higher success rates than strong baselines,33

and is the first system to complete continuous dexterous operation for 2.5 minutes over 11 sequential34

stages.35
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In summary, our contributions include:36

• A real-world experimental setup with bi-manual anthropomorphic hands, teleoperation, and37

a benchmark for visuo-tactile dexterous manipulation.38

• A multimodal learning framework that couples cross-attention fusion with autoregressive39

tactile prediction and curriculum training.40

• Strong empirical results, including significant gains over baselines and the first successful41

demonstration of long-horizon dexterous manipulation on a real robot.42

2 Problem Formulation and Hardware Setup43

2.1 Problem Formulation44

(a) Hardware System

(b) Human Teleoperator

(c) First-person VR View

Binocular 
Camera

Wrist Camera

Dexterous Hand w/ 
Tactile Fingertips 

Figure 1: System overview. (a) Dual-arm platform with
dexterous hands, wrist cameras, and stereo camera. (b)
Teleoperation with exoskeleton gloves and VR headset.
(c) VR interface with visual and tactile feedback.

We study imitation learning for dexterous45

bi-manual manipulation. Given a set of ex-46

pert trajectories D = {τi}Ni=1, where each47

τi = {(oit, ait)}
Ti
t=1 consists of multimodal48

observations oit and corresponding actions49

ait, the goal is to learn a policy πθ that maps50

observations to actions, at = πθ(ot). The51

policy is trained to imitate expert behav-52

ior and evaluated on both short- and long-53

horizon manipulation tasks.54

2.2 Hardware Setup55

Our platform (Fig. 1) consists of two56

robot arms with anthropomorphic dexter-57

ous hands, equipped with wrist-mounted58

and stereo cameras for vision and finger-59

tip sensors for touch. We collect demon-60

strations via a custom teleoperation system61

where operators use exoskeleton gloves and a VR interface with real-time visual–tactile feedback.62

This setup enables intuitive control and provides high-quality multimodal trajectories.63

3 Method64

In section 3.1, we introduce a cross-attention-based multimodal integration framework that fuses the65

visual and tactile inputs. In section 3.2, we present autoregressive modeling with tactile forecasting,66

which generates actions conditioned on predicted tactile signals. In section 3.3, we summarize the67

overall learning procedure for ViTacFormer.68

3.1 Cross-Attention-Based Multimodal Integration69

Visual observations and tactile signals provide complementary cues but naive fusion fails to capture70

their correlations. Cross-attention enables queries from one modality to attend to keys and values from71

the other, allowing ViTacFormer to extract semantically relevant dependencies between vision and72

touch. The resulting features are concatenated into hidden states for downstream action generation.73

3.2 Auto-Regressive Modeling with Tactile Signal Forecasting74

Beyond perceiving current signals, anticipating future tactile feedback improves robustness. ViTac-75

Former predicts future tactile tokens using z, proprioception, and visuo-tactile observations, and76

concatenates them with current inputs for action generation.77
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Figure 2: ViTacFormer architecture. A transformer-based encoder maps action sequence and robot
proprioception to a style variable z. A transformer-based encoder-decoder fuses z with visuo-tactile
observations to autoregressively predict future tactile signals and generate actions.

3.3 Neural Network Architecture and Learning Procedure78

Fig. 2 illustrates the architecture of ViTacFormer, formulated as a conditional variational auto-encoder.79

On the left, a transformer-based encoder maps the robot’s proprioception and expert action sequence80

into a latent style variable z. On the right, a transformer-based encoder-decoder integrates z with81

visuo-tactile observations via cross-attention, predicts future tactile signals autoregressively, and82

generates actions accordingly. During training, z is sampled from expert demonstrations, while83

during inference it is fixed to zero, ensuring consistent action generation without stochastic variation.84

Since autoregressive tactile forecasting is challenging at the start of training, we adopt a two-phase85

curriculum: the first 75% of epochs use ground-truth tactile signals to stabilize learning, and the final86

25% gradually switch to predicted signals, encouraging robust cross-modal reasoning under realistic87

conditions [28].88

4 Experiment89

We evaluate ViTacFormer on four short-horizon dexterous tasks (Fig. 3) and one long-horizon task90

(making hamburgers). Each task uses only 50 demonstrations, making the setting challenging. We91

compare against Diffusion Policy (DP) [29], HATO [20], ACT [30], and ACTw/T [30]. DP and ACT92

do not use tactile inputs, while HATO and ACTw/T fuse tactile signals naively.93

Peg Insertion Cap Twist Vase Wipe Book Flip

Figure 3: Four short-horizon visuo-tactile tasks, from left to right, i.e., peg insertion, cap twist, vase
wipe, and book flip.

