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Abstract001

Code translation aims to translate a piece of002
code from its source language to the target lan-003
guage. It is widely used in different software004
development scenarios such as software mi-005
gration, multilingual development, and system006
refactoring. With the rapid advancement of007
Large Language Models (LLMs), researchers008
have begun applying them to code translation.009
However, the scarcity of parallel corpora hin-010
ders models from learning semantic and syn-011
tactic alignment knowledge across program-012
ming languages. To address this issue, we pro-013
pose a data augmentation method that lever-014
ages LLMs to automatically generate snippet-015
alignment data, which can provide more fine-016
grained syntactic alignment knowledge than017
program-alignment data. In addition, we also018
explore two effective training approaches to019
consistently enhance model performance by020
leveraging snippet-alignment data. Experi-021
ments on the widely used programming lan-022
guages Python, Java, and C++ demonstrate023
that our augmented snippet-alignment data and024
training approaches can lead to further perfor-025
mance improvements compared to fine-tuning026
only on program-alignment data.027

1 Introduction028

Code translation aims to translate source code029

from one programming language to another (Chen030

et al., 2018). The advancement of automated code031

translation techniques has enhanced productivity in032

various software development scenarios, such as:033

(1) migrating legacy software systems to modern034

programming languages for better maintainability035

(e.g., from COBOL to Java (Lachaux et al., 2020)),036

(2) refactoring code bases to utilize distinctive char-037

acteristics of the target language (e.g., from C to its038

memory-safe alternative, Rust (Hong, 2023; Eniser039

et al., 2025)), and (3) enabling efficient multilin-040

gual development, consequently expanding the ap-041

plicability of softwares (Macedo et al., 2025).042

#include <bits/stdc++.h> 
using namespace std; 
bool sumOfTwoCubes(int n) { 
    long long int lo = 1;
    long long int hi = (long long int)cbrt(n); 
    while (lo <= hi) { 
        long long int curr = (lo*lo*lo + hi*hi*hi); 
    if (curr == n) return true;
...

import math 
def sumOfTwoCubes(n): 
    lo = 1 
    hi = round(math.pow(n, 1 / 3)) 
    while (lo <= hi): 
        curr = (lo*lo*lo + hi*hi*hi) 
        if (curr == n): 
            return True 
...

(a) Program-Alignment

if (curr == n) return true;

if (curr == n): 
        return True

(b) Snippet-Alignment

Figure 1: An example of program-alignment data and
snippet-alignment data. Though program-alignment
data can help models learn semantic alignment knowl-
edge, it is typically extensive in length. Whereas snippet-
alignment data itself is shorter and can naturally help
models learn syntactic alignment knowledge.

Recent advancements in large language models 043

(LLMs) have demonstrated their strong potential in 044

code translation (Pan et al., 2024; Tao et al., 2024). 045

However, the scarcity of existing parallel corpora in 046

code translation, along with their limited supported 047

languages, has made it challenging for LLMs to suf- 048

ficiently learn the alignment across programming 049

languages (Zhu et al., 2022a; Ahmad et al., 2023b; 050

Yan et al., 2023; Khan et al., 2024). This has mo- 051

tivated researchers to explore data augmentation 052

techniques for code translation. 053

From a data granularity perspective, existing par- 054
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allel corpora can be divided into two categories:055

