
Under review as a conference paper at ICLR 2024

MOREDROP: DROPOUT WITHOUT DROPPING

Anonymous authors
Paper under double-blind review

ABSTRACT

Dropout has been instrumental in enhancing the generalization capabilities of
deep neural networks across a myriad of domains. However, its deployment
introduces a significant challenge: the model distributional shift between the
training and evaluation phases. Previous approaches have primarily concentrated
on regularization methods, invariably employing the sub-model loss as the primary
loss function and updating the sub-model. Despite this, those methods continue to
encounter a persistent distributional shift during evaluation, a consequence of the
implicit expectation inherent to the evaluation process. In this study, we introduce
an innovative approach, namely Model Regularization for Dropout (MoReDrop).
MoReDrop effectively addresses distributional shift by prioritizing the loss function
from the dense model, supplemented by a regularization term derived from the
pair of dense-sub models. Importantly, We actively update only the dense model;
the sub-model is passively updated due to shared attributes. This maintains the
model consistency, i.e., the dense model, during training and evaluation, while the
regularizer retains dropout benefits. To further mitigate the computational cost, we
propose a lightweight version of MoReDrop, denoted as MoReDropL. This variant
trades off a degree of generalization ability for reduced computational burden by
employing dropout only at the last layer. Our experimental evaluations, conducted
on several benchmarks across multiple domains, consistently demonstrate the
scalability and efficiency of our proposed algorithms.

1 INTRODUCTION

In recent years, deep Neural Networks (DNNs) (Salakhutdinov, 2014; Schmidhuber, 2015) have made
significant advancements across a wide range of areas such as computer vision, reinforcement learning,
and natural language processing (Deng et al., 2009; Mnih et al., 2015; He et al., 2016; Vaswani et al.,
2017; Ho et al., 2020; Jumper et al., 2021; Devlin et al., 2019). While DNNs hold great promise with
deeper networks (He et al., 2016; Wang et al., 2022), the model complexity correspondingly escalates
rapidly. This rapid escalation underscores the need for effective regularization techniques to mitigate
overfitting and enhance the generalization capabilities of these deep models. Numerous strategies
have been developed to tackle these challenges, with dropout (Hinton et al., 2012; Srivastava et al.,
2014) gaining prominence due to its simplicity and efficacy extensively utilized in many recent AI
breakthroughs (Dosovitskiy et al., 2021; Jumper et al., 2021; Ramesh et al., 2022). Dropout generally
uses a Bernoulli-distributed mask applied to each layer prior to each training step, which also implies
independently and randomly deactivating each neuron with probability p.

Dropout training mimics the ensemble model approach by implicitly integrating an exponential num-
ber of sub-models, characterized by randomly deactivated neurons, with shared parameters/weights;
and performing model updates through the minimization of an approximate expected loss function
(Hinton et al., 2012; Srivastava et al., 2014). However, it is non-trivial to explicitly assemble those
sub-models, and a single model characterized by scaled parameters without dropout is employed
for the practical evaluation period. It introduces a subtle but unignorable distributional shift be-
tween training and evaluation. A variety of regularizers have been proposed to mitigate this issue
by implementing sub-to-sub regularization paradigm, which imposes constraints between pairs or
multiple sub-models. The primary objective of these constraints is to ensure consistency across
different sub-models, thereby maintaining the expectation of a unified, coherent model for evaluation.
Examples of such regularizers include L2 distance Zolna et al. (2018), Kullback-Leibler (KL) diver-
gence for two random sub-models (Liang et al., 2021) or worse-case sub-models (Xia et al., 2023).

1

Under review as a conference paper at ICLR 2024

𝑥

back propagation

sub
model

neurons dropped neurons 𝑥

sub
layer

Linear layer

back propagation

Criterion Criterion

+

Linear layerLinear layer Linear layer

Loss Calculation Loss Calculation

ℛ

𝑙(𝒟, 𝑆𝒟; 𝜃)𝑙(𝒟; 𝜃)

𝑙(𝒟; 𝜃) + ℛ

Prediction
of 𝐌

Prediction
of 𝐌𝐢

Loss CalculationMoReDropLMoReDrop

MoReDrop
Regularization

Figure 1: The overall framework and detailed loss computation of MoReDrop. Left: The input data
x is processed twice, once each through the dense model and its sampled sub-model, yielding two
outputs. The loss function of the dense model is then regularized by minimizing the discrepancy
between these two outputs. The gradient backpropagation is performed only on the dense model
(blue-shaded area). Right: The details for calculating the regularized loss for the dense model.

Despite these efforts, sub-to-sub regularization approaches still present several limitations, such
as introducing significant computational burdens and facing increasing challenges at high dropout
rates due to the exponential proliferation of sub-models. Another line of research introduces the
dense-to-sub regularization (Ma et al., 2017). This approach imposes constraints on the dense model
and its corresponding sub-models throughout the training process, ensuring consistency across the
pair of dense-sub models. However, all of the previous methods treat the loss of sub-model as the
primacy loss function and a persistent distributional shift still arises from the expectation operation
during evaluation.

In this study, we propose a novel dense-to-sub regularization approach, named Model Regularization
for Dropout (MoReDrop), to mitigate the distributional shift by firstly employing the loss of dense
model as the main loss function. Concretely, in each gradient step, every mini-batch dataset is passed
through the network twice: for the dense model and its shared-parameter sub-models. MoReDrop
then imposes a regularization term to the loss function from the output gap between the dense model
and one of its sub-models. Significantly, we actively update only the dense model via gradient
propagation, ensuring consistent model configuration, i.e., the dense model, for both training and
inference. The regularizer preserves the generalization benefits of dropout.

Interestingly, the sub-models are passively updated through parameter sharing with the dense model
in each iteration. However, in terms of computational load, MoReDrop necessitates an extra matrix
multiplication for the whole sub-model. This is typically unfeasible for models with buried deep
layers characterized by millions of parameters (Devlin et al., 2019; Dosovitskiy et al., 2021). To
mitigate this issue, we introduce a lightweight version of MoReDrop, termed MoReDropL, which only
applies dropout in the final layer with shared parameters, with the extra matrix multiplication arising
solely from the last-layer of the sub-model. MoReDropL compromises a degree of generalization
ability for lower computation burden.

We assess our proposed methods across various models and tasks, containing image classification and
language understanding. Experiments show that our proposed methods allow for a higher dropout
rate, which potentially further improves the performance but avoids the distributional shift. We
also observe that MoReDrop consistently delivers superior performance compared to state-of-the-art
baselines. Surprisingly, MoReDropL also surpasses previous methods in many tasks though it trades
off the model generalization ability for computation efficiency.

2 PRELIMINARIES

Notation The training set, denoted as D, consists of pairs {(x1, y1), . . . , (xN , yN)}, where N
signifies the total number of pairs in D. In this context, each pair (xi, yi) in D is typically considered

2

Under review as a conference paper at ICLR 2024

an independent and identically distributed (i.i.d.) sample drawn from the respective distributions of
X ∈ X and Y ∈ Y , respectively.

