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Abstract

The General Data Protection Regulations (GDPR)
entitle individuals to explanations for automated
decisions. The form, comprehensibility, and even
existence of such explanations remain open prob-
lems, investigated as part of explainable AI. We
adopt the approach of counterfactual explanations
and apply it to decisions made by declarative opti-
mization models. We argue that inverse combina-
torial optimization is particularly suited for coun-
terfactual explanations but that the computational
difficulties and relatively nascent literature make
its application a challenge. To make progress,
we address the case of counterfactual explanations
that isolate the minimal differences for an individ-
ual. We show that under two common optimization
functions, full inverse optimization is unnecessary.
In particular, we show that for functions of the form
of the sum of weighted binary variables, which in-
cludes frameworks such as weighted MaxSAT, a
solution can be found by solving a slightly modi-
fied version of the original optimization model. In
contrast, the sum of weighted integer variables can
be solved with a binary search over a series of mod-
ifications to the original model.

1 Introduction
There has been substantial development of algorithmic sys-
tems that make recommendations or decisions about high-
impact issues such as healthcare, homelessness, recidivism
and parole, and social services [Eubanks, 2018; Azizi et al.,
2018]. The General Data Protection Regulations (GDPR)
[Parliament and Council of the European Union, 2016] de-
clare that individuals subjected to an automated decision have
a right to an explanation of the decision. While the legal
scope of such a right is an active topic of debate, there is
widespread consensus on the importance of implementing
such a concept [Selbst and Powles, 2018; Wachter et al.,
2017a] and research on explanations is a central direction in
the field of explainable AI (XAI) [Guidotti et al., 2018].

For example, consider an optimization-based automated
medical scheduling system that assigns an individual to an

appointment three months in the future. The individual may
ask a question such as “Why can’t I be seen next month?”

In this paper, we adopt the approach of counterfactual ex-
planations [Wachter et al., 2017b] by deriving the minimal
change to the world that would have resulted in the alterna-
tive indicated by the questioner. We develop an approach to
generate counterfactual explanations for optimization-based
decisions using a generalization of inverse combinatorial op-
timization [Heuberger, 2004]. Under some restrictions, we
show how to formulate the inverse problem and, further, how
to solve it under two common objective functions: the sum
of weighted binary variables and the sum of weighted inte-
ger variables. Our solution techniques demonstrate that the
computational effort to produce an explanation is equivalent
to that of the original optimization problem in the former case
and a log-factor more expensive than that in the latter case.

In the next section, we provide background on counterfac-
tual explanations and inverse optimization before turning to
our formal problem definition in Section 3. Sections 4 and
5 present our contributions w.r.t. the two objective functions
and we then discuss the limitation of our work and relate it to
existing work in the final sections.

2 Background
2.1 Counterfactual Explanations in XAI
A large part of XAI, especially in machine learning (ML),
has focused on explaining decision by making the internal
logic of an algorithm more understandable [Burrell, 2016].
A common approach is to generate local approximations
of opaque models (e.g., neural networks) with interpretable
models (e.g., linear models or decision trees) from which
the impact of features on decisions is easier to comprehend
[Ribeiro et al., 2016; Simonyan et al., 2013]. This approach
has been criticized as insufficient in generating the explana-
tions envisioned by the GDPR, since it does not explicitly
describe the circumstances under which a different decision
would have been reached. Such a lack makes it difficult to
contest the decision and to act to change it, two key goals for
user-centered explanations [Wachter et al., 2017b].

A different line of research in XAI addresses these is-
sues with counterfactual explanations [Wachter et al., 2017b]
which have the following form: given that a set of facts re-
sulted in decision x, decision x̄ would have been made had



these facts been changed in a particular way and the rest of
the world had remained unchanged. Using our appointment
scheduling example: the individual’s medical acuity level was
3 and the appointment was scheduled in three months; had the
acuity level been 5 (i.e., more acute), the appointment would
have been scheduled next month.