program-alignment data and snippet-alignment056

data. Though program-alignment data can help057

models capture semantic alignment knowledge, the058

long length of the data makes it challenging for059

models to learn syntactic alignment knowledge ef-060

fectively (Pan et al., 2024; Xin-Ye et al., 2025). In061

contrast, the shorter length and fine-grained char-062

acteristics of snippet-alignment data can naturally063

help models learn syntactic alignment patterns effi-064

ciently (Zhu et al., 2022a).065

Existing works primarily focus on augmenting066

program-alignment data (Xie et al., 2023; Chen067

et al., 2024). For snippet-alignment data, Zhu068

et al. (2022a) constructed a dataset called XLCoST,069

containing parallel code snippets collected from070

GeeksForGeeks website. The construction process071

was based on the standard template provided by072

GeeksForGeeks, which limited its generalisability073

because the template was only used on this specific074

website.075

To overcome these challenges, we propose a076

novel automated snippet-alignment data augmenta-077

tion pipeline. In short, this pipeline takes program-078

alignment data as input and leverages LLMs to gen-079

erate snippet-alignment data. The design principles080

of this pipeline draw inspiration from the construc-081

tion methodology of XLCoST (Zhu et al., 2022a).082

To ensure the computational resource requirements083

do not increase substantially as the amount of lan-084

guage increases, we explicitly decompose the gen-085

eration part of the pipeline into two discrete stages086

rather than employing a direct end-to-end genera-087

tion approach. Concretely, the generation part of088

the pipeline operates in two stages: (1) leverag-089

ing LLMs to generate and insert comments into090

source programs, followed by (2) rewriting target091

programs that preserve both the content and order092

of the source-program comments, using the origi-093

nal target program as reference.094

We also explore two simple methods to utilize095

snippet-alignment data: Mix-k and 2-Stage. These096

two approaches represent distinct data utilization097

paradigms. The Mix-k approach replaces program-098

alignment data with snippet-alignment data in a099

ratio of k to construct a unified training set, whereas100

the 2-Stage approach employs sequential training,101

first on one data granularity before transitioning to102

the other.103

Then we conducted a series of experiments on104

DeepSeek-Coder-Instruct 1.3B/6.7B (Guo et al.,105

2024), which are widely used code LLMs sup-106

porting various programming languages. Exper- 107

iments on TransCoder-test (Lachaux et al., 2020) 108

demonstrate that our proposed methods and aug- 109

mented data can consistently enhance model perfor- 110

mance compared to fine-tuning only on program- 111

alignment data, measured by pass@1. 112

Our contributions are summarized as follows: 113

• We propose an automated snippet-alignment 114

data augmentation pipeline, which can au- 115

tomatically generate snippet-alignment data 116

from program-alignment data. 117

• We explore two simple methods Mix-k and 2- 118

Stage to leverage snippet-alignment data dur- 119

ing the training procedure. 120

• Experimental results demonstrate that our pro- 121

posed methods and augmented data can con- 122

sistently enhance model performance. 123

2 Related Work 124

2.1 Data Augmentation for Code Translation 125

Due to the scarcity of parallel corpora in code trans- 126

lation, researchers have begun to explore data aug- 127

mentation techniques. Xie et al. (2023) borrowed a 128

term called comparable corpora from natural lan- 129

guage translation, which referred to texts on similar 130

topics in various languages (Gete and Etchegoy- 131

hen, 2022). It proposed three methods to gener- 132

ate comparable corpora, including collecting from 133

existing programming contests, generating from 134

natural language documentations, and retrieving 135

from existing data. It also proposed a method of 136

generating multiple references for the source code 137

by generating several candidates, followed by filter- 138

ing through test cases, which could provide more 139

diverse training signals for the model. Zhu et al. 140

(2024) first fine-tuned a small model on snippet- 141

alignment data (Zhu et al., 2022a), then leveraged 142

this model to generate parallel corpora from mono- 143

lingual data, which significantly reduced reliance 144

on parallel corpora. Chen et al. (2024) designed 145

a rule-based method to transform the parallel data 146

into a more diverse dataset. It also proposed a 147

method to retrieve the similar source code and tar- 148

get code from a large code database to construct 149

new parallel data. 150

However, the existing works mentioned above 151

mainly focus on augmenting program-alignment 152

data, and lack the exploration of snippet-alignment 153

data augmentation. In contrast, our work mainly 154
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...
// Initialize two pointers, lo starting from 1 
and hi set to the cube root of n
long long int lo = 1; 
hi = (long long int)cbrt(n);
// Use a while loop to check all possible 
pairs of cubes between lo and hi
while (lo <= hi) {
    long long curr = lo*lo*lo + hi*hi*hi;
    # If the sum of cubes equals n, return 
True
    if (curr == n) return true;
...

...
for (long long lo = 1, hi = cbrt(n); lo <= hi;)
{
    long long curr = lo*lo*lo + hi*hi*hi;
    if (curr == n) return true;
...

...
# Initialize two pointers, lo 
starting from 1 and hi set to the 
cube root of n
lo = 1 
hi = round(math.pow(n, 1 / 3))
# Use a while loop to check all 
possible pairs of cubes between lo 
and hi
while (lo <= hi): 
    curr = (lo*lo*lo + hi*hi*hi)
    # If the sum of cubes equals n, 
return True
    if (curr == n): 
        return True
...

...
lo = 1 
hi = round(math.pow(n, 1 / 3)) 
while (lo <= hi): 
    curr = (lo*lo*lo + hi*hi*hi)
    if (curr == n): 
        return True 
...

Stage 1: Comment Insertion Stage 2: Comment-Based Program Rewriting Stage 3: Split and Match

Initialize two pointers, lo starting from 1 
and hi set to the cube root of n

lo = 1 
hi = round(math.pow(n, 1 / 3)) 

long long int lo = 1; 
hi = (long long int)cbrt(n);

Use a while loop to check all possible pairs 
of cubes between lo and hi

while (lo <= hi): 
    curr = (lo*lo*lo + hi*hi*hi)

while (lo <= hi) {
    long long curr = lo*lo*lo + hi*hi*hi;

If the sum of cubes equals n, return True

if (curr == n): 
        return True

if (curr == n) return true;

Figure 2: Overview of our data augmentation pipeline. It consists of two LLM-involved stages and a post-processing
stage. In Stage 1 (the left part), the LLM takes the source program as input and outputs it with comments inserted.
In Stage 2 (the middle part), the LLM takes the comment-inserted source program and the original target program
as input, and rewrites the target program to preserve the same content and order of comments in the source program.
In Stage 3 (the right part), we can split and match the code snippets according to the comments.

focuses on augmenting snippet-alignment data155

from the existing program-alignment data, which156

bridges this gap in existing works.157

2.2 Snippet-Alignment Datasets in Code158

Translation159

Compared with program-alignment data, snippet-160

alignment data proves much more challenging to161

acquire. One of the primary obstacles lies in assess-162

ing semantic equivalence for isolated code snippets163

without contextual information, where program-164

alignment data can verify its semantic equivalence165

through test cases.166

There are only few existing works that construct167

snippet-alignment datasets. Zhu et al. (2022b) first168

constructed a dataset called CoST, a multilingual169

code snippet translation dataset containing 7 com-170

monly used programming languages. All data in171

CoST was collected from GeeksForGeeks, which172

provided a standard template. This ensured that dif-173

ferent solutions to the same problem maintained the174

same set of comments in the same order. Through175

this template, the authors extracted the code snip-176

pets and comments for solutions in different lan-177

guages, which were then aligned based on the com-178

ments. When the template did not function as ex-179

pected, the authors manually verified the code and180

either modified it or discarded it. Subsequently,181

Zhu et al. (2022a) constructed XLCoST, which sig-182

nificantly increased the amount of data available 183

in CoST and extended its coverage to multiple pro- 184

gramming tasks, including code translation, code 185

summarization, and code synthesis. 186

Both datasets employ a template-based segmen- 187

tation method to derive snippet-alignment data 188

from program-alignment data, though manual ver- 189

ification remains necessary in certain cases. Cru- 190

cially, this template-dependent approach lacks gen- 191

eralizability, as most program-alignment datasets 192

do not have corresponding pre-defined templates, 193

which motivates us to explore an automated data 194

augmentation method that can be applied to any 195

program-alignment dataset. 196

3 Automated Snippet-Alignment Data 197

Augmentation 198

3.1 Design Principles 199

Before detailing the implementation details of the 200

pipeline, we will first present our design princi- 201

ples. The primary design decision for this pipeline 202

is whether to generate data from scratch or from 203

existing program-alignment data. For one thing, 204

existing parallel data inherently guarantees seman- 205

tic alignment between programs (Zhu et al., 2022a; 206

Ahmad et al., 2023b; Yan et al., 2023; Khan et al., 207

2024), therefore, we can mainly focus on estab- 208

lishing the semantic alignment between code snip- 209
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pets. For another, generating data solely by LLM210