Consider a DNN, denoted by M, consisting of L hidden layers, with X and Y representing the input
and output, respectively. Each layer in the network is indexed by l, which spans from 1 to L. The
output vector from the lth layer is signified by h(l). In this setup, the network’s input is specified
as h(0) = x, and the final network output is h(L). The network M is characterized by a set of
parameters collectively symbolized by θ = {θl : l = 1, . . . , L}. Here, θl encapsulates the parameters
associated with the lth layer. With slight abuse of notation, we indicate l(D; θ) as the loss function.

Dropout In the naïve dropout formulation (Hinton et al., 2012; Srivastava et al., 2014), each layer
is associated with Γ(l), a vector composed of independent Bernoulli random variables. Each of these
variables has a probability pl of taking the value 0 and a probability 1− pl of assuming the value 1.
This is analogous to independently deactivating the corresponding neuron (effectively setting each
weight to zero) with a probability pl. We introduce a set of dropout random variables, denoted by
S = {Γ(l) : l = 1, . . . , L}, where Γ(l) corresponds to the dropout random variable for the lth layer.
We can represent the deep neural network Mi as:

h(l) = fl(h
(l−1) ⊙ γ(l)),

where ⊙ denotes the element-wise product, and fl represents the transformation function for the lth

layer. For instance, if the lth layer is a fully connected layer with a weight matrix W , a bias vector
b, and a sigmoid activation function σ(x) = 1/(1 + exp(−x)), then the transformation function is
defined as fl(x) = σ(Wx+b). To justify the connection between the dense model and the sub-model,
we represent Mi as the sub-model derived from M through the application of dropout, i can be any
number to represent different sub-models. We also use h(l)(x, s; θ) to denote the output of the lth

layer given the input x and the dropout value s, under the parameter set θ.

Conceptually, dropout seeks to train an ensemble of exponentially many neural networks concurrently,
with each network corresponding to a unique configuration of deactivated units, while sharing the
same weights or parameters (Hinton et al., 2012; Hara et al., 2016). We denote the loss function with
dropout as l = (D, SD; θ), where SD = {S1, . . . , SN} represents the set of dropout variables.

Model distributional shift. As previously mentioned, dropout implicitly forms an ensemble of
neural networks via weight sharing during the training phase. However, for evaluation, a deterministic
dense model without dropped neurons is employed to approximate the ensemble operation. This
approximation results in a model distributional shift, noted as G, between training and evaluation
when dropout is used:

G = ES

[
H(L)(x, S; θ)

]
− h(L)(x,E[S]; θ), (1)

where the LHS of the minus signifies the ideal ensemble model with dropout for evaluation, which is
represented by a dense model with expected activate units on the RHS of the minus.

3 MODEL REGULARIZATION FOR DROPOUT

In this section, we delve into the specifics of our proposed algorithm that operates the loss of
dense function under dense-to-sub regularization, MoReDrop and MoReDropL, with the high-level
structure depicted in Figure 1. We then proceed to discuss the chosen regularizer and the practical
implementation. Finally, we draw a comparison between our algorithm and the previous methods
to alleviate the model distributional shift, elucidating why our proposed algorithm exhibits superior
performance, even under high dropout rates (as corroborated by experiments in Section 4).

3.1 DENSE LOSS WITH DENSE-TO-SUB REGULARIZATION

In supervised learning, for standard dense model training, the loss function is to minimize the
following negative log-likelihood function:

l(D; θ) = −
N∑
i=1

log p (yi | xi; θ) . (2)

3

Under review as a conference paper at ICLR 2024

For dropout training, the loss function additionally incorporates the marginalization of the dropout
variables (Wang & Manning, 2013; Srivastava et al., 2014):

ESD [l(D, SD; θ)] = ESD

[
−

N∑
i=1

log p(yi|xi, Si; θ)
]
. (3)

The key contributor to the distributional shift is the active updating of dropout (sub-) models through-
out the training phase. This procedure implicitly establishes a parameter-sharing ensemble model
Ma et al. (2017); Liang et al. (2021). However, during the inference stage, a deterministic model is
employed. To address this discrepancy, we propose a novel regularization method that transitions
from dense to sparse models, termed Model Regularization for Dropout (MoReDrop). Specifically,
we prioritize the loss derived from the dense model without dropout (Equation (2)) and perform gra-
dient backpropagation only on the dense model, which ensures the model configuration consistency,
i.e., the dense model, is applied throughout both the training and inference stages. Furthermore,
we harness the advantages of the dropout models by imposing constraints on the pair of the dense
model M and a specific shared-parameter sub-model Mi with passive updating without gradient
backpropagation, courtesy of their shared-parameter nature with the dense model. To further elaborate
on how MoReDrop addresses the distributional shift, we make a comprehensive comparison with
previous work, shown in Appendix Table 4.

In Theorem 3.1, we demonstrate that the loss function from Mi provides a point-wise upper bound
for the loss function from M (see details in Appendix B). Theorem 3.1 allows for representing the
regularization with the first-order moment:

R = g(ESD [l(D, SD; θ)]− l(D; θ)]),

where g(·) is a monotonically increasing function.
Theorem 3.1. The expected loss function of standard dropout Equation (3) is an upper bound for the
standard loss function without dropout Equation (2):

l(D; θ) ≤ ESD [l(D, SD; θ)].

In the present study, we adopt the function g = (exp(α · x)− 1)/(exp(α · x) + 1), a variant of the
Logistic Sigmoid function to confine the output within the range [−1, 1], where α serves as a weight
that scales the first-order moment function. This particular formulation of the regularization term
exhibits two primary characteristics. First, it facilitates a unified hyperparameter search space across
varied tasks, thereby substantially diminishing the search space. Second, its bounded nature imparts
robustness to the loss function against varying dropout rates p, rendering it possible to train a near-
optimal model even at high values of p. We perform an ablation study on various loss functions that
might not align with the aforementioned characteristics, as detailed in Section 4, which demonstrates
the superiority of the loss function g. However, it is important to acknowledge the possibility of
other, more effective loss functions, which we aim to explore in future research. Specifically, the
regularization term we employed is as follows:

R =
exp(α · (ESD [l(D, SD; θ)]− l(D; θ)))− 1

exp(α · (ESD [l(D, SD; θ)]− l(D; θ))) + 1
, (4)

and the final optimization objective in our algorithm is:

argmin
θ

−
N∑
i=1

log p (yi | xi; θ) +R, (5)

where it is bifurcated into two principal elements: the primary one being the loss of the dense model,
which guarantees consistency; and a supplementary regularization term R, incorporated to draw
upon the advantages offered by dropout, particularly generalization abilities. Importantly, MoReDrop
conducts gradient backpropagation exclusively on the dense model, yet it still capitalizes on the
advantages of dropout models.

To further mitigate computational costs, we introduce a light variant of MoReDrop, termed as
MoReDropL. This version retains the guiding principle of MoReDrop, where the main loss comes

4

Under review as a conference paper at ICLR 2024

from the dense model regularized by the interplay between the dense model and its sub-models. The
key distinction between MoReDropL and MoReDrop lies in their network structure for utilizing
dropout: MoReDropL employs dropout solely in the final layer, thereby circumventing additional
matrix computations, while MoReDrop applies dropout across all layers, necessitating extra matrix
computations for all networks. Although MoReDropL sacrifices a degree of generalization capability,
this compromise enables a significant reduction in computational burden.

