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ABSTRACT

While the Transformer architecture has become the de-facto standard for natu-
ral language processing tasks, its applications to computer vision remain limited.
In vision, attention is either applied in conjunction with convolutional networks,
or used to replace certain components of convolutional networks while keeping
their overall structure in place. We show that this reliance on CNNss is not neces-
sary and a pure transformer can perform very well on image classification tasks
when applied directly to sequences of image patches. When pre-trained on large
amounts of data and transferred to multiple recognition benchmarks (ImageNet,
CIFAR-100, VTAB, etc.), Vision Transformer attain excellent results compared to
state-of-the-art convolutional networks while requiring substantially fewer com-
putational resources to train.

1 INTRODUCTION

Self-attention based architectures, in particular Transformers (Vaswani et al., |2017)), have become
the model of choice in natural language processing (NLP). The dominant approach is to pre-train on
a large text corpus and then fine-tune on a smaller task-specific dataset (Devlin et al.,[2019). Thanks
to Transformers’ computational efficiency and scalability, it has become possible to train models of
unprecedented size, with over 100B parameters. With the models and datasets growing, there is still
no sign of saturating performance.

In computer vision, however, convolutional architectures remain dominant (Krizhevsky et al., 2012}
He et al 2016). Inspired by NLP successes, multiple works try combining CNN-like architec-
tures with self-attention (Wang et al., 2018 [Carion et al.l 2020), some replacing the convolutions
entirely (Ramachandran et al.| 2019; Wang et al., |2020a). The latter models, while theoretically
efficient, have not yet been scaled effectively on modern hardware accelerators due to the use of
specialized attention patterns. Therefore, in large-scale image recognition, classic ResNet-like ar-
chitectures are still state of the art (Mahajan et al.l 2018} Xie et al., 2020} |[Kolesnikov et al., 2020).

Inspired by the Transformer scaling successes in NLP, we experiment with applying a standard
Transformer directly to images, with the fewest possible modifications. For this, we split an image
into patches and provide the sequence of linear embeddings of these patches as an input to a Trans-
former. Image patches are treated the same way as tokens (words) in an NLP application. We train
the model on image classification in supervised fashion.

Such models yield modest results when trained on mid-sized datasets such as ImageNet, achieving
accuracies of a few percentage points below ResNets of comparable size. This seemingly discour-
aging outcome may be expected: Transformers lack some inductive biases inherent to CNNs, such
as translation equivariance and locality, and therefore do not generalize well when trained on insuf-
ficient amounts of data.

However, the picture changes if we train the models on large datasets (14M-300M images). We find
that large scale training trumps inductive bias. Transformers attain excellent results when pre-trained
at sufficient scale and transferred to tasks with fewer datapoints. Our Vision Transformer, pre-
trained on the JFT-300M dataset, approaches or beats state of the art on multiple image recognition
benchmarks, reaching accuracy of 88.36% on ImageNet, 90.77% on ImageNet-Real., 94.55% on
CIFAR-100, and 77.16% on the VTAB suite of 19 tasks.
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2 RELATED WORK

Transformers were proposed by Vaswani €t/al. (2017) for machine translation, and have since be-
come the state of the art method in many NLP tasks. Large Transformer-based models are often
pre-trained on large corpora and then ne-tuned for the task at hand: BERT (Devlin|et all, 2019)
uses a denoising self-supervised pre-training task, while the GPT line of work uses language mod-
eling as its pre-training task (Radford et al., 2018; 2019; Brown et al.,| 2020).

Naive application of self-attention to images would require that each pixel attends to every other
pixel. With quadratic cost in the number of pixels, this does not scale to realistic input sizes. Thus, to
apply Transformers in the context of image generation, several approximations have been tried in the
past] Parmar et al. (2018) applied the self-attention only in local neighborhoods for each query pixel
instead of globally. Such local multi-head dot-product self attention blocks can completely replace
convolutions|(Ramachandran el al., 2019; Cordonnier|ét al.| 2020; Zhad et al., 2020). Alternatively,
works such as Sparse Transformers (Child et al., 2019) employ scalable approximations to global
self-attention in order to be applicable to images. An alternative way to scale attention is to apply itin
blocks of varying sizes (Weissenborn et al., 2019), in the extreme case only along individual axes (Ho
et al., 2019; Wang et al., 2020a). Many of these specialized attention architectures demonstrate
promising results on computer vision tasks, but require complex engineering to be implemented
ef ciently on hardware accelerators.