from scratch may lead to low diversity (Wang211

et al., 2023; Luo et al., 2024), which could be212

even worse in snippet-alignment data due to its213

inherently shorter length. Thus, we ultimately elect214

to generate snippet-alignment data from existing215

program-alignment data.216

However, directly utilizing program-alignment217

data to generate snippet-alignment data still con-218

fronts two major challenges. Firstly, it should be219

noted that different solutions corresponding to the220

same problem may use distinct algorithms or data221

structures, with variations in implementation de-222

tails. This may prevent code snippets from being223

matched directly without one of the parallel pro-224

grams being modified. In other words, rewriting225

the target program may be necessary before match-226

ing to ensure that the internal snippets of the target227

program align with those of the source program.228

Secondly, as the number of languages N increases,229

generating snippet-alignment data for all possible230

language pairs through a direct end-to-end genera-231

tion requires C(N, 2) = N(N−1)
2 iterations, which232

would lead to a significant increase in computa-233

tional resources. For a certain problem, if we can234

align the segmentation patterns of all the other lan-235

guages with that of a specific language, the number236

of required iterations will be reduced to N .237

Therefore, we decompose the generation part of238

the pipeline into two stages explicitly. The first239

stage caches the snippet segmentation result to re-240

duce computational resources. In the second stage,241

the pipeline gives LLMs the flexibility to adap-242

tively rewrite target programs as needed, thereby243

resolving internal snippet-alignment issues.244

3.2 Pipeline Implementation245

Figure 2 illustrates an overview of how to generate246

snippet-alignment data from the original program-247

alignment data. Concretely, the proposed pipeline248

consists of two LLM-involved generation stages249

and a post-processing stage: (1) automatically gen-250

erating and inserting code comments for source251

programs, followed by (2) rewriting target pro-252

grams that preserve both the content and order of253

the source-program comments using the original254

target program as a reference, and (3) splitting the255

parallel comment-inserted programs and matching256

corresponding code snippets according to the com-257

ments.258

The first two stages of the entire pipeline are259

driven by LLMs, which also serve as its core com-260

ponents. Following these two stages, we can eas- 261

ily obtain snippet-alignment data through the final 262

post-processing stage by employing simple heuris- 263

tic rules and string processing functions. 264

All the prompts designed for the first two stages 265

will be provided in the Appendix B. 266

3.2.1 Comment Insertion 267

Drawing inspiration from the construction method- 268

ology of XLCoST (Zhu et al., 2022a), we chose 269

to use comments as snippet separators because, in 270

contrast to traditional software engineering tools 271

such as Abstract Syntax Tree (AST) and Control 272

Flow Graph (CFG) (Zhong et al., 2024; Du et al., 273

2025), comments are not language-specific and can 274

take full advantage of the code comprehension ca- 275

pabilities of LLMs (Cui et al., 2024). 276

Given a source program S, we first prompt an 277

LLM M to generate and insert comments into S. 278

The insertion positions are entirely determined by 279

M , guided solely by the principle of inserting as 280

many comments as possible in order to ensure that 281

each code snippet is not excessively lengthy. 282

After this stage, M will output a new source pro- 283

gram S′ = (s0, c1, s1, c2, s2...ck, sk) containing k 284

comments and at most k + 1 snippets, where k is 285

determined by M , si denotes the i-th snippet of S′ 286

and ci denotes the i-th comment of S′. Note that 287

s0 can have a length of 0, since in some cases the 288

first comment can be inserted at the very beginning. 289

The lengths of the other snippets are non-zero. 290

3.2.2 Comment-Based Program Rewriting 291

In the second stage, given a set of target program- 292

ming languages L = [l1, l2...lm] containing m 293

kinds of languages and the original target program 294

set τ = [T1, T2...Tm], where li denotes the i-th 295

target language and Ti denotes the original target 296

program written in li, M takes S′ and one orig- 297

inal target program Ti as input, and outputs the 298

rewritten program T ′
i . 299

Specifically, M will rewrite Ti based on the con- 300

tent and order of the comments in S′, using Ti as a 301

reference. Notably, T ′
i may remain identical to Ti 302

when comments are disregarded, provided that M 303

believes that each snippet is already aligned and no 304

rewriting process is required. 305

After this stage, for each Ti, M will output a new 306

target program T ′
i =

(
ti0, c1, t

i
1, c2, t

i
2...ck, t

i
k

)
that 307

theoretically containing exactly the same amount of 308

comments and snippets as S′, where twi denotes the 309

i-th snippet of Tw and ci denotes the i-th comment 310
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Dataset Size (pairwise) Granularity

XLCoST-Program 26972 Program
XLCoST-Augmented 135654 Snippet

TransCoder-test 1788 Program

Table 1: Statistical information on training set and test
set. The two upper rows represent the training set, while
the bottom row corresponds to the test set.

