Automated Snippet-Alignment Data Augmentation for Code Translation

Anonymous ACL submission

Abstract

Code translation aims to translate a piece of
code from its source language to the target lan-
guage. It is widely used in different software
development scenarios such as software mi-
gration, multilingual development, and system
refactoring. With the rapid advancement of
Large Language Models (LLMs), researchers
have begun applying them to code translation.
However, the scarcity of parallel corpora hin-
ders models from learning semantic and syn-
tactic alignment knowledge across program-
ming languages. To address this issue, we pro-
pose a data augmentation method that lever-
ages LL.Ms to automatically generate snippet-
alignment data, which can provide more fine-
grained syntactic alignment knowledge than
program-alignment data. In addition, we also
explore two effective training approaches to
consistently enhance model performance by
leveraging snippet-alignment data. Experi-
ments on the widely used programming lan-
guages Python, Java, and C++ demonstrate
that our augmented snippet-alignment data and
training approaches can lead to further perfor-
mance improvements compared to fine-tuning
only on program-alignment data.

1 Introduction

Code translation aims to translate source code
from one programming language to another (Chen
et al., 2018). The advancement of automated code
translation techniques has enhanced productivity in
various software development scenarios, such as:
(1) migrating legacy software systems to modern
programming languages for better maintainability
(e.g., from COBOL to Java (Lachaux et al., 2020)),
(2) refactoring code bases to utilize distinctive char-
acteristics of the target language (e.g., from C to its
memory-safe alternative, Rust (Hong, 2023; Eniser
et al., 2025)), and (3) enabling efficient multilin-
gual development, consequently expanding the ap-
plicability of softwares (Macedo et al., 2025).

import math
def sumOfTwoCubes(n):
lo=1
hi = round(math.pow(n, 1 / 3))
while (lo <= hi):
curr = (loxloxlo + hixhixhi)
if (curr == n):
return True

#include <bits/stdc++.h>
using namespace std;
bool sumOfTwoCubes(int n)
long long int lo = 1;
long long int hi = (long long int)cbrt(n);
while (lo <= hi) {
long long int curr = (loxloxlo + hixhixhi);
if (curr == n) return true;

(a) Program-Alignment

if (curr == n):
return True

if (curr == n) return true;
(b) Snippet-Alignment

Figure 1: An example of program-alignment data and
snippet-alignment data. Though program-alignment
data can help models learn semantic alignment knowl-
edge, it is typically extensive in length. Whereas snippet-
alignment data itself is shorter and can naturally help
models learn syntactic alignment knowledge.

Recent advancements in large language models
(LLMs) have demonstrated their strong potential in
code translation (Pan et al., 2024; Tao et al., 2024).
However, the scarcity of existing parallel corpora in
code translation, along with their limited supported
languages, has made it challenging for LLMs to suf-
ficiently learn the alignment across programming
languages (Zhu et al., 2022a; Ahmad et al., 2023b;
Yan et al., 2023; Khan et al., 2024). This has mo-
tivated researchers to explore data augmentation
techniques for code translation.

From a data granularity perspective, existing par-

allel corpora can be divided into two categories:
program-alignment data and snippet-alignment
data. Though program-alignment data can help
models capture semantic alignment knowledge, the
long length of the data makes it challenging for
models to learn syntactic alignment knowledge ef-
fectively (Pan et al., 2024; Xin-Ye et al., 2025). In
contrast, the shorter length and fine-grained char-
acteristics of snippet-alignment data can naturally
help models learn syntactic alignment patterns effi-
ciently (Zhu et al., 2022a).

Existing works primarily focus on augmenting
program-alignment data (Xie et al., 2023; Chen
et al., 2024). For snippet-alignment data, Zhu
et al. (2022a) constructed a dataset called XLCoST,
containing parallel code snippets collected from
GeeksForGeeks website. The construction process
was based on the standard template provided by
GeeksForGeeks, which limited its generalisability
because the template was only used on this specific
website.

To overcome these challenges, we propose a
novel automated snippet-alignment data augmenta-
tion pipeline. In short, this pipeline takes program-
alignment data as input and leverages LLMs to gen-
erate snippet-alignment data. The design principles
of this pipeline draw inspiration from the construc-
tion methodology of XLCoST (Zhu et al., 2022a).
To ensure the computational resource requirements
do not increase substantially as the amount of lan-
guage increases, we explicitly decompose the gen-
eration part of the pipeline into two discrete stages
rather than employing a direct end-to-end genera-
tion approach. Concretely, the generation part of
the pipeline operates in two stages: (1) leverag-
ing LLMs to generate and insert comments into
source programs, followed by (2) rewriting target
programs that preserve both the content and order
of the source-program comments, using the origi-
nal target program as reference.

We also explore two simple methods to utilize
snippet-alignment data: Mix-k and 2-Stage. These
two approaches represent distinct data utilization
paradigms. The Mix-k approach replaces program-
alignment data with snippet-alignment data in a
ratio of k to construct a unified training set, whereas
the 2-Stage approach employs sequential training,
first on one data granularity before transitioning to
the other.

Then we conducted a series of experiments on
DeepSeek-Coder-Instruct 1.3B/6.7B (Guo et al.,
2024), which are widely used code LLMs sup-

porting various programming languages. Exper-
iments on TransCoder-test (Lachaux et al., 2020)
demonstrate that our proposed methods and aug-
mented data can consistently enhance model perfor-
mance compared to fine-tuning only on program-
alignment data, measured by pass@]1.

Our contributions are summarized as follows:

* We propose an automated snippet-alignment
data augmentation pipeline, which can au-
tomatically generate snippet-alignment data
from program-alignment data.

* We explore two simple methods Mix-k and 2-
Stage to leverage snippet-alignment data dur-
ing the training procedure.

* Experimental results demonstrate that our pro-
posed methods and augmented data can con-
sistently enhance model performance.

2 Related Work

2.1 Data Augmentation for Code Translation

Due to the scarcity of parallel corpora in code trans-
lation, researchers have begun to explore data aug-
mentation techniques. Xie et al. (2023) borrowed a
term called comparable corpora from natural lan-
guage translation, which referred to texts on similar
topics in various languages (Gete and Etchegoy-
hen, 2022). It proposed three methods to gener-
ate comparable corpora, including collecting from
existing programming contests, generating from
natural language documentations, and retrieving
from existing data. It also proposed a method of
generating multiple references for the source code
by generating several candidates, followed by filter-
ing through test cases, which could provide more
diverse training signals for the model. Zhu et al.
(2024) first fine-tuned a small model on snippet-
alignment data (Zhu et al., 2022a), then leveraged
this model to generate parallel corpora from mono-
lingual data, which significantly reduced reliance
on parallel corpora. Chen et al. (2024) designed
a rule-based method to transform the parallel data
into a more diverse dataset. It also proposed a
method to retrieve the similar source code and tar-
get code from a large code database to construct
new parallel data.