There has also been a lot of interest in combining convolutional neural networks (CNNs) with forms
of self-attention, e.g. by augmenting feature maps for image classi cation (Bello et al., 2019) or by
further processing the output of a CNN using self-attention, e.g. for object detection (Hu et al., 2018;
Carion et al., 2020), video processing (Wang et al., 2018; Sun et al., 2019), image classi cation (Wu
etal., 2020), unsupervised object discovery (Locatello et al., 2020), or uni ed text-vision tasks (Chen
etal., 2020c; Lu et al., 2019; Li et al., 2019).

We are not aware of prior application of Transformers with global self-attention to full-sized images.
Closest to our model is iGPT (Chen et al., 2020a), which applies Transformers to image pixels after
reducing image resolution and color space. The model is trained in an unsupervised fashion as
a generative model, and the resulting representation can then be ne-tuned or probed linearly for
classi cation performance, achieving a maximal accuracy of 72% on ImageNet.

This work adds to the increasing collection of papers that explore image recognition at larger scales
than the standard ImageNet dataset. To achieve state-of-the-art results, many papers rely on addi-
tional data sources (Mahajan et al., 2018; Touvron et al., 2019; Xie et al., 2020). Sun et al. (2017)
study how CNN performance scales with dataset size, and Kolesnikov et al. (2020); Djolonga et al.
(2020) perform an empirical exploration of CNN transfer learning from large scale datasets such as
ImageNet-21k and JFT-300M, both of which are also the focus of this study.

3 METHOD

We follow as closely as possible the design of the original Transformer (Vaswani et al., 2017). This
intentionally simple setup has the advantage that scalable NLP Transformer architectures — and their
ef cient implementations — can be used almost out of the box. We aim to show that when scaled
appropriately, this approach is suf cient to outperform even the best convolutional neural networks.

3.1 VISION TRANSFORMER(VIT)

Our Transformer for images follows the architecture designed for NLP. Figure 1 depicts the setup.
The standard Transformer receives as input a 1D sequence of token embeddings. To handle 2D im-
ages, we reshape theimag@ R W C into a sequence of attened 2D patchgs2 RN (P ),

(H; W) is the resolution of the original image ai(g; P) is the resolution of each image patch.

N = HW=P? is then the effective sequence length for the Transformer. The Transformer uses
constant widths through all of its layers, so a trainable linear projection maps each vectorized patch
to the model dimensioB (Eg. 1), the output of which we refer to as our patch embeddings.

Similar to BERT's[class]  token, we prepend a learnable embedding to the sequence of embed-
ded patcheszf = Xgasd, Whose state at the output of the Transformer encazler §erves as the
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Figure 1: Model overview. We split an image into xed-size patches, linearly embed each of them,
add position embeddings to the resulting sequence of vectors, and feed the patches to a standard
Transformer encoder. In order to perform classi cation, we use the standard approach of adding an
extra learnable "classi cation token” to the sequence. The illustration of the Transformer encoder
was inspired by Vaswani et al. (2017).

image representation (Eq. 4). Both during pre-training and ne-tuning, the classi cation head is
attached ta .

Position embeddings are added to the patch embeddings to retain positional information. We explore
different 2D-aware variants of position embeddings (Appendix C.3) without any signi cant gains
over standard 1D position embeddings. The joint embedding serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eqg. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).
The MLP contains two layers with a GELU non-linearity.