3.2 ALGORITHM SUMMARY

During every gradient update, we execute the forward operation twice on the model using the same
randomly sampled mini-batch dataset: once for the dense model and once for its shared-parameter
sub-model employing dropout. Subsequently, we calculate the loss function based on these two
forward operations. We summarize our final algorithm in Algorithm 1. Note that we only apply
gradient update to the dense model M; the shared-parameter sub-model Mi does not undergo updates
through gradient backpropagation and we note the stop gradient operator as [·]. Further, we note
that only one explicit sub-model is sampled, which represents an implicit ensemble of exponentially
shared parameter networks (Ma et al., 2017; Liang et al., 2021). We also provide a Pseudocode with
a PyTorch-like style in Appendix A.

Algorithm 1 Model Regularization for Dropout
Require: Training dataset D = {(xi, yi)}Ni=1, weight α.

1: Initialize Mθ

2: for t = 1, 2, · · · , N do
3: Randomly sample mini-batch Bi ∼ D
4: Forward the Bi to the dense model Mθ and obtain l(D; θ) via Equation (2)
5: Forward the Bi to the sub-model Miθ and obtain ESD [l(D, SD; θ)] via Equation (3)
6: Update Mθ by Equation (5)
7: end for

3.3 DISCUSSION

Our proposed method shares commonalities with several existing works, especially those focusing
on sub-to-sub regularization (Zolna et al., 2018; Liang et al., 2021; Xia et al., 2023), as well as
dense-to-sub regularization (Ma et al., 2017). Both MoReDrop and MoReDropL are categorized
within the dense-to-sub regularization framework. However, in contrast to prior methods where the
primary loss function originates from the sub-model, our approach sets the primary loss function
based on the dense model. This key differentiation offers our method several significant advantages:
(1). Robustness to High Dropout Rates: Our methods demonstrate resilience to high dropout ratios.
This is attributable to the fact that the priority optimization target in our method, i.e., the dense model
loss function, maintains no dependency on dropout ratios. (2). Mitigation of Model Distributional
Shift: The primary loss function in our method explicitly ensures consistency during both model
training and evaluation phases. The regularization term leverages the benefits of dropout from its
sub-model, without the need for explicitly dropping neurons during the gradient update process in
neural networks. (3). Computational efficiency: MoReDropL restricts additional matrix manipulation
to the final layer alone. In contrast, other methods, including MoReDrop, apply this additional matrix
manipulation across the entire model.

We explore these benefits through our experiments, as detailed in Section 4. Moreover, the dense-to-
sub regularization approach in our methods facilitates stable training and rapid convergence speed
due to the significantly reduced uncertainty associated with the dense model (without dropout),
particularly in the context of high dropout ratios. Specifically, for high dropout ratios, sub-to-sub
regularization methods face challenges due to the exponential growth and combination of sub-models.
This escalating difficulty for sub-to-sub regularization may result in misguided optimization priorities,
managing to maintain consistency among sub-models but failing to enhance the final performance.
We provide a systematic analysis of this in Section 4.3.

5

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

To underscore the wide-ranging applicability of our proposed method, we conducted a thorough
evaluation spanning distinct machine learning domains, i.e., image classification, and general lan-
guage understanding, with different backbones algorithms (shown in Section 4.1 and Section 4.2).
Next, we conduct a detailed loss analysis and compare MoReDrop with R-Drop, which provides
a crucial explanation for the superior performance of MoReDrop, as discussed in Section 4.3. In
Appendix C.4.1, we showcase the robustness of MoReDrop under different hyperparameter combina-
tions, even in scenarios with extremely high dropout rates. More details of experimental settings for
each dataset and backbone algorithm can be found in Appendix C. Lastly, in Section 4.4, we present
the training time of our proposed algorithms in comparison with various baselines in Appendix
Table 3, demonstrating the training efficiency of MoReDrop.

4.1 IMAGE CLASSIFICATION DOMAINS

Benchmark Datasets. Our image classification experiments were conducted on three well-
recognized benchmark datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009) and ImageNet
(Deng et al., 2009). The CIFAR-10 and CIFAR-100 datasets both consist of low-dimensional
pixel images, with the primary distinction between them being the number of categories they feature,
as indicated by their respective names. Conversely, the ImageNet dataset presents a significantly
greater challenge, encompassing more than 1, 000 categories.

Table 1: Accuracy on CIFAR-10, CIFAR-100 and ImageNet.
Both MoReDrop and MoReDropL consistently outperform the
baseline across all tasks.

Methods CIFAR-10 CIFAR-100 ImageNet
ResNet-18 95.44±0.07 77.78±0.07 -
+ DropPath 95.35±0.05 78.12±0.11 -
+ DropBlock 95.53±0.12 78.72±0.06 -

+ MoReDropL 95.79±0.21 79.11±0.05 -
+ DropPath + MoReDrop 95.60±0.14 79.25±0.19 -
+ DropBlock + MoReDrop 96.41±0.11 79.53±0.32 -

ViT-B/16 98.68±0.24 92.78±0.10 84.05±0.15

+ R-Drop 98.97±0.01 92.90±0.02 84.16±0.04

+ MoReDropL 99.14±0.03 93.25±0.03 84.62±0.12

+ MoReDrop 99.10±0.06 93.38±0.04 84.43±0.06

Model & Training. To offer a
scalable comparison of MoReDrop
in the domain of image classifica-
tion, we utilize two distinct models:
a smaller model with 1.2 million
parameters (ResNet-18) (He et al.,
2016) and a larger model with
86 million parameters (ViT-B/16)
(Dosovitskiy et al., 2021). Note
that the standard ResNet-18 does
not incorporate dropout, while the
default configuration of the vanilla
ViT-B/16 utilizes a dropout rate of
p = 0.1. For the ResNet-18, our
baselines comprise: (1) DropBlock
(Ghiasi et al., 2018), which miti-
gates overfitting by dropping con-
tinuous regions of neurons, and (2)
DropPath (Larsson et al., 2017),
which zeroes out an entire branch in the neural network during training, aiming to achieve the
same goal as DropBlock. Note that ResNet incorporates batch normalization as a technique to combat
overfitting, disrupting the training process (Ioffe & Szegedy, 2015). We restrict our comparison to
using MoReDropL within the context of last-layer dropout only. As for the ViT-B/16 algorithm, we
incorporate R-Drop (Liang et al., 2021) with the aim of alleviating model distributional shift, a goal
akin to that of MoReDrop. For both ResNet-18 and ViT-B/16, MoReDropL only utilizes standard
dropout before the last linear layer as proposed in Figure 1. In all baselines, we set the dropout
rate to 0.1, as recommended by the original papers, and this rate has been found to yield the best
performance compared to other dropout rates in our evaluation, as shown in Appendix Table 6.

