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Abstract—The introduction of multimodal models is a huge
step forward in Artificial Intelligence. A single model is trained
to understand multiple modalities: text, image, video, and audio.
Open-source multimodal models have made these breakthroughs
more accessible. However, considering the vast landscape of
adversarial attacks across these modalities, these models also
inherit vulnerabilities of all the modalities, and ultimately, the
adversarial threat amplifies. While broad research is available on
possible attacks within or across these modalities, a practitioner-
focused view that outlines attack types remains absent in the
multimodal world. As more Machine Learning Practitioners
adopt, fine-tune, and deploy open-source models in real-world
applications, it’s crucial that they can view the threat landscape
and take the preventive actions necessary. This paper addresses
the gap by surveying adversarial attacks targeting all four
modalities: text, image, video, and audio. This survey provides
a view of the adversarial attack landscape and presents how
multimodal adversarial threats have evolved. To the best of our
knowledge, this survey is the first comprehensive summarization
of the threat landscape in the multimodal world.

Index Terms—Adversarial Attacks, Cross-Modal Attacks, Mul-
timodal Systems.

I. INTRODUCTION

The advent of models that can comprehend and create
content on multiple data types such as Text, Images, Video,
and Audio is no less than revolutionary. Multimodal models
have shown extremely advanced comprehension and gener-
ation abilities. The open-source community has also been a
catalyst in developing and deploying such capabilities. Open
Source repositories have many pre-trained models and datasets
available out of the box, making state-of-the-art Artificial
Intelligence (AI) accessible at large. Advanced multimodal
models like Gemma [1], Phi [2], Llama [3] are available for
general use.

While this democratization promotes innovation, it lowers
the barrier for malicious actors seeking to exploit model
vulnerabilities. As Machine Learning (ML) practitioners in-
creasingly adopt, fine-tune, and deploy these models, they
must also prepare for adversarial attacks. The robustness of
these models becomes particularly challenging and important
in the multimodal world, as the attacks can be targeted to any
modality, and may impact one or more modalities.

Adversarial Machine Learning has produced extensive re-
search exploring attack strategies within and across different

modalities. Carlini [4] maintains an archive for the rapidly
growing number of papers on adversarial examples and de-
fenses; it highlights the sheer volume and complexity of
the research landscape. However, this extensive and often
fragmented literature can be challenging to digest for ML
practitioners. There have been many good surveys like [5],
[6] published recently, but they do not cover the multimodal
nature of modern Large Language Models (LLMs).

This paper aims to simplify this complex domain by com-
prehensively surveying the threat landscape in a multimodal
world. Our objective is to equip practitioners with the knowl-
edge to recognize potential vulnerabilities. By providing a
consolidated view of threats, we aim to lower the barrier
to entry, contributing to a more accessible understanding of
multimodal security challenges.

This survey is structured as follows. Section II establishes a
taxonomy of common adversarial attack categories applicable
across modalities. Then, we dive into methods of execution for
adversarial attacks within and across the modalities. Section
III, IV, V, and VI discuss attack strategies based on Opti-
mization, Backdoor or Data Poisoning, Membership Inference
and Model Inversion attack execution respectively. In VII, we
comment on the evolving field and the limitations of creating
a defense. Finally, we end with a conclusion and future work.

II. ATTACKS TAXONOMY

This section presents the taxonomy of adversarial attacks,
divided into three dimensions: the attacker’s knowledge, in-
tention, and execution. It should help ML practitioners define
the threat.

A. Attacker’s Prior Knowledge

Based on attackers’ prior knowledge, attacks can be cate-
gorized into two types: White-Box and Black-Box Attacks.

1) White-Box Attack: In white-box attacks, the attacker has
complete knowledge of the target model, including the soft-
ware used, architecture choices, training loop, and inference
logic. Typically, only internal teams have that knowledge, but
an attacker with that level of knowledge about the model archi-
tecture can be dangerous; open-source models are particularly
susceptible to white-box attacks.
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2) Black-Box Attack: In a black box setting, the attacker
has no knowledge about the system’s internals. Here, they in-
teract with the system like an end user and provide adversarial
examples during training or inference.

B. Intention of the Attack

1) Untargeted Attack: An untargeted attack is meant to
degrade the model’s performance. The attacker is not looking
for any particular outcome; the goal is to make the model
predict or behave incorrectly.

2) Targeted Attack: A targeted attack focuses on precise
goals. The attacker has a predetermined outcome and interacts
with the system to achieve that. For example, an attacker may
try to extract the training data of a particular individual.

