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Abstract
Rankings are ubiquitous across many applications,
from search engines to hiring committees. In prac-
tice, many rankings are derived from the output
of predictors. However, when predictors trained
for classification tasks have intrinsic uncertainty,
it is not obvious how this uncertainty should be
represented in the derived rankings. Our work
considers ranking functions: maps from individ-
ual predictions for a classification task to distri-
butions over rankings. We focus on two aspects
of ranking functions: stability to perturbations in
predictions and fairness towards both individuals
and subgroups. Not only is stability an important
requirement for its own sake, but — as we show —
it composes harmoniously with individual fairness
in the sense of Dwork et al. (2012). While deter-
ministic ranking functions cannot be stable aside
from trivial scenarios, we show that the recently
proposed uncertainty aware (UA) ranking func-
tions of Singh et al. (2021) are stable. Our main
result is that UA rankings also achieve group fair-
ness through successful composition with multi-
accurate or multicalibrated predictors. Our work
demonstrates that UA rankings naturally interpo-
late between group and individual level fairness
guarantees, while simultaneously satisfying sta-
bility guarantees important whenever machine-
learned predictions are used.

1. Introduction
Rankings underpin many modern systems: companies rank
job applications (TurboHire, 2023; Geyik et al., 2019), ad
marketplaces rank ads to serve to a user (Google, 2023),
and social media platforms and feeds rank content (Meta,
2023). Rankings are also used to partially automate decision
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making in settings with limited resources or attention span
(such as job candidate interview selections or ad delivery).
Rankings are often derived from predictions generated by
machine learning models designed and deployed on rele-
vant classification tasks. For example, a job advertisement
platform may use a model which predicts an individual’s rel-
evance score for each job they apply to; say, on a scale from
1 to 3 (corresponding to irrelevant, suitable, or extremely
relevant); this score is then factored into the platform’s rank-
ing of job applicants shown to a company recruiter with a
limited time budget.

In practice, machine learning models often predict distribu-
tions over classes instead of a single class. This is because
predictions correspond to a belief about what the future may
possibly hold, but not a certainty about what the future will
look like. A plethora of recent research in model calibration
(Guo et al., 2017; Minderer et al., 2021; Gupta & Ram-
das, 2022), conformal prediction (Bastani et al., 2022; Jung
et al., 2023), and uncertainty quantification (Angelopoulos
& Bates, 2021) has tackled the issue of ensuring that the
uncertainty estimates output by a model are meaningful,
rather than artifacts of any particular training regime.

With uncertainty inherent in predictions, we argue that it
is essential to revisit the question of how to meaningfully
convert predictions (made in the form of distributions over
classes) into rankings. Without any uncertainty — for exam-
ple, if one had access to an oracle for the future — it would
usually be clear what a ranking should look like: meritoc-
racy would suggest that one always places the more suitable
candidates higher in the ranking. However, when given
only predictions about suitability/merit with intrinsic uncer-
tainty, the approach for generating a meaningful ranking is
less clear. After all, one must choose a ranking over candi-
dates, e.g., in order to make an interview decision, before
witnessing the exact suitability of each candidate, which is
generally only observable after an individual works in the
job for months or even years. Since an uncertain prediction
can be considered a prior (and typically imperfect) belief
on the qualifications or performance of any given individual,
the fundamental task of designing a meaningful ranking
algorithm utilizing these predictions must be reexamined.

For a meaningful derivation of rankings from predictors, we
consider the following two properties to be essential:
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Anonymity. All individuals must be treated symmetrically a
priori, i.e., if the predictions are permuted, then the ranking
is permuted according to the same permutation.

Stability. If the predictor’s distribution over classes changes
only slightly (in Total Variation distance), then the corre-
sponding induced ranking should only change slightly.

The reason for requiring anonymity is self-evident: it rules
out discrimination on the basis of the identity of individuals.
Stability is more nuanced: it articulates a desire to have
rankings which are agnostic to small amounts of noise in the
predictions for each individual. In deployed applications, a
small amount of variation injected by a seeded training/test
data set split or a randomized training procedure can intro-
duce noise at the level of individual predictions (Ganesh
et al., 2023). Furthermore, there will also always be at least
some additional noise due to incomplete data entries, mis-
taken inputs, etc. (Nettleton et al., 2010). Rankings should
be generally agnostic to these sources of noise: if minute
noise in predictions can induce large changes in the derived
ranking, the ranking cannot be very meaningful or fair to
begin with. Stability can therefore be interpreted as a way to
combat micro-arbitrariness of rankings induced by learned
predictors (Cooper et al., 2024). For stability to be mean-
ingful, we will need to shift our focus to distributions over
rankings: utilizing randomness to deal with uncertainty will
be key in achieving stability.

Anonymity can be construed as a fairness notion, but it is a
very minimal one. Fairness in a stronger sense has been the
focus of much recent work, both in the context of ranking
(see, e.g., Singh & Joachims (2018; 2019)) and in the con-
text of classifiers/predictors (see, e.g., Hardt et al. (2016);
Caton & Haas (2020); Dwork et al. (2012); Awasthi et al.
(2020)). As ML-based predictors are often used in order to
ultimately produce rankings (Wang & Chen, 2012), it is a
natural desideratum that the ranking function preserve fair-
ness guarantees of the underlying predictor: this ensures that
no additional unfairness is introduced in post-processing the
classifier’s output. As we will see, not all ranking functions
satisfy such fairness composition properties.

1.1. Our Contributions

We focus on scenarios in which individuals, scored by a
predictor, must be presented to a decision maker in a linear
order or ranking. We assume that the predictions take the
form of distributions over classes, modeling inherent uncer-
tainty in the underlying ground truth or data. In Section 2,
we define a ranking function as a map from such proba-
bilistic predictions to a distribution over rankings. Figure 1
illustrates this setting with an example.

Our first (and very immediate — see Section 3.1) result is
that stability naturally composes with individual fairness

(Dwork et al., 2012): if the predictor is individually fair
and the ranking function is stable, then the composition
satisfies a natural generalization of individual fairness to
rankings. This result further confirms that stability is a
desirable property for a ranking function.

In light of the desirability of stability, we next investigate
which ranking functions are stable. Deterministic ranking
functions are natural and popular; unfortunately, we show
(Section 3.2) that the only stable deterministic ranking func-
tions are constant, i.e., trivial functions that output the same
ranking regardless of the predictions. Further, determin-
istic ranking functions cannot be anonymous. Thus, one
must choose between stability/anonymity and determinism,
providing significant evidence in favor of randomization.
With randomization, stability and anonymity both become
achievable: we show (Section 3.3) that a natural adaptation
of the Uncertainty Aware (UA) ranking functions of Singh
et al. (2021); Devic et al. (2023) to the case of multiclass
predictions of the classifier is indeed anonymous and stable.

We then investigate the fairness guarantees of UA ranking
in more depth, and prove (Section 4) our main result: UA
ranking naturally preserves multiaccuracy and multicalibra-
tion guarantees1 (Kim et al., 2019; Hébert-Johnson et al.,
2018). We show that when the predictor is multiaccurate
(or multicalibrated), then the ranking distribution output
by UA ranking satisfies a natural generalization of multi-
accuracy (resp. multicalibration) towards the same groups.
This result can be interpreted as an interpolation between
individual and group fairness notions for ranking: as the
set of subgroups the predictor is multicalibrated against be-
comes more refined, the UA ranking for predictions more
accurately reflects the UA ranking induced by the unknown
ground truth classes of individuals.

To investigate the tradeoff between fairness, stability, and
utility, in Section 5, we introduce a standard ranking utility
model, and show that the utility optimal ranking function
cannot hope to achieve stability or fairness guarantees sim-
ilar to UA. We also investigate a ranking function which
provides a guaranteed tradeoff between stability/fairness
and utility. We believe that this will be useful to practi-
tioners interested in employing stable rankings in practice.
Finally, in Section 6, we corroborate our theoretical results
with experimental evidence.

While various notions of stability in rankings have been

1Multiaccuracy requires that the uncertainty estimates of a predictor
are unbiased over a set of subgroups (combating discrimination
between groups); multicalibration guarantees that the estimates are
also calibrated over subgroups (combating discrimination between
and within groups). These are arguably the most popular notions
of fairness in settings with uncertain predictions where predictors
output uncertainty estimates, since obtaining meaningful or accu-
rate estimates at the level of individuals is usually computationally
and statistically infeasible.
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Figure 1: An overview of our setting, using students being ranked by an employer for potential interviews. Observations (a),
given by the students’ resumés and coding abilities, are fed into a machine learning algorithm which produces distributions
(b) over the relevance classes {irrelevant, suitable, extremely relevant} for each candidate. Then, a ranking function takes
as input these uncertain predictions to produce a distribution (c) over rankings of the three candidates. Although it may
appear that x3 is the most qualified or relevant, due to inherent uncertainty in observations, a ranking function may place
x1 or x2 at rank one with non-zero probability (c).

proposed before (see, e.g., Asudeh et al. (2018)), our frame-
work is unique in that it frames the rankings as induced by
predictions of some machine learning algorithm — this ties
our work more closely to modern applications. Another
benefit of our definition of stability is that it makes progress
towards the broader goal of rankings which compose with
fair predictors.

1.2. Related Work

We defer a full discussion of related work to Appendix A.

Fairness in Ranking. By far the most relevant related work
is of Dwork et al. (2019), who are also interested in fair
rankings induced by predictors, but importantly restrict their
focus to only deterministic rankings. Indeed, their moti-
vating example is a setting in which small perturbations to
a predictor can massively impact an induced ranking. By
requiring stability of ranking functions, we approach this
problem fundamentally differently: we allow (and indeed,
require) non-deterministic rankings. The multiaccuracy and
multicalibration guarantees of Dwork et al. (2019) for in-
duced rankings from predictors are similar in flavor to ours;
however, a fundamental difference is that we show this guar-
antee to be compatible with stability, and, furthermore, that
our guarantees hold for each position k in the ranking.

At the intersection of group and individually fair rankings,
the work of Gorantla et al. (2023) is most similar to ours.
They show that one can sample from a distribution over rank-
ings which is simultaneously individually and group fair (in
a proportional representation sense) for laminar groups. In
contrast, our group fairness hinges on the group-level statis-
tical constraints of multicalibration imposed on the under-
lying predictor, which instead allow for potentially arbitrar-
ily overlapping groups. For a comprehensive overview on
group/individual fairness in rankings, the interested reader
is referred to the survey of Zehlike et al. (2021).

Stability in Ranking. In the information retrieval litera-
ture, Asudeh et al. (2018) also study the notion of stability
for rankings. They work in a setting where a score is cal-

culated based on a weighted sum of the features of each
item, and stability is then with respect to small changes of
these weights. They furthermore state that stability is not a
property of their “scoring function” (a particular weighted
sum over features). In contrast, we explicitly define stability
more generally as a property of our ranking function, which
maps from any set of predictions (data set) to a randomized
ranking. Oh et al. (2022); Bruch et al. (2020) also study
the sensitivity of rankings empirically, providing experimen-
tal evidence that randomization can help stability (which
they define as robustness) during the training of learning-to-
rank models. Our theoretical and experimental results are
complementary and corroborate this empirical evidence.

Uncertainty and Fairness. Rastogi & Joachims (2023);
Mehrotra & Celis (2021); Mehrotra & Vishnoi (2022); Tahir
et al. (2023); Guo et al. (2023) all investigate fairness in
ranking and decision making under uncertainty in predic-
tions or sensitive attributes. We work with unbiased uncer-
tainty, and leave biased uncertainty for future investigation.
Independently of the line of work on UA rankings, Shen
et al. (2023) propose ranked proportionality, which shares a
similar definition. Their work is in the more general setting
of the assignment problem with uncertain priorities, and
they focus on algorithmic approaches for achieving a vari-
ety of fairness notions simultaneously. Our work is instead
focused on proving certain properties of rankings induced
by predictors (predictors which, when stated in the language
of Shen et al. (2023), may induce uncertain priorities).