However, the existing works mentioned above
mainly focus on augmenting program-alignment
data, and lack the exploration of snippet-alignment
data augmentation. In contrast, our work mainly

Stage 1: Comment Insertion

lo=1
hi = round(math.pow(n, 1 / 3))
while (lo <= hi):

curr = (lokxlokxlo + hikxhixhi)

if (curr == n): if (curr == n) return true;
return True
| |

and hi set to the cube roo
long long int lo = 1;

hile

pairs of cube

cube
while (lo <= hi)

while (lo <= hi):
curr = (loxloxlo + hixhixhi)
If the sum of cubes equals n, T
eturn True
if (curr == n):
return True

the sum of cubes
rue

Stage 2: Comment-Based Program Rewriting

for (long long lo = 1, hi = cbrt(n); lo <= hi;)
{

long long curr = loxloklo + hixhikxhi;

hi = (long long int)cbrt(n);
se a loop to check all

long long curr = lokxlokxlo + hixhixhij;
If equals n, return

if (curr == n) return true;

Stage 3: Split and Match

Initialize two pointers, lo starting from 1
and hi set to the cube root of n

lo=1
hi = round(math.pow(n, 1 / 3))

long long int lo = 1;
hi = (long long int)cbrt(n);

Use a while loop to check all possible pairs
of cubes between lo and hi

while (lo <= hi):
curr = (lokxloklo + hikxhixhi)

while (lo <= hi) {
long long curr = loxloxlo + hixhixhi;
If the sum of cubes equals n, return True

if (curr == n):
return True

if (curr == n) return true;

Figure 2: Overview of our data augmentation pipeline. It consists of two LLM-involved stages and a post-processing
stage. In Stage 1 (the left part), the LLM takes the source program as input and outputs it with comments inserted.
In Stage 2 (the middle part), the LLM takes the comment-inserted source program and the original target program
as input, and rewrites the target program to preserve the same content and order of comments in the source program.
In Stage 3 (the right part), we can split and match the code snippets according to the comments.

focuses on augmenting snippet-alignment data
from the existing program-alignment data, which
bridges this gap in existing works.

2.2 Snippet-Alignment Datasets in Code
Translation

Compared with program-alignment data, snippet-
alignment data proves much more challenging to
acquire. One of the primary obstacles lies in assess-
ing semantic equivalence for isolated code snippets
without contextual information, where program-
alignment data can verify its semantic equivalence
through test cases.

There are only few existing works that construct
snippet-alignment datasets. Zhu et al. (2022b) first
constructed a dataset called CoST, a multilingual
code snippet translation dataset containing 7 com-
monly used programming languages. All data in
CoST was collected from GeeksForGeeks, which
provided a standard template. This ensured that dif-
ferent solutions to the same problem maintained the
same set of comments in the same order. Through
this template, the authors extracted the code snip-
pets and comments for solutions in different lan-
guages, which were then aligned based on the com-
ments. When the template did not function as ex-
pected, the authors manually verified the code and
either modified it or discarded it. Subsequently,
Zhu et al. (2022a) constructed XLCoST, which sig-

nificantly increased the amount of data available
in CoST and extended its coverage to multiple pro-
gramming tasks, including code translation, code
summarization, and code synthesis.

Both datasets employ a template-based segmen-
tation method to derive snippet-alignment data
from program-alignment data, though manual ver-
ification remains necessary in certain cases. Cru-
cially, this template-dependent approach lacks gen-
eralizability, as most program-alignment datasets
do not have corresponding pre-defined templates,
which motivates us to explore an automated data
augmentation method that can be applied to any
program-alignment dataset.

3 Automated Snippet-Alignment Data
Augmentation

3.1 Design Principles

Before detailing the implementation details of the
pipeline, we will first present our design princi-
ples. The primary design decision for this pipeline
is whether to generate data from scratch or from
existing program-alignment data. For one thing,
existing parallel data inherently guarantees seman-
tic alignment between programs (Zhu et al., 2022a;
Ahmad et al., 2023b; Yan et al., 2023; Khan et al.,
2024), therefore, we can mainly focus on estab-
lishing the semantic alignment between code snip-

pets. For another, generating data solely by LLM
from scratch may lead to low diversity (Wang
et al., 2023; Luo et al., 2024), which could be
even worse in snippet-alignment data due to its
inherently shorter length. Thus, we ultimately elect
to generate snippet-alignment data from existing
program-alignment data.

However, directly utilizing program-alignment
data to generate snippet-alignment data still con-
fronts two major challenges. Firstly, it should be
noted that different solutions corresponding to the
same problem may use distinct algorithms or data
structures, with variations in implementation de-
tails. This may prevent code snippets from being
matched directly without one of the parallel pro-
grams being modified. In other words, rewriting
the target program may be necessary before match-
ing to ensure that the internal snippets of the target
program align with those of the source program.
Secondly, as the number of languages NV increases,
generating snippet-alignment data for all possible
language pairs through a direct end-to-end genera-
tion requires C'(N, 2) = W iterations, which
would lead to a significant increase in computa-
tional resources. For a certain problem, if we can
align the segmentation patterns of all the other lan-
guages with that of a specific language, the number
of required iterations will be reduced to V.

Therefore, we decompose the generation part of
the pipeline into two stages explicitly. The first
stage caches the snippet segmentation result to re-
duce computational resources. In the second stage,
the pipeline gives LLMs the flexibility to adap-
tively rewrite target programs as needed, thereby
resolving internal snippet-alignment issues.

3.2 Pipeline Implementation

Figure 2 illustrates an overview of how to generate
snippet-alignment data from the original program-
alignment data. Concretely, the proposed pipeline
consists of two LLM-involved generation stages
and a post-processing stage: (1) automatically gen-
erating and inserting code comments for source
programs, followed by (2) rewriting target pro-
grams that preserve both the content and order of
the source-program comments using the original
target program as a reference, and (3) splitting the
parallel comment-inserted programs and matching
corresponding code snippets according to the com-
ments.

The first two stages of the entire pipeline are
driven by LLMs, which also serve as its core com-

ponents. Following these two stages, we can eas-
ily obtain snippet-alignment data through the final
post-processing stage by employing simple heuris-
tic rules and string processing functions.

All the prompts designed for the first two stages
will be provided in the Appendix B.