of Tw. Then we will obtain a new target program311

set τ ′ = [T ′
1, T

′
2...T

′
m].312

3.2.3 Split and Match313

After the two stages above, we obtain S′ and τ ′314

with identical comment content and comment order315

theoretically. Suppose S′ as another target program316

T ′
m+1, then we can formally construct a new tar-317

get program set τ ′′ =
[
T ′
1, T

′
2...T

′
m, T ′

m+1

]
, where318

T ′
m+1 = S′.319

Then for each pair of target programs T ′
i and T ′

j ,320

i, j ∈ [1,m+ 1], we then extract each tip and tjp,321

p ∈ [0, k], from T ′
i and T ′

j according to ci to con-322

struct the final snippet-alignment data. If we find323

any discrepancy in the number or content of com-324

ments between T ′
i and T ′

j , we will simply ignore325

this pair and continue the matching procedure.326

4 Experiment327

4.1 Setting328

Datasets. In Table 1, we summarize the statisti-329

cal information of the datasets used in our exper-330

iments. We employ XLCoST (Zhu et al., 2022a)331

as the training set and the foundational dataset for332

our data augmentation, which covers 7 commonly333

used programming languages and contains both334

program-alignment and snippet-alignment data.335

Considering the computational resources, we336

have chosen Python, Java, and C++ as our basic lan-337

guage setting, as they are widely used in different338

software development scenarios (Lachaux et al.,339

2020, 2021; Ahmad et al., 2023a; Xin-Ye et al.,340

2025), and also cover both dynamic programming341

languages and static programming languages. For342

the program-alignment data, we select XLCoST-343

Program, i.e., the program-alignment data in XL-344

CoST, as the source of program-alignment data345

used for subsequent training.346

For the snippet-alignment data, we employ the347

pipeline described in Section 3.2 to construct a348

snippet-alignment dataset XLCoST-Augmented by349

augmenting the program-alignment data in the XL-350

CoST dataset. Specifically, we utilize DeepSeek- 351

V3-0324 (DeepSeek-AI et al., 2025) through its 352

official API interface throughout the entire pipeline 353

for Comments Insertion and Program Rewriting. 354

After the augmentation and post-processing pro- 355

cedures, we ultimately obtained 135,654 pairs of 356

snippet-alignment data. 357

Following the previous works (Yang et al., 2024; 358

Du et al., 2025; He et al., 2025), we have conducted 359

a comprehensive set of experiments on TransCoder- 360

test (Lachaux et al., 2020), a widely used public 361

code translation dataset containing 1,788 pairs of 362

program-alignment data in Python, Java, and C++. 363

Each problem includes ten corresponding test cases 364

to verify the semantic equivalence between the 365

translated program and the source program, which 366

enables more accurate measurement of the perfor- 367

mance of LLMs in code translation compared with 368

those datasets without test cases (Lu et al., 2021; 369

Zhu et al., 2022a). 370

Evaluation Metric. Since we have access to the 371

test cases of TransCoder-test, we can directly use 372

the pass@k metric to evaluate the semantic equiv- 373

alence (Chen et al., 2021). To calculate pass@k, 374

we first generate k code samples for each problem, 375

and a problem is considered passed if at least one 376

of the generated samples passes all the test cases. 377

Due to the issue of high variance brought by 378

sampling, Chen et al. (2021) refined it into a more 379

stable metric as described in Equation 1. 380

pass@k := E
Problems

[
1−

(
n−c
k

)(
n
k

) ]
(1) 381

For reproducibility purposes, we set k = 1 and 382

employ a greedy decoding strategy, which also re- 383

duces resource consumption during inference. 384

Training Details. For our backbone model, we 385

use DeepSeek-Coder-Instruct 1.3B/6.7B, which are 386

powerful open-source code LLMs supporting var- 387

ious programming languages (Guo et al., 2024). 388

Following previous work (He et al., 2025), we em- 389

ploy instruction tuning on the backbone using a 390

simple code translation instruction template to bet- 391

ter align its behaviour with code translation. 392

For the hyperparameters during training, we set 393

the batch size to 128 for the training set comprising 394

program-alignment data and to 512 for the train- 395

ing set comprising only snippet-alignment data. 396

We also set the max sequence length to 1536 for 397
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Method Epoch J2P C2P P2C J2C P2J C2J AVG

DeepSeek-Coder
Instruct 1.3B

Baseline 1 80.84 81.10 76.15 86.92 82.96 87.08 82.51
2 83.12 82.75 77.62 87.24 83.12 88.36 83.70

Mix 1 80.68 81.65 77.98 88.20 83.60 86.92 83.17
2-Stage 1+1 82.47 79.63 83.49 91.71 88.80 91.55 86.28

DeepSeek-Coder
Instruct 6.7B

Baseline 1 85.23 84.40 80.92 88.84 83.28 90.43 85.52
2 86.69 86.06 78.90 89.31 78.25 89.00 84.70

Mix 1 85.23 84.59 80.37 89.00 85.55 89.63 85.73
2-Stage 1+1 84.42 80.55 88.81 93.78 91.07 94.26 88.82

Table 2: Performance comparison between baseline and our proposed methods. The header X2Y denotes translating
from language X to Y, where P, J, and C stand for Python, Java, and C++, respectively. AVG stands for the average
performance across all language pairs. The Mix method here denotes Mix-0.7, and the 2-Stage method here denotes
2-Stage-PS. We conduct all experiments twice and report the higher of the two results.