Calibration and Ranking. In Section 4, we work with
(multi)-calibrated predictors. The ranking community has
investigated the impact of calibration of ranking models on
diversity, utility, and fairness (Menon et al., 2012; Kweon
et al., 2022; Yan et al., 2022; Busa-Fekete et al., 2011;
DiCiccio et al., 2023). These works all attempt to infer
uncertainty from the scoring function within a score-and-
sort ranking model, whereas we assume that uncertainty is
given in the form of machine-learned predictions.
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2. Notation and Preliminaries
We write vectors in boldface. We use the standard notation
x−i to denote the vector x with the ith coordinate removed.
For a random event E , we write 1E for the indicator function
which is 1 if E happens, and 0 otherwise. The total variation
distance of two measures µ, ν is defined as the maximum
difference in probability for any event E under the two
measures, i.e., dTV(µ, ν) := maxE |µ(E)−ν(E)| = 1

2 ||µ−
ν||1. We will use the entry-wise matrix norms2 ||M ||1 =∑

i,j |Mi,j | and ||M ||∞ = maxi,j |Mi,j |.

X denotes a set of individuals; it contains humans, ads,
service requests, or other entities towards whom fairness is
desired. The elements of X can be labeled with labels from
the finite3 label set [L] = {1, 2, . . . , L}. We work in the
multiclass “ordinal” classification setting where the labels
are sorted from most to least preferred as L ≻ L − 1 ≻
· · · ≻ 2 ≻ 1. This notation corresponds with the intuition
that possessing a higher merit score/class is valued more by
a decision maker. A common special case is L = 2, i.e.,
binary labels, where label 1 might represent irrelevant/un-
suitable, while label 2 represents relevant/suitable.

2.1. Predictors

We focus on predictors in the multiclass setting which output
distributions over L labels. Let ∆L denote the set of all
distributions on [L]. A (probabilistic) predictor f : X →
∆L is a function mapping data points to distributions over
labels. We let p = f(x) denote the vector of probabilities
that the predictor f assigns to individual x ∈ X . For any
class ℓ ∈ [L], pℓ denotes the probability of that class. As
an example, for a probabilistic binary predictor f in the
context of determining whether a candidate is qualified for
a job, p2 would capture the probability that the individual x
is qualified, while p1 = 1 − p2 is the probability that x is
unqualified.

Rankings involve multiple individuals, and hence multiple
predictions. A prediction for n individuals P is an n × L
matrix where each row corresponds to the distribution over
labels for a particular individual. We define Pn,L to be the
set of all predictions for n individuals, i.e., the set of all
n × L matrices where each row is a distribution. We will
frequently consider the case in which a predictor f for single

2rather than induced norms, which are typically described by the
same notation.

3In Appendix C, we extend our definitions and results to continuous
ranking functions. Continuous labels allow us to capture, for ex-
ample, the well-known Plackett-Luce (Luce, 1959; Plackett, 1975),
Bradley-Terry (Bradley & Terry, 1952), and Thurstonian ranking
models (Thurstone, 1994), and establish stability results for them.
These models have been used with the goal of achieving stability
in practice (Bruch et al., 2020), and they also have applications
within preference learning more broadly (Zhu et al., 2023; Wilde
et al., 2021).

individuals is applied to each of n individuals separately.
For a vector x = (x1, . . . , xn) ∈ Xn of n individuals, we
write f(x) = (f(x1), . . . , f(xn)) for the n × L matrix of
predictions for all of the n individuals.

We use the random variable λx to denote the (random) label
of individual x; when we specifically consider an individual
xi in a vector of individuals, we abbreviate λi := λxi

.
We write N ℓ =

∑
i 1λi=ℓ for the random variable that is

the number of individuals with label ℓ; when we use this
notation, the domain of i will be clear from the context.
We extend this notation to write N≥ℓ =

∑L
ℓ′=ℓ N

ℓ′ for the
number of individuals with label ℓ or better, and similarly
for N>ℓ. We will sometimes restrict the count to individuals
in a particular set S, and then write N ℓ

S =
∑

i∈S 1λi=ℓ, and
similarly for the derived notation. In particular, we use
the notation N ℓ

−i = N ℓ
[n]\{i} for the number of individuals

other than i with a particular label ℓ.

2.2. Rankings and Ranking Functions

A principal would like to use predictions provided by a pre-
dictor to output a (distribution over) rankings. As examples,
consider a site or service such as LinkedIn providing an em-
ployer with a ranked list of applicants to interview (Geyik
et al., 2019), or an online platform deciding on the order in
which to display ads or vendors to a visitor. In these settings,
because attention is a limited resource, a common approach
would have the principal rank the items in question based
on some function of the predictions.

A ranking is a total order on n individuals. A randomized
ranking is a distribution over rankings. Let Mn×n

DS denote
the set of all n × n doubly stochastic matrices. Each ma-
trix M ∈ Mn×n

DS represents a randomized ranking4 over n
individuals, where Mi,k is the probability with which in-
dividual i is ranked in position k. When reasoning about
random rankings, we use Ri,k to denote the random event
that individual i receives position k in the ranking.

We refer to mappings from predictions to (randomized)
rankings as ranking functions:

Definition 1. A ranking function r : Pn,L → Mn×n
DS maps

predictions over L labels on a data set of n individuals to a
randomized ranking of those individuals.

By focusing on ranking functions, we implicitly state that
the principal interacts with the data set only through the

4More precisely, it represents the marginal probabilities of the
distribution, which can typically be implemented by many different
distributions over rankings. In particular, a distribution supported
on at most n2 rankings can be found in polynomial time using
the well-known Birkhoff-von Neumann result (Birkhoff, 1946).
We assume that individuals care only about the probabilities with
which they are ranked in each position, in which case marginal
distributions sufficiently capture fairness.
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predictions over labels. That is, we do not consider listwise
learning-to-rank schemes — such as Cao et al. (2007); Xu &
Li (2007) — in which the principal directly learns a function
mapping data sets of individuals’ features to rankings.

2.3. Desiderata of Ranking Functions

While ranking functions could be very general, there are nat-
ural requirements that make them “reasonable” to be used.
In particular, we focus on the following basic properties.
Definition 2 (Anonymity). A ranking function r : Pn,L →
Mn×n

DS is anonymous if every permutation σ : [n] → [n]
of the predictions for individuals results in an identical
permutation of the individuals’ ranks.

Anonymity states that the outcome for an individual depends
only on their (and everyone else’s) prediction, but not on
the index at which the individual appeared in the data set,
i.e., on their identity. As such, it is an essential fairness
requirement in virtually all settings.

A second essential property of ranking functions is stability:
that small changes in the predictions only lead to small
changes in the rankings.
Definition 3 (Stability). Fix n and L. A ranking function
r : Pn,L → Mn×n

DS is γ-stable if ||r(P ) − r(P ′)||∞ ≤
γ · ||P − P ′||1 for all predictions P, P ′ ∈ Pn,L.

Stability is particularly important when the predictions are
the result of ML-based training methods, which will always
contain non-trivial amounts of noise. Indeed, the lack of
stability is a well-documented and problematic aspect of
many ML-systems, and has been shown not only within the
fairness literature (Cooper et al., 2024), but has long been a
concern for image classification models (Goodfellow et al.,
2015) and more recently also LLMs (Zou et al., 2023).
Remark 4. Our choices of the ∞-norm and 1-norm in Defi-
nition 3 are motivated in part by the result from Theorem 11
that UA ranking is 1-stable. Using standard inequalities
between norms, the 1-stability of UA with respect to our
choices of norms implies weaker results for the case when
both sides use the || · ||1 norm, or both use the || · ||∞ norm.
The resulting stability guarantees are unfortunately the best
that can be obtained: it is simple to modify the example
given below in Proposition 12 to show that matching lower
bounds hold, so no stronger guarantees can be obtained.

3. Predictions and Rankings
We first show useful fairness consequences of stability: com-
bining a stable ranking function with an individually fair
predictor results in fair ranking outcomes. We then show
that stability and anonymity are fundamentally at odds with
determinism: only constant deterministic ranking functions
are stable, and no deterministic ranking function is anony-

mous. This establishes that randomization is inherently
necessary for a ranking function to be meaningful, anony-
mous, and stable. We then present our adaptation of the
UA ranking function of Singh et al. (2021), and show that
it is anonymous and stable. Deferred proofs appear in Ap-
pendix B.

3.1. Consequences of Stability

Stability implies that small changes in predictions do not
change the distribution over rankings much. This has two
immediate but noteworthy consequences: (1) if the pre-
dictions are made by an individually fair predictor, then
similar individuals will be ranked similarly, and (2) as the
predictions approach ground truth, the ranking distribution
produced by the ranking function approaches the rankings
under the ground truth.

To formalize the first claim, we recall the seminal defini-
tion of an individually fair predictor (Dwork et al., 2012).
This notion assumes a metric d defined on X capturing a
relevant measure of similarity between individuals. For
β > 0, a probabilistic predictor f is (β, d)-individually fair
if ||f(x)− f(x′)||1 ≤ β · d(x, x′) for all x, x′ ∈ X .

Proposition 5. Let f : X → ∆L be a (β, d)-individually
fair predictor, and r : Pn,L → Mn×n

DS an anonymous
and γ-stable ranking function. Given a data set of in-
dividuals (xi)i∈[n] and their associated predictions P =

(f(xi))i∈[n] ∈ Pn,L, let q, q′ be the ith and jth rows of
r(P ), respectively. Then, ∥q − q′∥∞ ≤ (2βγ) · d(xi, xj).

Proof. The proof is a straightforward application of γ-
stability with respect to the given prediction matrix P and
a matrix P ′, where P ′ is exactly P but with rows i and j
swapped (requiring the anonymity condition). This, com-
bined with the definition of (β, d)-individual fairness for
i, j, completes the proof.

The result can be interpreted as a composition guarantee
for anonymous and stable rankings with individually fair
predictors: if x, x′ are simultaneously in a data set, the dif-
ference in their distributions over rankings can be at most
proportional to their dissimilarity under the metric d. An-
other interpretation is the following: Stability and individual
fairness are both Lipschitz conditions, and composition of
Lipschitzness implies that an individually fair predictor com-
bined with a stable ranking will induce an individually fair
ranking.

Another very straightforward but desirable consequence
of stability is obtained by considering one prediction to be
ground truth and the other obtained from a learned classifier.

Corollary 6. Let f∗ : X → ∆L be the ground truth la-
bel distribution for individual x, and f : X → ∆L the
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learned predictor. Assume that f is ϵ-accurate, satisfy-
ing that ∥f(x) − f∗(x)∥1 ≤ ϵ for all x ∈ X . Then, any
γ-stable ranking function r guarantees that ∥r(f(x)) −
r(f∗(x))∥∞ ≤ γ · nϵ for all x ∈ Xn.

Put differently, for any stable ranking function, accurate
individual level uncertainty estimates (relative to a ground
truth f∗) will induce accurate individual level rankings. Al-
though somewhat obvious, we highlight this property of
stability since the “ground truth” approach is often a cen-
tral assumption in the study of machine learned predictors
(Shalev-Shwartz & Ben-David, 2014).

3.2. Stability and Determinism are Incompatible

A third property which most rankings used in practice pos-
sess, and which is often considered desirable by practition-
ers, is determinism: that for given inputs, only one ranking
(rather than a distribution over rankings) can result.

Definition 7 (Determinism). A ranking function r : Pn,L →
Mn×n

DS is deterministic iff for all P ∈ Pn,L, the resulting
distribution over rankings r(P ) has only entries in {0, 1}.