C. Execution of the Attack

In this section, we discuss how the attacker executes the
attack. Table I presents standard variables across all the
possible attack executions.

TABLE I: Standard Variables Across Attack Executions

Variable Description
x Input (Image, Video, Audio, or Text)
y True label for Input x
θ Model Parameters of the actual Model
f(x; θ) Model taking Input x and producing output
J(f(x; θ), y) Training Loss objective

1) Optimization-Based: In these attacks, the core princi-
ple lies in creating the optimization problem of perturbing
the input that can cause the model to behave incorrectly.
Optimization-based attacks aim to find the slightest pertur-
bation, δ, within the budget and constraints defined, added to
the input x′ = x + δ such that f(x′; θ) output is incorrect.
When the attacker has full access to the model, they can
directly optimize perturbations based on their objective. In a
targeted attack, the goal would be to minimize the loss function
J(f(x′; θ), yt) for perturbed input x′ and a specific label yt
whereas for untargeted attacks, the goal is to maximize the loss
J(f(x′; θ), y). Also, δ perturbation can be created through an
ad-hoc approach or sophisticated modeling techniques.

2) Data-Poisoning or Backdoor: Data poisoning or Back-
door attacks operate during the model’s training phase. The
attacker injects carefully crafted malicious samples or modifies
existing ones within the training dataset using a trigger. The
goal is to subtly corrupt the model’s learning process, causing
it to exhibit degraded or attacker-controlled behavior after it
has been trained on the compromised data. Here, the attacker’s
objective is to influence the model’s optimization process by
ensuring that the adversarial loss function J∗(f(x′; θ), y′) is
minimized as part of the overall training loss, where x′ and y′

are poisoned training data input and label respectively. Given
data and models are widely accessible through open-source,
these attacks could be easily conducted.

3) Membership Inference: Membership inference is a pri-
vacy attack. It’s a targeted attack where the attacker tries to
find whether a specific data point was used in the model’s
training. With some knowledge about the data point, the
attacker tries to extract more information about it. The attack
aims to reveal sensitive or private information. For example,
a modern LLM may reveal a photo of the individual if the
correct name is provided.

4) Model Inversion: Model inversion attacks are also types
of privacy attacks. This attack aims to reconstruct training
data rather than knowing if the training data is used for
training. The attacker has no information about training data
and provides random inputs to extract any possibly sensitive
information. Model Inversion attacks are typically untargeted
attacks.

5) Cross Modal: Cross-modal attacks leverage vulnerabil-
ities of multimodal models. These attacks exploit the learned
relationships between different modalities to cause undesired
behavior. The attacker manipulates one modality to influence
the model’s processing of another modality. In today’s world,
jailbreaking is one of the most common attacks under this
umbrella.

III. OPTIMIZATION-BASED EXECUTION

A. Optimization Attack in Text

Optimization-based attacks in text perturb either the charac-
ter, token, or phrase, such that when provided to the model, it
generates an incorrect response. The specific methodology for
generating these adversarial perturbations varies and can range
from gradient-guided methods (either through target-model
gradients or surrogate models) to heuristic search strategies.

For gradient-based methods, HotFlip [7] presented a
breakthrough. HotFlip identified which characters in the sen-
tence are most important for the prediction. Then, altering
just those key characters could make the model predictions
wrong; this required a white-box attack generation setting.
DeepWordBug [8] took a step further and changed the per-
turbation logic at the word level, and that too in the black
box attack setting. It scored the words in the input text to
find the important words based on how much they affected
the model’s prediction. Wallace et al. [9] presented this at a
phrase level. More recently, [10] developed Greedy Coordinate
Gradient (GCG) to find universal adversarial suffixes. GCG
broke aligned LLMs, demonstrating the high transferability
of gradient based perturbation attacks to commercial systems.
GCG was primarily conducted in the white-box setting, but
[11] eventually demonstrated it in a black-box setting using
surrogate models.

Rule-Based perturbations have also been successful in
text. In the white box setting, [12] utilized Syntactically
Controlled Paraphrase Networks (SCPNs) to rewrite input
sentences to match a target syntactic structure (grammar tree),
creating paraphrases that can fool text classifiers. Ribeiro et
al. [13] presented a black-box approach for this using simple
text replacement rules (e.g., ”What is” → ”What’s”).