program-alignment data and to 1024 for snippet-398

alignment data. For all the training procedure, we399

set the learning rate to 2e-5 and the warmup ratio400

to 0.1, using cosine lr_scheduler_type. We save401

the model once the entire training process is com-402

plete. For all the training, we use 2 NVIDIA A100-403

SXM4-80GB.404

For the baseline, we directly fine-tune the model405

on program-alignment data. For our methods, there406

are two different ways to fine-tune the model lever-407

aging our augmented snippet-alignment data. Mix-408

k denotes that some of the program-alignment409

data is replaced with the corresponding snippet-410

alignment data, where k is a hyperparameter that411

controls the replacement ratio. 2-Stage-XY means412

that we first train the model on data of one spe-413

cific granularity X, and then train the model on414

data of another granularity Y. Here, we use P and415

S to denote program-alignment data and snippet-416

alignment data, respectively.417

4.2 Main Results418

We present the performance comparison of our pro-419

posed methods and the baseline in Table 2. We ob-420

tain a strong baseline performance simply by fine-421

tuning the model solely on program-alignment data,422

and this is typically the paradigm adopted when423

we want to adapt a code LLM for code translation.424

Moreover, when we introduce snippet-alignment425

data, we observe consistent performance gains. Un-426

der a one-epoch training setup, a partial replace-427

ment of program-alignment data can yield measur-428

able improvements: +0.66% for the 1.3B model429

and +0.21% for the 6.7B model.430

Due to the significant disparities in length and431

difficulty between the two data granularities, sim-432

ply mixing snippet data may only yield limited per-433

formance gains, which has motivated our 2-Stage 434

approach that explicitly splits the training process 435

into two steps. 436

Specifically, we first train the model on program- 437

alignment data to learn semantic alignment knowl- 438

edge, followed by training on snippet-alignment 439

data to learn syntax alignment knowledge. Through 440

this, we observe a significant average performance 441

improvement of +2.58% for the 1.3B model and 442

+3.30% for the 6.7B model, proving the effective- 443

ness of both our augmented data and our 2-Stage 444

approach. 445

This result is particularly intriguing because the 446

models are ultimately trained on snippet-alignment 447

data yet evaluated on program-alignment data, 448

where a granularity mismatch exists. Despite this 449

discrepancy, this approach still yields consistent 450

performance improvements on average. 451

Conventionally, optimal evaluation performance 452

is expected when the data granularity of the training 453

set—at least in the final fine-tuning stage—matches 454

that of the test set. More intriguingly, the average 455

performance gains primarily stem from X2J and 456

X2C translations, albeit at the cost of X2P perfor- 457

mance. This phenomenon complements the behav- 458

ior of baseline: when increasing training epochs 459

from 1 to 2, X2P improves consistently—even as 460

the average performance of 6.7B model declines 461

in the second epoch. This may suggest that con- 462

tinued training on program-alignment data could 463

further improve the performance of X2P, whereas 464

snippet-alignment data could preferentially boost 465

the performance of X2J and X2C. 466

4.3 Analysis 467

Granularity Order of 2-Stage Training. To fur- 468

ther investigate how the training order of different 469
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Epoch Order J2P C2P P2C J2C P2J C2J AVG

DeepSeek-Coder
Instruct 1.3B

1 P 80.84 81.10 76.15 86.92 82.96 87.08 82.51
S 76.79 76.15 82.75 90.59 86.53 89.79 83.77

2

PP 83.12 82.75 77.62 87.24 83.12 88.36 83.70
SP 82.79 82.75 77.25 86.92 83.44 88.20 83.56
SS 79.06 78.72 82.20 89.95 86.53 90.43 84.48
PS 82.47 79.63 83.49 91.71 88.80 91.55 86.28

DeepSeek-Coder
Instruct 6.7B

1 P 85.23 84.40 80.92 88.84 83.28 90.43 85.52
S 83.12 79.82 87.52 92.66 91.07 94.26 88.08

2

PP 86.69 86.06 78.90 89.31 78.25 89.00 84.70
SP 85.71 84.59 81.47 89.00 84.74 89.95 85.91
SS 83.60 81.47 88.26 92.98 91.23 93.62 88.53
PS 84.42 80.55 88.81 93.78 91.07 94.26 88.82

Table 3: Performance comparison of all order combinations of snippet-alignment and program-alignment data.