More precisely, a counterfactual is situation that is “con-
trary to the facts”: an imagined alternative to a past event.
Counterfactual reasoning invokes a comparison between the
imagined event and the factual event [Epstude and Roese,
2008]. By this definition, a counterfactual explanation in-
volves two counterfactuals. First there is a counterfactual
question, “Why decision x and not x̄?”, with the imagined
decision x̄ being the first counterfactual. The explanation
then provides a set of hypothetical facts, different from the
original facts, as the second counterfactual. To distinguish
between the two counterfactuals, we refer to decision x̄ as the
foil and the hypothetical facts as the counterfactual values,
using similar terminology to Miller [2019]. Further, it is typ-
ically preferable for such an explanation to minimally perturb
the facts that led to the original decision.

As a counterfactual explanation explicitly addresses what
needs to happen for a decision to be different and avoids the
internal logic of the algorithm, such an explanation is better
suited for explanations for users [Wachter et al., 2017b].

2.2 Inverse Combinatorial Optimization
Standard (or, forward) optimization searches for an optimal
assignment of variables given a model consisting of an objec-
tive function, constraints, and parameters. Inverse optimiza-
tion, in contrast, starts with a model, initial parameter values,
and a known solution, and finds the minimal change to the
parameter values that would make the solution optimal [De-
mange and Monnot, 2014; Heuberger, 2004].

To formulate the forward and inverse problems, let x ∈
X ⊆ Rn be a decision vector subject to a feasible set X ,
c ∈ C ⊆ Rn be an initial parameter vector subject to feasible
set C, and f : C × X → R be the objective function. It
is assumed that the components of c are present only in the
objective, not in any constraints. The minimization variant of
the forward problem 〈X, c, f〉 is to find an optimal x∗ such
that f(c, x∗) = min{f(c, x) : x ∈ X}.

In the inverse problem, defined w.r.t. a norm ‖·‖, we are
given a solution x̂ ∈ X that we wish to make optimal by
minimally modifying the parameter vector. Let c̄ ∈ C be the
modified parameter vector. The inverse optimization problem
is then

min ‖c̄− c‖ (1)
s.t. f(c̄, x̂) = min{f(c̄, x) : x ∈ X} (2)

x̂ ∈ X, c̄ ∈ C (3)

In partial inverse optimization [Demange and Monnot,
2014], we are no longer given a full solution x̂, but instead
a partial solution x̄pi ∈ R for i ∈ I ⊆ {1, . . . , n} and, simi-
larly, must find minimally perturbed parameters. The partial
inverse optimization problem is identical to the above model
with the additional constraint: x̂i = x̄pi ,∀ i ∈ I .

3 Problem Definition
Let x∗ be an optimal solution to an instance of a (forward) op-
timization problem, 〈X, c, f〉. Assume we are asked a coun-
terfactual question “Why is x∗ not different?” such that this
difference can be expressed by a foil constraint set, ψ, that
x∗ does not satisfy. In our medical scheduling example, this
question might be “Why isn’t my appointment scheduled next
month?”, and ψ would represent the constraint that the pa-
tient’s procedure is in the next month.

Let Xψ ⊆ X represent all points in X that satisfy ψ. Any
point in Xψ is a foil (as per Section 2.1), because it repre-
sents a counterfactual decision the user has asked about. We
assume Xψ 6= ∅. Let Xc

ψ = X \ Xψ be the complement
of Xψ , and any point in Xc

ψ be called a factual solution (by
definition, x∗ ∈ Xc

ψ). An explanation is then generated by
finding the counterfactual parameters c̄ ∈ C that cause a foil
to become optimal while minimally perturbing the initial pa-
rameters c. We therefore define the Nearest Counterfactual
Explanation (NCE) problem for some norm ‖·‖ as:

min
c̄∈C
‖c̄− c‖ (4)

s.t. min
x∈X

f(c̄, x) = min
x∈Xψ

f(c̄, x). (5)

The explanation, then, is: “If the parameters had been c̄ in-
stead of c, the alternative decision would have been reached.”

This formulation is a novel generalization of both inverse
optimization and partial inverse optimization, since it allows
a foil to be described with a constraint set, not only a (partial)
set of value assignments. For example, a patient can ask why
they are not seen in a given time interval, as opposed to only
asking why they are not seen on a given day.