Perhaps the most well-known deterministic ranking func-
tion is given by the Probability Ranking Principle (PRP) of
Robertson (1977). In the setting with binary predictions, this
ranking function sorts individuals by decreasing probability
of belonging to class 2, i.e., being qualified.

Naturally, one may ask whether a deterministic ranking
function like the PRP can be stable or anonymous. Unfor-
tunately, neither is possible, as captured by the following.

Proposition 8. No deterministic ranking function r :
Pn,L → Mn×n

DS is anonymous. Furthermore, for any γ > 0,
any deterministic and γ-stable ranking function must be
constant, in the sense that | Im(r)| = 1, i.e., the ranking
function outputs the same ranking for all input predictions.

Proposition 8 formalizes the intuition that randomness is
required to achieve stability. Indeed, the main results of our
work also show that randomization and the resulting stability
are crucial for achieving desirable fairness guarantees.

3.3. Uncertainty Aware Rankings

Meaningful deterministic ranking functions cannot be stable;
in fact, it is not immediate that there exist (non-constant)
stable ranking functions. We now show that Uncertainty
Aware (UA) Rankings, introduced by Singh et al. (2021), are
anonymous and stable.

UA rankings were originally introduced via an axiomatiza-
tion of when a probabilistic ranking should be considered
“fair” for given merit distributions. Devic et al. (2023) fur-
ther refined this axiomatization by combining notions of

meritocracy and lifting deterministic decision making to
decision making under uncertainty.

The definition of Singh et al. (2021) assumed that merit
distributions were continuous and ties occurred with proba-
bility 0. Motivated by predictors which output distributions
over discrete label sets such as 1–5 or {irrelevant, suitable,
extremely relevant} with a corresponding total order, we
adapt the definition of UA rankings (though, as mentioned
previously, in Appendix C, we also generalize all of our
notions to continuous labels):

Definition 9 (Uncertainty Awareness (Singh et al., 2021)).
A randomized ranking M ∈ Mn×n

DS is uncertainty aware for
a prediction P ∈ Pn,L if for each individual i and position
k, the entry Mi,k is the probability that i has the kth highest
label if all labels λi ∼ pi are sampled independently from
the respective distributions pi ∈ ∆L, and ties are broken
uniformly. Formally, conditioned on the drawn labels λi of
all individuals i, which entail the counts N ℓ for all labels,
the probability for individual i to obtain rank k is

P[Ri,k | λi = ℓ,N1, . . . , NL] =
1

N ℓ
1N>ℓ<k≤N≥ℓ . (1)

A ranking function r : Pn,L → Mn×n
DS is uncertainty aware

if r(P ) is uncertainty aware for all P ∈ Pn,L.

Because the definition of uncertainty awareness fully pre-
scribes the ranking distribution M for a given prediction P
(as shown in Lemma 4.2 of Singh et al. (2021)), there is a
unique uncertainty aware ranking function r for any given
n,L; we henceforth denote it by rUA.

Intuitively, the fairness of UA can be interpreted through a
possible futures viewpoint. Given two individuals A, B, if
A has more merit than B in 60% of futures (when the me-
rits/labels of both A and B are sampled from their respective
distributions), then UA implements the requirement that the
allocation in the present should respect this uncertainty and
give A the better rank at least 60% of the time (and B at least
40% of the time); this entails the need for randomization.
We refer the reader to Devic et al. (2023); Singh et al. (2021)
for a formal argument on the fairness of UA ranking.

We also remark that the definition of Singh et al. (2021) did
not require the labels/merits of different individuals to be
sampled independently from their respective distributions
Pi. We add this independence requirement to facilitate con-
nections with learning algorithms for predictors. An added
benefit of the independence assumption is that it makes it
possible to explicitly compute rUA(P ) in polynomial time,
as captured by the following proposition. Note that this is
in contrast to the case of possibly correlated labels/merits
from previous work (Singh et al., 2021; Devic et al., 2023);
indeed, a main technical contribution of these works was
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analyzing the loss in fairness/utility incurred due to imper-
fectly approximating rUA(P ) via sampling.

Proposition 10. There exists an algorithm which, given
P ∈ Pn,L, exactly computes rUA(P ) in time O(n4 + n3L).

While the notion and use of uncertainty aware rankings may
appear to be of primarily theoretical interest, it is in fact
used in practice. For example, the NBA draft lottery can be
understood through the lens of uncertainty aware rankings.
The merit of a team is its need for better choice picks, which
can be (imperfectly) inferred from the team’s performance
in the previous season. The draft order is then obtained by a
weighted lottery based on these uncertain merits.

We now present the central result of this section: that the
uncertainty aware ranking function is anonymous and stable.

Theorem 11. Let rUA : Pn,L → Mn×n
DS be the UA ranking

function for n individuals and L labels. rUA is anonymous
and 1-stable.

Proof Sketch. That UA ranking is anonymous follows from
the definition since it treats all individuals based only on
their predictions, and not based on their position in the pre-
diction matrix. The difficult part is proving that UA ranking
is stable: this is because the ranking of any given individual
depends not only on their own prediction, but the predic-
tions for the other n− 1 individuals. Lemma 19 is crucial
in showing stability: it states that any individual — condi-
tioned on that individual having a given label — will have a
similar ranking under two different prediction matrices P
and Q, where the difference in the rankings is bounded by
the total variation distance between the distributions for all
other individuals under P and Q. With Lemma 19 in hand,
simply applying the law of total conditional expectation
will let us prove Theorem 11. The difficulty lies in proving
Lemma 19.

To prove Lemma 19, we use an insight into the conditional
decomposition of the UA ranking probability for a given
individual i at rank k (Proposition 18). This proposition
allows us to consider the rank of individual i by considering
the rank of i conditioned on i having a particular label. The
proof of Proposition 18 is simply a counting argument.

With this conditional decomposition in hand, we are able to
apply a coupling argument for the event that the individual
i in question obtains a particular rank when other individ-
uals’ classes are sampled with respect to either P or Q. In
particular, we can say that under P and Q, the labels of
every individual except i will behave similarly if the total
variation distance is small.

Our stability analysis is essentially tight up to a factor of 2,
ruling out the possibility of, for example, 1

n -stability:

Proposition 12. For any L ≥ 3 and n ≥ 2, rUA is not
γ-stable for any γ < 1

2 .

Finally, as the number of labels increases, the predictor
can provide the ranking function with more fine-grained
information, which should allow the ranking function to
produce a wider class of distributions over rankings. The
next proposition, stated informally here and formally as
Proposition 21, shows that this is indeed the case:

Proposition 13. The expressivity of UA ranking functions
is strictly increasing in L.

4. Multigroup Fairness Guarantees
We now present our main result: UA rankings naturally
compose with multiaccurate and multicalibrated predictors.

We have shown that UA rankings are stable, and, further-
more, that stable rankings compose harmoniously with in-
dividually fair predictors. Corollary 6 demonstrates that an
accurate predictor, at the individual level, can combine with
a stable ranking function (such as UA) to induce a ranking
which is close to that of the underlying ground truth. In
practice, however, obtaining accurate uncertainty estimates
at the individual level is too strong of an assumption for
arbitrary data sets of individuals. This is because such a
requirement is equivalent to learning the Bayes optimal pre-
dictor (the true distribution over the labels conditioned on
the features of an individual) (Shalev-Shwartz & Ben-David,
2014, Section 3.2.1), which generally requires the number
of samples or running time to be exponential in the dimen-
sionality of the features used for prediction, which can be
statistically or computationally infeasible.

Instead, we focus on obtaining a coarser guarantee for UA
rankings at the level of subgroups of the domain for data sets
sampled i.i.d. from a distribution D over individuals (instead
of arbitrary data sets). The i.i.d. assumption is a standard
setting for machine learning, and has proven useful in many
practical settings. Our contributions are tightly connected
to the statistical group-fairness conditions of multiaccuracy
and multicalibration (Kim et al., 2019; Hébert-Johnson et al.,
2018). Our guarantees will be meaningful since they directly
imply that, relative to an underlying ground truth, unbiased
predictors will induce unbiased rankings.

4.1. Group-wise Accuracy Guarantees

We first recall the definitions of multiaccuracy and multi-
calibration from the fair machine learning literature. Then,
we state our result on the average accuracy of rankings in-
duced by multiaccurate and multicalibrated predictors when
compared to rankings induced from nature.

Definition 14 (Multiaccuracy/Multicalibration (Kim et al.,
2019; Hébert-Johnson et al., 2018)). Let D be a distribution
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over individuals X . Let f∗ be the ground truth distribution
of labels, i.e., f∗(x) is the true distribution of labels for in-
dividual x, while f is the predictor, so f(x) is the predicted
label distribution.

Let C be a collection of sets for which the predictor is to be
multiaccurate/multicalibrated. Let α ≥ 0 be a parameter
for how far from fully accurate/calibrated the predictor
is allowed to be. When writing E [v] for a vector-valued
quantity v, we mean the coordinate-wise expectations. Let
∆f,g(x) = f(x)− g(x) denote the difference in predictions
on datapoint x between functions f, g.

(1) f is (C, α)-multiaccurate if for every set S ∈ C,

∥Ex∼D [1x∈S ·∆f∗,f (x)] ∥∞ ≤ α.

That is, for each of the given groups S ∈ C and each label,
the expected probability mass on that label is approximately
the same for the predictor as for the ground truth.

(2) Let some interval width δ ∈ (0, 1] be given, such that 1/δ
is an integer. f is (C, α, δ)-multicalibrated if for every set
S ∈ C and vector (j1, j2, . . . , jL) ∈ {0, 1, . . . , 1/δ − 1}L,

∥Ex∼D
[
1x∈S · 1∀ℓ, f(x)ℓ∈[jℓ·δ,(jℓ+1)·δ) ·∆f∗,f (x)

]
∥∞ ≤ α.

That is, in addition to fixing a group, even if we also fix a
(rough) interval within which the predicted probability mass
must lie, the predictor still has to be close to the ground
truth, for each possible label.

Each set S ∈ C represents a protected group of import in
the underlying population X . The sets in C can be complex,
overlapping, nested, laminar, etc., since both multiaccuracy
and multicalibration with respect to C are — in contrast
to other notions of group fairness in supervised learning
such as equalized odds (Awasthi et al., 2020) or equality
of opportunity (Hardt et al., 2016) — statistically sound in
that they are consistent with the underlying ground truth
f∗. There are a variety of learning and post-processing
algorithms which achieve multiaccuracy/ multicalibration
(Hébert-Johnson et al., 2018; Kim et al., 2019; Gopalan
et al., 2022; Haghtalab et al., 2023).

We now present the central contribution of this section: mul-
ticalibration and multiaccuracy for a predictor f guarantee
that on a per group basis, UA rankings derived from f will
be close to UA rankings derived from the ground truth f∗.

Theorem 15. Let D be a distribution over individuals X .
Let f∗ be the ground truth distribution of labels, and f a
predictor. For any n, let Dn be the distribution obtained
from drawing a vector of n i.i.d. samples from D.

Let C be a collection of sets with X ∈ C, the sets of individ-
uals for which the predictor f will be assumed to be multi-
accurate/multcalibrated. Let α ≥ 0 be a parameter for how

far from fully accurate/calibrated the predictor is allowed to
be. Define ∆i,k

f,g(x) = PrUA(f(x))
[Ri,k]−PrUA(g(x))

[Ri,k]
as the deviation of UA ranking on the probabilities of
event Ri,k under the predictions given by predictors f, g on
dataset x. Then, we have that:

(1) If f is (C, α)-multiaccurate, then the following holds for
all sets S ∈ C and k ∈ [n]:∣∣∣Ex∼Dn,i∼Unif([n])

[
1xi∈S ·∆i,k

f∗,f (x)
]∣∣∣ ≤ Lnα.