Results. The results displayed in Table 1 represent averages obtained from 5 independent seeds.
For MoReDrop, we sweep the parameters p and α across the sets {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9}
and {0.1, 0.5, 1, 2}, respectively. The best performance of MoReDrop is then presented in Table 1.
Experimental details are shown in Appendix C.2. When integrated with DropPath and DropBlock for
the ResNet-18 model, MoReDrop consistently delivers superior performance on both the CIFAR-10
and the more challenging CIFAR-100 datasets. Notably, when paired with DropBlock, MoReDrop
realizes a significant increase in accuracy compared to both the original ResNet-18 and DropBlock,
with improvements of approximately 1% in the CIFAR-10 dataset and 1.8% in the more challenging

6

Under review as a conference paper at ICLR 2024

Table 2: The results of NLU tasks on the GLUE benchmark. MoReDrop outperforms the backbone
model for all tasks and MoReDropL outperforms the backbone in 10 out of 16 tasks.

Methods CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE AverageMatt. Acc. Acc./F1 P. Corr. Acc./F1 m./mm. Acc. Acc.

BERT-base 56.49±0.24 93.31±0.12 85.10±0.31 / 89.41±0.18 87.92±0.22 91.38±0.02 / 87.55±0.02 83.49±0.16 / 84.84±0.18 91.46±0.12 67.99±0.21 83.54
+ MoReDropL 58.23±0.39 92.52±0.07 87.12±0.22 / 90.82±0.29 88.24±0.18 91.21±0.04 / 87.77±0.09 83.97±0.11 / 84.46±0.11 91.14±0.12 69.05±0.13 84.05
+ MoReDrop 58.99±0.26 93.53±0.10 87.18±0.31 / 90.86±0.22 88.31±0.09 91.41±0.04 / 87.97±0.04 84.98±0.21 / 85.27±0.22 91.59±0.14 69.98±0.27 84.55

RoBERTa-base 60.07±0.22 93.86±0.28 87.50±0.33 / 90.84±0.21 89.68±0.22 91.02±0.07 / 87.40±0.11 87.77±0.11 / 87.49±0.24 92.62±0.07 72.77±0.33 85.55
+ MoReDropL 62.39±0.31 94.09±0.41 88.19±0.54 / 91.52±0.33 90.46±0.27 91.38±0.05 / 87.94±0.18 87.20±0.13 / 86.71±0.27 92.27±0.02 79.48±1.33 86.51
+ MoReDrop 62.37±0.33 94.79±0.37 89.80±0.22 / 92.44±0.16 90.55±0.16 91.55±0.09/ 88.17±0.09 87.90±0.10 / 87.60±0.17 92.73±0.11 77.45±0.41 86.85

CIFAR-100 dataset. The consistently improved performance across different dropout methods, i.e.,
DropPath and DropBlock, attests to the general applicability of MoReDrop.

Besides, with the backbone of ViT-B/16, we find that MoReDrop outperforms the vanilla model and
its variant with R-Drop over three degrees of challenges tasks. The small margin gained (< 1%) from
MoReDrop, compared with the backbone of ResNet-18, is attributed to the saturated performance by
its ViT-B/16 backbone. Surprisingly, MoReDropL even outperforms MoReDrop in the CIFAR-10
dataset by 0.04% points. This might be due to the loss of plasticity in pre-trained models, where
further training has a limited impact on most neurons (Achille et al., 2017; Zilly, 2022).

Comparable advancements are also evident in the context of the more challenging large-scale dataset,
ImageNet. We observe that R-Drop necessitates approximately 3x the number of training epochs to
converge, yet its final performance is not on par with our methods (both MoReDrop and MoReDropL).
This observation underscores the superiority of our proposed algorithm on challenging tasks.

Our proposed algorithm, MoReDrop, consistently exhibits robustness to hyperparameters across
various tasks, as shown in Appendix C.4.1. Notably, it achieves optimal performance even at
dropout rates exceeding 0.1, a threshold that often hampers the performance of other methods. This
observation underscores the potential for high generalization ability in models with elevated dropout
rates, and emphasizes the resilience of our algorithm under such conditions.

4.2 NATURAL LANGUAGE UNDERSTANDING

Benchmark Datasets. To broaden our evaluation to encompass natural language understanding,
we assess our proposed methods on the standard development sets of the General Language Under-
standing Evaluation (GLUE) benchmark (Wang et al., 2019). The GLUE benchmark includes eight
unique tasks, all of which involve text classification or regression. The distinct characteristics of
each task, such as the nature and complexity of the language understanding challenge, as well as the
volume and diversity of the training data, provide a comprehensive and robust testing ground for our
proposed methodology. The evaluation metrics for the eight tasks and experiment details are shown
in Appendix C.3.

Model & Training. We utilize two publicly available pre-trained models: BERT-base (Devlin et al.,
2019) and RoBERTa-base (Liu et al., 2019) as our foundation for fine-tuning. As both BERT-base and
RoBERTa-base employ standard dropout, we could directly apply our method and use the original
models for comparison. To ensure a fair comparison, we retained the same training hyperparameters
setting as in the original models.

Results. We present the final performance in Table 2 averaged by 5 independent seeds. The
sweeping sets of hyperparameters are the same as the image classification domains. MoReDrop
consistently outperforms the baselines across all tasks, showing improvements of approximately 1%
and 1.3% on BERT-base and RoBERTa-base models, respectively. We also find that the average
performance of MoReDropL exhibits improvements over the baseline by approximately 0.5% for the
BERT-base and 1% for RoBERTa-base models, even with minimal modifications to the last layer
using dropout. Intriguingly, MoReDropL surpasses the performance of MoReDrop on certain tasks,
most notably achieving a performance margin of 2% on the RTE task compared to MoReDrop. We
attribute this to the phenomenon of the loss of plasticity, as we discussed in Section 4.1.

7

Under review as a conference paper at ICLR 2024

Figure 2: The training loss curves over ViT/16, comparing different dropout methods and rates on
the CIFAR-10 dataset. Left: Training loss curves of various methods with a consistent dropout rate
(p = 0.1). Middle: Training loss curves of R-Drop under varying dropout rates. Right: Training
loss curves of MoReDrop under different dropout rates.

4.3 LOSS ANALYSIS

In this section, we empirically validate the limitations mentioned of prior approaches in Section 3.3
through a comprehensive comparative analysis between MoReDrop and the state-of-the-art model
regularization approach, R-Drop. In Figure 2, we present the training loss curves over ViT-B/16,
comparing different dropout methods and rates on the CIFAR-10 dataset. Note that for the sub-
model loss from MoReDrop and the dense-model loss from R-Drop, we merely compute these losses,
abstaining from conducting gradient updates.

As demonstrated in Figure 2 (Left), with an identical low dropout rate (as recommended by ViT-B/16),
R-Drop attains a lower training loss and superior performance (as shown in Table 1). This holds true
for both the dense model (blue solid line) and one of its sampled sub-models (blue dotted line), when
compared to the vanilla algorithm (orange solid line). Notably, the training loss for both the dense
(purple solid line) and the sub-model (purple dotted line) from MoReDrop are lower than those of
R-Drop, aligning with higher performance as shown in Table 1.