3.1 Restrictions
General inverse optimization is computationally difficult,
especially with discrete variables [Demange and Monnot,
2014], and the literature is still developing robust solution
approaches. We make the following restrictions here to make
progress on a subspace that nonetheless includes a number of
interesting problems, including our medical example.

1. We limit ψ to one constraint on one component of xwith
the form ψ : xj ≤ m0 or ψ : xj ≥ m0, j ∈ [n],
m0 ∈ N0.1 We are interested in explanations for one
individual, often modeled with a single variable and pa-
rameter, xj and cj , and our explanations consider only
changes to cj , and not the other components of c. This
restriction means that an explanation is about a charac-
teristic of the questioner as opposed to others that the
questioner may have no knowledge of. It also protects
the privacy of others as their real and counterfactual pa-
rameter values are not revealed in an explanation.

2. For the original parameters, c, all foils are strictly sub-
optimal solutions, i.e. @x ∈ Xψ such that min{f(c, x) :
x ∈ X} = min{f(c, x) : x ∈ Xψ}. We do not address
cases where the foil is an alternative optimal solution to
the original problem because such a situation produces

1We use [n] to denote the interval of values {1, . . . , n}.



the unsatisfying explanation: “The foil is just as suitable
as the initial decision, but was not selected due to arbi-
trary details of the algorithm (e.g., tie breaking).”

3. The components of c and c̄ appear only in the objective
function, not in any constraints. Therefore, any x ∈ X
remains feasible for all values of c and c̄.

4. There exists at least one feasible foil: Xψ 6= ∅.
We return to these restrictions in more depth in Section 6.

We now address the NCE problem for two common objec-
tive functions: the weighed sum of binary variables and the
weighted sum of general integer variables.

4 Weighted Sum of Binary Variables
Consider a problem where a subset of individuals are chosen
from a group, for example, to receive some service. For such
a problem, a natural model is to represent each individual as a
binary variable where the 1 represents provision of the service
and where some individual measure of the importance of each
individual is represented by a scalar value. The appropriate
objective function is to maximize the sum of the quality of
the chosen individuals and the obvious foil question from an
individual is “Why wasn’t I selected for the service?”
Definition 4.1 (Weighted Sum of Binary Variables (WSBV)).
Let x ∈ X ⊆ {0, 1}n be a binary decision vector, c ∈ Nn0 a
vector of integer parameters such that c is not present in any
constraints that define X , and c · x =

∑n
i=1 cixi be a scalar

product of two vectors in Rn.2 The WSBV maximization prob-
lem is max{c · x : x ∈ X}.

Let NCE0-1 be the NCE problem for WSBV. We are given
a WSBV instance 〈X, c〉 and a foil constraint ψ. Because x
is a binary vector and due to restriction 1, ψ must have the
form ψ : xj = 1 or ψ : xj = 0. Let c̄ ∈ Nn0 be the modified
parameter vector, which is identical to c with the exception
of component c̄j replacing cj , since we are only interested in
that one parameter. Thus, using the L1 norm, we define the
NCE0-1 problem as

min
c̄j≥0
|c̄j − cj | (6)

s.t. max
x∈X

c̄ · x = max
x∈Xψ

c̄ · x. (7)

c̄i = ci, ∀ i ∈ [n], i 6= j (8)

Rather than solving a general inverse optimization prob-
lem, we can solve this problem in closed-form given optimal
solutions to the original problem and to the original problem
plus ψ. Intuitively, any reduction in the objective function
value incurred by the foil must be exactly compensated by
the increase in c̄j in order for the foil to be optimal.

Let the following function denote the difference between
the optimal foil and optimal factual solution

∆X
ψ (y) = max

x∈X
y · x− max

x∈Xψ
y · x.

Since Xψ ⊆ X , it holds that ∆X
ψ (y) ≥ 0 for any ψ, X ⊆

{0, 1}n, and y ∈ Nn0 . We prove the validity of our closed
2Since it is obvious from the context, we write c · x instead of

cT · x to avoid multiple superscript indices.

form approach for the case when ψ : xj = 1, but it can
easily be modified for the case of ψ : xj = 0, as well as the
minimization variant of a WSBV problem.
Theorem 1. The 〈X, c, ψ〉 NCE0-1 problem, with ψ : xj = 1
and a non-empty foil set Xψ 6= 0 has an optimal solution
c̄∗j = cj + ∆X

ψ (c).