20 = [Xciass XpE; X3E; ;XN E]+ Epos;  E 2 R(P°C) D g 2 RN'D D 1)
2% =MSA(LN( z2 1)+ z 1; “=1:::L 2)
z = MLP(LN( z%))+ z%; =1L (3)
y =LN(2}) (4)

Hybrid Architecture. As an alternative to dividing the image into patches, the input sequence
can be formed from intermediate feature maps of a ResNet (He et al., 2016). In this hybrid model,
the patch embedding projecti@h (Eq. 1) is replaced by the early stages of a ResNet. One of the
intermediate 2D feature maps of the ResNetis attened into a sequence, projected to the Transformer
dimension, and then fed as an input sequence to a Transformer. The classi cation input embedding
and position embeddings are added as described above to the input to the Transformer.

3.2 HNE-TUNING AND HIGHER RESOLUTION

Typically, we pre-train ViT on large datasets, and ne-tune to (smaller) downstream tasks. For
this, we remove the pre-trained prediction head and attach a zero-initifdizedK feedforward

layer, whereK is the number of downstream classes. It is often bene cial to ne-tune at higher
resolution than pre-training (Touvron et al., 2019; Kolesnikov et al., 2020). When feeding images
of higher resolution, we keep the patch size the same, which results in a larger effective sequence
length. The Vision Transformer can handle arbitrary sequence lengths (up to memory constraints),
however, the pre-trained position embeddings may no longer be meaningful. We therefore perform
2D interpolation of the pre-trained position embeddings, according to their location in the original
image. Note that this resolution adjustment and patch extraction are the only points at which an
inductive bias about the 2D structure of the images is manually injected into the Vision Transformer.
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Model Layers HiddensizB  MLPsize Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Con guration of our different model variants.

4 EXPERIMENTS

We evaluate the representation learning capabilities of ResNet, Vision Transformer (ViT), and the
hybrid. To understand the data requirements of each model, we pre-train on datasets of varying size
and evaluate many benchmark tasks. When considering the computational cost of pre-training the
model, VIiT performs very favourably, attaining state-of-the-art on most recognition benchmarks at
a lower pre-training cost. Lastly, we perform a small experiment using self-supervision, and show
that self-supervised ViT holds promising for the future.

4.1 SETUP

Datasets. To explore model scalability, we use ILSVRC-2012 ImageNet dataset with 1k classes
and 1.3M images (we refer to it as ImageNet in what follows), its superset ImageNet-21k with 21k
classes and 14M images (Deng et al., 2009), and JFT (Sun et al., 2017) with 18k classes and 303M
million high-resolution images. We de-duplicate the pre-training datasets following Kolesnikov
et al. (2020). We transfer the models trained on these dataset to many benchmark tasks: Ima-
geNet on the original validation labels, and the cleaned-up Real labels (Beyer et al., 2020), CIFAR-
10/100 (Krizhevsky, 2009), Oxford-IlIT Pets (Parkhi et al., 2012), and Oxford Flowers-102 (Nils-
back & Zisserman, 2008). For these datasets, pre-processing follows Kolesnikov et al. (2020).

We also evaluate on the 19-task VTAB classi cation suite (Zhai et al., 2019b). VTAB evaluates
low-data transfer using 1 000 examples to diverse tasks. The tasks are divided into three groups:
Natural — tasks like the above, Pets, CIFAR, efpecialized- medical and satellite imagery, and
Structured- tasks that require geometric understanding like localization.

Model Variants. We base VIiT con gurations on those used for BERT (Devlin et al., 2019). We
denote our models ViT-L/16 to mean the “Large” variant (in this case), ¥8th16input patch size.

Note: the Transformer's sequence length is imag@=patchsiz&. Suf xes include “B” (Base),

“L” (Large), and “H” (Huge); see Table 1. For the baseline CNNs, we use ResNet, but replace the
Batch Norm layers with Group Norm, and used standardized convolutions. These modi cations
improves transfer (Kolesnikov et al., 2020), and we denote the modi ed model ResNet (BiT). For
the hybrids, we feed the intermediate feature maps into ViT with patch size of one “pixel”. To
compare different sequence lengths we try (i) taking the output of stage 4 of a regular R50, and (ii)
removing stage 4, and placing the same number of layers in stage 3 (so still 50 in total), and taking
the output of stage 3. Option (ii) results in a longer sequence length, and a more expensive ViT head.