3.2.1 Comment Insertion

Drawing inspiration from the construction method-
ology of XLCoST (Zhu et al., 2022a), we chose
to use comments as snippet separators because, in
contrast to traditional software engineering tools
such as Abstract Syntax Tree (AST) and Control
Flow Graph (CFG) (Zhong et al., 2024; Du et al.,
2025), comments are not language-specific and can
take full advantage of the code comprehension ca-
pabilities of LLMs (Cui et al., 2024).

Given a source program S, we first prompt an
LLM M to generate and insert comments into S.
The insertion positions are entirely determined by
M, guided solely by the principle of inserting as
many comments as possible in order to ensure that
each code snippet is not excessively lengthy.

After this stage, M will output a new source pro-
gram S’ = (sg, 1, 81, C2, S2...Ck, S) containing k
comments and at most k + 1 snippets, where k is
determined by M, s; denotes the i-th snippet of S’
and ¢; denotes the i-th comment of S’. Note that
so can have a length of 0, since in some cases the
first comment can be inserted at the very beginning.
The lengths of the other snippets are non-zero.

3.2.2 Comment-Based Program Rewriting

In the second stage, given a set of target program-
ming languages L = [ly,[3...l,,] containing m
kinds of languages and the original target program
set 7 = [11,T>»...T,,], where [; denotes the i-th
target language and 7; denotes the original target
program written in [;, M takes S’ and one orig-
inal target program 7; as input, and outputs the
rewritten program 7.

Specifically, M will rewrite T; based on the con-
tent and order of the comments in S’, using 7; as a
reference. Notably, 77 may remain identical to T;
when comments are disregarded, provided that M
believes that each snippet is already aligned and no
rewriting process is required.

After this stage, for each T;, M will output a new
target program 7] = (6,01,751'1,02,15%...%,75};) that
theoretically containing exactly the same amount of
comments and snippets as S, where ¢} denotes the
i-th snippet of T, and ¢; denotes the i-th comment

Dataset Size (pairwise) Granularity
XLCoST-Program 26972 Program
XLCoST-Augmented 135654 Snippet
TransCoder-test 1788 Program

Table 1: Statistical information on training set and test
set. The two upper rows represent the training set, while
the bottom row corresponds to the test set.

of T},. Then we will obtain a new target program
set 7' = (17, Ty...T},].

3.2.3 Split and Match

After the two stages above, we obtain S’ and 7/

with identical comment content and comment order

theoretically. Suppose S’ as another target program
v.+1> then we can formally construct a new tar-

get program set 7/ = (1Y, T5..T},, T, .,], where
i1 ="

Then for each pair of target programs 77 and 77,
i,j € [1,m + 1], we then extract each t; and tf;,
p € [0, k], from T} and T} according to ¢; to con-
struct the final snippet-alignment data. If we find
any discrepancy in the number or content of com-
ments between 7} and T}, we will simply ignore
this pair and continue the matching procedure.

4 Experiment

4.1 Setting

Datasets. In Table 1, we summarize the statisti-
cal information of the datasets used in our exper-
iments. We employ XLCoST (Zhu et al., 2022a)
as the training set and the foundational dataset for
our data augmentation, which covers 7 commonly
used programming languages and contains both
program-alignment and snippet-alignment data.

Considering the computational resources, we
have chosen Python, Java, and C++ as our basic lan-
guage setting, as they are widely used in different
software development scenarios (Lachaux et al.,
2020, 2021; Ahmad et al., 2023a; Xin-Ye et al.,
2025), and also cover both dynamic programming
languages and static programming languages. For
the program-alignment data, we select XLCoST-
Program, i.e., the program-alignment data in XL-
CoST, as the source of program-alignment data
used for subsequent training.

For the snippet-alignment data, we employ the
pipeline described in Section 3.2 to construct a
snippet-alignment dataset XLCoST-Augmented by
augmenting the program-alignment data in the XL-

CoST dataset. Specifically, we utilize DeepSeek-
V3-0324 (DeepSeek-Al et al., 2025) through its
official API interface throughout the entire pipeline
for Comments Insertion and Program Rewriting.
After the augmentation and post-processing pro-
cedures, we ultimately obtained 135,654 pairs of
snippet-alignment data.

Following the previous works (Yang et al., 2024;
Du et al., 2025; He et al., 2025), we have conducted
a comprehensive set of experiments on TransCoder-
test (Lachaux et al., 2020), a widely used public
code translation dataset containing 1,788 pairs of
program-alignment data in Python, Java, and C++.
Each problem includes ten corresponding test cases
to verify the semantic equivalence between the
translated program and the source program, which
enables more accurate measurement of the perfor-
mance of LLMs in code translation compared with
those datasets without test cases (Lu et al., 2021;
Zhu et al., 2022a).

Evaluation Metric. Since we have access to the
test cases of TransCoder-test, we can directly use
the pass @k metric to evaluate the semantic equiv-
alence (Chen et al., 2021). To calculate pass@¥k,
we first generate k£ code samples for each problem,
and a problem is considered passed if at least one
of the generated samples passes all the test cases.

Due to the issue of high variance brought by
sampling, Chen et al. (2021) refined it into a more
stable metric as described in Equation 1.

E [1 - (nfgc)] ey

Problems (k)

For reproducibility purposes, we set k = 1 and
employ a greedy decoding strategy, which also re-
duces resource consumption during inference.

pass@k :=

Training Details. For our backbone model, we
use DeepSeek-Coder-Instruct 1.3B/6.7B, which are
powerful open-source code LLMs supporting var-
ious programming languages (Guo et al., 2024).
Following previous work (He et al., 2025), we em-
ploy instruction tuning on the backbone using a
simple code translation instruction template to bet-
ter align its behaviour with code translation.

For the hyperparameters during training, we set
the batch size to 128 for the training set comprising
program-alignment data and to 512 for the train-
ing set comprising only snippet-alignment data.
We also set the max sequence length to 1536 for

Method Epoch J2P c2p P2C J2C P2J C2J AVG

Bascline 1 80.84 81.10 76.15 86.92 82.96 87.08 8251

DeepSeek-Coder 2 8312 82.75 77.62 87.24 83.12 88.36 83.70
Instruct 1.3B Mix 1 80.68 81.65 77.98 88.20 83.60 86.92 83.17
2-Stage 141 8247 79.63 83.49 91.71 88.80 91.55 86.28

Baseline 1 85.23 84.40 80.92 88.84 83.28 90.43 85.52

DeepSeek-Coder : 2 86.69 86.06 78.90 89.31 78.25 89.00 84.70
Instruct 6.7B Mix 1 85.23 84.59 80.37 89.00 85.55 89.63 85.73
2-Stage 1+ 84.42 80.55 88.81 93.78 91.07 94.26 88.82

Table 2: Performance comparison between baseline and our proposed methods. The header X2Y denotes translating
from language X to Y, where P, J, and C stand for Python, Java, and C++, respectively. AVG stands for the average
performance across all language pairs. The Mix method here denotes Mix-0.7, and the 2-Stage method here denotes
2-Stage-PS. We conduct all experiments twice and report the higher of the two results.

program-alignment data and to 1024 for snippet-
alignment data. For all the training procedure, we
set the learning rate to 2e-5 and the warmup ratio
to 0.1, using cosine Ir_scheduler_type. We save
the model once the entire training process is com-
plete. For all the training, we use 2 NVIDIA A100-
SXM4-80GB.