(2) If f is (C, α, δ)-multicalibrated and ({X} , α)-
multiaccurate, then for every set S ∈ C, vector
(j1, j2, . . . , jL) ∈ {0, 1, . . . , 1/δ − 1}L, and k ∈ [n]:∣∣∣Ex∼Dn,i∼Unif([n])

[
1xi∈S ·

1f(xi)ℓ∈[jℓ·δ,(jℓ+1)·δ) for all ℓ ·∆i,k
f∗,f (x)

]∣∣∣ ≤ Lnα.

Proof Sketch. The proofs for both the multiaccuracy and
multicalibration parts of the theorem are essentially identi-
cal. The key insight is that when all individuals are sampled
from an underlying distribution D, the distribution of com-
peting individuals that i faces is the same as the aggregate
distribution in the population under D. By the multiaccu-
racy / multicalibration assumptions over the entire popula-
tion, this distribution is sufficiently well estimated by the
predictor f . This analysis applies conditioned on the par-
ticular label of individual i. It is then combined with the
conditional decomposition of Proposition 18 and the total
variation bound of Lemma 19.

Theorem 15 can intuitively be thought of as the following:
a predictor which is unbiased on average over a collection
of subgroups C will induce an uncertainty aware ranking
which, for those subgroups, has a similar outcome to the
(usually inaccessible) uncertainty aware ranking induced
by the ground truth label distribution. The multicalibration
guarantee refines this to hold for not only subgroups, but
intervals of predictions of the predictor f within that sub-
group. Part (2) of Theorem 15 requires f be simultaneously
(C, α, δ)-multicalibrated and ({X} , α)-multiaccurate; that
is, f is unbiased on average across individuals sampled from
D. This combination of properties can be achieved by, e.g.,
the algorithm of Gopalan et al. (2022). In Appendix D,
we detail further computational/statistical considerations,
and also demonstrate how Theorem 15 can be seen as an
interpolation result between individual and group fairness.

5. Ranking Functions and Utility
Most online marketplaces utilizing rankings and ranking
functions are also concerned with utility or revenue. In
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this section, we introduce a natural class of utility mod-
els inspired by the literature standard (Taylor et al., 2008),
and prove that the optimal utility ranking function cannot
achieve the stability or group fairness guarantees that UA
rankings enjoy.

Definition 16 (Utility Model). Let w1 ≥ w2 ≥ · · · ≥ wn ≥
0 be position weights, and τ : ∆L → R≥0 a function we
call the class utility map, which determines how predictions
are mapped to utilities. The utility U(P, r) of a prediction
matrix P ∈ Pn,L under a ranking function r is

Eσ∼r(P )

n∑
k=1

wk · τ(pσ(k)) =

n∑
i=1

n∑
k=1

[r(P )i,k · wk · τ(pi)] .

A particularly natural and common type of class utility map
is the expected utility τ(p) =

∑L
ℓ=1 vℓ · pℓ, where vL >

vL−1 > · · · > v1 ≥ 0 are the utilities for labels ℓ ∈ [L].
Combined with the weights wk = 1/ log2(1+ k), this class
captures DCG (Järvelin & Kekäläinen, 2002), for example.

The ranking function which achieves optimal utility will de-
pend on τ ; we denote it rτopt. In Appendix E, we show strong
impossibility results as Propositions 27 and 28, summarized
informally here:

Proposition 17. Even for binary labels and expected utility,
rτopt is unstable, and cannot satisfy multiaccuracy fairness
guarantees akin to Theorem 15.

Since it is typically desirable to obtain provable guarantees
quantifying the tradeoff between fairness and utility, in Ap-
pendix F we introduce a relaxation of stability/fairness akin
to a definition from Singh et al. (2021). We show that a
ranking function rϕmix which randomizes between rτopt and
rUA with parameter ϕ ∈ [0, 1] achieves provable guarantees
for both utility and approximate stability/fairness.

6. Experiments on Stability and Utility
We run experiments to complement our theoretical results
and further investigate the fairness-utility tradeoff. Our re-
sults demonstrate that rUA is far more stable than rτopt in prac-
tice, and also achieves higher utility than two baseline rank-
ing functions. We use the US Census data set ACS (Ding
et al., 2021) and the student dropout task Enrollment
(Martins et al., 2021). Table 1 shows the stability of rUA
and rτopt to noise introduced by neural networks trained with
SGD, averaged over multiple runs. In Table 2, we report
the utility of rUA, the uniform ranking runif assigning each
individual to each rank with equal probability, and Plackett-
Luce rankings rPL (Plackett, 1975; Luce, 1959). The utility
is normalized such that rτopt always achieves utility 1. Fur-
ther experimental details are deferred to Appendix G.

Quantity ACS Enrollment

∥rUA(P )− rUA(P
′)∥∞ 0.011± 0.002 0.012± 0.002

∥rτopt(P )− rτopt(P
′)∥∞ 0.947± 0.224 0.680± 0.466

∥P − P ′∥1 0.971± 0.582 0.653± 0.453

Table 1: Measured stability over 30 neural network train-
ing runs (15 pairs of networks) for 10 data sets of n = 30
individuals each. ∞-norm of UA deviation being bounded
above by ∥P − P ′∥1 confirms stability of UA (Theorem 11).
Instability of the ranking rτopt is also demonstrated (Proposi-
tion 17).

n = 20 n = 40 n = 60

rUA 0.726± 0.027 0.724± 0.027 0.727± 0.020
rPL 0.616± 0.038 0.621± 0.028 0.624± 0.023
runif 0.540± 0.043 0.548± 0.029 0.550± 0.030

rUA 0.852± 0.030 0.860± 0.023 0.857± 0.018
rPL 0.755± 0.041 0.767± 0.027 0.767± 0.025
runif 0.552± 0.052 0.561± 0.037 0.562± 0.033

Table 2: Normalized utility achieved by rUA, runif, and rPL

for n = 20, 40, and 60 random individuals from the test set
of ACS (top 3 rows) and Enrollment (bottom 3 rows).
Mean/std taken across 30 neural network training runs. UA
outperforms the uniform and PL ranking.

7. Conclusion
Stability of ranking functions is a natural desideratum to
prevent large deviations arising in rankings from noise in
learned classifiers; combined with individually fair predic-
tions, it results in fair rankings. Stability is achieved by
the natural Uncertainty Aware Ranking Functions, which
also preserve group fairness guarantees of their underlying
classifiers. An interesting direction for future work is to find
a general sufficient condition for ranking functions which
implies this preservation of group fairness.

Another important extension is to consider correlations be-
tween the labels of different individuals, and whether analo-
gous individual/group fairness guarantees can still be pro-
vided in this case. This would apply to both the actual pre-
diction/ranking time and to the implications on the learned
predictors when they are learned from correlated data.

Impact Statement
The work advances understanding of fairness when using
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A. Full Discussion of Related Work
Fairness in Ranking. By far the most relevant related work is of Dwork et al. (2019), who are also interested in fair
rankings induced by predictors, but importantly restrict their focus to only deterministic rankings (where a better prediction
means that an individual will always receive a higher rank) induced by probabilistic binary predictors. Indeed, their
motivating example is a setting in which small perturbations to a predictor can massively impact an induced ranking.
By requiring stability of ranking functions, we approach this problem fundamentally differently: we allow (and indeed,
require) non-deterministic rankings. The multiaccuracy and multicalibration guarantees of Dwork et al. (2019) for induced
rankings from predictors are similar in flavor to ours; however, a fundamental difference is that we show this guarantee to be
compatible with stability, and, furthermore, that our guarantees hold for each position k in the ranking.

At the intersection of group and individually fair rankings, the work of Gorantla et al. (2023) is most similar to ours.
They show that one can sample from a distribution over rankings which is simultaneously individually and group fair
(in a proportional representation sense) for laminar groups. In contrast, our group fairness hinges on the group-level
statistical constraints of multicalibration imposed on the underlying predictor, which instead allow for potentially arbitrarily
overlapping groups. Garcı́a-Soriano & Bonchi (2021) also work at the intersection of group and individual fairness in
rankings, although their group fairness constraints require that certain groups get representation amongst the top-k positions
in the ranking, for all k ∈ [n]. Both of these works and ours more broadly explore the interplay between group and individual
fairness constraints.

There is far too rich a literature on group and individually fair rankings to cover here, so we restrict attention to only works
related to uncertainty and fairness; for a more comprehensive overview, the interested reader is referred to the survey of
Zehlike et al. (2021).

Uncertainty in Rankings. Rastogi & Joachims (2023) investigate fairness in uncertainty aware rankings when the
uncertainty estimates themselves may be biased for different subgroups. We work in the simpler setting in which we assume
that uncertainty estimates are themselves unbiased. Mehrotra & Celis (2021) and Mehrotra & Vishnoi (2022) investigate
uncertain protected attributes in the settings of subset selection and ranking, respectively. We do not assume that anything is
known about individuals’ protected attributes; instead, we only require utilizing the output of a group-fair (multiaccurate)
predictor in Section 4. Training such a predictor, however, will require certain knowledge of protected attributes (see, e.g.,
Kim et al. (2019)).

Independently of the line of work on UA rankings (Devic et al., 2023; Singh et al., 2021), Shen et al. (2023) propose ranked
proportionality, which shares a similar definition. Their work is in the more general setting of the assignment problem with
uncertain priorities, and they focus on algorithmic approaches for achieving a variety of fairness notions simultaneously.
Tang et al. (2023) also consider the (fair) assignment problem and its connections with calibration. Our work is instead
focused on proving certain properties of rankings induced by predictors (predictors which, when stated in the language of
Shen et al. (2023), may induce uncertain priorities). More generally in fairness in uncertain decision making, Tahir et al.
(2023) consider how different sources of uncertainty can impact fairness. Guo et al. (2023) utilize conformal prediction
techniques to (feasibly) train fair learn-to-rank models, and are also partially interested in a similar notion of stability as
ours.

Guiver & Snelson (2008); Soliman & Ilyas (2009); Yang et al. (2022); Cohen et al. (2021); Penha & Hauff (2021) all also
work in the area of ranking with uncertain scores or preferences. In contrast to these works, we simultaneously consider
uncertainty, fairness, and stability of rankings. Heuss et al. (2023) also model uncertainty with a Bayesian framework that
allows them to apply their method post-hoc to arbitrary retrieval models in hopes of reducing bias. Perhaps most relevant
is the work of Yang et al. (2023), who examine rankings, utility, fairness, and uncertainty simultaneously. They find that
modeling uncertainty can actually improve utility in some cases, relative to other fair ranking metrics.

Calibration and Ranking. In Section 4, we work with (multi)-calibrated predictors. Within the ranking community,
there has been some investigation into the impact of calibration of ranking models. Menon et al. (2012) initiated this study,
attempting to obtain predicted probabilities based on the score output of a ranking model. Kweon et al. (2022) work in a
similar setting, but refine the method of obtaining predicted probabilities. Yan et al. (2022) work in the score-and-sort model
where a scoring function is learned to score each individual, and a ranking function is derived by sorting the individuals
according to their scores. Yan et al. (2022) aim to ensure that the scoring model is calibrated with respect to some external
property. These works all attempt to infer uncertainty from the scoring function, whereas we assume that uncertainty is
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given in the form of machine-learned predictions. Busa-Fekete et al. (2011) show that calibration for ranking functions can
help increase diversity of rankings. More recently, DiCiccio et al. (2023) show that conditional predictive parity (a notion
which appears to be related to multicalibration) can help decrease bias in rankings. These works all highlight the benefits
of using calibrated predictive models for ranking, outside of the guarantees that we provide. Korevaar et al. (2023) relate
calibration and exposure in rankings by comparing the rankings attained by subgroups with similar score distributions.

