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ABSTRACT

Detecting risky behavior using smartphones and other mobile de-

vices may help mitigate the spread of infectious diseases. However,

the privacy concerns introduced by individualized activity recog-

nition may counteract potential benefits. As an example, consider

a public health official gauging their message’s efficacy. Machine

learning and data mining methods may help them understand how

their local population’s behavior changes, but aggressive surveil-

lance can severely hinder individual privacy and cause dispropor-

tionate harm to disadvantaged groups. In this work, we bench-

mark a series of machine learning algorithms predicting high-risk

behaviors—going to bars and gyms, attending parties, and riding on

buses—given only low-level smartphone sensor data. We find that

models trained to perform these challenging tasks are largely unre-

liable and should be avoided in practice, though their predictions

are significantly better than random.
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1 INTRODUCTION

Risky behavior during a pandemic can create outbreaks. To combat

this, officials release public health messaging to alert to educate

the population [7]. But how can we quickly and automatically tell

when a population’s behavior aligns with public health messaging?

One promising direction may be through Human Activity Recogni-

tion via mobile devices [12], like smartphones or watches, which

contain sensors that rapidly measure movement. By detecting what

activities people are performing and where, public health may be

improved, particularly during a pandemic where success requires

community-level cooperation. Accurately identifying people’s be-

havior using data collected from wearable devices is becoming

feasible [21], and we believe that this approach may play a role in

mitigating the spread of future diseases as well as continuing to

mitigate COVID-19.
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Consider, for example, early COVID-19 spread in the US. Public

health officials knew that drinking at bars puts people at high-risk

of contracting and spreading COVID-19, a message they began

broadcasting to their communities. However, public health has a

notoriously-slow feedback loop: determining amessaging strategy’s

efficacy may take so long that the system has completely changed,

leading to public mistrust [24]. This was indeed the case in the US,

which has hosted one of the earliest, largest, and longest outbreaks

of COVID-19. Ground-level monitoring of population behavior via

data mining could be a promising approach to expedite the feedback

loop for public health officials.

However, recognizing a population’s activities at scale means

using individuals’ data. This can cause harmful invasions of privacy

[8]. In particular, individual surveillance disproportionately harms

historically-disadvantaged communities [9]. These negatives should

discourage the use of mobile data to detect behavior for public

health.

On the technical side, detecting and predicting human behavior

from smartphones and other wearable devices is a burgeoning

field, with many successful applications, particularly for COVID

[14, 16, 18]. Still, while success at detecting human behaviors is

increasing, significant challenges remain. Wearable sensor time

series are often long, noisy, and high-dimensional [1, 15]. Self-

reported human behavior labels are frequently sparse, missing, and

temporally biased [10, 11, 17, 27]. Still, success at detecting human

behaviors is increasing.

We investigate the feasibility of Human Activity Recognition

for detecting COVID-risky behaviors by presenting experimental

results on the publicly-available ExtraSensory smartphone sensor

dataset [26]. This dataset contains smartphone sensor data collected

in-the-wild: people went about their daily lives and annotated what

actions they were performing. Four of the reported activities pose

significant risks of spreading COVID-19, especially early during

the COVID-19 pandemic when personal protective equipment was

sparse: Going to a Bar, Going to the Gym, Going to a Party, and
Riding on the Bus. We train a range of machine learning models to

predict these labels and compare a variety of domain-appropriate

data preprocessing techniques.

Overall, we find that, surprisingly, some of the COVID-risky be-

haviors are somewhat predictable: by upsampling sparse labels or

downsampling common labels, we find balanced accuracies of over

0.7 for all tasks, with some even breaching 0.8, without modifying

testing data at all. As expected, XGBoost [5] overall performs better

than Logistic Regression, a Support Vector Machine, and a Multi-

layer Perceptron for this dataset. These accuracies are higher than

expected, indicating that some organizations may investigate simi-

lar approaches in the near future. While we advocate against their
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Figure 1: Example of accelerometer data from ExtraSensory. Rows are the X, Y, and Z from the smartphone accelerometer,

respectively while vertical red lines indicate when this user reported they were at a bar.

immediate deployment, legislation surrounding these technolo-

gies must be prioritized now in order to prevent the harms of pri-

vacy breaches, which particularly harm historically-disadvantaged

groups.