4.1 Algorithm Comparison94

To evaluate the effectiveness of our approach, we conduct experiments on four short-horizon dex-95

terous manipulation tasks, with each algorithm tested for 10 rollouts per task. As shown in Tab. 1,96
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Table 1: Success rate comparison on four short-horizon dexterous manipulation tasks. Our ViTac-
Former achieves over 50% success rates compared to the baselines.

Task Peg Insertion Cap Twist Vase Wipe Book Flip

DP [29] 2/10 0/10 3/10 1/10
ACT [30] 4/10 4/10 3/10 2/10

HATO [20] 4/10 1/10 4/10 3/10
ACTw/T [30] 6/10 6/10 4/10 4/10

Ours 10/10 10/10 9/10 9/10

ViTacFormer consistently outperforms all baselines, achieving markedly higher success rates and97

nearly solving these challenging benchmarks.98

t=10s t=18s t=33s t=52s t=45s t=57s 

t=73s t=98s t=86s t=138s t=108s t=119s 

Figure 4: Successful rollout of ViTacFormer on the long-horizon hamburger task.

We further evaluate ViTacFormer on a challenging 11-stage long-horizon task of making hamburg-99

ers. As shown in Fig. 4, ViTacFormer is the first to complete the full sequence on a real robot,100

demonstrating stable performance across all stages and achieving over 80% overall success rate.101

4.2 Ablation Study102

Table 2: Ablation study on four short-horizon dexterous tasks. Each proposed component improves
performance over the baseline.

Task Peg Insertion Cap Twist Vase Wipe Book Flip

w/o Tactile 4/10 4/10 3/10 2/10
w/o CrossAttention 9/10 7/10 7/10 7/10
w/o AutoRegressive 7/10 7/10 6/10 7/10

w/o Two-Stage 7/10 6/10 4/10 6/10
Ours 10/10 10/10 9/10 9/10

Results in Tab. 2 show that removing any component leads to noticeable performance drops. Cross-103

attention enhances vision-touch fusion, autoregressive tactile forecasting improves stability, and the104

two-stage curriculum stabilizes training. Together, these components enable ViTacFormer to achieve105

the best performance.106

5 Conclusion107

We present ViTacFormer, a visuo-tactile framework for dexterous manipulation that integrates cross-108

modal fusion and predictive tactile modeling. With a curriculum strategy to stabilize training,109

ViTacFormer achieves robust control and outperforms strong baselines by large margins. Notably, it110

is the first system to complete long-horizon dexterous tasks on a real robot, highlighting the potential111

of vision-touch integration for generalizable manipulation.112
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Appendix202

Appendix A. Implementation and training details, including sensor modalities, action formats, and203

inference settings.204

Appendix B. Evaluation metrics and expanded experimental results on all tasks, including task205

description, scoring schemes, inference results and failure analysis.206

A Additional Method Details207

A.1 Input Modalities208

Our model takes multimodal inputs from the robot system, including visual observations, robot209

proprioception, and tactile signals.210

Visual Input211

(a) Left eye (b) Left wrist

(c) Right eye (d) Right wrist

Figure 5: Four types of camera views

We use four synchronized camera views as vi-212

sual input: a stereo pair (180×320) from top-213

mounted ZED Mini cameras (Fig. 5(a), (c)), and214

two fisheye wrist-mounted views (256×280) for215

left and right hands (Fig. 5(b), (d)). All frames216

are encoded into image tokens via a vision back-217

bone before cross-modal integration.218

Proprioception Input219

The robot’s internal state at each timestep is220

represented by a 58-dimensional vector, con-221

sisting of: 7-DoF left arm state, 17-DoF left222

hand state, 7-DoF right arm state, 17-DoF right223

hand state, and 2-DoF neck state—structured224

as [7, 17, 7, 17, 2]. A temporal horizon of225

6 frames is used, resulting in a proprioceptive226

input of shape (6, 50).227

Tactile Input228

Each of the 10 fingertips is equipped with force and torque sensors along 3 axes, resulting in 20229