Proof. By restriction 2, none of the optimal solutions of
〈X, c〉 satisfy ψ.3 In this case we can write

∆X
ψ (c) = max

x∈Xcψ
c · x− max

x∈Xψ
c · x.

Since the foil constraint has the form ψ : xj = 1, for each
x ∈ Xc

ψ we have xj = 0. Recalling that c̄ is identical to c
everywhere except the coordinate j, for every c̄ we have that

max
x∈Xcψ

c · x = max
x∈Xcψ

c̄ · x.

Similarly, for each x ∈ Xψ we must have xj = 1 and that
the contribution of the non-j components must be identical
for every c̄, such that

max
x∈Xψ

c · x− cj = max
x∈Xψ

c̄ · x− c̄j

Next, note that by (7) we have that for every solution c̄ of an
NCE 〈X, c, ψ〉 problem, it holds that ∆X

ψ (c̄) = 0. Thus,

0 = ∆X
ψ (c̄) = max

x∈Xcψ
c̄ · x− max

x∈Xψ
c̄ · x =

max
x∈Xcψ

c · x− max
x∈Xψ

c · x+ cj − c̄j =

∆X
ψ (c) + cj − c̄j .

Therefore, we have c̄j = cj +∆X
ψ (c). It is clear that c̄j ∈ N0,

because both c ∈ N0 and x ∈ N0, and therefore ∆X
ψ (c) ∈ N0.

Optimality follows from uniqueness of c̄.

Theorem 1 shows that the computational effort required to
form an explanation arises solely from re-solving the original
problem with the added constraint xj = 1. As mentioned,
the proof can easily be modified when the foil constraint is
ψ : xj = 0, to give the optimal solution c̄∗j = cj −∆X

ψ (c).

The Scope of Explanations for WSBV We now show two
examples of explanations that can be generated as a result
of solving NCE0-1. In the 0-1 knapsack problem (KP) we
are given a knapsack capacity W ∈ N and a set of items
[n] ⊆ N, with each item i ∈ [n] associated with a weight
wi ∈ N, a profit ci ∈ N, and a binary variable xi ∈ {0, 1}
set to 1 iff the item is included in the knapsack. The 0-1 KP
is max{

∑n
i=1 xici :

∑n
i=1 xiwi ≤ W}, that is, to select a

subset of items such that the sum of the profits of the selected
items is maximized and the sum of their weights does not
exceed the knapsack capacity.

KP problems are used for many real-life applications, for
instance for capital budgeting decisions and our example of
providing a limited service [Kellerer et al., 2013]. Using the

3The theorem is also true, if somewhat trivially, without restric-
tion 2, by setting c̄∗j = cj .



NCE0-1, the explanation for a person not receiving a service
can be “Because the benefit of offering you this service was
only cj . If it had increased to c̄∗j , you would have been offered
the service.” Conversely, a person who was offered the service
can assess how much their benefit cj can decrease before the
service is assigned to someone else.

Another important class of WSBV problems is the
weighted MaxSAT problem [Li and Manya, 2009]. We are
given a conjunction of n disjunctive clauses, with each clause
i ∈ [n] associated with a weight ci ∈ N and a binary vari-
able xi ∈ {0, 1} that is assigned 1 iff the clause is satisfied.
The objective is to maximize the total weight of the satisfied
clauses, max

∑n
i=1 xici. Using our explanation technique,

we can ask “Why is clause j not satisfied?”, and receive an
explanation “Because the weight of this clause was only cj .
If it increased to c̄∗j , it would be satisfied.”