2 RELATEDWORKS

Prior work has shown that smartphone sensor data is predictive of

not only a person’s physical location, but also the semantic meaning

of the location they are inhabiting. These semantic locations include
human-meaningful places like someone’s home, their place of work,

or dining establishments [23]. This is of particular interest to our

work, as some semantic locations like being on a crowded bus or

in a busy bar are risky behaviors during pandemics. While early

works mainly used GPS data [4, 13], more recent works have shown

that other signals such as accelerometer and gyroscope readings are

predictive of semantic location [19, 23]. This indicates that dynamic
semantic locations that do not always exist in the same location,

such as parties, might be identifiable using smartphone data.

Using smartphone sensed data to classify the behaviors of indi-

viduals is also an active area of research [22, 26]. Prior work has

focused on using smartphone sensor data to detect atomic activities

such as walking or sitting [2], complex activities such as having
dinner [25], and contexts which consist of sets of activities and

states such as walking in public [3, 26]. Since risky behaviors such

as drinking in a crowded bar consist of a sequence of activities and

contexts, the predictive power of smartphone data for such tasks

indicates that risky behavior can likewise be detected.

3 DATASET

We experiment with the publicly-available ExtraSensory [26]

human activity recognition dataset, which contains smartphone

sensor data collected across one week while 60 participants labeled

which actions they performed and when. The mobile application

responsible for data collection continuously logged their movement

via sensors (e.g., accelerometer and gyroscope). These data were

collected in the wild, so participants were left to their own devices

for the duration of the study with no prescribed behavior. This

means that some people self-annotated behaviors that we deem

Class Number of Positive Number of Negative

At a Bar 63 3257

At the Gym 132 4303

At a Party 152 4487

On a Bus 280 15249

Table 1: Number of positives and negatives for each class.

risky for COVID-19: Going to a Bar, Going to the Gym, Going to a
Party, and Riding on the Bus. Compared to the rest of the dataset,

these labels are quite rare, leading to large imbalance.

We extract 6 key variables from two sensors in ExtraSensory:

The X, Y, and Z directions of the accelerometer, and X, Y, and Z

directions of the gyroscope. Using only these features demonstrates

it can be possible to mine complex patterns from only raw sensor

measurements. We then extract windows of 10 timesteps and for

each label independently, assign windows to be positive when

any of the 10 timesteps was labeled positively by a participant.

Experimentally, we ranged the window size from 5 to 20 and found

the results to be robust across sizes. Naturally, the labels we’ve

chosen as COVID-risky are rare compared some other classes in

ExtraSensory, like walking or running, and so these data are

highly imbalanced. To preserve realistic test cases, we leave all

testing data untouched in the bulk of our experiments. Further,

since there is little overlap between windows from different labels,

we extract one unique dataset per label from the full ExtraSensory

dataset. The resultant datasets are described in Table 1. Additionally,

we show an example of one person’s accelerometer data in Figure

1, showing at what timesteps they indicated they were At a Bar,
one of our four labels.

4 EXPERIMENTS

We compare the performance of four machine learning algorithms

using three preprocessing techniques for each of the four labels

we extract from ExtraSensory. In all experiments, we evaluate
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Table 2: Balanced accuracy for down-sampling both train and test set. Each task corresponds to a unique binary classification

dataset defined by the four self-reported labels described above.

Task

Method

Logistic Regression XGBoost Support Vector Machine Multi-layer Perceptron

At a Bar 0.50 (0.08) 0.74 (0.10) 0.58 (0.06) 0.61 (0.14)

At the Gym 0.60 (0.10) 0.76 (0.03) 0.72 (0.07) 0.72 (0.06)

At a Party 0.75 (0.06) 0.80 (0.04) 0.77 (0.05) 0.79 (0.04)

On the Bus 0.55 (0.05) 0.77 (0.02) 0.75 (0.04) 0.71 (0.04)

Table 3: Balanced accuracy for down-sampling training set and unmodified test set.