data granularities affects model performance, we470

conduct a series of experiments to evaluate the per-471

formance among different order combinations of472

data granularities.473

Table 3 shows the performance comparison of all474

the order combinations. When fixing the number475

of training epochs to 1, we observe that training476

solely on snippet-alignment data yields an average477

performance improvement of +1.26% for the 1.3B478

model and +2.56% for the 6.7B model. When we479

extend the training epochs to 2, we consistently480

observe a similar phenomenon in the results.481

This aligns with our observations in Section 4.2,482

where snippet-alignment data is shown to enhance483

model performance specifically for X2J and X2C484

translations.485

However, training solely on snippet-alignment486

data fails to yield optimal results, necessitating487

the incorporation of program-alignment data. As a488

result, we can observe that 2-Stage-PS improves the489

X2P performance to some extent compared with 2-490

Stage-SS trained solely on snippet-alignment data,491

and also increases the performance on X2C and492

X2J slightly, further illustrating that the training493

process should make full use of data of different494

granularities rather than relying on data of a single495

granularity.496

Snippet Training as a Powerful Foundational497

Training Stage. From the results in Table 3, we498

can observe that training on snippet-alignment data499

before program-alignment data (2-Stage-SP) can500

yield an average performance improvement com-501

pared with training solely on program-alignment502

data. This leads us to investigate that how model503

performance would vary if we add just one epoch504

of snippet-alignment training before the program-505

alignment training stage while holding the number 506

of program-alignment training epochs constant? 507

The results in Table 4 indicate that adding only 508

one epoch of snippet-alignment training prior to 509

the program-alignment training stage can consis- 510

tently improve model performances for almost all 511

language combinations. 512

Besides, while the model exhibits overfitting as 513

training epochs increase, especially for the 6.7B 514

model, introducing snippet-alignment data may 515

mitigate performance degradation—reducing the 516

loss margin from -0.98% to -0.46% for the 1.3B 517

model. For the 6.7B model, when P-Epoch is 2, the 518

performance of the model can grow further rather 519

than decline. 520

Moreover, even with the same total number of 521

training epochs, SPP still significantly outperforms 522

PPP by +1.76% for the 1.3B model and +4.56% 523

for the 6.7B model. SP outperforms PP by +1.21% 524

for the 6.7B model; for the 1.3B model, its perfor- 525

mance is comparable to that of PP. 526

Overall, the results above demonstrate both the 527

effectiveness of our generated snippet-alignment 528

data and the promising potential of regarding 529

snippet-alignment training as a powerful founda- 530

tional training stage for achieving consistent model 531

performance gains. 532

Data Quality of LLM-Augmented Snippets. To 533

further investigate the quality of LLM-Augmented 534

snippet-alignment data, we present detailed statis- 535

tical information of XLCoST-Augmented in Ta- 536

ble 5. After the augmentation process, we obtain 537

XLCoST-Augmented-Initial containing 139,556 538

pairs of snippet-alignment data. We then perform 539

a post-processing stage on these data, including 540

extracting the generated code from the output of 541
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P-Epoch Order J2P C2P P2C J2C P2J C2J AVG

DeepSeek-Coder
Instruct 1.3B

1 P 80.84 81.10 76.15 86.92 82.96 87.08 82.51
SP 82.79 82.75 77.25 86.92 83.44 88.20 83.56

2 PP 83.12 82.75 77.62 87.24 83.12 88.36 83.70
SPP 83.60 84.22 79.82 86.76 83.93 88.52 84.48

3 PPP 82.96 81.65 76.88 87.40 80.52 86.92 82.72
SPPP 83.44 84.59 78.35 86.92 81.82 89.00 84.02

DeepSeek-Coder
Instruct 6.7B

1 P 85.23 84.40 80.92 88.84 83.28 90.43 85.52
SP 85.71 84.59 81.47 89.00 84.74 89.95 85.91

2 PP 86.69 86.06 78.90 89.31 78.25 89.00 84.70
SPP 86.53 86.97 82.02 88.84 84.58 89.79 86.46

3 PPP 85.55 83.49 74.68 88.52 72.24 86.92 81.90

Table 4: Performance comparison of adding only one epoch of snippet-alignment training prior to the program-
alignment training stage.
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Figure 3: The distribution of the amount of code snip-
pets in source programs after the Comment Insertion
stage described in Section 3.2.1.

LLM, comparing the comment content and order of542

parallel data, and filtering out snippets that contains543

useless information (e.g., those consisting solely of544

import or #include statements).545

Finally, we have discarded 3902 pairs of snippet-546

alignment data, and the overall data usability rate547

is 97.2%, demonstrating high quality of LLM-548

Augmented data and high effectiveness of our aug-549

mentation pipeline.550

Moreover, Figure 3 illustrates the distribution of551

the number of code snippets of source programs552

following the Comment Insertion stage outlined in553

Section 3.2.1. The total amount of original source554

program is 9,704.555

After our statistics, the average number of lines556

of code in the original source programs is 21.72557

lines, and approximately 84% source programs558

are inserted with 3 to 8 comments after the Com-559

ment Insertion stage, with the number of average560

code snippets being 5.63. These statistics demon-561

Dataset Size Percentage

XLCoST-Augmented-Initial 139556 100%
- Parsing Error 24 ~0%
- Comments Not Match Error 425 0.31%
- Filtering Error 3453 2.47%

XLCoST-Augmented 135654 97.20%

Table 5: Statistical information of data filtered by the
entire post-processing stage.

strate that the two LLM-involved augmentation 562

stages function as expected and show great po- 563

tential for generating large amounts of snippet- 564

alignment data. 565

5 Conclusion 566

In this paper, we propose an automated snippet- 567

alignment data augmentation method, which can 568

generate snippet-alignment data from program- 569

alignment data. It first utilizes LLMs to insert com- 570

ments into the source program and then rewrites 571

the target program to ensure internal alignment of 572

the parallel data. After these two steps, snippet- 573

alignment data can be obtained by extracting and 574

matching code snippets based on the content and or- 575

der of the shared comments. Moreover, we explore 576

two different methods to utilize snippet-alignment 577

data during training. Experimental results demon- 578

strate that our augmented data and the proposed 579

methods can consistently improve model perfor- 580

mance. A key observation is that training solely on 581

data of single data granularity can only lead to a 582

suboptimal performance. In contrast, fully lever- 583

aging both program-alignment data and snippet- 584

alignment data can achieve optimal performance 585

on average. 586
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Limitations587

Firstly, due to the limitation of computational re-588

sources, we did not validate the effectiveness of589

our proposed data augmentation pipeline on more590

datasets. The XLCoST dataset we use already con-591

tains snippet-alignment data, which makes it easier592

for LLMs to perform relevant augmentation steps593

such as Comment Insertion and Program Rewrit-594

ing. We have yet to explore how LLMs ultimately595

perform when the data is more heterogeneous, i.e.,596

having huge differences in implementation details597

or length. Secondly, we have only conducted our598

experiments on DeepSeek-Coder-Instruct of 1.3B599

and 6.7B, and have not yet verified the validity of600

our method or data on other models. Thirdly, al-601

though our proposed method 2-Stage-PS is optimal602

in terms of average performance, it is not optimal603

in every language setting, and in particular, it sacri-604

fices the performance of X2P, where we have not605

yet delved into the reasons for the performance606

degradation.607

Ethics Statement608

All of the models used in this paper are publicly609

available, and we have used them in accordance610

with their respective licences and terms of use.611
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A Case Study.790