5 Weighted Sum of Integer Variables
We now consider a problem class that includes the medical
appointment scheduling example introduced above. In such
a problem, the goal is to schedule appointments to maximize
some form of health outcome which is often approximated by
the minimization of the acuity-weighted sum of appointment
times. A foil question from an individual would have the form
of asking why their appointment was not scheduled at some
other time (e.g., earlier).
Definition 5.1 (Weighted Sum of Integer Variables (WSIV)).
Let x ∈ X ⊆ Nn0 be an integer decision vector and c ∈ Nn0
an integer parameter vector, such that c is not present in the
constraints that define X . A WSIV minimization problem is
of the form min{c · x : x ∈ X}.

We define the explanation problem NCEN0
. Given is a

WSIV instance 〈X, c〉 and a foil constraint ψ, which by re-
striction 2 takes the form ψ : xj ≤ m0 or ψ : xj ≥ m0,
m0 ∈ N0, over the coordinate j ∈ [n] of the variables x.
As before, let c̄ be the modified parameter vector, identical to
c for all coordinates other than j. The NCEN0

using the L1

norm is then
min
c̄j≥0
|c̄j − cj | (9)

s.t. min
x∈X

c̄ · x = min
x∈Xψ

c̄ · x. (10)

c̄i = ci, ∀ i ∈ [n], i 6= j (11)
In our appointment scheduling example, we are given n pa-

tients (jobs) and m medical resources. Let c ∈ Nn0 represent
patient acuity (a higher value means higher acuity), p ∈ Nn0
represent job processing times, and x ∈ X ⊆ Nn

0 represent
job completion times, where X contains any constraints on
the schedule (e.g., resource capacity, task precedence, etc.).
The goal is to find a schedule that minimizes the weighted
sum of completion times, min{c · x : x ∈ X}. The question
“Why can’t I be seen before time m0?” is exactly represented
by the NCEN0

problem with ψ : xj ≤ m0.

5.1 Theoretical Results
We present theoretical results for the ψ : xj ≤ m0 case. The
proof can be modified to show that Theorem 2 holds for the
case of ψ : xj ≥ m0 as well.

The NCEN0 is more involved than NCE0-1 because we can-
not rely on the fact that xj = 0 in the optimal factual solution.
As a result, modifications to the cj parameter change the ob-
jective value of both the optimal counterfactual and factual
solutions and we must reason about the change in their rela-
tive values as cj varies.

We aim to prove that there is a constant c∗j ∈ R0+ such that
[c∗j ,∞) ∩ N0 is the set of all feasible solutions to the NCE,
i.e. all values c̄j ∈ N0 result in feasible solutions iff c̄j ≥ c∗j .
This result will allow the use of binary search over a number
of instances of the forward optimization problem to solve the
NCE. To this end, as above, we define an auxiliary function

∆X
ψ (y) = min

x∈Xψ
y · x−min

x∈X
y · x.

To establish the observation above it is enough to prove the
following.

Theorem 2. Let 〈X, c, ψ〉 be an NCE problem with ψ : xj ≤
m0. Then,

1. ∆X
ψ (y) is a monotonically non-increasing function in yj .

2. There is a c0j ∈ R0+ such that ∆X
ψ (c0) = 0 and c0

coincides with c on every entry other than j.

In what follows, we assume y and ȳ are two vectors in
Rn0+ that are identical over all coordinates except j where
yj ≤ ȳj , and denote their positive difference by δy . Intu-
itively, we show that if yj increases by positive δy , both com-
ponents of ∆X

ψ (ȳ) will increase, but the negative component
minx∈X ȳ · x will increase faster, and the function will even-
tually vanish.

Let us start with an observation that uses the form of the
foil constraint to provide bounds on how fast the components
of ∆X

ψ (ȳ) can increase w.r.t. ȳj . Intuitively, part 1 below uses
the minimum value of zj to derive a lower bound on the in-
crease of the optimal factual solution w.r.t. ȳj . Similarly, part
2 uses the maximum value of zj to give an upper bound on
the increase of the optimal foil solution w.r.t. yj .

Lemma 1. Let Z be a finite feasible set.