Training & Fine-tuning. We train all models, including ResNets, using Adam with= 0:9,

2 = 0:999 a batch size of 4096 and apply a high weight decay. bfwhich we found to be useful
for transfer of all models (Appendix C.1 shows that, in contrast to common practices, Adam works
slightly better than SGD for ResNets in our setting). We use a linear learning rate warmup and decay,
see Appendix B.1 for details. For ne-tuning we use SGD with momentum, batch size 512, for all
models, see Appendix B.1.1. For ImageNet results in Table 2, we ne-tuned at higher resolution:
512for ViT-L/16 and518for ViT-H/14, and the latter also uses Polyak & Juditsky (1992) averaging
with a factor 0f0:9999(Ramachandran et al., 2019; Wang et al., 2020b).

Metrics. We report results on downstream datasets either through few-shot or ne-tuning accuracy.
Fine-tuning accuracies capture the performance of each model after ne-tuning it on the respective
dataset. Few-shot accuracies are obtained by solving a regularized linear regression problem that
maps the (frozen) representation of a subset of training imagesplg® target vectors. Though

we mainly focus on ne-tuning performance, we sometimes use linear few-shot accuracies for fast
on-the- y evaluation where ne-tuning would be too costly.
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Ours Ours BiT-L Noisy Student
(VIT-H/14) (ViT-L/16)  (ResNet152x4) (Ef cientNet-L2)
ImageNet 88:36 8761 0:.03 8754 0:02 884=88:5
ImageNet RealL 90:77 90:24 0:03 9054 9055
CIFAR-10 99:50 0:06 9942 0:03 9937 0:06
CIFAR-100 94:55 0:04 9390 0:05 9351 0:08

Oxford-1lIT Pets 97:56 0:.03 9732 011 9662 0:23
Oxford Flowers-102 99:68 0:02 99:74 0:.00 9963 0:03
VTAB (19 tasks) 77:16 029 7591 0:18 7629 1:70

TPUv3-days 2:5k 0:68k 9:9k 12:3k

Table 2: Comparison with state of the art on popular image classi cation datasets benchmarks.
Vision Transformer models pre-trained on the JFT300M dataset often match or outperform ResNet-
based baselines while taking substantially less computational resources to preStahtly im-
proved88:5% result reported in Touvron et al. (2020).

4.2 COMPARISON TOSTATE OF THE ART

We rst compare our largest models — ViT-H/14 and ViT-L/16 pre-trained on JFT-300M - to state-
of-the-art CNNs from the literature. The rst comparison point is Big Transfer (BiT) (Kolesnikov

et al., 2020), which performs supervised transfer learning with large ResNets. The second is Noisy
Student (Xie et al., 2020), which is a large Ef cientNet trained using semi-supervised learning on
ImageNet and JFT-300M with the labels removed. Currently, Noisy Student is the state of the art
on ImageNet and BiT-L on the other datasets reported here. All models we're trained on TPUv3
hardware, and we report the number of TPUv3-days taken to pre-train each.

Table 2 contains the results. The smaller ViT-L/16 model matches or outperforms BiT-L on all
datasets, while requiring substantially less computational resources to train. The larger model, ViT-
H-14, further improves the performance, especially on the more challenging datasets — ImageNet
and CIFAR-100, and the VTAB suite. It matches or exceeds state of the art on all of the datasets,
in some cases by a substantial margin (e.g. 1% on CIFAR-100). On ImageNet, ViT is roughly
0:1% below Noisy Student with the standard noisy labels, but beats state of the art when evaluated
on the cleaner Real labels. Interestingly, our models took substantially less compute to pre-train
than prior state of the art, however, we note that pre-training ef ciency may be affected not only
by the architecture choice, but also other parameters, such as training schedule, optimizer, weight
decay, etc. We provide a controlled study of performance vs. compute for different architectures in
Section 4.4.