Task

Method

Logistic Regression XGBoost Support Vector Machine Multi-layer Perceptron

At a Bar 0.50 (0.06) 0.70 (0.06) 0.57 (0.07) 0.56 (0.06)

At the Gym 0.64 (0.05) 0.77 (0.03) 0.72 (0.05) 0.74 (0.03)

At a Party 0.72 (0.05) 0.81 (0.04) 0.79 (0.05) 0.81 (0.05)

On the Bus 0.53 (0.03) 0.79 (0.02) 0.77 (0.02) 0.75 (0.02)

Table 4: Balanced accuracy for SMOTE up-sampling training set and unmodified test set.

Task

Method

Logistic Regression XGBoost Support Vector Machine Multi-layer Perceptron

At a Bar 0.58 (0.07) 0.59 (0.08) 0.59 (0.08) 0.57 (0.05)

At the Gym 0.69 (0.05) 0.69 (0.04) 0.70 (0.05) 0.70 (0.04)

At a Party 0.78 (0.05) 0.77 (0.07) 0.77 (0.06) 0.72 (0.07)

On the Bus 0.61 (0.04) 0.57 (0.05) 0.58 (0.05) 0.53 (0.03)

Balanced Accuracy, which weights accuracy according to the preva-

lence of each class. This is important as with unmodified testing

set, standard accuracy will dramatically favor the majority class.

4.1 Compared methods and implementation

We compare Logistic Regression, XGBoost [5], a Support Vector

Machine [6], and aMulti-layer Perceptron, all implemented in scikit-

learn [20]. We use 10-fold cross validation, and report 95% confi-

dence intervals with each reported statistic.

4.2 Results

4.2.1 Downsampling training and testing data. First, we downsam-

ple training and testing data to acquire one fully-balanced dataset

per label, the results for which are shown in Table 2. This setting is

highly unrealistic and serves as an upper bound for our next exper-

iments; it assumes that at test time, any given person has a positive

label 50% of the time. Correspondingly, the resultant accuracy is

generally the highest we observe across our experiments. We notice

that Attending a Party is the most predictable label and that the

95% confidence bounds overall are quite small. Still, in some cases

predictions are very poor. For example, Logistic Regression fails to

classify At a Bar or On the Bus.

4.2.2 Downsampling training negatives. Next, we try downsam-

pling negative instances in the training sets for each label. This

way, we create a balanced training set and leave the testing set

untouched and imbalanced. As shown in Table 3, we find similar

performance as the fully-balanced case above across the board. For

some classes, like At a Bar performance drops substantially.

4.2.3 Upsampling training positives. Finally, we overcome label

imbalance by upsampling positive instances in only the training

dataset using SMOTE. Our results are shown in Table 4. This ap-

proach augments the positive class by in-filling the positive in-

stances in the feature space. While this may amplify signals found

in small sets of positive instances, we find that performance slightly

improves, even beyond the fully-balanced experiment above. This

bolsters our intuition that these data are highly noisy and that

synthetic instances surrounding real positive instances are also

highly reasonable compared to the testing set. Once again, Logistic

Regression appears to perform the worst, while XGBoost is highly

successful.

5 ETHICAL CONSIDERATIONS

Detecting COVID-risky behaviors poses significant risk of dispro-

portionately impacting historically-disadvantaged groups. This is

because using cellphone data requires individual data access. Ag-

gressive policing using these data has a long history of harming

some groups more than others, so presenting already-biased in-

stitutions with more reasons to explain away privacy breaches
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has potential to significantly increase harms. Given advances in

privacy-preserving machine learning, we believe that there are

benefits to be found at the population level. For instance, allow-

ing public health officers to answer valuable questions about how

effective their strategies are. Therefore, detecting COVID-risky be-

haviors could stand to improve public health, as long as it is not at

the expense of vulnerable people. To this end, the individual data

must be anonymized and aggregated to a population level before

being made available to the surveilling institution.