1. If for each z ∈ Z it holds that k0 ≤ zj , we have
δyk0 ≤ minz∈Z ȳ · z −minz∈Z y · z.

2. If for each z ∈ Z it holds that zj ≤ K0, we have
minz∈Z ȳ · z −minz∈Z y · z ≤ δyK0.

Proof. Let z∗ ∈ Z be an optimal solution for the minimiza-
tion problem 〈Z, y〉, and let z̄∗ ∈ Z be an optimal solution for
the minimization problem 〈Z, ȳ〉. Note also that by definition
of ȳ, for each vector x ∈ Rn we have

ȳ · x = y · x+ δyxj . (12)

Statement (1): since z∗ is optimal given y, we have y ·z∗ ≤
y · z̄∗. Thus, using (12) we deduce

min
z∈Z

ȳ · z −min
z∈Z

y · z ≥ ȳ · z̄∗ − y · z̄∗ = δy z̄
∗
j ≥ δyk0.

Statement (2) is proved similarly. As z̄∗ is optimal for ȳ,

ȳ · z̄∗ ≤ ȳ · z∗ = y · z∗ + δyz
∗
j ≤ y · z∗ + δyK0



Then, again using (12) we can write,
min
z∈Z

ȳ · z −min
z∈Z

y · z ≤ y · z∗ + δyK0 −min
z∈Z

y · z ≤ δyK0.

We can now proceed to the proof of Theorem 2.

Proof. Assume that Xc
ψ 6= ∅, since otherwise both claims

hold trivially. First, we aim at proving that ∆X
ψ is monotonic

non-increasing within the scope of one coordinate. Recall
that y and ȳ are two vectors in Rn0+ that are identical over
all coordinates except j where yj ≤ ȳj , with their positive
difference denoted δy . We shall prove that

∆X
ψ (y) ≥ ∆X

ψ (ȳ).

Let us look at the three following cases:
a) The case ∆X

ψ (ȳ) = 0 is trivial, since by definition
∆X
ψ (y) ≥ 0 for every y ∈ Rn0+.

b) Let ∆X
ψ (y) = 0. Let x∗,ψ ∈ Xψ be an optimal solution

for the minimization problem 〈X, y〉. By definition of
ψ, this means x∗,ψj ≤ m0. Let xc ∈ Xc

ψ be a solution in
the complement of Xψ , meaning that, x∗,ψj ≤ m0 < xcj .
In order for ∆X

ψ (y) = 0, we must have

y · x∗,ψ ≤ y · xc =⇒
ȳ · x∗,ψ = y · x∗,ψ + δyx

∗,ψ
j ≤ y · xc + δyx

c
j = ȳ · xc.

By this, we have that minx∈Xψ ȳ · x ≤ minx∈Xcψ ȳ · x.
Which implies that ∆X

ψ (ȳ) = 0.

c) Lastly, assume

min{∆X
ψ (y),∆X

ψ (ȳ)} > 0 (13)

For ∆X
ψ to be monotonically non-increasing, the follow-

ing difference of deltas must be non-positive:

∆X
ψ (ȳ)−∆X

ψ (y) =

min
x∈Xψ

ȳ · x−min
x∈X

ȳ · x− min
x∈Xψ

y · x+ min
x∈X

y · x (14)

We can observe that (13) will hold iff all foils are sub-
optimal, meaning that all optimal solutions lie in Xc

ψ .
Using this condition and rearranging (14),

∆X
ψ (ȳ)−∆X

ψ (y) =

min
x∈Xψ

ȳ · x− min
x∈Xψ

y · x− min
x∈Xcψ

ȳ · x+ min
x∈Xcψ

y · x.

Next, we insert bounds on these terms from Lemma 1.
Note that for each x ∈ Xψ it holds that xj ≤ m0. Thus,
by Lemma 1 part 2 we have

min
x∈Xψ

ȳ · x− min
x∈Xψ

y · x ≤ δym0.

Similarly, for each x ∈ Xc
ψ it holds that xj ≥ m0 + 1.

Thus, by Lemma 1 part 1 we have
min
x∈Xcψ

ȳ · x− min
x∈Xcψ

y · x ≥ δym0 + δy.

Applying these two inequalities to 14 we have

∆X
ψ (ȳ)−∆X

ψ (y) ≤ δym0 − δym0 − δy ≤ 0 =⇒
∆X
ψ (ȳ) ≤ ∆X

ψ (y).