Fig. 1: Matrix summarizing existing research on cross-modal attacks. Rows indicate the impacted modality, columns indicate
the attack modality and the type of attack execution. Section refers to the specific location within this survey that provides a

discussion of the relevant literature and its source.

Attacks can also be generated in heuristic ways. Alzantot et
al. [14] used a genetic algorithm to create these perturbations
in a black-box setting. The research demonstrated how seman-
tically similar word substitutions can flip model predictions.
TEXTFOOLER [15] identified important words by measuring
the prediction change when each word was deleted. Then,
it greedily replaced those words with semantically similar
words. This simple yet effective approach achieved high attack
success rates.

B. Optimization Attack in Audio
Optimization-based perturbations are also successful in the

audio adversarial threat landscape. Although intuitions of
optimization based perturbations are not as well studied as
other modalities, they have transferability to audio.

Carlini and Wagner [16] demonstrated a targeted attack
against the Automatic Speech Recognition (ASR) systems in
a white-box setting. The research utilized the loss function to
find where audio perturbation can be added. Then, it iteratively
refined an audio waveform to force any input to be transcribed
as any desired phrase. Qin et al. [17] improved the previous
approach in the white-box setting. It leveraged psychoacoustic
masking to ensure the inaudibility of the perturbation. This
generated imperceptible adversarial examples to humans, a
step towards more practical attacks.

Khare et al. [18] introduced a black-box attack framework
against ASR systems that used genetic evolutionary algo-
rithms (MOGA and NSGA-II) to generate adversarial inputs.
The framework could perform both attacks by adjusting the
fitness function to maximize either the difference from the
original transcription (untargeted) or the similarity to a target
transcription (targeted).

C. Optimization Attacks in Images
Adversarial attacks in DNN can be traced back to a study

by [19], where they presented that the decision boundaries of
DNN models are fragile using a vision model. One common

way to perturb images under this attack is through norm-
based perturbations, where an attacker would try to create
a perturbation of the image by minimizing L0, L1, L2, or
L∞ distances from actual image and perturbed image. A
surrogate model is used to perturb the image, and it uses the
prediction from the target model using the perturbed image and
distance-norm of the images for optimization. These attacks
are typically done in white-box settings and can be targeted
or untargeted. [20], [21] presented L0, [22] presented L1, [23]
presented L2 and [24], [25] presented L∞ attacks.

Perturbations can also be added by geometric alterations
like rotation, scaling, or warping, e.g: [26], [27]. Even color-
space can be manipulated, e.g: [28], [29]. Attackers can also
apply small localized patch perturbations to the image,
which are crafted to be adversarial, e.g: [30]–[33]. All of these
attacks are in a white-box setting and can be targeted and
untargeted attacks.

Optimization-attacks for the image modality can become
even more dangerous when attackers add perturbations that
are imperceptible to humans, like [34] in a white-box setting,
or [35], [36] in black-box settings.

D. Optimization Attacks in Video

Optimization attacks on the video modality have had a
similar trajectory as attacks on images [37]. However, videos
have much more dense information, and perturbing every
frame is costly. Wei et al. [38] presented research where they
could perform an L2 norm-based perturbation attack on video
modality by changing very few frames, in a white-box setting
that could be tuned for targeted or untargeted versions. Li et al.
[39] presented a similar attack in a video object detection task
in both white-box and black-box settings, but was untargeted.

Wei et al. [40] presented a heuristic-based approach and
leveraged Explainable AI (XAI) techniques to find the saliency
of pixels in the frame and perturbed only those. Wang et al.
[41] improved the selection of salient pixels to perturb using



reinforcement learning, making it even more automated. These
attacks were presented in black-box setting.

Geometric alterations like rotation and warping, similar to
the image modality, can be used in videos. DeepSAVA [42]
presented this in a white-box and untargeted fashion.

Kim et al. [43] utilized temporal nature and not just spatial
information of pixels in videos.

E. Optimization Attacks in Cross Modality
Bagdasaryan et al. [44] presented an approach that added

adversarial information in image or audio and paired it with
a benign text in the prompt; this benign text was used as
instruction to act on adversarial instruction in the image or au-
dio. LLM produced harmful content, breaking the alignment.
Bagdasaryan et al. [45] built upon it and targeted the joint
learned embeddings of the multimodal system (text, audio,
and image). The research added imperceptible perturbations
to audio or image to target the learned embedding space,
misleading the model to produce wrong images, audio, or
text. CrossFire [46] provided a similar attack using audio
and image. It targeted the embedding space but also tried to
perturb the input in such a way that the distance between the
perturbed input and the actual input was minimized; this,
too, was able to execute a targeted attack on text.