Another consideration when detecting COVID-risky behavior is

the inherent noise during prediction. Human Activity Recognition

data can be quite noisy, which may lead trained models to produce

false alarms. In such cases with untrustworthy models, the loss

of privacy becomes more severe as no value was gained from the

data. Further, if a model picked up on spurious correlations during

training, its value is substantially decreased.

6 DISCUSSION AND CONCLUSION

We find that some COVID-risky behaviors are predictable given

raw smartphone sensor data. If collectable at scale, data mining

techniques for smartphones may add a tool to the public health

official’s toolbox. Further, by quantifying a population’s behavior

as an aggregate of individual activities, the feedback loop for public

health interventions may be expedited. With faster feedback, a local

health officer would be empowered to alter their messaging strate-

gies rapidly, adding the adaptability crucial to early-management of

communicable diseases. We suspect that similar findings are likely

given different modalities, like smart watches and smart rings, and

picking relevant activities to predict will be a valuable task for

public health officials in the not-so-far future. However, there is no

foreseeable harm-free application of these ideas. Successful use of

mobile data for health must consider the health for all, especially
those who stand to lose the most from aggressive surveillance.

REFERENCES

[1] Anindya Das Antar, Masud Ahmed, and Md Atiqur Rahman Ahad. 2019. Chal-

lenges in sensor-based human activity recognition and a comparative analysis

of benchmark datasets: a review. In 2019 Joint 8th International Conference on
Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on
Imaging, Vision & Pattern Recognition (icIVPR). IEEE, 134–139.

[2] Ferhat Attal, SamerMohammed,MariamDedabrishvili, Faicel Chamroukhi, Latifa

Oukhellou, and Yacine Amirat. 2015. Physical human activity recognition using

wearable sensors. Sensors 15, 12 (2015), 31314–31338.
[3] Liang Cao, Yufeng Wang, Bo Zhang, Qun Jin, and Athanasios V Vasilakos. 2018.

GCHAR: An efficient Group-based Context—Aware human activity recognition

on smartphone. J. Parallel and Distrib. Comput. 118 (2018), 67–80.
[4] Xin Cao, Gao Cong, and Christian S Jensen. 2010. Mining significant semantic

locations from GPS data. Proceedings of the VLDB Endowment 3, 1-2 (2010),

1009–1020.

[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[6] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine
learning 20, 3 (1995), 273–297.

[7] Benjamin J Cowling and Allison E Aiello. 2020. Public health measures to slow

community spread of coronavirus disease 2019. The Journal of infectious diseases

221, 11 (2020), 1749–1751.

[8] Yves-Alexandre De Montjoye, Sébastien Gambs, Vincent Blondel, Geoffrey Can-

right, Nicolas De Cordes, Sébastien Deletaille, Kenth Engø-Monsen, Manuel

Garcia-Herranz, Jake Kendall, Cameron Kerry, et al. 2018. On the privacy-

conscientious use of mobile phone data. Scientific data 5, 1 (2018), 1–6.
[9] Barton Gellman and Sam Adler-Bell. 2017. The disparate impact of surveillance.

(2017).

[10] Walter Gerych, Thomas Hartvigsen, Luke Buquicchio, Emmanuel Agu, and Elke

Rundensteiner. 2022. Recovering The Propensity Score From Biased Positive

Unlabeled Data. (2022).

[11] Walter Gerych, Tom Hartvigsen, Luke Buquicchio, Abdulaziz Alajaji, Kavin

Chandrasekaran, Hamid Mansoor, Elke Rundensteiner, and Emmanuel Agu. 2022.

Positive Unlabeled Learning with a Sequential Selection Bias. In Proceedings of
the 2022 SIAM International Conference on Data Mining (SDM). SIAM, 19–27.

[12] Oscar D Lara and Miguel A Labrador. 2012. A survey on human activity recog-

nition using wearable sensors. IEEE communications surveys & tutorials 15, 3
(2012), 1192–1209.