Interestingly, we observe a significantly larger loss gap1 between the dense model and the sub-model
losses for MoReDrop compared to R-Drop in the training phase. The loss gap signifies the distance
in the function space, serving as an approximation of the model discrepancy. This finding implies
that even under a small dropout ratio, the purpose of maintaining high consistency among sub-models
(approximating model distributional shift) may compromise the model expressivity, yielding sub-
optimal performance relative to MoReDrop. Furthermore, despite these efforts, a trivial model
distributional shift persists in R-Drop due to the inherent expectation operator.

To delve deeper into this, we present the loss curves from both dense and sub-models across different
dropout rates of R-Drop in Figure 2 (Middle). We observe that the loss gap approaches zero
irrespective of the dropout rate. However, this is concurrent with decreased performance, shown in
Appendix Table 6, suggesting a strong performance compromise while constraining sub-model pairs.

In contrast, MoReDrop shows a larger loss gap as the dropout probability p increases during training,
while maintaining near-optimal final performance despite variations in p, as illustrated in Figure 2
(Right). This implies that MoReDrop does not compromise model generalization to accommodate
constraints, leading to improved performance and robustness, even under high dropout rates, as
illustrated in Figure 4. The improved performance of MoReDrop can be attributed to the primary
dense model loss function, which effectively mitigates the model distributional shift, as well as the
dense-to-sub regularization. This approach not only preserves the full potential of model expressivity
but also capitalizes on the benefits provided by the dropout mechanism.

4.4 TRAINING TIME

In Table 3, we present the per epoch training time for MoReDrop, MoReDropL, and baselines on
the CIFAR-10 task, executed on a GPU (NVIDIA A800 80GB PCIe) using a batch size of 32.
MoReDropL exhibits a significant efficiency advantage with nearly the same training time as the

1The loss gap in R-Drop approximates the model distributional shift in Equation (1). Conversely, in
MoReDrop, the loss gap does not mirror this distributional shift due to its primary loss function is rooted in the
dense model, consistently applied during training and evaluation.

8

Under review as a conference paper at ICLR 2024

backbone, and approximately 50% faster than both MoReDrop and R-Drop. For example, in the case
of ViT-B/16, R-Drop and MoReDrop require 176s and 172s respectively to execute a training epoch,
whereas MoReDropL requires only 92s, almost on par with the 90s needed for ViT-B/16.

5 RELATED WORK

Table 3: Training time per epoch.

Model Training time
(seconds)

ResNet-18 14
+ MoReDropL 15
+ MoReDrop 29

ViT-B/16 90
+ R-Drop 176
+ MoReDropL 92
+ MoReDrop 172

Dropout and its Variants. Regularization plays a pivotal
role in preventing overfitting in deep learning and large-scale
models. A multitude of regularization techniques has been
proposed to address this issue, including but not limited to
weight decay, dropout, batch normalization, noise addition,
early stopping, and label smoothing (Simonyan & Zisserman,
2015; Ioffe & Szegedy, 2015; Poole et al., 2014; Yao et al.,
2007; Szegedy et al., 2016). Among these, dropout (Hinton
et al., 2006) stands out as a particularly effective method due
to its simplicity and broad applicability in different domains.
For different model architectures, different dropout methods a
variety of dropout methods have been proposed. These consist
of DropConnect (Wan et al., 2013) for fully connected layers,
SpatialDropout (Tompson et al., 2015) and DropBlock (Ghiasi
et al., 2018) for convolutional neural Networks, DropPath (Larsson et al., 2017) for ResNet, and
DropHead (Zhou et al., 2020) for Transformer models. In addition to its role as a regularization
method to prevent overfitting, dropout has also been utilized as a data augmentation technique
(DeVries & Taylor, 2017; Zhong et al., 2020), further contributing to its effectiveness and versatility.

Model Distributional Shift. Prior work has revealed that dropout brings the inconsistency between
training and inference stages, specifically, the model distributional shift. There are primary two cate-
gories to address this issue: (1) Sub-to-sub regularization paradigm aims to maintain the consistency
between a pair of sub-models in the training process. In this paradigm, Fraternal Dropout (FD) (Zolna
et al., 2018) employs L2 distance on hidden states, R-Drop (Liang et al., 2021) utilizes the on two
sampled sub-models with dropout, and Worst-Case Drop Regularization (WordReg) (Xia et al., 2023)
holds the same inspiration with R-Drop but firstly find the two worse-case sub-models. (2) dense-
to-sub regularization paradigm, i.e., Expectation Linear Dropout (ELD) (Ma et al., 2017), which
maintains the consistency between a pair of dense-sub models as training progresses. MoReDrop
belongs to the dense-to-sub regularization paradigm while still holding a significant difference.

6 CONCLUSION AND LIMITATIONS

In this study, we propose a simple yet effective approach, MoReDrop, to mitigate model distributional
shift in dropout models while leveraging the benefits of dropout, without explicitly dropping neurons
during gradient backpropagation. Specifically, the primary loss function in MoReDrop originates
from the dense model and is regularized by the model gap approximation between the dense model
and one of its sampled sub-models. To further reduce computational load, we introduce a lightweight
version of MoReDrop, termed MoReDropL, which only performs matrix multiplication in the final
layer, unlike MoReDrop which applies it across all layers, albeit at the cost of some generalization
ability. Our experimental results across a variety of tasks and domains consistently demonstrate
that both MoReDrop and MoReDropL achieve state-of-the-art performance in the majority of tasks.
Interestingly, MoReDropL even outperforms MoReDrop in performance on the RTE task from the
GLUE benchmark with a great margin. Our aspiration is that these insights will catalyze further
exploration into creating neural network regularizers to manage model distributional shifts within
dropout models. One potential limitation of this study pertains to the scalability of MoReDrop in
more challenging domains, such as self-supervised learning and reinforcement learning. These areas
have not been exhaustively investigated and often necessitate extensive domain-specific designs for
neural networks.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical learning periods in deep neural
networks. ArXiv preprint, 2017.

Ekin Dogus Cubuk, Barret Zoph, Jon Shlens, and Quoc Le. Randaugment: Practical automated data
augmentation with a reduced search space. In Proc. of NeurIPS, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In Proc. of CVPR, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proc. of NAACL, 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. ArXiv preprint, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In Proc. of ICLR, 2021.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. Dropblock: A regularization method for convolutional
networks. In Proc. of NeurIPS, 2018.

Kazuyuki Hara, Daisuke Saitoh, and Hayaru Shouno. Analysis of dropout learning regarded as
ensemble learning. In Proc. of ICANN, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. of CVPR, 2016.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 2006.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Proc. of
NeurIPS, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proc. of ICML, 2015.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Learning multiple layers of features from
tiny images. In Proc. of NeurIPS, 2009.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural networks
without residuals. In Proc. of ICLR, 2017.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, and
Tie-Yan Liu. R-drop: Regularized dropout for neural networks. In Proc. of NeurIPS, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv preprint, 2019.

Xuezhe Ma, Yingkai Gao, Zhiting Hu, Yaoliang Yu, Yuntian Deng, and Eduard H. Hovy. Dropout
with expectation-linear regularization. In Proc. of ICLR, 2017.

10

Under review as a conference paper at ICLR 2024

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli. Analyzing noise in autoencoders and deep
networks. arXiv preprint arXiv:1406.1831, 2014.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. ArXiv preprint, 2022.