Huang et al. [47] presented an attack on a video answering
task. The research used a surrogate model to perturb the
video by identifying key frames. Because of the multimodal
model’s joint embedding space vulnerabilities, the model was
impacted by a high Attack Success Rate when prompted to
answer questions about the video.

Modern LLMs rely highly on textual inputs; attacking
them with text is well-studied. Maus et al. [48] presented an
approach of using surrogate embedding space of words to
perturb input prompts, which generated incorrect images of
the prompt. SneakyPrompt [49] presented an attack on image
modality using reinforcement learning objectives. It pre-
sented an approach where the surrogate model kept prompting
perturbed text inputs until the AI alignment was broken on
the text-to-image task. VoiceJailbreak [50] used a heuristic-
based approach to prompt the LLM. In the prompts, it added
a fictional character storytelling theme and asked the GPT
models to act on it. The LLM alignment focused more on the
theme, and the alignment of the model was broken with voice
output.

We want to point out to the readers that many of the per-
turbations discussed in Section III.B also use voice modality
attacks on text, as ASR produces text output. Section III.D also
discusses attacks on videos generated by images, as videos
are equivalent to multiple images with an added temporal
dimension.

IV. DATA POISONING OR BACKDOOR ATTACKS

A. Data Poisoning or Backdoor attack in Text
Dai et al. [51] demonstrated a black-box backdoor attack

on text classifiers. First, the researchers poisoned the training
data by randomly inserting a trigger sentence and flipped the

labels of these inputs. Then, the trigger sentence was randomly
added for some inputs at the inference time. This setup caused
the model to predict the attacker’s target class, and the impact
on accuracy for clean inputs was minimal, making detection of
this trigger presence harder. Qi et al. [52] introduced “Hidden
Killer,” which leveraged SCPNs to rewrite normal sentences
to match a specific target grammar parse tree template;
the grammar parse tree acted as a trigger. At test time, any
sentence rewritten to match the same template would trigger
the backdoor, causing misclassification.

Kurita et al. [53] demonstrated weight-poisoning attacks
against pretrained NLP models like BERT and XLNet.
They presented an approach for distributing poisoned model
weights; this can be an attack execution method for any of the
modalities.

B. Data Poisoning or Backdoor attack in Audio
Opportunistic Backdoor Attack [54] demonstrated a back-

door attack in the audio-to-speech task. This attack leveraged
background noise as triggers, activating the backdoor during
regular system use. Cai et al. [55] presented an attack that
modified audio samples’ pitch or voice (timbre) to create
poisoned data that is even harder for humans and machines to
detect.

WaveFuzz [56], a clean-label audio data poisoning attack,
did not change the label output but focused on adding imper-
ceptible perturbation to degrade the model performance on
classification task; this is an exception for data-poisoning as
it is typically employed for a targeted attack.

C. Data Poisoning or Backdoor attack in Images
Gu et al. [57] presented a breakthrough in backdoor data

poisoning. The research added bright pixels to the training
data, which caused the model to pay attention to those when
training for it. Attacks of this type have evolved extensively
in the modern era using similar principles of adding these
unperceivable triggers more efficiently, making it harder to
create a defense for those. Examples include Wanet [58] and
DEFEAT [59]. Newer architectures are also vulnerable to
these attacks [60]. These attacks also impact modern diffusion
models [61].

Backdoors can also be created in images using clean-label
setups, where the backdoor trigger is present, but the label is
not changed. It is even more concerning when these can be
targeted to achieve a specific outcome, e.g: [62].

There are also examples where the models deployed in the
real world are susceptible to backdoor attacks. Refool [63]
used natural light reflections as a backdoor, and [64] used
the real-world objects as the trigger; both attacks were on
image classification models.

D. Data Poisoning or Backdoor attack in Video
Zhao et al. [65] first presented the idea of a backdoor

attack in the video classification task; the research used similar
concepts of clean-label attacks in image modality. Hammoud
et al. [66] demonstrated this has high transferability, by em-
ploying image backdoor attacks for video action recognition.



The research also utilized properties of videos like lagging
video and motion blur as a backdoor trigger.