tactile channels. For each channel, we collect 18 frames of data ([18, 3]), which are concatenated into230

a raw tactile tensor of shape [18, 60]. We additionally compute frame-wise deltas to obtain relative231

changes ([18, 60]), and concatenate them with the raw signal to produce the final tactile input of shape232

[18, 120].233

A.2 Action Output234

The policy generates high-frequency action sequences with shape (100, 50) per rollout, where 50235

corresponds to the full control dimension of the robot: 7-DoF left arm, 17-DoF left hand, 7-DoF right236

arm,17-DoF right hand, and 2-DoF neck—matching the structure of the proprioceptive state. The237

100-frame horizon supports fine-grained dexterous motion across extended manipulation stages.238

A.3 Data and training details239

We train each task using 50 expert demonstrations and 100 epochs on 2 NVIDIA H20 GPUs. Short-240

horizon tasks typically converge within half a day, while long-horizon tasks (e.g., Make Hamburger)241

require up to 2 days. The model is optimized using the Adam optimizer with a learning rate of 1e-4242

and a batch size of 128. Training supervision includes KL divergence on latent action style, L1 losses243

on both predicted actions and tactile signals, and auxiliary supervision on end-effector positions and244

rotations. All input modalities are temporally aligned and normalized prior to training.245
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A.4 Inference Details246

During deployment, the policy runs at 10Hz, producing a 100-frame (100, 50) high-frequency action247

sequence at each decision step. To ensure smooth and physically stable execution, we apply temporal248

smoothing over the predicted action trajectory before sending commands to the robot. The system249

is deployed on a real dual-arm platform with synchronized visuo-tactile observation streams and250

low-latency control.251

B Additional Experiment Details252

B.1 Evaluation Metrics253

In addition to success rates, we also define Human Normalized Score (HNS) to measure dexterous254

manipulation performance in long-horizon tasks. Success rates alone may not fully capture the quality255

of execution, especially in contact-rich multi-stage manipulation.256

HNS provides a stage-wise evaluation: each task is divided into N stages, and each stage is assigned a257

raw score si ∈ {0, 1, 2, 3} reflecting execution quality. Each stage also has a weight wi corresponding258

to its tactile reliance. The overall HNS is then defined as:259

HNS =

∑N
i=1 wi · si

3 ·
∑N

i=1 wi

. (1)

This normalized score enables fine-grained comparison across stages while accounting for tactile260

dependence.261

B.2 Short-horizon tasks262

(0,0)

(a) Objects (b) Workspace

Figure 6: Short-horizon task setup. (a) All four short-horizon tasks
share a common set of objects. (b) The tabletop workspace is marked
with a grid; the top-left corner is defined as the origin (0, 0). Each object
is positioned at a predefined grid point during training.

The four short-horizon263

tasks share a standardized264

tabletop workspace and a265

common set of objects, as266

shown in Fig. 6(a). The267

workspace is discretized268

using a printed grid (5cm269

per square), with the top-270

left corner defined as the271

origin (0, 0), as illustrated272

in Fig. 6(b). During train-273

ing, each object is placed274

at a designated grid co-275

ordinate. For generaliza-276

tion, we randomly per-277

turb the object’s position278

within a circular region279

of half-grid radius (i.e.,280

2.5cm) around its original anchor point.281

B.2.1 Peg Insertion282

Task Description283

The robot uses its right hand to grasp a cylindrical peg from the vertical rack, then moves it diagonally284

along the sloped platform toward the insertion hole. Upon reaching the vicinity of the hole, the robot285

is expected to insert the peg smoothly and stably into the hole. This task involves visual alignment,286

precise grasping, and tactile-guided insertion. Representative execution frames are shown in the first287

row of Fig. 7.288
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Figure 7: Execution examples for short-horizon tasks. Representative keyframes from four tasks:
peg insertion, cap twist, vase wipe, and book flip. Each task demonstrates a full execution sequence
from perception to manipulation.