For the baseline, we directly fine-tune the model
on program-alignment data. For our methods, there
are two different ways to fine-tune the model lever-
aging our augmented snippet-alignment data. Mix-
k denotes that some of the program-alignment
data is replaced with the corresponding snippet-
alignment data, where k is a hyperparameter that
controls the replacement ratio. 2-Stage-XY means
that we first train the model on data of one spe-
cific granularity X, and then train the model on
data of another granularity Y. Here, we use P and
S to denote program-alignment data and snippet-
alignment data, respectively.

4.2 Main Results

We present the performance comparison of our pro-
posed methods and the baseline in Table 2. We ob-
tain a strong baseline performance simply by fine-
tuning the model solely on program-alignment data,
and this is typically the paradigm adopted when
we want to adapt a code LLM for code translation.
Moreover, when we introduce snippet-alignment
data, we observe consistent performance gains. Un-
der a one-epoch training setup, a partial replace-
ment of program-alignment data can yield measur-
able improvements: +0.66% for the 1.3B model
and +0.21% for the 6.7B model.

Due to the significant disparities in length and
difficulty between the two data granularities, sim-
ply mixing snippet data may only yield limited per-

formance gains, which has motivated our 2-Stage
approach that explicitly splits the training process
into two steps.

Specifically, we first train the model on program-
alignment data to learn semantic alignment knowl-
edge, followed by training on snippet-alignment
data to learn syntax alignment knowledge. Through
this, we observe a significant average performance
improvement of +2.58% for the 1.3B model and
+3.30% for the 6.7B model, proving the effective-
ness of both our augmented data and our 2-Stage
approach.

This result is particularly intriguing because the
models are ultimately trained on snippet-alignment
data yet evaluated on program-alignment data,
where a granularity mismatch exists. Despite this
discrepancy, this approach still yields consistent
performance improvements on average.

Conventionally, optimal evaluation performance
is expected when the data granularity of the training
set—at least in the final fine-tuning stage—matches
that of the test set. More intriguingly, the average
performance gains primarily stem from X2J and
X2C translations, albeit at the cost of X2P perfor-
mance. This phenomenon complements the behav-
ior of baseline: when increasing training epochs
from 1 to 2, X2P improves consistently—even as
the average performance of 6.7B model declines
in the second epoch. This may suggest that con-
tinued training on program-alignment data could
further improve the performance of X2P, whereas
snippet-alignment data could preferentially boost
the performance of X2J and X2C.

4.3 Analysis

Granularity Order of 2-Stage Training. To fur-
ther investigate how the training order of different

Epoch Order J2p czp P2C J2C pP2J C2J AVG

] P 80.84 8110 76.15 86.92 82.96 87.08 8251

S 7679 76.15 82.75 90.59 8653 89.79 83.77

D‘;ﬁgﬁﬁii‘fgger PP 83.12 82.75 77.62 87.24 83.12 88.36 83.70
: 5 Sp 82.79 82.75 77.25 86.92 83.44 88.20 83.56

SS 79.06 78.72 82.20 89.95 86.53 90.43 84.48

PS 8247 79.63 8349 9171 88.80 9155 86.28

| P 85.23 84.40 80.92 88.84 83.28 90.43 85.52

S 83.12 79.82 8752 92.66 91.07 9426 88.08

D‘;ﬁg’iﬁi‘:ffger PP 86.69 86.06 78.90 89.31 78.25 89.00 84.70
:) Sp 85.71 84.59 81.47 89.00 84.74 89.95 85.91

SS 83.60 81.47 88.26 92.98 9123 93.62 88.53

PS 84.42 80.55 88.81 9378 91.07 9426 88.82

Table 3: Performance comparison of all order combinations of snippet-alignment and program-alignment data.

data granularities affects model performance, we
conduct a series of experiments to evaluate the per-
formance among different order combinations of
data granularities.

Table 3 shows the performance comparison of all
the order combinations. When fixing the number
of training epochs to 1, we observe that training
solely on snippet-alignment data yields an average
performance improvement of +1.26% for the 1.3B
model and +2.56% for the 6.7B model. When we
extend the training epochs to 2, we consistently
observe a similar phenomenon in the results.

This aligns with our observations in Section 4.2,
where snippet-alignment data is shown to enhance
model performance specifically for X2J and X2C
translations.

However, training solely on snippet-alignment
data fails to yield optimal results, necessitating
the incorporation of program-alignment data. As a
result, we can observe that 2-Stage-PS improves the
X2P performance to some extent compared with 2-
Stage-SS trained solely on snippet-alignment data,
and also increases the performance on X2C and
X2]J slightly, further illustrating that the training
process should make full use of data of different
granularities rather than relying on data of a single
granularity.

Snippet Training as a Powerful Foundational
Training Stage. From the results in Table 3, we
can observe that training on snippet-alignment data
before program-alignment data (2-Stage-SP) can
yield an average performance improvement com-
pared with training solely on program-alignment
data. This leads us to investigate that how model
performance would vary if we add just one epoch
of snippet-alignment training before the program-

alignment training stage while holding the number
of program-alignment training epochs constant?

The results in Table 4 indicate that adding only
one epoch of snippet-alignment training prior to
the program-alignment training stage can consis-
tently improve model performances for almost all
language combinations.

Besides, while the model exhibits overfitting as
training epochs increase, especially for the 6.7B
model, introducing snippet-alignment data may
mitigate performance degradation—reducing the
loss margin from -0.98% to -0.46% for the 1.3B
model. For the 6.7B model, when P-Epoch is 2, the
performance of the model can grow further rather
than decline.

Moreover, even with the same total number of
training epochs, SPP still significantly outperforms
PPP by +1.76% for the 1.3B model and +4.56%
for the 6.7B model. SP outperforms PP by +1.21%
for the 6.7B model; for the 1.3B model, its perfor-
mance is comparable to that of PP.

Overall, the results above demonstrate both the
effectiveness of our generated snippet-alignment
data and the promising potential of regarding
snippet-alignment training as a powerful founda-
tional training stage for achieving consistent model
performance gains.