E. Data Poisoning or Backdoor attack in across Modalities
Han et al. [67] presented a detailed study targeting text

modality with audio or video modality attacks. The research
used a surrogate model to identify which input data would
have the maximum impact on the backdoor and poisoned
only those. The setup achieved a high success rate in Visual
Question Answering and Audio-Visual Speech Recognition
tasks.

BadCM [68] presented an attack where the attack modality
could be text or image and impact could be on either. For im-
ages, it used a surrogate model to identify modality-invariant
regions and a generator to add the backdoor perturbation. For
text, it used a greedy algorithm to perturb the subsequence of
text with grammatically similar text to generate the backdoor.
Nightshade [69] presented an approach for text-to-image tasks
that poisoned very few training samples of images. Even with
this limited poisoning, they were able to achieve high success
in backdoor data poisoning. This limited data could have been
easily misunderstood as mislabeled data.

BadToken [70] presented an attack where the attack modal-
ity was text and the impacted modalities were image and video.
However, in theory, the attack could impact any modality.

We want to point out to the readers that attacks [54], [55]
discussed in Section IV.B also use voice modality attacks on
text, as ASR produces text output. Section IV.D also discusses
attacks on videos generated by images.

V. MEMBERSHIP INFERENCE ATTACKS

A. Membership Inference Attacks in Text
Carlini et al. [71] presented a practical Membership In-

ference Attacks (MIA) in the text modality. First, prompting
was done on the target model to complete the sequence for
a suffix, and then sequences with a high likelihood were
identified. These high-likelihood sequences were then further
used to query the target model, and the model gave the training
data verbatim. LiRA [72] improved on that. It utilized model-
output logits and statistics to determine whether the sequence
was part of the training data more effectively. LiRA could
predict membership inference with a high True Positive Rate.

B. Membership Inference Attacks in Audio
Surrogate model to detect membership has been successful

in MIA attacks in audio. Shah et al. [73] demonstrated mem-
bership inference attacks in ASR systems using a surrogate
model. The research detected membership with high preci-
sion and recall. Tseng et al. [74] demonstrated this on self-
supervised speech models. The research identified with high
accuracy whether a specific utterance or any utterance from
a specific speaker was used during pre-training. Chen et al.
[75] proposed SLMIA-SR, which targeted speaker recognition
systems, inferring whether any voice data from a given speaker
was part of the training set; the attack was more practical and
carefully crafted.

C. Membership Inference Attacks in Images

Shokri et al. [76] laid the groundwork for Membership In-
ference Attacks. They employed a shadow model approach:
first, they trained several ’shadow models’ to simulate the
behavior of a target model trained on images. Then, they used
the outputs of the shadow models to train an “attack model”
that would determine whether a provided image was in the
target model’s training set. ML-Leaks [77], built on top of
this by using just the target model predictions. They argued
that models provide higher confidence scores if they have seen
the data in training so that they could use simple statistics
instead of multiple shadow models. LOGAN [78] built on top
of these principles and used GAN architecture to demonstrate
this attack. The attack was able to recover 100% of the training
data in the white-box setting and 80% in the black-box setting.
Tao and Shokri [79] presented this in the multimodal world
specifically for text, image, and tabular forms of data.

D. Membership Inference Attacks in Videos

We have not found any papers that specifically present
membership inference attacks in the video modality. This
could be because of denser information required to perform
such attacks. But we believe ideas from the image modality
may have transferability

E. Membership Inference attack across Modalities

Membership Inference attacks in multimodal models have
not been studied as well. However, research has started to
show, particularly for image-text pair membership inference.
Carlini et al. [80] presented the approach of carefully prompt-
ing the multimodal diffusion model with specific prompts of
the training input. The output of the diffusion model was
strikingly close to the training data output. Zhai et al. [81]
demonstrated if the model had seen the pair in training, it
would generate output very close to the original, and using
Kullback-Leibler (KL) divergence, they could measure this
behavior empirically with a high success rate. Hintersdorf et
al. [82] presented an approach involving querying the model
with images of individuals and text prompts with the names
of the individuals. If the model predicted they were the same,
that showed memorization and membership inference.

We want to point out to the readers that, in Section V.B, the
attack discussed in [73] is also an attack on text using audio
modality.

VI. MODEL INVERSION ATTACKS ACROSS MODALITIES

A. Model Inversion Attacks in Text

We do not see model inversion attacks targeting the text
modality only, but [71], which can recover verbatim text
from GPT-2, blurs the lines between model inversion and
membership inference attacks.