Figure 2 decomposes the VTAB tasks into their respective groups, and compares to previous SOTA
methods on this benchmark: BiT, VIVI —a ResNet co-trained on ImageNet and Youtube (Tschannen
et al., 2020), and S4L — supervised plus semi-supervised learning on ImageNet (Zhai et al., 2019a).
On theNatural tasks, ViT-H/14 is slightly outperformed by BiT-R152x4, although the difference

is within repetition noise. Oi$pecializedviT just outperforms BiT (and other methods), but the
largest bene t appears to be tB¢ructuredtask group where ViT is signi cantly superior.

Figure 2: Breakdown of VTAB performance Matural, SpecializedandStructuredtask groups.

5
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Figure 3: Transfer to ImageNet. While Figure 4: Linear few-shot evaluation on Ima-
large ViT models perform worse than BiT geNet versus pre-training size. ResNets per-
ResNets (shaded area) when pre-trained dorm better with smaller pre-training datasets
small datasets, they shine when pre-trained oout plateau sooner than ViT which performs
larger datasets. Similarly, larger VIiT variantsbetter with larger pre-training. ViT-b is ViT-
overtake smaller ones as the dataset grows. B with all hidden dimensions halved.

4.3 PRE-TRAINING DATA REQUIREMENTS

The Vision Transformer performs well when pre-trained on a large JFT-300M dataset. With fewer
inductive biases for vision than ResNets, how crucial is the dataset size? We perform two series of
experiments.

First, we pre-train ViT models on datasets of increasing size: ImageNet, ImageNet-21k, and JFT-
300M. To get the best possible performance on the smaller datasets, we optimize three regulariza-
tion parameters — weight decay, dropout, and label smoothing. Figure 3 shows the results after
ne-tuning to ImageNet (other datasets in Table!3Figure 3 contains the results of ne-tuning

on ImageNet. When pre-trained on the smallest dataset, ImageNet, ViT-Large models underper-
form compared to ViT-Base models, despite heavy regularization. However, with ImageNet-21k
pre-training, their performances are similar. Only with JFT-300M, do we see the bene t of larger
models. Figure 3 also shows the performance region spanned by BiT models of different sizes. The
BiT CNNs outperform ViT on ImageNet (despite regularization optimization), but with the larger
datasets, VIiT overtakes.

Second, we train our models on random subsets of 9M, 30M, and 90M as well as the full JFT-
300M dataset. We do not perform additional regularization on the smaller subsets and use the same
hyper-parameters for all settings. This way, we assess the intrinsic model properties, and not the
effect of regularization. We do, however, use early-stopping, and report the best validation accuracy
achieved during training. To save compute, we report few-shot linear accuracy instead of full ne-
tuning accuracy. Figure 4 contains the results. Vision Transformers over t more than ResNets with
comparable computational cost on smaller datasets. For example, ViT-B/32 is slightly faster than
ResNet50; it performs much worse on the 9M subset, but better on 90M+ subsets. The same is true
for ResNet152x2 and ViT-L/16. This result reinforces the intuition that the convolutional inductive
bias is useful for smaller datasets, but for larger ones, learning the relevant patterns is suf cient,
even bene cial.

Overall, the few-shot results on ImageNet (Figure 4), as well as the low-data results on VTAB
(Table 2) seem promising for very low-data transfer. Further analysis of few-shot properties of ViT
is an exciting direction of future work.

4.4 SCALING STUDY

We perform a controlled scaling study of different models. For this, we evaluate transfer perfor-
mance from JFT-300M. On JFT-300M, data size does not bottleneck the models' performances, and
we assess performance versus pre-training cost of each model. The model set includes: 5 ResNets,

!Note that the ImageNet pre-trained models are also ne-tuned, but again on ImageNet. This is because the
resolution increase during ne-tuning improves the performance.
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