Next, we prove the second part of Theorem 2, that there is a
c0j ∈ R0+ such that ∆X

ψ (c0) = 0 and c0 coincides with the
unmodified parameter vector c on every entry other than j.
We must show that

min
x∈Xψ

c0 · x ≤ min
x∈Xcψ

c0 · x. (15)

Let us define a vector xmin ∈ Nn0 , where every entry other
than j is zero and xmin

j = m0 + 1. For every x ∈ Xc
ψ , we

observe that xmin
i ≤ xi for each coordinate i. Thus, for every

c′ ∈ Rn0+ it holds that c′ · xmin ≤ min{c′ · x : x ∈ Xc
ψ}.

Therefore, (15) will hold if we can satisfy

min
x∈Xψ

c0 · x ≤ c0 · xmin = c0j (m0 + 1) (16)

To this end, we pick an arbitrary xψ ∈ Xψ and recall that
xψj ≤ m0. We will satisfy (16) if we can find a c0j ∈ R0+

such that

c0 · xψ ≤ m0c
0
j +

∑
i 6=j

cix
ψ
i ≤ c

0
j (m0 + 1).

Thus, we can pick c0j =
∑
i 6=j cix

ψ
i .

Note that selecting this value of c0j will also provide an
upper bound for the binary search, as discussed next.

5.2 Solving NCEN0 Problems
We use the results of Theorem 2 to show that NCEN0

can be
solved with binary search. Theorem 2 assures us that feasi-
ble solutions for NCEN0

〈X, c, ψ〉, with ψ : xj ≤ m0, are
the integers that lie within the interval [c∗j ,∞) ⊆ R0+ (i.e.
∆X
ψ vanishes for each integer in this interval). Since we are

looking for the minimal solution, to solve the problem it is
sufficient to find dc∗je.

The last part of the proof of Theorem 2 provides us with
an upper bound on the optimal solution, c0j ∈ R0+ such that
c∗j ≤ c0j . To compute c0j , we must find a feasible foil, xψ ∈
Xψ . The smallest possible value of c0j will be given by xψ ∈
argmin{c·x−cjxj : x ∈ Xψ}. Alternatively, it may be more
convenient to use the original forward objective function, so
that xψ ∈ argmin{c · x : x ∈ Xψ}, though this may result
in a higher value for c0j . The lower bound on dc∗je is cj + 1,
because cj < dc∗je since all foils are suboptimal at cj (by
restriction 2). Since ∆X

ψ is a monotonically non-increasing
function, it is enough to run binary search on the integer set
{cj + 1, . . . , dc0je} to solve the problem. This, together with
the identity dlog2dxee = dlog2 xe for each x ≥ 1, results in
the following statement:

Proposition 1. Let 〈X, c, ψ〉 be an NCE problem. Given a
vector c0 ∈ Nn, where c0j replaces the j’th entry in the vector
c, such that ∆X

ψ (c0) = 0, the 〈X, c, ψ〉 problem can be solved
within at most dlog2(c0j − cj)e solutions of the forward WSIV
minimization problems of the form 〈c̄, Xψ〉 and 〈c̄, Xc

ψ〉.



6 Discussion and Limitations
We demonstrated that we can generate counterfactual expla-
nations for general optimization models with two common
objective functions. The additional computational effort is
solving either a single or logarithmic number of forward opti-
mization problems, depending on the objective function. Our
contributions were made within a restricted context.

Our first limitation (Section 3.1) restricted the scope for
explanation to a single model parameter. In the context of
the GDPR, the restriction to characteristics of the questioner
is reasonable both for the need to protect private information
and from the perspective of generating a meaningful expla-
nation: a counterfactual that changes characteristics of other
individuals has limited value. Lifting the restriction to ad-
dress a set of parameters concerning the questioner would
require general partial inverse optimization. While most in-
verse optimization literature deals with multiple parameters
[Heuberger, 2004], especially in the case of discrete variables,
such problems are still challenging. We see this extension as
a prime area for near-term future research.