Scoring Scheme289

Table 3: Scoring criteria for Peg Insertion.

Stage 1: Grasp (weight 1) Description
0 No grasp
1 Grasped but slipped or dropped
2 Poor or tilted grasp
3 Stable grasp

Stage 2: Insertion (weight 2) Description
0 No insertion
1 Misaligned, dropped
2 Partial insertion
3 Fully inserted

The task is divided into two stages: peg grasping (weight 1) and insertion (weight 2). Each stage is290

scored from 0 to 3 based on qualitative criteria such as grasp stability and insertion completeness.291

The human normalized score (HNS) is computed as a weighted average. A total score of 3 for stage 1292

and ≥2 for stage 2 is considered successful.293

Inference Results294

Table 4 summarizes the quantitative performance on the peg insertion task. We report the average295

stage-wise scores, human normalized score (HNS), and success rate across baselines and abla-296

tions. Our method achieves the highest HNS (0.93) and 100% success rate, demonstrating strong297

performance across both stages.298
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Table 4: Peg Insertion: inference results across models.

Model Stage 1 Stage 2 HNS Success Rate
DP 1.6 0.9 0.37 20%
ACT 2.6 1.1 0.53 40%
HATO 2.4 1.1 0.51 40%
ACT w/T 2.6 1.8 0.68 60%
ACT w/CrossAttention 3.0 2.1 0.80 70%
ACT w/NextTouchPred 2.7 2.4 0.83 80%
ACT w/AutoRegressive 2.9 2.2 0.81 90%
Ours 3.0 2.7 0.93 100%

Failure Case Analysis299

Figure 8, first row, shows two representative failure cases in the peg insertion task. In the first case,300

the robot fails to locate the insertion hole accurately and attempts to insert the peg at an incorrect301

position, leading to task failure despite a seemingly stable grasp. In the second case, the robot grasps302

the cylindrical peg with an imprecise hand posture, causing the thumb to slip during the transport303

phase. As a result, the peg deviates from the planned trajectory and misses the hole entirely.304

B.2.2 Cap Twist305

Task Description306

The robot uses its right hand to rotate a cap off a bottle and place it on the table. The cap is initially307

tightened at a clockwise offset of about 100 degrees from the open position. Representative execution308

frames are shown in the second row of Fig. 7.309

Scoring Scheme

Table 5: Scoring criteria for Cap Twist.

Stage 1: Rotate (weight 2) Description
0 No contact with the cap
1 Rotated 0–50°
2 Rotated 50–100°, or over-rotated
3 Fully unscrewed, cap held securely

Stage 2: Place (weight 2) Description
0 Dropped immediately or stuck on bottle
1 Released before full separation
2 Partially placed or fell off
3 Stably placed on the table

310

The task is divided into two stages: rotation and placement. Each is scored from 0 to 3, and a task is311

considered successful if the cap is fully unscrewed and placed stably (stage 1 score 3, stage 2 ≥2).312

Inference Results313

Table 6 presents the model performance on the cap twist task. Our method achieves the best HNS314

score (0.98) and 100% success rate, highlighting the advantage of fine-grained tactile reasoning.315

Failure Case Analysis316

In the second row of Fig. 8, two failure cases from the cap twist task are shown. In the first case, the317

robot fails to detect that the cap has already loosened and continues to apply torque unnecessarily,318

resulting in over-rotation that destabilizes the object. In the second case, the fingers lose contact319
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Figure 8: Representative failure cases across all tasks. Each row corresponds to one task, with two
failure case sequences shown side by side.

Table 6: Cap Twist: inference results across models.