We will show some examples of programs that the791

baseline fail to translate, but our model, trained by792

the 2-Stage method, can translate successfully. In793

the figures, we have marked the wrong codes in red794

font and the correctly translated codes in green font.795

We can find that, in Figure 4, the baseline model796

misinterprets the meaning of string subtraction in797

Java, while the 2-Stage model, trained with the798

snippet-alignment data, faithfully translates string799

subtraction into Unicode subtraction. In Figure 5,800

the model misinterprets the meaning of the assign-801

ment statement and simplifies it incorrectly, while802

our model faithfully completes the translation of803

the assignment statement These cases of failure804

caused by a simple syntax error highlights the im-805

portance of snippet training.806

B Pipeline Prompt807

We will demonstrate the prompt template that we808

have designed for the entire pipeline described in809

Section 3.2.810

11



<original_Java_program >
...
static int f_gold(String str) {

int res = str.charAt (0) - '0';
for (int i = 1; i < str.length (); i++) {

if (str.charAt(i) == '0' str.charAt(i) == '1' res < 2) {
res += (str.charAt(i) - '0');

} else {
res *= (str.charAt(i) - '0');

}
}
return res;

}
...

<translated_Python_program_by_Baseline >
...
def f_filled ( str ) :

res = int ( str [ 0 ] )
for i in range ( 1 , len ( str ) ) :

if ( str [ i ] == '0' or str [ i ] == '1' or res < 2 ) :
res += int ( str [ i ] )

else :
res *= int ( str [ i ] )

return res
...

<translated_Python_program_by_2 -Stage >
...
def f_filled ( str ) :

res = ord ( str [ 0 ] ) - ord ( ’0’ )
for i in range ( 1 , len ( str ) ) :

if ( str [ i ] == '0' or str [ i ] == '1' or res < 2 ) :
res += ( ord ( str [ i ] ) - ord ( '0' ) )

else :
res *= ( ord ( str [ i ] ) - ord ( '0' ) )

return res
...

Figure 4: A J2P problem where baseline fails to translate and our 2-Stage model translates it successfully.
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<original_Java_program >
...
static int f_gold(int arr[], int n) {

Map <Integer , Integer > um = new HashMap <>();
int curr_sum = 0;
for (int i = 0; i < n; i++) {

curr_sum += (arr[i] == 0) ? -1 : arr[i];
um.put(curr_sum , um.get(curr_sum) == null ? 1 : um.get(curr_sum) + 1);

}
...
}
<translated_Python_program_by_Baseline >
...
def f_filled ( arr , n ) :

um = { }
curr_sum = 0
for i in range ( n ) :

curr_sum += ( arr [ i ] == 0 ) - 1 or arr [ i ]
if curr_sum in um :

um [ curr_sum ] += 1
else :

um [ curr_sum ] = 1
...

<translated_Python_program_by_2 -Stage >
...
def f_filled ( arr , n ) :

um = { }
curr_sum = 0
for i in range ( n ) :

curr_sum += - 1 if arr [ i ] == 0 else arr [ i ]
if curr_sum in um :

um [ curr_sum ] += 1
else :

um [ curr_sum ] = 1
...

Figure 5: Another J2P problem where baseline fails to translate and our 2-Stage model translates it successfully.
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You are an expert in code summarization. You will be provided with a piece of code, and your
task is to add a few comments within the code based on its overall functionality.

These comments should follow the restrictions below:
1. The position of these comments must be between lines of code. DO NOT add the comment at the

end of a particular line of code.
2. Each comment should correspond to several lines of code. A comment corresponding to only a

single line of code is forbidden.
3. These comments should fully cover all lines of code, and the code segments corresponding to

different comments must not overlap, i.e. each line of code must have only one
corresponding comment.

4. Control the number of comments to be added, if the code is long you can add more comments.
Ensure that a programming beginner can clearly understand every segment of the code by
reading the comments.

The Input Code is marked with <Code> and </Code>, and your Output Code should also be marked
with <Code> and </Code>.

Here is an example:
Input Code:
<example_source_program>

First of all, you can add some comment tags <ct> to the positions where you think comments are
needed, which can help you break down this task.

Remember that the position of these comment tags must be between lines of code.
And remember, these comments should fully cover all lines of code, and the code segments

corresponding to different comments must not overlap, i.e. each line of code must have only
one corresponding comment.

You should also control the number of comments to be added, if the code is long you can add
more comments.

Since the Input Code may not be formatted, you should **format** the Input Code before
inserting the comments, so that it can be more readable.

Here is the edited code:
<edited_example_source_program>

After this step, you can replace the comment tags with real comments.
Each comment should explain the functionality of the corresponding code segment. The comment

could have been written more thoroughly if the corresponding code segment is long.

Output Code:
<example_source_program_with_comment_inserted>

Here is the <src_lan> code to add comments. Please follow the restrictions and procedures
above, and you only need to return the Output Code.

Input Code:
<Code>
<tag>
</Code>

Figure 6: The prompt designed for Comment Insertion stage described in Section 3.2.1. Due to length constraints,
we have omitted the example provided for the model in the template
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<example_source_program> can be replaced by the following example:
<Code>
def maxPresum ( a , b ) :

X = max ( a [ 0 ] , 0 )
for i in range ( 1 , len ( a ) ) :

a [ i ] += a [ i - 1 ]
X = max ( X , a [ i ] )

Y = max ( b [ 0 ] , 0 )
for i in range ( 1 , len ( b ) ) :

b [ i ] += b [ i - 1 ]
Y = max ( Y , b [ i ] )

return X + Y
A = [ 2 , - 1 , 4 , - 5 ]
B = [ 4 , - 3 , 12 , 4 , - 3 ]
print ( maxPresum ( A , B ) )
</Code>

<edited_example_source_program> can be replaced by the following example:
<Code>
<ct>
def maxPresum(a, b):

X = max(a[0], 0)
Y = max(b[0], 0)
<ct>
for i in range(1, len(a)):

a[i] += a[i - 1]
X = max(X, a[i])