Stability in Rankings. In the information retrieval literature, Asudeh et al. (2018) also study the notion of stability for
rankings. They work in a setting where a score is calculated based on a weighted sum of features of each item, and stability
is then with respect to small changes of these weights. However, their notion of stability is based on geometric intuition
for their scoring function and its dual, and only holds for any fixed data set. They furthermore state that stability is not a
property of their “scoring function” (particular weighted sum over features). In contrast, we are explicitly defining stability
as a property of our ranking function, which maps from any set of predictions (data set) to a randomized ranking. Oh et al.
(2022) also study the sensitivity of rankings; however, their context is slightly different: they examine stability with respect
to user interactions with, e.g., a recommendation system. In a very recent followup work (Oh et al., 2024), the same authors
also provide an algorithm to empirically achieve stability in that setting. Bruch et al. (2020) provide experimental evidence
showing that randomization can help stability (which they define as robustness) during the training of learning-to-rank
models. Our theoretical results are complementary and corroborate the empirical evidence of Bruch et al. (2020) that
randomized rankings are more robust to noise than deterministic ones.

Finally, in terms of the interplay between prediction systems and rankings, the work of Narasimhan et al. (2020) is perhaps
most relevant; they show that the ranking problem can be considered as a pairwise binary classification problem between
items to determine which item should be placed at a higher rank.

We also point out the work of Huang & Vishnoi (2019) who suggest studying rankings from the point of view of stability,
albeit their motivation stems from stability in the learning theory community.

B. Omitted Proofs
B.1. Proof of Proposition 8

Proof. To prove the impossibility of anonymity, consider any prediction matrix P = (p)i∈[n] with identical predictions p for
each individual (e.g., p = (1, 0, . . . , 0) ∈ ∆L). Then, any deterministic ranking function r must order the individuals based
only on their indices in P , since they all have identical predictions. For any permutation σ : [n] → [n], let Pσ represent
applying σ to the rows of P . Since the ranking function can only depend on the input matrix, and r is deterministic, we have
that r(P ) = r(Pσ). However, by the definition of anonymity (Definition 2), the permutation σ on the rows of P should
produce the permutation r(P )σ on the individuals in the resulting ranking, which is a contradiction. Therefore, r is not
anonymous.

To prove the instability result, we prove the contrapositive. Let r be deterministic and non-constant, and γ > 0. We
will show that r is not γ-stable. Because r is non-constant, there exist P, P ′ ∈ Pn,L with r(P ) ̸= r(P ′). Consider the
straight line Q(β) = βP + (1 − β)P ′, for β ∈ [0, 1]. Because Pn,L is convex, Q(β) ∈ Pn,L for all β ∈ [0, 1]. Let
β∗ = inf {β | Q(β) = P ′}; β∗ is well-defined because Q(1) = P ′. By definition, Q(β) ̸= P ′ for all β < β∗, and if
β∗ = 0, then Q(β∗) = P ̸= P ′. On the other hand, by the definition of the infimum, for every δ > 0, there is a δ′ < δ with
Q(β∗ + δ′) = P ′. Thus, we obtain arbitrarily close pairs β′ ≤ β∗ < β′′ with Q(β′) ̸= Q(β′′). Because r is deterministic,
all entries of r(Q(β′)) and r(Q(β′′)) are in {0, 1}, implying that ||r(Q(β′)) − r(Q(β′′))||∞ ≥ 1. On the other hand,
||Q(β′)−Q(β′′)||1 ≤ ||2δ(P ′ − P )||1 → 0 as δ → 0. By choosing δ small enough (as a function of γ), this implies that r
is not γ-stable, completing the proof.

While we prove instability (i.e., the second part of Proposition 8) by considering a straight line between two different
prediction matrices P, P ′, this is not essential. By considering any path (curve in Rn×L) connecting P, P ′ and its
parametrization by β ∈ [0, 1], the exact same proof still works. This shows that even if we consider only a subset of possible
predictions, so long as the subset is path-connected5, a deterministic stable ranking function must be constant. This extends
the proposition to settings where prediction strategies may output only certain (path-connected) subsets of predictions, due

5Recall that a set A is path-connected if for every pair of elements x, y ∈ A there exists a continuous path between x and y which is
entirely contained within A.
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to, for example, intrinsic preferences or implicit bias of a particular learning algorithm.

B.2. Proof of Proposition 10

The proof of Proposition 10 and Theorem 11 will use the following Proposition, which shows that by taking into account the
randomness of the draws of labels and the tie breaking, the rank distribution produced by UA ranking can be summarized as
follows:

Proposition 18. Let P ∈ Pn,L be a prediction, and rUA(P ) the ranking distribution produced by rUA for P . Then, the
probability of individual i ∈ [n] being ranked in position k ∈ [n] is:

PrUA(P )[Ri,k | λi = ℓ] =

n−1∑
j=0

1

j + 1
·PP [N

ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k], (2)

PrUA(P )[Ri,k] =
∑
ℓ

pi,ℓ ·PrUA(P )[Ri,k | λi = ℓ]. (3)

Proof. For the first part, we observe that the probability of Ri,k in (1) depends only on N ℓ and N>ℓ. By considering all the
possible values of N≥ℓ for which (1) gives a non-zero probability, we obtain that

PrUA(P )[Ri,k | λi = ℓ] =

n∑
j=1

1

j
·PP [N

ℓ = j and N>ℓ < k ≤ N≥ℓ | λi = ℓ].

The result is then obtained by noticing that conditioned on λi = ℓ, we have N ℓ
−i = N ℓ − 1 and N ℓ′

−i = N ℓ′ for all ℓ′ ̸= ℓ.
The second part of the proposition simply states the law of total probability.

We are now ready to prove Proposition 10.

Proof of Proposition 10. The two parts of Proposition 18 combined imply that in order to compute row i of rUA(P ), it
is sufficient to compute PP [N

ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k] for all pairs (j, k) ∈ [m]. This is accomplished by
a dynamic program similar to a standard undergraduate exercise, which is to compute a Poisson Binomial distribution
explicitly.

For notational convenience, assume that i = n; this is solely to avoid a special case in the recurrence, and also without loss
of generality by anonymity of the UA rule. For any t, j, j′ ∈ {0, 1, . . . ,m− 1}, let

A(t, j, j′) = PP [N
ℓ
{1,...,t} = j and N>ℓ

{1,...,t} = j′]

be the probability that among the first t individuals, exactly j have label ℓ, and exactly j′ have a label strictly better than ℓ.
From these values, we can then construct the necessary quantities as

PP [N
ℓ
−n = j and k − (j + 1) ≤ N>ℓ

−n < k] =

k−1∑
j′=k−(j+1)

A(n− 1, j, j′).

We give the recurrence relationship for the A(t, j, j′). The base cases are that

A(0, 0, 0) = 1

A(0, j, j′) = 0 if j + j′ ̸= 0,

because with no individuals, the only possible numbers of individuals with given labels is 0.

Now consider A(t, j, j′) for t ≥ 1. With probability pt,ℓ, individual t has label ℓ, in which case the desired event happens
when j−1 individuals among the first t−1 have label ℓ, and j′ have labels strictly better than ℓ. With probability

∑
ℓ′>ℓ pt,ℓ′ ,

individual t has a label strictly better than ℓ, in which case the desired event happens when j individuals among the first
t− 1 have label ℓ, and j′ − 1 have labels strictly better than ℓ. Finally, with probability

∑
ℓ′<ℓ pt,ℓ′ , individual t has a label
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strictly worse than ℓ, in which case the desired event happens when j individuals among the first t− 1 have label ℓ, and j′

have labels strictly better than ℓ. These three cases disjointly cover all possibilities for the label of t, so we have derived the
following recurrence:

A(t, j, j′) = pt,ℓ ·A(t− 1, j − 1, j′) +
∑
ℓ′>ℓ

pt,ℓ′ ·A(t− 1, j, j′ − 1) +
∑
ℓ′<ℓ

pt,ℓ′ ·A(t− 1, j, j′).

Here, to avoid case distinctions for whether j and/or j′ are 0, we treat A(t, j, j′) = 0 whenever j or j′ are negative.

Notice that for any fixed t, all values
∑

ℓ′>ℓ pt,ℓ′ , being prefix sums, can be pre-computed in time O(L). Thus, for all ℓ, t,
the precomputation can be performed in time O(nL).

Then, any one entry A(t, j, j′) can be computed in constant time from previously computed values. Because the table has size
O(n3), the total computation takes time O(n3). Summing over all possible values of i, the total time to compute the entire
ranking distribution rUA(P ) is O(n4+n2L). Finally, the post-processing of computing thePP [N

ℓ
−i = j and k− (j+1) ≤

N>ℓ
−i < k] for all k, for fixed i, ℓ, j, can be implemented in time O(n) by using differences of prefix sums; thus, all values

can be computed in time O(n3L). This gives a total time of O(n4 + n3L).

B.3. Proof of Theorem 11

The following lemma is a key part of the proof of stability in Theorem 11; it bounds how different the probabilities for
individual i obtaining rank k can be under two different prediction matrices, as a function of how similar these matrices are:

Lemma 19. Let P,Q ∈ Pn,L be two different prediction matrices. For any individual i, let pi, qi be the ith rows of P,Q,
respectively, i.e., the label distributions of individual i under the two predictions. Let i be an individual, k ∈ [n] a position,
and ℓ ∈ [L] a label. Then,∣∣∣PrUA(P )[Ri,k | λi = ℓ]−PrUA(Q)[Ri,k | λi = ℓ]

∣∣∣ ≤ 2 ·
∑
i′ ̸=i

dTV(pi′ , qi′).

The proof of Lemma 19 uses the following lemma, bounding the total variation distance of sums of random variables in
terms of the total variation distances of the individual variables.

Lemma 20. Let Xi ∼ pi, Yi ∼ qi for i = 1, . . . , n be independent categorical random variables, and X =
∑n

i=1 Xi, Y =∑n
i=1 Yi. Let p, q be the respective distributions of X,Y . Then, dTV(p, q) ≤

∑n
i=1 dTV(pi, qi).

Proof. Consider a maximal coupling between each Xi and the corresponding Yi. By the Coupling Lemma, we then have
that P[Xi ̸= Yi] = dTV(pi, qi), and dTV(p, q) ≤ P[X ̸= Y ]. Now, by a union bound over all i, we obtain that

dTV(p, q) ≤ P[X ̸= Y ] ≤
∑
i

P[Xi ̸= Yi] =
∑
i

dTV(pi, qi),

completing the proof.

Proof of Lemma 19. First, by Equation (2) in the first part of Proposition 18,

P[Ri,k | λi = ℓ] =

n−1∑
j=0

1

j + 1
·P[N ℓ

−i = j and k − (j + 1) ≤ N>ℓ
−i < k].

Let

B =
{
j | PP [N

ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k] ≥ PQ[N
ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k]
}
;

note that B is not a random variable, but simply determined by the distributions P,Q.
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We substitute the characterization (2) for both P and Q, and use the triangle inequality as well as the fact that 1
j+1 ≤ 1, to

give us that∣∣∣PrUA(P )[Ri,k | λi = ℓ]−PrUA(Q)[Ri,k | λi = ℓ]
∣∣∣

≤
n−1∑
j=0

∣∣PP [N
ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k]−PQ[N
ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k]
∣∣

=

n−1∑
j=0,j∈B

(
PP [N

ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k]−PQ[N
ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k]
)

+

n−1∑
j=0,j /∈B

(
PQ[N

ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k]−PP [N
ℓ
−i = j and k − (j + 1) ≤ N>ℓ

−i < k]
)

=
(
PP [N

ℓ
−i ∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]−PQ[N

ℓ
−i ∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]

)
+
(
PQ[N

ℓ
−i /∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]−PP [N

ℓ
−i /∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]

)
=
∣∣PP [N

ℓ
−i ∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]−PQ[N

ℓ
−i ∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]

∣∣
+
∣∣PP [N

ℓ
−i /∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]−PQ[N

ℓ
−i /∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]

∣∣ . (4)

Consider the (vector-valued) random variable (N>ℓ
−i , N

ℓ
−i), and let µ, ν denote its distribution under P,Q, respectively.