Our second and fourth restrictions require that a foil solu-
tion exists and is not optimal for the factual problem. Both re-
strictions were made because it is unclear what kind of coun-
terfactual explanation is appropriate if they are lifted. If the
foil solution does not exist, then the Nearest Counterfactual
Explanation problem is infeasible and no possible modifica-
tion can result in the questioner’s counterfactual. If the foil
solution is optimal for the original problem, then there is no
reason why it was not chosen as the factual solution. In either
case, there does not appear to be a meaningful explanation.

Finally, we required that none of the counterfactual param-
eters appear in the constraints. Without such a restriction,
not all solutions x ∈ X would remain feasible as the pa-
rameters change, substantially complicating the mathematical
structure used in our results. While there exists some work in
inverse optimization under such assumptions (e.g., [Yang et
al., 1997]), approaches to the problem are not well-developed
and form another important research direction.

In addition to the above restrictions, our work relies on the
assumption that the users know and understand their weight.
For a medical scheduling example, we assume patients know
or can access their acuity scores. For the example of solving
a knapsack problem to select clients, we assume clients know
how much they are ready to pay for a product.

In our framework, a user has several choices after an ex-
planation: they can accept the decision, act to change it (e.g.,
get a second opinion of their acuity), or contest the deci-
sion on the grounds that it is unfair to use this weight in this
way. In the latter case, they may ask why the system makes
distinctions based on the weight, leading to ethical discus-
sions which are important but beyond the scope of explain-
ing the decision. Though, we note that our approach pro-
vides an explanation that can enable a user to pose such meta-
explanation questions.

If our assumption does not hold and the user does not un-
derstand how their weight was assigned, then they no longer
need an explanation of the optimization-based decision, but
rather an explanation of how the inputs to the model are de-

termined. This is again beyond our scope as it now demands
an explanation from the automated or human system that as-
signed the weights. But again, by explaining that a change in
weight would change the outcome, our approach allows the
user to question another part of the decision making system.

7 Related Work
Much recent work has looked at counterfactual explanations
for classifiers, with seminal work by Wachter et. al [2017b].
Most relevant is work that generates explanations with a bi-
nary search over a sequence of combinatorial models [Karimi
et al., 2020; Russell, 2019]. To our knowledge, none of the
work addresses decisions made by explicit optimization mod-
els nor makes the connection to inverse optimization.

Explainable constraint programming has mainly focused
on explaining infeasibility [Freuder, 2017], often through the
identification of a minimal set of unsatisfiable constraints
[Junker, 2004]. A parallel literature exists in mathematical
programming [Chinneck, 2008]. While such sets could be
viewed as counterfactuals (i.e., one of these constraints must
be different), this connection has not been clearly developed
and the use of inverse optimization is absent.

Other research has looked at counterfactual explanations in
AI Planning, highlighting the difference between specific fac-
tual and counterfactual plans [Fox et al., 2017] and describing
properties of all counterfactual plans [Eiffer et al., 2020].

The only previous work that we are aware of that relates
counterfactual explanations with inverse optimization is that
of Brandao and Magazzeni [2020] which generates counter-
factual explanations for path planning using an inverse short-
est path formulation. While clearly making the connection
with inverse optimization, the work focuses on the polynomi-
ally solvable inverse shortest path problem and has a substan-
tially narrower scope than ours.

8 Conclusion
We have shown that counterfactual explanations for decisions
made by an optimization model can be generated through a
generalization of inverse combinatorial optimization, a prob-
lem that has been studied in mathematical programming.
Within the context of legislation such as the General Data
Protection Regulations that mandates the right to an expla-
nation, our approach can produce user-centered explanations
that allow an individual to contest and act to change the deci-
sion to which they were subject [Wachter et al., 2017b].

Our formulation allows an individual to inquire about any
change to a decision that can be represented with a constraint
set on the original formulation. With some restrictions, we
show that counterfactual explanations for models with two
common objective functions can be generated with limited
additional computational effort beyond solving the original
model. We believe this general approach to counterfactual
explanations for optimization-based decisions is a fruitful yet
nascent direction that deserves further development.
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