Data Quality of LLM-Augmented Snippets. To
further investigate the quality of LLM-Augmented
snippet-alignment data, we present detailed statis-
tical information of XLCoST-Augmented in Ta-
ble 5. After the augmentation process, we obtain
XLCoST-Augmented-Initial containing 139,556
pairs of snippet-alignment data. We then perform
a post-processing stage on these data, including
extracting the generated code from the output of

P-Epoch Order J2P c2p P2C J2C P2J C2J AVG

] P 80.84 81.10 7615 8692 896 87.08 8251

Sp 8279 8275 7725 8692 8344 8820 83.56

D‘;ﬁgﬁﬁii‘fgger) PP 83.12 82.75 7762 87.24 83.12 88.36 83.70
: SPP 83.60 8422 7982 8676 8393 8852 84.48

3 PPP 8296 81.65 7688 8740 8052 8692 8272

SPPP 8344 8459 7835 8692 81.82 89.00 84.02

| P 85.23 8440 8092 8884 8328 9043 8552

Sp 8571 8459 8147 89.00 8474 89.95 85.91

Diﬁ‘s’iﬁz&cfger) PP 86.69 86.06 7890 89.31 78.25 89.00 84.70
: SPP 8653 8697 82.02 8884 8458 8979 86.46

3 PPP 85.55 8349 7468 8852 7224 8692 81.90

Table 4: Performance comparison of adding only one epoch of snippet-alignment training prior to the program-

alignment training stage.

2000
1786 1829
1750 A]
1586

1500 A

12501 1141

1019
1000 A

782
750 1

Program Amount

529
500 1

446
293 293
=2 3 4 5 6 7 8 9 10 =11
Snippet Amount

Figure 3: The distribution of the amount of code snip-
pets in source programs after the Comment Insertion
stage described in Section 3.2.1.

LLM, comparing the comment content and order of
parallel data, and filtering out snippets that contains
useless information (e.g., those consisting solely of
import or #include statements).

Finally, we have discarded 3902 pairs of snippet-
alignment data, and the overall data usability rate
is 97.2%, demonstrating high quality of LLM-
Augmented data and high effectiveness of our aug-
mentation pipeline.

Moreover, Figure 3 illustrates the distribution of
the number of code snippets of source programs
following the Comment Insertion stage outlined in
Section 3.2.1. The total amount of original source
program is 9,704.

After our statistics, the average number of lines
of code in the original source programs is 21.72
lines, and approximately 84% source programs
are inserted with 3 to 8 comments after the Com-
ment Insertion stage, with the number of average
code snippets being 5.63. These statistics demon-

Dataset Size Percentage
XLCoST-Augmented-Initial 139556 100%

- Parsing Error 24 ~0%

- Comments Not Match Error 425 0.31%

- Filtering Error 3453 2.47%
XLCoST-Augmented 135654 97.20%

Table 5: Statistical information of data filtered by the
entire post-processing stage.

strate that the two LLM-involved augmentation
stages function as expected and show great po-
tential for generating large amounts of snippet-
alignment data.

5 Conclusion

In this paper, we propose an automated snippet-
alignment data augmentation method, which can
generate snippet-alignment data from program-
alignment data. It first utilizes LLMs to insert com-
ments into the source program and then rewrites
the target program to ensure internal alignment of
the parallel data. After these two steps, snippet-
alignment data can be obtained by extracting and
matching code snippets based on the content and or-
der of the shared comments. Moreover, we explore
two different methods to utilize snippet-alignment
data during training. Experimental results demon-
strate that our augmented data and the proposed
methods can consistently improve model perfor-
mance. A key observation is that training solely on
data of single data granularity can only lead to a
suboptimal performance. In contrast, fully lever-
aging both program-alignment data and snippet-
alignment data can achieve optimal performance
on average.

Limitations

Firstly, due to the limitation of computational re-
sources, we did not validate the effectiveness of
our proposed data augmentation pipeline on more
datasets. The XLCoST dataset we use already con-
tains snippet-alignment data, which makes it easier
for LLMs to perform relevant augmentation steps
such as Comment Insertion and Program Rewrit-
ing. We have yet to explore how LLMs ultimately
perform when the data is more heterogeneous, i.e.,
having huge differences in implementation details
or length. Secondly, we have only conducted our
experiments on DeepSeek-Coder-Instruct of 1.3B
and 6.7B, and have not yet verified the validity of
our method or data on other models. Thirdly, al-
though our proposed method 2-Stage-PS is optimal
in terms of average performance, it is not optimal
in every language setting, and in particular, it sacri-
fices the performance of X2P, where we have not
yet delved into the reasons for the performance
degradation.

Ethics Statement

All of the models used in this paper are publicly
available, and we have used them in accordance
with their respective licences and terms of use.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,
and Kai-Wei Chang. 2023a. Summarize and generate
to back-translate: Unsupervised translation of pro-
gramming languages. In Proceedings of the 17th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 1528—
1542, Dubrovnik, Croatia. Association for Computa-
tional Linguistics.

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat
Chakraborty, and Kai-Wei Chang. 2023b. AVATAR:
A parallel corpus for Java-python program translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 22682281, Toronto,
Canada. Association for Computational Linguistics.

Binger Chen, Jacek Golebiowski, and Ziawasch Abed-
jan. 2024. Data augmentation for supervised code
translation learning. In Proceedings of the 21st Inter-
national Conference on Mining Software Reposito-
ries, MSR ’24, page 444456, New York, NY, USA.
Association for Computing Machinery.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela

Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Xinyun Chen, Chang Liu, and Dawn Song. 2018. Tree-
to-tree neural networks for program translation. In
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc.

Jielun Cui, Yutong Zhao, Chong Yu, Jiaqi Huang,
Yuanyuan Wu, and Yu Zhao. 2024. Code comprehen-
sion: Review and large language models exploration.
In 2024 IEEE 4th International Conference on Soft-
ware Engineering and Artificial Intelligence (SEAI),
pages 183-187.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
and 181 others. 2025. Deepseek-v3 technical report.
Preprint, arXiv:2412.19437.

Yali Du, Hui Sun, and Ming Li. 2025. Post-
incorporating code structural knowledge into llms
via in-context learning for code translation. Preprint,
arXiv:2503.22776.

Hasan Ferit Eniser, Hanliang Zhang, Cristina David,
Meng Wang, Maria Christakis, Brandon Paulsen,
Joey Dodds, and Daniel Kroening. 2025. Towards
translating real-world code with llms: A study of
translating to rust. Preprint, arXiv:2405.11514.