Because [N ℓ
−i ∈ B and k− (N ℓ

−i + 1) ≤ N>ℓ
−i < k] and [N ℓ

−i /∈ B and k− (N ℓ
−i + 1) ≤ N>ℓ

−i < k] are events that can be
expressed in terms of this random variable, the definition of total variation distance implies that∣∣PP [N

ℓ
−i ∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]−PQ[N

ℓ
−i ∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]

∣∣ ≤ dTV(µ, ν),∣∣PP [N
ℓ
−i /∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]−PQ[N

ℓ
−i /∈ B and k − (N ℓ

−i + 1) ≤ N>ℓ
−i < k]

∣∣ ≤ dTV(µ, ν).

To bound dTV(µ, ν), associate with each individual i′ ̸= i the 2-dimensional (random) vector vi′ = (1λi′>ℓ,1λi′=ℓ). Then,
(N>ℓ

−i , N
ℓ
−i) =

∑
i′ ̸=i vi′ .

For a fixed i′ ̸= i, consider the distribution of vi′ under pi′ and qi′ . The total variation distance between these distributions
is at most dTV(pi′ , qi′), because the vectors can differ only when the labels of i′ differ. By Lemma 20, we thus obtain that
dTV(µ, ν) ≤

∑
i′ ̸=i dTV(pi′ , qi′).

Substituting this bound back into (4), we now obtain that∣∣∣PrUA(P )[Ri,k | λi = ℓ]−PrUA(Q)[Ri,k | λi = ℓ]
∣∣∣ ≤ 2 ·

∑
i′ ̸=i

dTV(pi′ , qi′),

completing the proof.

With Lemma 19 in hand, we are ready to prove Theorem 11.

Proof of Theorem 11. First, the UA ranking rule is obviously anonymous, simply by its (symmetric) definition which treats
all indices identically. Thus, we focus on proving stability.

Now, let any individual i and rank k be given. By Equation (3) in the second part of Proposition 18, P[Ri,k] =
∑

ℓ pi,ℓ ·
P[Ri,k | λi = ℓ]. Now consider two different predictors P,Q. We bound the difference in probabilities for i to be ranked in
position k as follows:
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∣∣∣PrUA(P )[Ri,k]−PrUA(Q)[Ri,k]
∣∣∣

≤
∑
ℓ

∣∣∣pi,ℓ ·PrUA(P )[Ri,k | λi = ℓ]− qi,ℓ ·PrUA(Q)[Ri,k | λi = ℓ]
∣∣∣

≤
∑
ℓ

|pi,ℓ − qi,ℓ| ·PrUA(P )[Ri,k | λi = ℓ] + qi,ℓ ·
∣∣∣PrUA(P )[Ri,k | λi = ℓ]−PrUA(Q)[Ri,k | λi = ℓ]

∣∣∣
≤
∑
ℓ

|pi,ℓ − qi,ℓ|+ qi,ℓ ·
∣∣∣PrUA(P )[Ri,k | λi = ℓ]−PrUA(Q)[Ri,k | λi = ℓ]

∣∣∣ . (5)

By Lemma 19, we can bound
∣∣∣PrUA(P )[Ri,k | λi = ℓ]−PrUA(Q)[Ri,k | λi = ℓ]

∣∣∣ ≤ 2 ·
∑

i′ ̸=i dTV(pi′ , qi′).

Substituting this bound back into (5), we now obtain that

|PrUA(P )[Ri,k]−PrUA(Q)[Ri,k]| ≤
∑
ℓ

|pi,ℓ − qi,ℓ|+
∑
ℓ

qi,ℓ · 2 ·
∑
i′ ̸=i

dTV(pi′ , qi′)

=
1

2
dTV(pi, qi) + 2 ·

∑
i′ ̸=i

dTV(pi′ , qi′)

≤ ||P −Q||1.

In the final step, we absorbed the total variation distance for i into the sum for i′ ̸= i (which has a larger coefficient), and
used that the 1-norm is exactly twice the total variation distance.

B.4. Proof of Proposition 13

We state the formal version of Proposition 13, and prove it here.

Proposition 21. The expressivity of uncertainty aware ranking functions is strictly increasing in L. More formally, let
n ≥ L, and rLUA : Pn,L → Mn×n

DS , rL−1
UA : Pn,(L−1) → Mn×n

DS be the corresponding UA ranking functions. Then,
rLUA(Pn,L) ⊋ rL−1

UA (Pn,(L−1)).

Proof. First, to see monotonicity, notice that adding a column of all 0 entries, i.e., an unused label L, does not change the
behavior of rUA. For any P ∈ Pn,(L−1), writing [P,0] ∈ Pn,L for this matrix, we have rLUA([P,0]) = rL−1

UA (P ), implying
that rLUA(Pn,L) ⊇ rL−1

UA (Pn,L−1).

To prove strictness of inclusion, consider a prediction P = Jn over n = L individuals. Here, Jn is the n× n row-reversed
identity matrix with ones along the anti-diagonal, so individual i is deterministically known to have label L− i+ 1. Then
rUA(P ) = In for the n× n identity matrix In, i.e., individual i is ranked deterministically in position i, and we have proved
that In ∈ rLUA(Pn,L). Note that due to the tie breaking of rUA, to achieve a deterministic ranking, no two individuals must
ever have the same label, i.e., the supports of the n = L rows of any prediction matrix Q yielding rUA(Q) = In must be
disjoint. This implies that Q must have at least L columns, i.e., In /∈ rL−1

UA (Pn,L−1), completing the proof of strictness of
inclusion.

B.5. Proof of Proposition 12

Proof. Let n ≥ 2 be given. We only consider L = 3; for any L > 3, it suffices by Proposition 21 to embed the following
instance and ignore the extra labels. Consider the prediction matrix P with individual 1 having prediction p1 = (1/2, 0, 1/2),
and individuals 2 through n having prediction p2 = (0, 1, 0). Similarly, the prediction matrix P ′ will have individual 1
with prediction p′

1 = (1, 0, 0) and individuals 2 through n with prediction p2. That is, P and P ′ are identical except for
individual 1.

Let M = rUA(P ),M ′ = rUA(P
′) be the resulting probabilities for placing individuals in specific positions. Since all

individuals except individual 1 have deterministic qualifications, under P , there is a 50% probability that individual 1 is
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ranked last, so M1,n = 1/2, whereas M ′
1,n = 0. Therefore, we have the following.

∥rUA(P )− rUA(P
′)∥∞ ≥ |M1,n −M ′

1,n| = 1/2, ∥P − P ′∥1 = 1.

Thus, rUA cannot be γ-stable for any γ < 1/2.

C. Extension to Continuous Ranking Functions
An extension to continuous label spaces is straightforward. In fact, some aspects of the calculations are simplified, because
for independent draws from continuous distributions, the probability of ties in labels is 0. We begin by defining the
modification of concepts precisely.

The set of labels is now L = R; this is without loss of generality, as labels that cannot occur can be assigned density 0 by the
predictor. A predictor f now outputs an absolutely continuous distribution f(x) = px over L = R for the data point x; i.e.,
a distribution which has a probability density function (PDF). We denote the PDF at ℓ ∈ R by px(ℓ), so that the label λx of
individual x is drawn from px, i.e., λx ∼ px. We now use ∆R to denote the set of all absolutely continuous distributions
over R, so that we can still regard f as a mapping f : X → ∆L.

As before, we use Pn,R to denote the set of all possible combinations of predictions based on the n data points, i.e., all
n-dimensional vectors P = (p1, p2, . . . , pn) such that each pi ∈ ∆R is an absolutely continuous probability distribution.
Then, the definition of a ranking function stays virtually unchanged:

Definition 22 (Continuous Ranking Function). A ranking function r : Pn,R → Mn×n
DS maps an n-dimensional vector P of

absolutely continuous probability distributions to a distribution M over rankings.

The definition of uncertainty awareness now extends in the natural way:

Definition 23 (Uncertainty Awareness for Continuous Ranking Functions). A randomized ranking M ∈ Mn×n
DS is

uncertainty aware for a vector P ∈ Pn,R if for each individual i and position k, the entry Mi,k is the probability that i
has the kth highest label if all labels λi ∼ pi are sampled independently from the respective distributions pi. The ranking
function r is uncertainty aware if r(P ) is uncertainty aware for all P ∈ Pn,R.

Notice that this definition is identical to Definition 9, but since the labels λi are drawn independently from continuous
distributions, the probability of ties is 0.

Stability is now defined as before:

Definition 24 (Stability). Fix n. A ranking function r : Pn,R → Mn×n
DS is γ-stable if ||r(P )−r(Q)||∞ ≤ γ ·

∑n
i=1 ||pi−qi||1

for all P,Q ∈ Pn,R, where we use the standard definition ||p||1 =
∫
R |p(x)|dx.

Theorem 25. The continuous variant of UA ranking is 1-stable.

Proof. First, fix one vector P ∈ Pn,R of label distributions. Let λ ∼ P be a vector of labels, with each entry λi drawn
independently from its associated density pi. We use P (λ) to denote the joint (product) distribution over λ. Because the
event of any two λi, λj being equal has measure 0, we will focus our analysis on the case when all λi are distinct. Formally,
we define T := {(ℓ1, . . . , ℓn) ∈ Rn | ℓi ̸= ℓj for all i ̸= j} to be the set of all label vectors all of whose entries are different.
Then, the preceding observation about measure 0 can be stated precisely as Pλ∼P [T ] = 1.

For any individual i ∈ [n], the labels λi induce the counts N>i
λ of individuals more qualified than i. Under UA ranking, if

λ ∈ T , then individual i obtains rank N>i
λ + 1, giving conditional probabilities

PrUA(P )[Ri,k | λ] =

{
1 if N>i

λ = k − 1

0 otherwise.

Notice that this is much simpler than Equation (2) in Proposition 18, which required a careful treatment of ties. Furthermore,
observe that the probability is determined completely by λ, and thus independent of the choice of P .

By the law of total probability, and because Pλ∼P [λ /∈ T ] = 0, the probability of individual i being ranked in position k is

PrUA(P )[Ri,k] =

∫
T
PrUA(P )[Ri,k | λ] · P (λ) dλ.
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Next, let P,Q be two vectors of label densities, and P (λ), Q(λ) the associated joint product distributions. Using that T
has measure 0 under both P,Q, we can then write the difference between the outcomes of UA ranking under P and Q as
follows:

∣∣∣PrUA(P )[Ri,k]−PrUA(Q)[Ri,k]
∣∣∣

=

∣∣∣∣∫
T

(
PrUA(P )[Ri,k | λ] · P (λ)−PrUA(Q)[Ri,k | λ] ·Q(λ)

)
dλ

∣∣∣∣
≤
∫
T

∣∣∣PrUA(P )[Ri,k | λ] · P (λ)−PrUA(Q)[Ri,k | λ] ·Q(λ)
∣∣∣ dλ

≤
∫
T

(
PrUA(P )[Ri,k | λ] · |P (λ)−Q(λ)|+

∣∣∣PrUA(P )[Ri,k | λ]−PrUA(Q)[Ri,k | λ]
∣∣∣ ·Q(λ)

)
dλ

≤
∫
T
|P (λ)−Q(λ)| dλ+

∫
T

∣∣∣PrUA(P )[Ri,k | λ]−PrUA(Q)[Ri,k | λ]
∣∣∣ ·Q(λ) dλ.

We now bound the two integrals separately. For the first integral, we use the fact that the measures P,Q are product measures,
and that the total variation distance between two product measures — and hence the || · ||1 norm — is upper-bounded by the
sum of the total variation distances (respectively, || · ||1 norms) for each variable in the product measure. This implies that∫

T
|P (λ)−Q(λ)| dλ ≤

n∑
j=1

||pj − qj ||1.