Model Stage 1 Stage 2 HNS Success Rate
DP 1.1 0.3 0.23 0%
ACT 2.4 1.1 0.58 40%
HATO 1.8 0.5 0.38 10%
ACT w/T 2.6 1.8 0.73 60%
ACT w/CrossAttention 3.0 2.3 0.88 70%
ACT w/NextTouchPred 2.8 2.0 0.80 60%
ACT w/AutoRegressive 2.9 2.2 0.85 70%
Ours 3.0 2.9 0.98 100%

during the twisting motion, leading to slippage and an insufficient rotation angle, which prevents the320

cap from being successfully removed.321

B.2.3 Vase Wipe322

Task Description323

The robot uses its left hand to pick up a vase and its right hand to grasp a sponge. It then wipes away324

the blue ink mark located at the center of the vase. Representative execution frames are shown in the325

third row of Fig. 7.326

Scoring Scheme327
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Table 7: Scoring criteria for Vase Wipe.

Stage 1: Pick (weight 1) Description
0 Failed to grasp the sponge
1 Grasped only a corner of sponge
2 Unstable grasp with partial control
3 Firm 3-finger grasp with full control

Stage 2: Wipe (weight 2) Description
0 No contact with the ink mark
1 Wiped less than 50%
2 Wiped 50–90%, some ink remains
3 Fully wiped the ink area clean

The task is divided into two stages: sponge grasping (pick) and vase wiping (wipe), both scored from328

0 to 3. If the operator intervenes to re-adjust the vase grasp during stage 1, the score is reduced by 1.329

The task is considered successful only if both stages score 3.330

Inference Results331

Table 8: Vase Wipe: inference results across models.

Model Stage 1 Stage 2 HNS Success Rate
DP 1.8 1.3 0.49 30%
ACT 2.0 1.5 0.56 30%
HATO 2.5 1.7 0.65 40%
ACT w/T 3.0 1.9 0.75 40%
ACT w/CrossAttention 3.0 2.5 0.89 60%
ACT w/NextTouchPred 3.0 2.2 0.82 40%
ACT w/AutoRegressive 3.0 2.5 0.89 70%
Ours 3.0 2.9 0.98 90%

Table 8 shows the quantitative performance on the vase wiping task. Our method again achieves the332

best HNS (0.98) and 90% success rate, showing reliable grasping and contact-driven wiping.333

Failure Case Analysis334

The third row of Fig. 8 illustrates two typical failure modes in the vase wiping task. In the first case,335

the robot applies insufficient force during the wiping motion, resulting in incomplete surface contact336

between the sponge and the vase. Consequently, the ink mark is not fully removed. In the second337

case, excessive force is applied during the grasping phase, causing the sponge to slip out of the robot’s338

fingers before the wiping action begins.339

B.2.4 Book Flip340

Task Description341

The robot uses its right-hand middle finger to flip up a single page and then presses the page down342

using its left hand. Representative execution frames are shown in the fourth row of Fig. 7.343

Scoring Scheme344

This task includes two stages: flipping and pressing. Each stage is scored from 0 to 3. The task is345

considered successful if stage 1 scores 3 and stage 2 scores ≥2.346

Inference Results347

Table 10 shows performance on the book flip task. Our method achieves the highest HNS (0.93) and348

90% success rate, outperforming all ablations.349
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Table 9: Scoring criteria for Book Flip.

Stage 1: Flip (weight 2) Description
0 No contact with the page
1 Touched but failed to lift / flipped multiple pages
2 Lifted halfway but stopped
3 Fully flipped one page

Stage 2: Press (weight 2) Description
0 No contact with the page
1 Insufficient force, page rebounds
2 Pressed down, but misaligned
3 Fully and correctly pressed the page down

Table 10: Book Flip: inference results across models.

Model Stage 1 Stage 2 HNS Success Rate
DP 1.5 0.5 0.35 10%
ACT 1.9 0.7 0.43 20%
HATO 2.0 0.6 0.43 30%
ACT w/T 2.3 0.9 0.53 40%
ACT w/CrossAttention 2.7 1.9 0.77 70%
ACT w/NextTouchPred 2.9 1.9 0.80 70%
ACT w/AutoRegressive 2.7 2.1 0.80 70%
Ours 3.0 2.6 0.93 90%

Failure Case Analysis350

Figure 8, fourth row, presents two failure modes in the book flip task. In the first case, the robot351

fails to perceive the presence or precise location of the page edge, resulting in a poking motion352

that completely misses the page during the flipping attempt. In the second case, the robot applies353

excessive downward force before initiating the flip, which presses the page flat against the book and354

prevents it from being lifted.355

B.3 Long-horizon task: Make Hamburger356

Workspace Setup357

Figure 9: Long-horizon task setup. Seven com-
ponents are placed in predefined zones—circular
(ingredients) or rectangular (tools). Objects are
randomly initialized within these areas to test spa-
tial generalization.