Harritxu Gete and Thierry Etchegoyhen. 2022. Making
the most of comparable corpora in neural machine

translation: a case study. Lang. Resour. Evaluation,
56(3):943-971.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming — the rise of
code intelligence. Preprint, arXiv:2401.14196.

Minghua He, Fangkai Yang, Pu Zhao, Wenjie Yin,
Yu Kang, Qingwei Lin, Saravan Rajmohan, Dong-
mei Zhang, and Qi Zhang. 2025. Execoder: Em-
powering large language models with executabil-
ity representation for code translation. Preprint,
arXiv:2501.18460.

Jaemin Hong. 2023. Improving automatic c-to-rust
translation with static analysis. In 2023 IEEE/ACM
45th International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion),
pages 273-2717.

Mohammad Abdullah Matin Khan, M Saiful Bari,
Xuan Long Do, Weishi Wang, Md Rizwan Parvez,
and Shafiq Joty. 2024. XCodeEval: An execution-
based large scale multilingual multitask benchmark
for code understanding, generation, translation and
retrieval. In Proceedings of the 62nd Annual Meeting

https://doi.org/10.18653/v1/2023.eacl-main.112
https://doi.org/10.18653/v1/2023.eacl-main.112
https://doi.org/10.18653/v1/2023.eacl-main.112
https://doi.org/10.18653/v1/2023.eacl-main.112
https://doi.org/10.18653/v1/2023.eacl-main.112
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.1145/3643991.3644923
https://doi.org/10.1145/3643991.3644923
https://doi.org/10.1145/3643991.3644923
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://proceedings.neurips.cc/paper_files/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://doi.org/10.1109/SEAI62072.2024.10674263
https://doi.org/10.1109/SEAI62072.2024.10674263
https://doi.org/10.1109/SEAI62072.2024.10674263
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2503.22776
https://arxiv.org/abs/2503.22776
https://arxiv.org/abs/2503.22776
https://arxiv.org/abs/2503.22776
https://arxiv.org/abs/2503.22776
https://arxiv.org/abs/2405.11514
https://arxiv.org/abs/2405.11514
https://arxiv.org/abs/2405.11514
https://arxiv.org/abs/2405.11514
https://arxiv.org/abs/2405.11514
https://doi.org/10.1007/S10579-021-09572-2
https://doi.org/10.1007/S10579-021-09572-2
https://doi.org/10.1007/S10579-021-09572-2
https://doi.org/10.1007/S10579-021-09572-2
https://doi.org/10.1007/S10579-021-09572-2
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2501.18460
https://arxiv.org/abs/2501.18460
https://arxiv.org/abs/2501.18460
https://arxiv.org/abs/2501.18460
https://arxiv.org/abs/2501.18460
https://doi.org/10.1109/ICSE-Companion58688.2023.00074
https://doi.org/10.1109/ICSE-Companion58688.2023.00074
https://doi.org/10.1109/ICSE-Companion58688.2023.00074
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367
https://doi.org/10.18653/v1/2024.acl-long.367

of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6766—-6805, Bangkok,
Thailand. Association for Computational Linguistics.

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. Preprint,
arXiv:2006.03511.

Marie-Anne Lachaux, Baptiste Roziere, Marc
Szafraniec, and Guillaume Lample. 2021. Dobf: A
deobfuscation pre-training objective for program-
ming languages. In Advances in Neural Information
Processing Systems, volume 34, pages 14967—-14979.
Curran Associates, Inc.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, and 3 others. 2021. Codexglue: A machine
learning benchmark dataset for code understanding
and generation. In Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and
Benchmarks 1, NeurlPS Datasets and Benchmarks
2021, December 2021, virtual.

Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Xu Wang,
Qing Yang, Dongliang Xu, and Wanxiang Che. 2024.
Semi-instruct: Bridging natural-instruct and self-
instruct for code large language models. Preprint,
arXiv:2403.00338.

Marcos Macedo, Yuan Tian, Pengyu Nie, Filipe R.
Cogo, and Bram Adams. 2025. Intertrans: Lever-
aging transitive intermediate translations to enhance
LLM-based code translation. In ICLR 2025 Third
Workshop on Deep Learning for Code.

Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna,
Divya Sankar, Lambert Pouguem Wassi, Michele
Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha,
and Reyhaneh Jabbarvand. 2024. Lost in transla-
tion: A study of bugs introduced by large language
models while translating code. In Proceedings of the
IEEE/ACM 46th International Conference on Soft-
ware Engineering, ICSE °24, New York, NY, USA.
Association for Computing Machinery.

Qingxiao Tao, Tingrui Yu, Xiaodong Gu, and Beijun
Shen. 2024. Unraveling the potential of large lan-
guage models in code translation: How far are we?
In 31st Asia-Pacific Software Engineering Confer-
ence, APSEC 2024, Chongqing, China, December
3-6, 2024, pages 353-362. IEEE.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484—13508, Toronto, Canada. Association
for Computational Linguistics.

10

Yiqing Xie, Atharva Naik, Daniel Fried, and Carolyn
Rose. 2023. Data augmentation for code translation
with comparable corpora and multiple references. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 13725-13739, Singa-
pore. Association for Computational Linguistics.

Li Xin-Ye, Du Ya-Li, and Li Ming. 2025. Enhanc-
ing llms in long code translation through instru-
mentation and program state alignment. Preprint,
arXiv:2504.02017.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and
Wen Wang. 2023. CodeTransOcean: A comprehen-
sive multilingual benchmark for code translation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 5067-5089, Singapore.
Association for Computational Linguistics.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Ke-
ung, Jia Li, Shuo Liu, Yifan Hong, Xiaoxue Ma, Zhi
Jin, and Ge Li. 2024. Exploring and unleashing the
power of large language models in automated code
translation. Proc. ACM Softw. Eng., 1(FSE).

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De-
bug like a human: A large language model debugger
via verifying runtime execution step by step. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2024, pages 851-870, Bangkok, Thailand.
Association for Computational Linguistics.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan
Ravindran, Sindhu Tipirneni, and Chandan K.
Reddy. 2022a. Xlcost: A benchmark dataset
for cross-lingual code intelligence. Preprint,
arXiv:2206.08474.

Ming Zhu, Ismini Lourentzou, and Danfeng Yao. 2024.
Alignment-enhancing parallel code generation for
semi-supervised code translation.