Ruslan Salakhutdinov. Deep learning. In Proc. of KDD, 2014.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proc. of ICLR, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proc. of CVPR, 2016.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object
localization using convolutional networks. In Proc. of CVPR, 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. of NeurIPS, 2017.

Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus. Regularization of neural
networks using dropconnect. In Proc. of ICML, 2013.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In Proc.
of ICLR, 2019.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
Scaling transformers to 1,000 layers. ArXiv preprint, 2022.

Sida I. Wang and Christopher D. Manning. Fast dropout training. In Proc. of ICML, 2013.

Jun Xia, Ge Wang, Bozhen Hu, Cheng Tan, Jiangbin Zheng, Yongjie Xu, and Stan Z Li. Wordreg:
Mitigating the gap between training and inference with worst-case drop regularization. In Proc. of
ICASSP, 2023.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 2007.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In Proc. of AAAI, 2020.

Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou, and Ke Xu. Scheduled DropHead: A regulariza-
tion method for transformer models. In Proc. of EMNLP Findings, 2020.

Julian G Zilly. Plasticity, Invariance, and Priors in Deep Neural Networks. PhD thesis, ETH Zurich,
2022.

Konrad Zolna, Devansh Arpit, Dendi Suhubdy, and Yoshua Bengio. Fraternal dropout. In Proc. of
ICLR, 2018.

11

Under review as a conference paper at ICLR 2024

Table 4: Comparison of different regularization approaches to mitigate the model distributional shift
between the training and inference stages. It is important to highlight that the distributional gap
between the models in the inference and training stages is 0 because to the same model configuration,
i.e., the dense model, is used for both training and inference.

Algorithms Gradient
back-propagation

Dense model
update

Sub-model
update

Regularizer Distribution
shift

FD (Zolna et al., 2018) Sub-model Passive Active Sub-to-sub G
R-Drop (Liang et al., 2021) Sub-model Passive Active Sub-to-sub G
WordReg Xia et al. (2023) Sub-model Passive Active Sub-to-sub G
ELD (Ma et al., 2017) Sub-model Passive Active Dense-to-sub G
MoReDrop (ours) Dense model Active Passive Dense-to-sub 0

A PSEUDOCODE OF MOREDROP IN A PYTORCH-LIKE STYLE.

Algorithm 2 Pseudocode of MoReDrop in a PyTorch-like style.

1 # M: dense model
2 # p: dropout rate
3 # alpha: regularization parameter
4 # g: regularization loss fuction
5 for (x,y) in loader: # load a minibatch
6

7 # activate dropout layer with dropout rate p
8 set_rate(p)
9 logits_sub = M(x) # logits of M_i

10

11 # shutdown dropout layer
12 set_rate(0)
13 logits_dense = M(x) # logits of M
14

15 # calculate the loss gap
16 loss_dense = CrossEntropyLoss(logits_dense, y)
17 loss_sub = CrossEntropyLoss(logits_sub, y)
18 loss_gap = loss_sub - loss_dense
19 loss = loss_dense + g(alpha * loss_gap)
20

21 # dense model update
22 loss.backward()
23 update(M)

B PROOF OF THEOREM 3.1

Proof. For a tractable approximation for dropout variable p, we use Bayes’ rule to express the
parameterized conditional probability of the output y given the input x and p under parameter θ:

p(y | x; θ) =
∫
S
p(y | x, s; θ)p(s)dµ(s).

We then can rewrite the loss function for sub-models with dropout (Eqn. 3) as:

ESD [l(D, SD; θ)] = −
∫

S

N∏
i=1

p(si)
(N∑

i=1

log p(yi|xi, si; θ)
)
dµ(s1) . . . dµ(sN)

= −
N∑
i=1

∫
S
p(si) log p(yi|xi, si; θ)dµ(si).

12

Under review as a conference paper at ICLR 2024

Figure 3: The accuracy of ResNet-18 employing DropBlock and DropPath under varying dropout
rates on CIFAR-10 and CIFAR-100. Left: Accuracy curves of ResNet-18 utilizing DropBlock.
Right: Accuracy curves of ResNet-18 utilizing DropPath. Note that DropPath failed to train the
model under the dropout rate p = 0.9, hence this data point is not represented in the figure.

Given that log(·) is a concave function, according to Jensen’s Inequality:∫
S
p(s) log p(y|x, s; θ)dµ(s) ≤ log

∫
S
p(s)p(y|x, s; θ)dµ(s).

Thus

ESD [l(D, SD; θ)] ≥
N∑
i=1

log

∫
S
p(si)p(yi|xi, si; θ)dµ(si) = l(D; θ).

C EXPERIMENTS DETAILS

C.1 HARDWARE SETUP

Our experiments were performed using PyTorch and run on NVIDIA GeForce RTX 3090 and
NVIDIA A800 80GB PCIe graphics cards. For the CIFAR-10 and CIFAR-10 tasks, we utilized
single-card training on the NVIDIA GeForce RTX 3090. For the ImageNet task, we employed
distributed training across 4× NVIDIA A800 80GB PCIe cards.

C.2 IMAGE CLASSIFICATION

Model Details. Our image classification experiments employed two distinct models: ResNet-18
and ViT-B/16. The former, ResNet-18, is a smaller model boasting 1.2 million parameters. As a
member of the ResNet family, it utilizes a residual learning framework to streamline the training of
networks, encompassing 18 layers that include convolutional, identity, and fully connected layers.
Conversely, ViT-B/16 is a larger model, with 86 million parameters. This model is a variant of
the Vision Transformer (ViT) model, which repurposes transformers, initially designed for natural
language processing tasks, for computer vision tasks.

Table 5: Hyperparameters for Image Classification tasks.

Model p α Batch Size Epochs

CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet

ResNet-18 - - - - - - 128 128 - 200 200 -

+ DropPath 0.1 0.1 - - - - 128 128 - 200 200 -

+ DropBlock 0.1 0.1 - - - - 128 128 - 200 200 -

+ MoReDropL 0.1 0.3 - 0.1 0.5 - 128 128 - 200 200 -

+ DropPath + MoReDrop 0.5 0.1 - 0.1 0.1 - 128 128 - 200 200 -

+ DropBlock + MoReDrop 0.3 0.2 - 0.5 0.5 - 128 128 - 200 200 -

ViT-B/16 0.1 0.1 0.1 - - - 32 256 64 50 50 10

+ R-Dorp 0.1 0.1 0.1 0.3 0.3 0.3 32 256 64 50 50 30

+ MoReDropL 0.1 0.4 0.1 1 1 1 32 256 64 50 50 10

+ MoReDrop 0.1 0.1 0.1 1 0.5 1 32 256 64 50 50 10

13

Under review as a conference paper at ICLR 2024

Baseline Setting & Experiments Design. While the vanilla ResNet-18 does involve the dropout
technique, we take DropBlock (Ghiasi et al., 2018) and DropPath (Larsson et al., 2017) as our
baselines. DropBlock mitigates overfitting by dropping continuous regions of neurons, while Drop-
Path zeroes out an entire branch in the neural network during training, as opposed to just a single
unit, making it a perfect match for ResNet. We set the dropout rate to 0.1, as recommended by the
original papers for both DropBlock and DropPath, as well as the best dropout rate referring in our
experiments(as shown in Figure 3). This rate has been determined to yield the best performance in
comparison to other dropout rates. Further details about these experiments can be found in Table 5.