The long-horizon task is conducted on a cus-358

tomized metallic tabletop with seven designated359

ingredient/tool zones, as shown in Fig. 9. Each360

object is placed within either a circular or rectan-361

gular region marked on the tray. These regions362

serve as initialization zones with controlled spa-363

tial variability to support generalization. During364

both training and evaluation, each item is placed365

randomly within its assigned zone (up to 3cm366

positional jitter), ensuring that the policy must367

perform robust multimodal perception and exe-368

cution.369

Task Description370

The long-horizon task involves a full hamburger371

assembly sequence requiring precise tool use372

and multi-stage coordination. The robot be-373

gins by flipping a wooden card from “closed” to374
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“open” to indicate the start of service. It then uses its right hand to grasp a spatula and sequentially375

completes the following steps: (1) lift and place the meat patty onto the bottom bread, (2) place a376

piece of lettuce, and (3) lift and place the top bread. Once the hamburger is assembled, the robot377

places it onto a plate handed over by a human. Finally, it returns the spatula to its original position378

and flips the sign back to “closed” to indicate task completion.379

Scoring Scheme380

The long-horizon hamburger task is decomposed into 11 sequential stages, covering symbolic381

interaction (sign flipping), tool use (spatula manipulation), ingredient assembly (meat patty, lettuce,382

bun), and final delivery. Each stage is scored from 0 to 3, where 0 indicates failure or no attempt, 1–2383

denote partial or unstable execution, and 3 represents correct and stable completion. To better reflect384

task complexity and tactile sensitivity, each stage is assigned a specific weight: for example, sign385

flipping and deformable object handling (lettuce, bun) are given higher weights due to their reliance386

on fine-grained control and multi-finger dexterity.387

The weighted stage scores are used to compute a Human Normalized Score (HNS), which reflects the388

overall task performance. A stage is considered successful if the score is at least 1. The entire task is389

marked as successful only when all 11 stages meet this threshold. Table 11 details the scoring criteria390

and weights for each stage.

Table 11: Scoring criteria for the long-horizon hamburger task.

Stage Action Weight Score Description
1 Flip sign (start) 2 0: miss/fail; 1–2: partial (0–180°); 3: clean flip
2 Grab spatula 2 0: miss; 1–2: unstable grasp; 3: secure grasp
3 Lift meat patty 1 0: failed; 1–2: partial lift; 3: stable lift
4 Place meat patty 1 0: miss; 1–2: partial/inaccurate; 3: centered
5 Grasp lettuce 2 0: miss; 1–2: loose grasp; 3: stable placement
6 Lift top bread 2 0: failed; 1–2: unstable or too forceful; 3: correct
7 Place top bread 1 0: miss; 1–2: inaccurate; 3: clean stack
8 Lift hamburger 1 0: failed; 1–2: unstable; 3: correct lift
9 Place on plate 1 0: miss; 1–2: off-center; 3: perfect placement

10 Return spatula 1 0: drop/fail; 1–2: misaligned; 3: accurate return
11 Flip sign (end) 2 0: fail; 1–2: partial rotation; 3: clean close flip

391

Failure Case Analysis392

The fifth row of Fig. 8 shows two failure cases from the long-horizon hamburger assembly task. In the393

first case, the robot fails during stage 5 (grasping the lettuce): the grasp is unstable and incomplete,394

resulting in the lettuce slipping from the fingers before it can be placed. In the second case, the failure395

occurs in stage 1 (flipping the sign): although the sign is flipped, an incorrect grasp orientation causes396

the sign to rotate unintentionally during the movement, leading to a collision with the edge of the397

stove and blocking task progression.398
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