Ming Zhu, Karthik Suresh, and Chandan K Reddy.
2022b. Multilingual code snippets training for pro-
gram translation. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 36(10):11783-11790.

https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6548bdc0082aacc950ed35e91fcccb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6548bdc0082aacc950ed35e91fcccb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6548bdc0082aacc950ed35e91fcccb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6548bdc0082aacc950ed35e91fcccb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7d6548bdc0082aacc950ed35e91fcccb-Paper.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://arxiv.org/abs/2403.00338
https://arxiv.org/abs/2403.00338
https://arxiv.org/abs/2403.00338
https://openreview.net/forum?id=LlTU71o6Yl
https://openreview.net/forum?id=LlTU71o6Yl
https://openreview.net/forum?id=LlTU71o6Yl
https://openreview.net/forum?id=LlTU71o6Yl
https://openreview.net/forum?id=LlTU71o6Yl
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1145/3597503.3639226
https://doi.org/10.1109/APSEC65559.2024.00046
https://doi.org/10.1109/APSEC65559.2024.00046
https://doi.org/10.1109/APSEC65559.2024.00046
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.findings-emnlp.917
https://doi.org/10.18653/v1/2023.findings-emnlp.917
https://doi.org/10.18653/v1/2023.findings-emnlp.917
https://arxiv.org/abs/2504.02017
https://arxiv.org/abs/2504.02017
https://arxiv.org/abs/2504.02017
https://arxiv.org/abs/2504.02017
https://arxiv.org/abs/2504.02017
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.18653/v1/2023.findings-emnlp.337
https://doi.org/10.1145/3660778
https://doi.org/10.1145/3660778
https://doi.org/10.1145/3660778
https://doi.org/10.1145/3660778
https://doi.org/10.1145/3660778
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2206.08474
https://arxiv.org/abs/2206.08474
https://openreview.net/forum?id=XK7kyCVjqr
https://openreview.net/forum?id=XK7kyCVjqr
https://openreview.net/forum?id=XK7kyCVjqr
https://doi.org/10.1609/aaai.v36i10.21434
https://doi.org/10.1609/aaai.v36i10.21434
https://doi.org/10.1609/aaai.v36i10.21434

A Case Study.

We will show some examples of programs that the
baseline fail to translate, but our model, trained by
the 2-Stage method, can translate successfully. In
the figures, we have marked the wrong codes in red
font and the correctly translated codes in green font.
We can find that, in Figure 4, the baseline model
misinterprets the meaning of string subtraction in
Java, while the 2-Stage model, trained with the
snippet-alignment data, faithfully translates string
subtraction into Unicode subtraction. In Figure 5,
the model misinterprets the meaning of the assign-
ment statement and simplifies it incorrectly, while
our model faithfully completes the translation of
the assignment statement These cases of failure
caused by a simple syntax error highlights the im-
portance of snippet training.

B Pipeline Prompt

We will demonstrate the prompt template that we
have designed for the entire pipeline described in
Section 3.2.

11

<original_Java_program>

static int f_gold(String str) {
int res = str.charAt(eo) - '0';
for (int i = 1; i < str.length(); i++) {
if (str.charAt(i) == '@' str.charAt(i) == '1"' res < 2) {
res += (str.charAt(i) - '0");
} else {
res *= (str.charAt(i) - '0");
3
3

return res;

<translated_Python_program_by_Baseline>

def f_filled (str)
res = int (str [@])
for i in range (1 , len (str))
if (str [i] == "0" or str [i] == '"1' or res < 2)
res += int (str [i])
else
res = int (str [i])
return res

<translated_Python_program_by_2-Stage>
def f_filled (str)

for i in range (1 , len (str))
if (str [i] == "0" or str [i J == "1"'" or res < 2)
res += (ord (str [i 1) - ord ('0"))
else
res = (ord (str [i 1) - ord ('0"))
return res

Figure 4: A J2P problem where baseline fails to translate and our 2-Stage model translates it successfully.

12

<original_Java_program>

static int f_gold(int arr[], int n) {
Map<Integer, Integer> um = new HashMap<>();
int curr_sum = 0;

for (int i = @; i < n; i++) {

curr_sum += (arr[i] == @) ? -1 : arr[il];

um.put(curr_sum, um.get(curr_sum) == null ? 1 : um.get(curr_sum) + 1);
}

j..

<translated_Python_program_by_Baseline>

def f_filled (arr , n)
um = { }
curr_sum = @
for i in range (n)
curr_sum += Carr [i 1 =0) -1 orarr [i]
if curr_sum in um
um [curr_sum] += 1
else
um [curr_sum] = 1

<translated_Python_program_by_2-Stage>

def f_filled (arr , n)
um = { 3}
curr_sum = 0@
for i in range (n)

if curr_sum in um

um [curr_sum] += 1
else

um [curr_sum] = 1

Figure 5: Another J2P problem where baseline fails to translate and our 2-Stage model translates it successfully.

13

You are an expert in code summarization. You will be provided with a piece of code, and your
task is to add a few comments within the code based on its overall functionality.

These comments should follow the restrictions below:

1. The position of these comments must be between lines of code. DO NOT add the comment at the
end of a particular line of code.

2. Each comment should correspond to several lines of code. A comment corresponding to only a
single line of code is forbidden.

3. These comments should fully cover all lines of code, and the code segments corresponding to
different comments must not overlap, i.e. each line of code must have only one
corresponding comment.

4. Control the number of comments to be added, if the code is long you can add more comments.
Ensure that a programming beginner can clearly understand every segment of the code by
reading the comments.

The Input Code is marked with <Code> and </Code>, and your Output Code should also be marked
with <Code> and </Code>.

Here is an example:
Input Code:
<example_source_program>

First of all, you can add some comment tags <ct> to the positions where you think comments are
needed, which can help you break down this task.

Remember that the position of these comment tags must be between lines of code.

And remember, these comments should fully cover all lines of code, and the code segments
corresponding to different comments must not overlap, i.e. each line of code must have only
one corresponding comment.

You should also control the number of comments to be added, if the code is long you can add
more comments.

Since the Input Code may not be formatted, you should **format** the Input Code before
inserting the comments, so that it can be more readable.

Here is the edited code:
<edited_example_source_program>

After this step, you can replace the comment tags with real comments.
Each comment should explain the functionality of the corresponding code segment. The comment
could have been written more thoroughly if the corresponding code segment is long.

Output Code:
<example_source_program_with_comment_inserted>

Here is the <src_lan> code to add comments. Please follow the restrictions and procedures
above, and you only need to return the Output Code.