Lastly, we show that the second integral is 0. This follows simply from the prior observation that PrUA(P )[Ri,k | λ] is fully
determined by λ, and independent of P , implying that the term under the integral is always 0.

We have shown that for any i, k, the difference
∣∣∣PrUA(P )[Ri,k]−PrUA(Q)[Ri,k]

∣∣∣ ≤∑n
j=1 ||pj − qj ||1. It follows that the

same holds for the maximum over all i, k given by ∥r(P )− r(Q)∥∞. Hence, we have completed the 1-stability proof.

Remark 26. Theorem 25 also implies that the well-known Plackett-Luce Plackett (1975); Luce (1959) ranking function is
stable. This is because of the “Gumbel trick” Bruch et al. (2020), which reframes the Plackett-Luce ranking procedure as
sorting by relevance scores with added Gumbel noise (discussed in more detail in Appendix G.2). This in fact creates a
continuous density, to which we can apply Theorem 25. In other words, the Plackett-Luce model is a special case of UA
ranking in which the merit distribution is implicitly assumed to be of the following form: each individual i has an observed
merit estimate, and the true merit is assumed to be this estimate plus i.i.d. Gumbel noise.

Theorem 25 can also be applied to show stability of the Thurstonian ranking model (Thurstone, 1994), which assumes that
relevance scores are drawn from particular normal distributions; as with the Plackett-Luce model, the Thurstonian ranking
model is in fact a special case of UA ranking with particular choices of merit distributions.

D. Multicalibration as Interpolating between Individual and Group Fairness
In contrast to learning accurate individual-level estimates (the Bayes optimal predictor), multiaccuracy/multicalibration
can be achieved in time and samples polynomial in the number of sets in C, or, more generally, polynomial in measures of
complexity of C such as its VC-dimension (Hébert-Johnson et al., 2018; Gopalan et al., 2022).

Notice that if we define CBayes = {{x} | x ∈ X} to be the set of all singleton groups, then (CBayes, α)-multiaccuracy
guarantees increasingly accurate predictions for all individuals as α → 0, and α = 0 recovers the Bayes optimal classifier,
i.e., the ground truth f∗. By varying the level of granularity of the collection C, the learned (C, α)-multiaccurate or
multicalibrated predictor represents a finer or coarser approximation of the Bayes optimal classifier; thus, Theorem 15
guarantees that the induced ranking effectively interpolates between individual and group-level fair rankings at the granularity
defined by C.

Nonetheless, as previously noted, it is usually unreasonable to expect multiaccuracy (or multicalibration) at the level of
(CBayes, α) as α → 0. This is due to information and computational constraints: multicalibration algorithms must use
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Ω(poly(|C|, 1/δ, 1/α)) samples to learn a multiaccurate/multicalibrated predictor (Shabat et al., 2020).6 In addition to
the sample complexity requirements, the class C must be agnostic PAC learnable (Shalev-Shwartz & Ben-David, 2014,
Section 3.2). This is a stringent requirement which rarely holds for complex collections such as CBayes. In practice, we
envision Theorem 15 to be used with sufficiently simple classes C, such as conjunctions of categorical features and intervals
of numeric features (e.g., “women in the age range 45–65”). Working at this level of granularity not only permits efficient
algorithms for obtaining multiaccurate/multicalibrated predictors, but also guarantees that the derived rankings will be
unbiased for meaningful protected groups of individuals.

E. A Utility-Optimal Ranking Function Cannot be Stable or Fair
The ranking function which achieves optimal utility will clearly depend on τ ; we denote it by rτopt. It can be simply described
as the ranking function which deterministically orders the individuals by decreasing values τ(pi); recall that pi is the ith

row of P ∈ Pn,L. We now show that in general, rτopt is not stable, which demonstrates a necessity to trade off notions of
utility and stability.
Proposition 27. Even for binary labels (L = 2) and expected utility map τ , the utility-maximizing map rτopt is unstable.

Proof. The example is standard in the literature. Assume that v2 > v1. For any ϵ ∈ (0, 1
2 ), define

Pϵ =

(
1
2 + ϵ 1

2 − ϵ
1
2 − ϵ 1

2 + ϵ

)
P ′
ϵ =

(
1
2 − ϵ 1

2 + ϵ
1
2 + ϵ 1

2 − ϵ

)
.

Then, rτopt(Pϵ) deterministically ranks 2 ahead of 1, while rτopt(P
′
ϵ) deterministically ranks 1 ahead of 2. As a result,

∥rτopt(Pϵ)− rτopt(P
′
ϵ)∥∞ = 1, while ∥Pϵ − P ′

ϵ∥1 = 8ϵ → 0 as ϵ → 0. This proves instability of rτopt.

Next, we show that for an extremely simple class of instances, namely, when there are two types of individuals with uniform
distribution, binary labels, identical uniform ground truth distribution over the two labels for both types, and groups which
are just the two singleton types, the utility-maximizing ranking function rτopt cannot approach optimal multigroup fairness,
never mind how close to perfectly multiaccurate the predictor gets.
Proposition 28. Let X = {1, 2} be a domain of two “types” of individuals. Let D be the uniform distribution over those
two types. Let L = 2, i.e., we consider binary labels, and the ground truth label distribution is f∗(x) = ( 12 ,

1
2 ) for both

x ∈ {1, 2}, i.e., under the ground truth, both types are equally likely to be good and bad. Let C = {{1} , {2}} be the
collection of singleton subgroups.

For any α ∈ (0, 1
2 ), let fα be the predictor with predictions fα(1) = ( 12 − α, 1

2 + α) and fα(2) = (12 + α, 1
2 − α). (That

is, fα slightly overestimates the quality of type 1, and slightly underestimates the quality of type 2.) Let τ be any utility
map strictly preferring higher labels, i.e., any utility map with τ(( 12 − α, 1

2 + α)) > τ(( 12 + α, 1
2 − α)). Let rτopt be any

utility-maximizing ranking function for the utility map τ .

Then, fα is (C, α/2)-multiaccurate, yet for every number n of individuals, the group fairness under rτopt towards the group
S = {1} for assignment to the top (most valuable) position in the ranking is the following:

∣∣∣Ex∼Dn,i∼Unif([n])

[
1xi∈{1} ·

(
Prτopt(f

∗(x))[Ri,1]−Prτopt(fα(x))[Ri,1]
)]∣∣∣ = 1

n
·
(
1

2
− 2−n

)
. (6)

In particular, for any fixed n, the quantity stays bounded away from 0, even as α → 0.

The intuition for Proposition 28 is similar to that for Proposition 8: for the utility-maximizing ranking function, an arbitrarily
small (but non-zero) predictive mistake can induce large variations in the resulting ranking distribution, preventing it from
preserving group fairness of its predictor.

Proof. We first verify that fα is (C, α/2)-multiaccurate. For S = {1} or S = {2}, we have that

∥Ex∼D [1x∈S · (fα(x)− f∗(x))] ∥∞ ≤ 1

2
·max(|1

2
− (

1

2
− α)|, |1

2
− (

1

2
+ α)|) = α/2.

6We refer the reader to the original papers Kim et al. (2019); Hébert-Johnson et al. (2018) for algorithms achieving multiaccuracy and
multicalibration, respectively, or Gopalan et al. (2022) for a unified approach.
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The rest of the proof focuses on the group fairness analysis, i.e., proving Equation (6). We first consider the term
Prτopt(f

∗(x))[Ri,1]. First observe that under the ground truth classifier f∗, we have that f∗(x) = 1
2 · 1n×2 for all x; here

1n×2 denotes the n× 2 all-ones matrix. Under this input matrix, rτopt must have some distribution q = (q1, . . . , qn) over
which individual is assigned the top rank; crucially for our analysis, because the ranking function only observes this matrix
1
2 · 1n×2, it must use the same distribution for all type vectors x. We thus conclude that Prτopt(f

∗(x))[Ri,1] = qi for all type
vectors x.

Next, we consider the term Prτopt(fα(x))[Ri,1]. Focus on any type vector x ̸= (2, 2, 2, . . . , 2), i.e., a vector that has at least
one individual of type 1. Because τ(fα(1)) > τ(fα(2)), and rτopt is utility-maximizing for the utility map τ , rτopt(fα(x))
must rank all individuals of type 1 (of whom there is at least one) ahead of all individuals of type 2. From this, we obtain
that

∑n
i=1 1xi∈S ·Prτopt(fα(x))[Ri,1] = 1 for all x ̸= (2, 2, 2, . . . , 2).

Next, we write out the expectation from Equation (6). We use that the terms 1xi∈S = 0 for all i when x = (2, 2, . . . , 2),
which allows us to drop this term from the sum. We then use that each x under the i.i.d. uniform type distribution is drawn
with probability 2−n, and substitute our preceding calculations for the probabilities. This gives us the following:

∣∣∣Ex∼Dn,i∼Unif([n])

[
1xi∈S ·

(
Prτopt(f

∗(x))[Ri,1]−Prτopt(f(x))
[Ri,1]

)]∣∣∣
=

∣∣∣∣∣∑
x

n∑
i=1

Pr
x∼Dn

[x] · 1
n
· 1xi∈S ·

(
Prτopt(f

∗(x))[Ri,1]−Prτopt(f(x))
[Ri,1]

)∣∣∣∣∣
=

∣∣∣∣∣∣2−n · 1
n
·

∑
x̸=(2,2,...,2)

(
n∑

i=1

1xi∈S · qi −
n∑

i=1

1xi∈S ·Prτopt(f(x))
[Ri,1]

)∣∣∣∣∣∣
= 2−n · 1

n
·

∣∣∣∣∣∣
∑

x̸=(2,2,...,2)

((
n∑

i=1

1xi∈S · qi

)
− 1

)∣∣∣∣∣∣
= 2−n · 1

n
·

∣∣∣∣∣∣
 n∑

i=1

qi ·
∑

x ̸=(2,2,...,2)

1xi∈S

− (2n − 1)

∣∣∣∣∣∣
(⋆)
= 2−n · 1

n
·

∣∣∣∣∣
(

n∑
i=1

qi · 2n−1

)
− (2n − 1)

∣∣∣∣∣
= 2−n · 1

n
·
∣∣2n−1 − (2n − 1)

∣∣
=

1

n
· (1

2
− 2−n).

In the step labeled (⋆), we used that there are exactly 2n−1 vectors with xi = 1; the following step used that the qi, defining
a probability distribution, sum to 1. This completes the proof.

F. Stability-Utility and Fairness-Utility Tradeoffs
In both theory and practice, it is often necessary to trade off utility against other desiderata, such as fairness or stability
(see, for example, Singh & Joachims (2019); Pitoura et al. (2022)): if achieving fairness/stability comes at a huge price in
utility, it may become economically infeasible to implement fair or stable rankings. In this section, we introduce and discuss
a class rϕmix of ranking functions which provide a quantifiable tradeoff between the objectives. rϕmix linearly interpolates
between rUA and rτopt with a trade-off parameter ϕ ∈ [0, 1], chosen by the ranking/mechanism designer. We show that this
interpolation naturally leads to rϕmix satisfying approximate stability and fairness, while providing lower-bound guarantees
on the utility. While the proofs are relatively straightforward, we believe that practitioners may find this class of ranking
functions useful in practical applications where the stringent requirement of 1-stability may not be necessary. The interested
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reader is referred to Singh et al. (2021) for additional discussion on how to choose ϕ appropriately7.

We first formally define the notion of approximate stability.

Definition 29. Fix n and L. A ranking function r : Pn,L → Mn×n
DS is (γ, α)-approximately stable if ||r(P )− r(P ′)||∞ ≤

γ · ||P − P ′||1 + α for all predictions P, P ′ ∈ Pn,L.