In contrast, we adopt R-Drop as comparison in ViT-B/16, which minimizes the bidirectional KL-
divergence of the output distributions of any pair of sub models sampled from dropout in model
training. Given that ViT-B/16 incorporates standard dropout, MoReDrop can be directly applied to
this model.

Meanwhile, MoReDropL was applied before the last linear layer, as well as the classifier with
standard dropout for both ResNet-18 and ViT-B/16.

Table 6: Comparison of various algorithms on the CIFAR-10 task under different dropout rates.

Dropout Rate ViT-B/16 R-Drop MoReDrop

p = 0.1 98.72 98.98 99.11
p = 0.3 98.66 98.68 99.04
p = 0.5 97.80 97.52 98.85
p = 0.7 92.31 86.23 98.50
p = 0.9 24.67 16.42 99.09

Fine-tuning Details. On ResNet-18, we fine-tuned the CIFAR-10, CIFAR-100 and ViT-B/16
on CIFAR-10, CIFAR-100 and ImageNet datasets. As the datasets vary in size and complexity,
we employed a dynamic dropout rate and used a set of different values for the parameter α. The exact
values of the dropout rate and α were determined based on the specific characteristics of each task.
The chosen values for each task and model can be found in Table 5.

Hyperparameters & Training Setting. For the fine-tuning process, we used different training
hyperparameters for each model. For ResNet-18, we used a batch size of 128 for CIFAR-10 and
CIFAR-100. For ViT-B/16, we used a batch size of 32 for CIFAR-10, and 256 for CIFAR-100
and 64 for ImageNet. Regarding the training epochs, ResNet-18 was set to 200 for both CIFAR-10
and CIFAR-100. For ViT-B/16, we set the training epochs to 50 for CIFAR-10 and CIFAR-100,
and 10 for ImageNet in the original ViT-B/16 and our algorithm. Due to the difficulty in achieving
convergence with R-Drop, we increased the training epochs to 30 when training ImageNet. Fur-
thermore, the image size for ViT-B/16 was set to 384 for ImageNet, and 224 for both CIFAR-10
and CIFAR-100.

The exact hyperparameters for each task and model can be found in Table 5. For the CIFAR-10 and
CIFAR-100 tasks, we employed the SGD optimizer with a learning rate of 1e − 2, while for the
ImageNet task in ViT-B/16, we utilized the Adam optimizer with a learning rate of 1e − 4. For
data augmentation, we exclusively utilized random cropping for the CIFAR-10 and CIFAR-100
tasks. However, for the ImageNet dataset, we adopted RandAugment (Cubuk et al., 2020).

C.3 NATURAL LANGUAGE PROCESSING

Model Details. Our experiments utilized two pre-trained models: BERT-base and RoBERTa-base.

BERT-base is a transformer-based model with 12 layers, 768 hidden units, and 12 attention heads,
totaling 110 million parameters. It was pre-trained on a large corpus of English text from the
BooksCorpus (800M words) and English Wikipedia (2, 500M words).

RoBERTa-base, on the other hand, is a variant of BERT that uses a larger byte-level BPE vocabulary,
longer training time, and different pre-training data. It has the same architecture as BERT-base but
was trained on more data (160GB of text).

14

Under review as a conference paper at ICLR 2024

Datasets & Evaluation Metrics. For language understanding tasks, we adhere to the prevalent
pre-training and fine-tuning methodology, with the GLUE benchmark serving as the fine-tuning set.
Consistent with previous studies, we focus on eight tasks, including single-sentence classification
tasks (CoLA, SST-2), sentence-pair classification tasks (MNLI, QNLI, RTE, QQP, MRPC), and the
sentence-pair regression task (STS-B). Detailed data statistics can be found in the original paper
(Wang et al., 2019). The evaluation metrics for the aforementioned tasks are as follows: The STS-B
task is evaluated using the Pearson correlation; The CoLA task is assessed via Matthew’s correlation;
Both the F-1 score and accuracy are used as metrics for the MRPC and QQP tasks; The remaining
tasks (MNLI, QNLI, RTE, SST-2) are evaluated based on accuracy. These metrics collectively provide
a holistic assessment of the models’ performance across a range of language understanding tasks.

Table 7: Hyperparameters for BERT-base experiments.

Datasets p α Learning Rate Batch Size Epochs
BERT-base + MoReDropL + MoReDrop BERT-base + MoReDropL + MoReDrop

CoLA 0.1 0.7 0.2 - 1 1 2.00E-05 32 3

SST-2 0.1 0.3 0.2 - 1 1 2.00E-05 32 3

MRPC 0.1 0.9 0.3 - 2 0.1 2.00E-05 32 3

STS-B 0.1 0.3 0.1 - 0.1 1 2.00E-05 32 3

QQP 0.1 0.2 0.2 - 0.5 0.5 2.00E-05 32 3

MNLI 0.1 0.2 0.2 - 1 1 2.00E-05 32 3

QNLI 0.1 0.3 0.3 - 1 1 2.00E-05 32 3

RTE 0.1 0.5 0.3 - 0.1 0.5 2.00E-05 32 3

Table 8: Hyperparameters for RoBERTa-base experiments.

Datasets p α Learning Rate Batch Size Epochs
RoBERTa-base + MoReDropL + MoReDrop RoBERTa-base + MoReDropL + MoReDrop

CoLA 0.1 0.5 0.2 - 0.1 1 2.00E-05 32 3

SST-2 0.1 0.3 0.2 - 0.1 1 2.00E-05 32 3

MRPC 0.1 0.1 0.7 - 2 0.1 2.00E-05 32 3

STS-B 0.1 0.2 0.4 - 2 2 2.00E-05 32 3

QQP 0.1 0.3 0.2 - 0.5 0.5 2.00E-05 32 3

MNLI 0.1 0.3 0.2 - 0.5 1 2.00E-05 32 3

QNLI 0.1 0.1 0.2 - 0.1 1 2.00E-05 32 3

RTE 0.1 0.1 0.2 - 0.1 0.1 2.00E-05 32 3

Baseline Setting & Experiments Design. Given that both BERT-base and RoBERTa-base in-
corporate standard dropout, MoReDrop can be directly applied. For MoReDropL, as applied in
Appendix C.2, we employed standard dropout before the final linear layer.

Fine-tuning Details. Both models were fine-tuned on the GLUE benchmark datasets. As the
datasets vary in size and complexity, we employed a dynamic dropout rate and used a set of different
values for the parameter α. The exact values of the dropout rate and α were determined based on
the specific characteristics of each task. The chosen values for each task and model can be found in
Table 7 and Table 8.

Hyperparameters & Training Setting. For the fine-tuning process, we adhered to the original
training hyperparameters used in the BERT and RoBERTa models. For the sake of simplicity in
implementation, we assigned the same values for batch size, learning rate, and epochs across different
tasks and models, which were 32, 2e− 5, and 3, respectively. We used the Adam optimizer for both
models. The precise hyperparameters for each task and model can be found in Table 7 and Table 8.