B. Model Inversion Attacks in Audio
Pizzi et al. [83] demonstrated the feasibility of model

inversion attacks on speaker recognition by directly attacking
the target model to regenerate representative audio samples
and extract sensitive speaker embeddings learned by the
model.

C. Model Inversion Attacks in Images
Fredrikson et al. [84] introduced the concept of model

inversion attacks in facial recognition systems. The approach
was to blur the image of the person and keep perturbing the
image using a surrogate model so that the model predicts
with higher confidence for the person in the image. DLG
algorithm [85] took the approach a step forward and recovered
complete images used in training data. GMI [86] took it even
further by conducting this attack in a black-box setting. The
method utilized GAN architecture and publically available
facial recognition data to reconstruct private training data.
Han et al. [87] transformed this into a reinforcement learning
objective.

D. Model Inversion Attacks in Video
Similar to membership inference attacks, we have found no

noteworthy research targeting the video modality yet, but we
believe that ideas from the image modality can be transferred.

E. Model Inversion attacks across Modalities
Model Inversion attacks in multimodal models are also not

a well-studied field. However, work done by [71] has reduced
the separation line between membership inference and model
inversion attacks, as stated earlier. This landscape should not
be far from reach.

VII. DISCUSSION AND FUTURE WORK

In Figure 1, we summarize the threat landscape with cross-
modal influence. We observe that optimization-based attacks
are the most studied in the literature. However, other attacks
typically accompany optimization attacks, and those other
attacks are the main goals of the attacker. Backdoor is the next
most well-studied attack, followed by Membership Inference
and Model Inversion. As we can see, the threat landscape
is growing quickly, and the grid is getting dense. Examples
of research like [71] can produce a hybrid attack, which is
concerning. Research from [45] targets the embedding space,
which is hard to detect even for seasoned ML practitioners.

A trend we have observed is that when an adversarial attack
example is provided by the research community, it is not easily
accessible to ML practitioners under a single umbrella of open-
source tools. There are attempts by open-source tools like
Adversarial Robustness Toolbox [88], TextAttack [89] to bring
them under one umbrella, but the code hasn’t been updated
to keep up with new attacks, which makes it harder to fully
prepare for all of the threat-landscape. We invite the research
community to integrate their work into open-source tools for
larger access which would necessitate a broader, community-
maintained platform for easy integration.

There is no silver bullet for ML practitioners to create a
defense against adversarial attacks, but ad-hoc methods have
helped. The defense setup is generally done by following three
steps in the training and inference loop: Modify the Input for
Training, Modify the Training, and Modify the Inference. In
“Modifying the Input” for training, rigorous preprocessing
is done on training data to remove adversarial perturbations,
e.g., [90]–[92]. This ensures that these preprocessing layers
in the ML pipeline can filter out these subtle perturbations.
If the first line of defense fails, ”Modifying the Training”
helps generalize the models against these adversarial pertur-
bations. Some standard techniques for this are to add attack-
specific regularization loss functions [93] and to make robust
architecture choices [94]. This is particularly helpful in cases
where multiple modalities are targeted. If attacks still get
through, ”Modifying the Inference” can help. At inference
time, practitioners can apply multiple techniques before the
target model processes the input: 1) preprocessing the input
as done in pre-training can act as the first line of defense,
2) another model can be used to detect adversarial examples
at inference time, 3) a database of adversarial examples can
be maintained, and if a new input is similar, it should not
be processed. Steps can also be taken post-inference: 1) The
output of the model can flow through adversarial detection
systems, 2) XAI techniques can be leveraged at inference time
to detect problematic behaviors of the model. Tools like [95]
can help ML practitioners set these up.

We have identified that the defense literature is also very
fragmented. Certified robustness concepts are emerging, like
[94], but again, they do not offer a holistic view of the multi-
modal world. This gap is also not addressed for practitioners,
and we plan to follow up with a defense framework survey
for the multimodal world.

VIII. CONCLUSION

We have provided a comprehensive overview of the ad-
versarial attack landscape in the multimodal world of AI.
Our goal is to equip ML practitioners with the knowledge
they need to recognize these vulnerabilities. When deploying
these powerful models, practitioners must actively consider the
entire landscape, including cross-modal effects, and implement
defenses that address these interconnected risks. As these mod-
els become more integrated, more threats will be discovered
and the grid of attack modality and impacted modality will
get even denser. In future work, we plan to conduct a survey
focusing on defense strategies against these multimodal threats
to guide practitioners in this adversarial landscape.
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