<ct>
for i in range(1, len(b)):

b[i] += b[i - 1]
Y = max(Y, b[i])

return X + Y
<ct>
A = [2, -1, 4, -5]
B = [4, -3, 12, 4, -3]
print(maxPresum(A, B))
</Code>

<example_source_program_with_comment_inserted> can be replaced by the following example:
<Code>
# To compute the sum of the maximum prefix sum of two arrays, we first initialize X and Y as

the maximum of the first element of the array A [] and B [] or 0.
def maxPresum(a, b):

X = max(a[0], 0)
Y = max(b[0], 0)
# Iterate through the array A [] to compute the maximum prefix sum of array A [].
for i in range(1, len(a)):

a[i] += a[i - 1]
X = max(X, a[i])

# Iterate through the array B [] to compute the maximum prefix sum of array B []. Then
return the sum of the maximum prefix sum of two arrays.
for i in range(1, len(b)):

b[i] += b[i - 1]
Y = max(Y, b[i])

return X + Y
# Create two arrays to test the above function
A = [2, -1, 4, -5]
B = [4, -3, 12, 4, -3]
print(maxPresum(A, B))
</Code>

Figure 7: The concrete examples omitted in Figure 6.

15



You are an expert in code translation. You will be provided with two pieces of code that
implement the same functionality but are written in two different programming languages.

The first piece of code contains several comments that can be used to break the code into
smaller segments, and each comment describes the functionality of the corresponding segment
of code, while the second piece of code doesn't have any comments.

Your task is to regenerate the second piece of code with comments based on the first piece of
code and its comments, using the second piece of code as a reference. Specifically, you
need to translate the first piece of code segment by segment from top to bottom.

Since the second piece of reference code is functionally identical to the first one, you should
prioritize copying the relevant parts of the second piece of code during the translation
process.

Since I will later match the corresponding segments of the two pieces of code based on the
comments, the comments in the second piece of code must match those in the first piece of
code exactly in quantity, content, and order.

Here is an example of how to do this. The codes below are written in Python and C++, and the
Python code is provided with comments:

<example_source_program_with_comment>

<example_orginal_target_program>

Since the second piece of code may not be formatted, you should format the second piece of code
before the translation process, so that it can be more readable and be easily divided into
segments.

Then we can regenerate the second piece of code segment by segment based on the comments of the
first piece of code, using the second piece of code as a reference:

<example_rewritten_target_program>

Since the reference code could not be aligned well with the first piece of code, we modified
the second piece of code to ensure strict alignment with the first, based on the number,
content and order of the comments from the first piece of code.

In this example, some lines of the reference code can be reused, but you are still allowed to
generate entirely new code, as long as you ensure that the second piece of code matches the
first segment by segment.

Here are the codes of this task:
```<lan_tag_1>
<tag1>
```

```<lan_tag_2>
<tag2>
```

Figure 8: The prompt designed for Comment-Based Program Rewriting stage described in Section 3.2.2. Due to
length constraints, we have omitted the example provided for the model in the template
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<example_source_program_with_comment> can be replaced by the following example:
```python
# To compute the sum of the maximum prefix sum of two arrays, we first initialize X and Y as

the maximum of the first element of the array A [] and B [] or 0.
def maxPresum(a, b):

X = max(a[0], 0)
Y = max(b[0], 0)
# Iterate through the array A [] to compute the maximum prefix sum of array A [].
for i in range(1, len(a)):

a[i] += a[i - 1]
X = max(X, a[i])

# Iterate through the array B [] to compute the maximum prefix sum of array B []. Then
return the sum of the maximum prefix sum of two arrays.
for i in range(1, len(b)):

b[i] += b[i - 1]
Y = max(Y, b[i])

return X + Y
# Create two arrays to test the above function
A = [2, -1, 4, -5]
B = [4, -3, 12, 4, -3]
print(maxPresum(A, B))
```

<example_orginal_target_program> can be replaced by the following example:
```cpp
#include <bits/stdc++.h>
using namespace std;

int maxPresum(vector<int> a, vector<int> b) {
int X = max(a[0], 0);
int i = 1;
while (i < a.size()) {

a[i] += a[i - 1];
X = max(X, a[i]);
i++;

}

int Y = max(b[0], 0);
i = 1;
while (i < b.size()) {

b[i] += b[i - 1];
Y = max(Y, b[i]);
i++;

}

return X + Y;
}

int main() {
vector<int> A = {2, -1, 4, -5};
vector<int> B = {4, -3, 12, 4, -3};
cout << maxPresum(A, B) << endl;

}
```

Figure 9: The first two concrete examples omitted in Figure 8.
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<example_rewritten_target_program> can be replaced by the following example:
```cpp
// To compute the sum of the maximum prefix sum of two arrays, we first initialize X and Y as

the maximum of the first element of the array A [] and B [] or 0.
#include <bits/stdc++.h>
using namespace std;
int maxPresum(vector<int> a, vector<int> b) {

int X = max(a[0], 0);
int Y = max(b[0], 0);
// Iterate through the array A [] to compute the maximum prefix sum of array A [].
for (int i = 1; i < a.size(); i++) {

a[i] += a[i - 1];
X = max(X, a[i]);

}
// Iterate through the array B [] to compute the maximum prefix sum of array B []. Then
return the sum of the maximum prefix sum of two arrays.
for (int i = 1; i < b.size(); i++) {

b[i] += b[i - 1];
Y = max(Y, b[i]);

}
return X + Y;

}
// Create two arrays to test the above function
int main() {

vector<int> A = {2, -1, 4, -5};
vector<int> B = {4, -3, 12, 4, -3};
cout << maxPresum(A, B) << endl;

}
```

Figure 10: The last concrete example omitted in Figure 8.
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