[13] Juhong Liu, Ouri Wolfson, and Huabei Yin. 2006. Extracting semantic location

from outdoor positioning systems. In 7th International Conference on Mobile Data
Management (MDM’06). IEEE, 73–73.

[14] Caleb Mayer, Jonathan Tyler, Yu Fang, Christopher Flora, Elena Frank, Muneesh

Tewari, Sung Won Choi, Srijan Sen, and Daniel B Forger. 2022. Consumer-grade

wearables identify changes in multiple physiological systems during COVID-19

disease progression. Cell Reports Medicine 3, 4 (2022), 100601.
[15] Mike A Merrill and Tim Althoff. 2021. Transformer-Based Behavioral Represen-

tation Learning Enables Transfer Learning for Mobile Sensing in Small Datasets.

arXiv preprint arXiv:2107.06097 (2021).

[16] Marianna Mitratza, Brianna Mae Goodale, Aizhan Shagadatova, Vladimir Kovace-

vic, Janneke van de Wijgert, Timo B Brakenhoff, Richard Dobson, Billy Franks,

Duco Veen, Amos A Folarin, et al. 2022. The performance of wearable sensors in

the detection of SARS-CoV-2 infection: a systematic review. The Lancet Digital
Health 4, 5 (2022), e370–e383.

[17] Abduallah Mohamed, Fernando Lejarza, Stephanie Cahail, Christian Claudel,

and Edison Thomaz. 2022. HAR-GCNN: Deep Graph CNNs for Human Activity

Recognition From Highly Unlabeled Mobile Sensor Data. In 2022 IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops). IEEE, 335–340.

[18] Bret Nestor, Jaryd Hunter, Raghu Kainkaryam, Erik Drysdale, Jeffrey B Inglis,

Allison Shapiro, Sujay Nagaraj, Marzyeh Ghassemi, Luca Foschini, and Anna

Goldenberg. 2021. Dear Watch, Should I Get a COVID-19 Test? Designing

deployable machine learning for wearables. medRxiv (2021).

[19] Khuong An Nguyen, Raja Naeem Akram, Konstantinos Markantonakis, Zhiyuan

Luo, and Chris Watkins. 2019. Location tracking using smartphone accelerometer

and magnetometer traces. In Proceedings of the 14th International Conference on
Availability, Reliability and Security. 1–9.

[20] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,

Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[21] Sreenivasan Ramasamy Ramamurthy and Nirmalya Roy. 2018. Recent trends in

machine learning for human activity recognition—A survey. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery 8, 4 (2018), e1254.

[22] Charissa Ann Ronao and Sung-Bae Cho. 2016. Human activity recognition with

smartphone sensors using deep learning neural networks. Expert systems with
applications 59 (2016), 235–244.

[23] Sohrab Saeb, Emily G Lattie, Konrad P Kording, David C Mohr, et al. 2017. Mobile

phone detection of semantic location and its relationship to depression and

anxiety. JMIR mHealth and uHealth 5, 8 (2017), e7297.

[24] M Shah. 2020. The failure of public health messaging about COVID-19. Scientific
American (2020).

[25] Muhammad Shoaib, Stephan Bosch, Ozlem Durmaz Incel, Hans Scholten, and

Paul JM Havinga. 2016. Complex human activity recognition using smartphone

and wrist-worn motion sensors. Sensors 16, 4 (2016), 426.
[26] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. 2017. Recognizing detailed

human context in the wild from smartphones and smartwatches. IEEE pervasive
computing 16, 4 (2017), 62–74.

[27] Ming Zeng, Tong Yu, Xiao Wang, Le T Nguyen, Ole J Mengshoel, and Ian Lane.

2017. Semi-supervised convolutional neural networks for human activity recogni-

tion. In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 522–529.


	Abstract
	1 Introduction
	2 Related Works
	3 Dataset
	4 Experiments
	4.1 Compared methods and implementation
	4.2 Results

	5 Ethical Considerations
	6 Discussion and Conclusion
	References