Input Code:

<Code>

<tag>

</Code>

Figure 6: The prompt designed for Comment Insertion stage described in Section 3.2.1. Due to length constraints,
we have omitted the example provided for the model in the template

14

<example_source_program> can be replaced by the following example:
<Code>
def maxPresum (a , b) :
X=max (al[0], 0)
for i inrange (1, len (a)) :
alil+=al[i-1]1]

X=max (X, ali])
Y=max (b[0@01]1, 0)
for i inrange (1, len (b)) :
b[il+=b([i-1]1]

Y=max (Y, b[il)
return X + Y

A=L2,-1,4,-5]1]
B=[4,-3,12,4, -31]
print (maxPresum (A, B))
</Code>

<edited_example_source_program> can be replaced by the following example:
<Code>
<ct>
def maxPresum(a, b):
X = max(al[@], @)
Y = max(b[0], 0)
<ct>
for i in range(1, len(a)):
a[i] += a[i - 1]
X = max(X, al[il)
<ct>
for i in range(1, len(b)):
b[i] += b[i - 1]
Y = max(Y, b[il)
return X + Y
<ct>
A =1[2, -1, 4, -5]
B =1[4, -3, 12, 4, -3]
print(maxPresum(A, B))
</Code>

<example_source_program_with_comment_inserted> can be replaced by the following example:
<Code>
To compute the sum of the maximum prefix sum of two arrays, we first initialize X and Y as
the maximum of the first element of the array A [] and B [] or @.
def maxPresum(a, b):
X = max(al@], 0)
Y = max(b[0], 0)
Iterate through the array A [] to compute the maximum prefix sum of array A [].
for i in range(1, len(a)):
ali] += a[i - 1]
X = max(X, alil)
Iterate through the array B [] to compute the maximum prefix sum of array B []. Then
return the sum of the maximum prefix sum of two arrays.
for i in range(1, len(b)):
b[i] += b[i - 1]
Y = max(Y, b[il)
return X + Y
Create two arrays to test the above function
A =12, -1, 4, -5]
B = [4, -3, 12, 4, -3]
print(maxPresum(A, B))
</Code>

Figure 7: The concrete examples omitted in Figure 6.

15

You are an expert in code translation. You will be provided with two pieces of code that
implement the same functionality but are written in two different programming languages.

The first piece of code contains several comments that can be used to break the code into
smaller segments, and each comment describes the functionality of the corresponding segment
of code, while the second piece of code doesn't have any comments.

Your task is to regenerate the second piece of code with comments based on the first piece of
code and its comments, using the second piece of code as a reference. Specifically, you
need to translate the first piece of code segment by segment from top to bottom.

Since the second piece of reference code is functionally identical to the first one, you should
prioritize copying the relevant parts of the second piece of code during the translation
process.

Since I will later match the corresponding segments of the two pieces of code based on the
comments, the comments in the second piece of code must match those in the first piece of
code exactly in quantity, content, and order.

Here is an example of how to do this. The codes below are written in Python and C++, and the
Python code is provided with comments:
<example_source_program_with_comment>

<example_orginal_target_program>

Since the second piece of code may not be formatted, you should format the second piece of code
before the translation process, so that it can be more readable and be easily divided into
segments.

Then we can regenerate the second piece of code segment by segment based on the comments of the
first piece of code, using the second piece of code as a reference:

<example_rewritten_target_program>

Since the reference code could not be aligned well with the first piece of code, we modified
the second piece of code to ensure strict alignment with the first, based on the number,
content and order of the comments from the first piece of code.

In this example, some lines of the reference code can be reused, but you are still allowed to
generate entirely new code, as long as you ensure that the second piece of code matches the
first segment by segment.

Here are the codes of this task:
T <lan_tag_1>
<tagl>

T <lan_tag_2>
<tag2>

Figure 8: The prompt designed for Comment-Based Program Rewriting stage described in Section 3.2.2. Due to
length constraints, we have omitted the example provided for the model in the template

16

<example_source_program_with_comment> can be replaced by the following example:
T Tpython
To compute the sum of the maximum prefix sum of two arrays, we first initialize X and Y as
the maximum of the first element of the array A [] and B [] or 0.
def maxPresum(a, b):
X = max(al@], 0)
Y = max(b[@], @)
Iterate through the array A [] to compute the maximum prefix sum of array A [].
for i in range(1, len(a)):
ali] += ali - 1]
X = max(X, a[il)
Iterate through the array B [] to compute the maximum prefix sum of array B []. Then
return the sum of the maximum prefix sum of two arrays.
for i in range(1, len(b)):
b[i] += b[i - 1]
Y = max(Y, b[il)
return X + Y
Create two arrays to test the above function
A=1T[2, -1, 4, -5]
B = 1[4, -3, 12, 4, -3]
print(maxPresum(A, B))

<example_orginal_target_program> can be replaced by the following example:
" cpp
#include <bits/stdc++.h>

using namespace std;

int maxPresum(vector<int> a, vector<int> b) {
int X = max(al[e@], 0);
inti=1;
while (i < a.size()) {
a[i] += a[i - 17;
X = max(X, alil);
1++;

}

int Y = max(b[@], @);

i=1;

while (i < b.size()) {
b[i] += b[i - 11;
Y = max(Y, b[il);
i++;

}

return X + Y;

int main() {
vector<int> A = {2, -1, 4, -53};
vector<int> B = {4, -3, 12, 4, -3};
cout << maxPresum(A, B) << endl;

Figure 9: The first two concrete examples omitted in Figure 8.

17

<example_rewritten_target_program> can be replaced by the following example:

cpp

// To compute the sum of the maximum prefix sum of two arrays, we first initialize X and Y as

the maximum of the first element of the array A [] and B [] or @.

#include <bits/stdc++.h>
using namespace std;
int maxPresum(vector<int> a, vector<int> b) {

3

int X = max(al[@], 0);
int Y = max(b[0@], 0);
// Iterate through the array A [] to compute the maximum prefix sum of array A [].
for (int i = 1; i < a.size(); i+t+) {
ali] += ali - 17;
X = max(X, alil);
}
// Iterate through the array B [] to compute the maximum prefix sum of array B []. Then
return the sum of the maximum prefix sum of two arrays.
for (int i = 1; i < b.size(); i++) {
b[i] += b[i - 11;
Y = max(Y, b[il);
}

return X + Y;

// Create two arrays to test the above function
int main() {

vector<int> A = {2, -1, 4, -5};
vector<int> B = {4, -3, 12, 4, -3};
cout << maxPresum(A, B) << endl;

Figure 10: The last concrete example omitted in Figure 8.

18

	Introduction
	Related Work
	Data Augmentation for Code Translation
	Snippet-Alignment Datasets in Code Translation

	Automated Snippet-Alignment Data Augmentation
	Design Principles
	Pipeline Implementation
	Comment Insertion
	Comment-Based Program Rewriting
	Split and Match

	Experiment
	Setting
	Main Results
	Analysis

	Conclusion
	Case Study.
	Pipeline Prompt