Notice that (γ, 0)-approximate stability recovers our stability notion from Definition 3. Approximate stability is a relaxation
which allows for additive slack in the dependence on ∥P − P ′∥1. An additive slack relaxation is natural and akin to, for
example, (ϵ, δ)-differential privacy (when compared to pure differential privacy). We show that a simple mixture of UA and
the optimal utility ranking satisfies the following approximate stability and utility guarantee.

Proposition 30. Fix a utility map τ . Let rϕmix be the ranking function which randomizes between rUA (with probability ϕ),
and rτopt (with probability 1− ϕ). Then rϕmix is (ϕ, 1− ϕ)-approximately stable. Furthermore, for any P ∈ Pn,L, we have
that U(P, rϕmix) = ϕ · U(P, rUA) + (1− ϕ) · U(P, rτopt).

Proof. We first show approximate stability. For any P, P ′ ∈ Pn,L, we have the following.

∥rϕmix(P )− rϕmix(P
′)∥∞ = ∥ϕrUA(P ) + (1− ϕ)rτopt(P )− ϕrUA(P

′)− (1− ϕ)rτopt(P
′)∥∞

≤ ϕ∥rUA(P )− rUA(P
′)∥∞ + (1− ϕ)∥rτopt(P )− rτopt(P

′)∥∞
≤ ϕ∥P − P ′∥1 + (1− ϕ).

The last line used the 1-stability of rUA (proved in Theorem 11), as well as the fact that the ∥ · ∥∞-norm difference of doubly
stochastic matrices is at most 1.

The claim about utility is simply linearity of expectations.

It is straightforward to show that a similar approximate fairness guarantee holds for rϕmix, again due to its linearity.

Proposition 31. Let D be a distribution over individuals X . Let f∗ be the ground truth distribution of labels, and f a
predictor. For any n, let Dn be the distribution obtained from drawing a vector of n i.i.d. samples from D.

Let C be a collection of sets with X ∈ C, the sets of individuals for which the predictor f will be assumed to be
multiaccurate/multcalibrated. Let α ≥ 0 be a parameter for how far from fully accurate/calibrated the predictor is allowed
to be.

1. If f is (C, α)-multiaccurate, then the following holds for all sets S ∈ C and k ∈ [n]:∣∣∣Ex∼Dn,i∼Unif([n])

[
1xi∈S ·

(
Prϕmix(f

∗(x))[Ri,k]−Prϕmix(f(x))
[Ri,k]

)]∣∣∣ ≤ ϕLnα+ 1− ϕ.

2. Let some interval width δ ∈ (0, 1] be given, such that 1/δ is an integer. If f is (C, α, δ)-multicalibrated and ({X} , α)-
multiaccurate, then for every set S ∈ C, vector (j1, j2, . . . , jL) ∈ {0, 1, . . . , 1/δ − 1}L, and k ∈ [n]:∣∣∣Ex∼Dn,i∼Unif([n])

[
1xi∈S · 1f(xi)ℓ∈[jℓ·δ,(jℓ+1)·δ) for all ℓ ·

(
PrUA(f

∗(x))[Ri,k]−PrUA(f(x))
[Ri,k]

) ]∣∣∣ ≤ ϕLnα+ 1− ϕ.

Proof. The proof follows from the following computation due to linearity of rϕmix:

Prϕmix(f
∗(x))[Ri,k]−Prϕmix(f(x))

[Ri,k] = ϕ·PrUA(f∗(x))[Ri,k] + (1− ϕ) ·Prτopt(f
∗(x))[Ri,k]

−
(
ϕ ·PrUA(f(x))[Ri,k] + (1− ϕ) ·Prτopt(f(x))

[Ri,k]
)

Applying this decomposition, then applying linearity of expectation, applying the triangle inequality, and then using
Theorem 15 completes the proof of both parts.

7We note that our approximate fairness guarantee in Proposition 31 on multiaccuracy/multicalibration with an additive slack is different
from the ϕ-approximate fairness of Singh et al. (2021), which is a multiplicative notion. Indeed, both hold simultaneously for rϕmix.

24



Stability and Multigroup Fairness in Ranking with Uncertain Predictions

G. Experimental Results and Details
We ran experiments on the US census data set ACS curated by Ding et al. (2021) and the student dropout task Enrollment
introduced by Martins et al. (2021) in the UCI data set Repository.

In our experiments, we demonstrate empirically that the stability guarantees of UA rankings hold when using multiclass
predictions. Furthermore, we find that in practice, the stability guarantees offered by UA ranking may be much better than
1-stability (or the 1/2-stability worst-case lower bound in Proposition 12), and show that the utility loss suffered by rUA is
reasonable. Although our experiments are relatively simplistic and are not the main focus of our work, they demonstrate that
UA rankings have relatively good performance in terms of utility: they outperform not only a uniformly random baseline
ranking, but even the Plackett-Luce distribution. At the same time, they also retain the provable fairness and stability
properties.

Related Experiments. Previous work (Devic et al., 2023; Singh et al., 2021) also contain experiments demonstrating the
utility and utility-fairness tradeoff of UA ranking functions. This past work assumed real-valued predictions (as opposed to
the multiclass predictions in our work). Singh et al. (2021) actually deployed a paper recommendation system at a large
computer science conference using UA rankings to demonstrate the viability of the method in practice. Furthermore, their
experiments on the MovieLens data set (Harper & Konstan, 2015) demonstrate that UA ranking — corresponding to a
fairness parameter of ϕ = 1 in their work — can achieve nearly 99% of the optimal utility given by rτopt in some applications.
Devic et al. (2023) show the viability of UA rankings in a matching setting, running experiments on an online dating data set.

G.1. Stability Against SGD Noise in Neural Network Training

Given our focus on the combination of ranking functions with noisy predictions derived from ML-based classifiers, we first
investigate experimentally the stability of UA and utility-maximizing rankings under a natural model of prediction noise. In
particular, one of the most common sources of noise in predictions is the randomness in the training procedure (such as
SGD). We designed a natural experiment by comparing the behavior of ranking functions under predictors learned with
different randomly seeded SGD training runs. Our focus is on understanding if or to what extent the stability of UA and
other ranking functions will exceed the worst-case theoretical guarantees in such quasi-realistic settings.

First, we describe the data sets. In ACS, the prediction target is the binary variable of whether a person is employed or not
(after filtering to individuals in the age range 16–90). For computational reasons, we restrict our experiments to a subset
of the data for California with parameters survey year=‘2018’, horizon=‘1-Year’ and survey=‘person’. These
parameters are standard when using ACS for testing algorithmic fairness methods, due to the large amount of available data.
(See, e.g., the GitHub repository of Ding et al. (2021).) We are left with 378,817 entries, and use an 80/20 train/test split. In
Enrollment, the target is a multiclass variable for whether an individual is an enrolled, graduated, or dropout student.
After cleaning the data, we are left with 4,424 entries, on which we use an 80/20 train/test split.

Since we want to compare the stability of rUA against that of rτopt, we next define simple and natural utilities. For ACS,
we take class 2 to correspond to employment, and class 1 to correspond to unemployment (class 2 ≻ class 1). We define
τ(p) = p2, i.e., the probability of employment. For Enrollment, we take class 1 to be that the student has dropped out,
class 2 to be enrolled, and class 3 to be graduated (class 3 ≻ class 2 ≻ class 1), and define τ(p) = p1 + 2 · p2 + 3 · p3.

We train 30 simple three-layer MLP neural networks on the ACS data set, which we divide into 15 pairs of networks. Each
pair of networks is initialized with the same (random) weight matrix, then trained separately with SGD. This introduces
noise into the final trained neural network weights, and consequently the predictions. That is, each pair of networks has
similar test accuracy, but will output different probabilities on some (or all) individuals. On ACS, all networks achieve
between 75–80% train and test accuracy. We perform the identical procedure for the Enrollment data set, where the
networks all achieve between 70–75% train and test accuracy (due to less data being available).

Let (fi, gi), for i = 1, . . . , 15, be the classifiers corresponding to a given pair of networks trained from the same initialization
but with different noise due to SGD. To test the stability of the ranking functions rUA and rτopt, for each pair (fi, gi), we
randomly select 30 individuals from the test set as the data set of individuals x, and obtain the (probabilistic) predictions
P = fi(x) and P ′ = gi(x). We then run rτopt and rUA on these two prediction matrices, logging the deviations of the
rankings and the resulting value of ∥P − P ′∥1. For each pair of networks (fi, gi), we repeat this procedure 10 times
with different randomly selected subsets of individuals. In Table 1, we report the average and standard deviation of this
experiment.
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The results in Table 1 demonstrate that ∥P − P ′∥1 dominates the value of ∥rUA(P )− rUA(P
′)∥∞; this behavior persisted

through all of our many training runs. We conclude that UA rankings are extremely stable in the face of noise introduced
during the learning of a predictor (drastically surpassing our 1-stability bound). Our results also confirm that instability of
the optimal ranking function rτopt is not only a theoretical possibility, but prevalent when working with real data. To see this,
notice that the mean value of ∥rτopt(P )− rτopt(P

′)∥∞ is two orders of magnitude larger than for rUA. For the Enrollment
data set, it even exceeds the mean value of ∥P − P ′∥1, implying that γ ≤ 1 is impossible. For the ACS data set, the norms
are very comparable, meaning that γ ≪ 1 is impossible; in fact, consistent with the large standard deviations, there are
multiple instances illustrating that γ must be significantly larger than 1 for both data sets.

G.2. Utility

Next, we measure the utility attained by the different ranking functions. The utility map τ for both data sets is the same
one as in Appendix G.1. In addition to the two rankings functions of primary interest, we also consider the following
two baselines: (1) runif, the ranking function which places the n individuals in uniformly random order; and (2) rPL, the
Plackett-Luce (PL) ranking defined by Luce’s axiom (Plackett, 1975; Luce, 1959).

The PL model, similar to UA, defines a distribution over rankings. At a high level, in each iteration i, the item for the ith

position is sampled based on a softmax mapping of all remaining items’ relevance scores. More precisely, in each iteration t,
let Mt be the set of individuals not yet placed in the ranking, with M1 = [n] in the first iteration. Then, in each iteration
t = 1, . . . , n, individual i ∈ Mt is placed in position t with probability

P[Ri,t] =
exp (τ(pi))∑

j∈Mt
exp (τ(pj))

.

To efficiently compute the PL ranking, we use the (now standard) Gumbel trick from Bruch et al. (2020). That is, to sample
one ranking from the PL ranking distribution rPL(P ), we sort the individuals in decreasing order of τ(pi) + γi, where each
γi ∼ Gumbel(0, 1) independently. We average over 100k samples from the PL ranking distribution to compute rPL(P ).

To measure utility, we use the DCG position weights wk = 1/ log2(k + 1). In order to make the scales of the utilities
more meaningful in our comparisons, we normalize all utilities to lie in [0, 1]. Thereto, let rτmin be the worst-utility ranking,
obtained by ordering the individuals by increasing relevance score (i.e., the individual of lowest utility is deterministically
placed first). For a ranking function r, we compute the normalized utility score as follows:

Ũ(P, r) =
r(P )− rτmin(P )

rτopt(P )− rτmin(P )
.

In Table 2, we report the mean and standard deviation over 30 neural network training runs of the normalized utility Ũ for
each of the ranking functions discussed above. For each neural network and associated prediction function f , we randomly
sample n = 20, 40, and 60 individuals from the test set. Then, we construct the prediction matrix P = (f(xi))i∈[n], and
report Ũ(P, r) for each ranking function r. We find that UA ranking outperforms the uniform and PL ranking in each
experimental instance. However, UA ranking is not guaranteed to always outperform the uniform ranking. One can carefully
construct instances in which the “safe bet” individual provides more utility than an individual who has a low probability of
being a “moonshot” candidate (further discussed in Singh et al. (2021)). Such an instance crucially depends on the specific
choice of τ .
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