C.4 ABLATION STUDY

C.4.1 SENSITIVITY ANALYSIS

15

Under review as a conference paper at ICLR 2024

0.1

0.5

1

2

Dropout	rate	𝑝

Re
gu
la
ri
za
tio
n	
co
ns
ta
nt
	𝛼

0.1 0.3 0.5 0.7
Dropout	rate	𝑝

0.1 0.3 0.5 0.7

Figure 4: Performance of various tasks using MoRe-
Drop under different hyperparameter combinations.
Left: Performance of ResNet-18 with DropBlock and
MoReDrop on the CIFAR-10 dataset. Right: Perfor-
mance of RoBERTa-base with MoReDrop on the MRPC
task.

In this section, we conduct an ablation
study to evaluate the impact of hyperpa-
rameters in MoReDrop, specifically the
dropout ratio p and the regularization
weight α. The sets explored for p and α
are {0.1, 0.3, 0.5, 0.7} and {0.1, 0.5, 1, 2},
respectively. As illustrated in Figure 4,
MoReDrop exhibits significant robustness
to hyperparameter variations. Most com-
binations yield performance superior to
the baseline, with the exception of certain
extreme combinations such as (p, α) =
(0.7, 2) on the CIFAR-10 dataset using
the ResNet-18 backbone, and (p, α) =
(0.7, 1)/(0.5, 2)/(0.5, 1) on the MRPC task.
Moreover, we observe that the dropout ra-
tio p has a more substantial impact on the
final performance. Our algorithm demonstrates significant robustness to variations in the regular-
ization weight α, attributable to our regularization design which bounds the loss within (−1, 1).
Generally, when tuning MoReDrop for application in other domains, we recommend prioritizing
adjustments to p due to its significant influence on performance.

Typically, higher dropout rates are associated with less precise predictions. However, we show a
superior performance gain of MoReDrop in high dropout rates, even at 0.7, as shown in Figure 4. We
here attribute the phenomenon to two key reasons.

The first one is the training paradigm in MoReDrop. In MoReDrop, the primary gradient update
mechanism is derived from traditional dense training, distinct from the influence of the regularizer.
The regularizer integrates benefits of dropout models into the dense training framework. The
parameter α is pivotal in modulating the extent to which the regularizer, denoted as R, impacts the
gradient update in the dense model. In scenarios with high dropout rates, a reduced α value minimizes
the impact from the regularizer, preserving the performance of the dense model that primarily relies
on conventional training methods sans dropout. This approach aligns with findings from our ablation
study (Figure 4), indicating the importance of lower α values in sustaining model performance under
increased dropout rates. For instance, MoReDrop shows heightened sensitivity to α in a 0.7 dropout
scenario in the MRPC task, more so than at lower dropout levels. Additionally, optimal performance at
a 0.7 dropout rate necessitates a minimal α, specifically around 0.1, to mitigate uncertainties inherent
in the dropout model. In contrast, a higher α is advantageous in lower dropout scenarios to borrow
advantages from dropout models, leveraging the reliable predictions of the dropout model.

The second one is the bound nature of R. The inherent boundedness of the regularizer R facilitates
constraining the gap to less than 1, coupled with the weight α, exerts limited influence on the
optimization of the dense model.

C.4.2 REGULARIZATION LOSS FUNCTION

In prior research, specifically in the contexts of ELD and FD, the L2 distance on hidden states was
employed as a regularization loss function. However, this approach diverges significantly from the
primary training objective, which is to minimize the negative log-likelihood over the model’s output
distribution. R-Drop introduced the use of KL-divergence between output probability distributions.
While this method imposes a strong constraint on the model, affecting its generalization capabilities,
it also incurs considerable computational costs.

To address these challenges, we propose to use a loss scalar to quantify the discrepancy and then
project this into a relative space, adjustable through a hyperparameter α. Additionally, we exploit
the bounded nature of the sigmoid(·) function, within [0, 1], to reshape it into g(x) = ex−1

ex+1 =

2 · (sigmoid(x)− 1
2), forming our regularization loss function.

We conduct numerical experiments to demonstrate the efficacy of different formulations of g(·) For
practicality and simplicity in implementation, we adopt ResNet-18 as our model backbone. We
configure four distinct experimental scenarios: ResNet-18-2D, which incorporate 2 dropout layers.

16

Under review as a conference paper at ICLR 2024

g(·) p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

g(x) = x 95.22 95.31 95.13 95.04 90.07
g(x) = x2 95.42 95.61 95.33 95.23 94.23
g(x) = ex−1

ex+1 95.56 95.70 95.72 95.47 95.23

Table 9: Results of different form of g(·).

Tables above reveal distinct performance trends across different g(·) functions. Specifically, g(x) =
ex−1
ex+1 outperforms in all settings, g(x) = x demonstrated inferior performance compared to both
g(x) = x2 and g(x) = ex−1

ex+1 . Notably, g(x) = x2 and g(x) = ex−1
ex+1 demonstrate comparable

effectiveness under conditions of low dropout rates. However, as dropout rates increase to 0.7, 0.9,
the function g(x) = ex−1

ex+1 exhibits superior robustness in these extreme conditions. This leads to
the conclusion that g(x) = ex−1

ex+1 is not only adaptable to varying scenarios but also demonstrates
enhanced performance and robustness across different dropout rates.

Further investigation focuses on the role of the hyperparameter α within our regularization function,
examining whether it is more effective in the form of α · g(x) or g(α · x). To this end, an experiment
was conducted using ResNet-18-4D as the backbone, setting p = 0.5, and observing performance
variations across different values of α.

g(·) α = 0.1 α = 0.5 α = 1 α = 2 α = 5 α = 10

α · g(x) 95.55 95.81 95.61 95.48 94.28 73.80
g(α · x) 95.52 95.83 95.66 95.48 95.36 95.22

Table 10: Results under different α and g(·).

From the table, we observe that both α · g(x) and g(α · x) deliver comparable performance under
low α value. However, with the increment of α, g(α · x) performs more robust compared to g(α · x),
meanwhile considering various application scenarios, it becomes evident that a bounded loss function
like g(α · x) offers more versatility in addressing a range of issues. Therefore, this paper opts for the
use of g(α · x) in the proposed framework. Nevertheless, it is crucial to recognize the potential for
discovering more effective loss functions. Future research will be directed towards exploring these
alternatives to further enhance the performance and adaptability of our model.

17

	Introduction
	Preliminaries
	Model Regularization for Dropout
	Dense Loss with Dense-to-Sub Regularization
	Algorithm Summary
	Discussion

	Experiments
	Image Classiﬁcation Domains
	Natural Language Understanding
	Loss Analysis
	Training Time

	Related Work
	Conclusion and Limitations
	Pseudocode of MoReDrop in a PyTorch-like style.
	Proof of Theorem 1
	Experiments Details
	Hardware Setup
	Image Classiﬁcation
	Natural Language Processing
	Ablation Study
	Sensitivity Analysis
	Regularization Loss Function

