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ABSTRACT

While direct policy optimization methods exist, pioneering LLMs are fine-tuned
with reinforcement learning from human feedback (RLHF) to generate better re-
sponses under the supervision of a reward model learned from preference data.
One major challenge of RLHF is the inaccuracy of the intermediate reward model,
especially in code generation tasks that requires complex reasoning for the reward
model to score a response. We find that the reliability of the reward model varies
across responses assigned with different rewards. This motivates us to filter the
samples whose rewards may be unreliable to improve the signal-to-noise ratio dur-
ing policy learning, resulting in Policy Filtration for Proximal Policy Optimization
(PF-PPO). To choose a proper policy filtering strategy, we use the coefficient of
determination (R2) between the rewards and actual scores on filtered samples as
the metrics to help us find promising strategies since it measures how well the
rewards filtered by PF-PPO indicate real performance. We provide extensive exper-
iments to validate the effectiveness of PF-PPO in code generation tasks. We find
that some variants of PF-PPO are highly effective and achieve the state-of-the-art
performance of 7-billion-parameter models on HumanEval (+7.9%) and MBPP
(+0.7%). Moreover, we create the LeetCode Contest benchmark and demonstrate
the advantage of PF-PPO (+10.0%) on this more challenging benchmark.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) is a key technique to align large language
models (LLMs) with human values and preferences (Christiano et al., 2017; Ziegler et al., 2019;
Ouyang et al., 2022). RLHF has been proven to be an essential process for LLMs to produce more
helpful, harmless, and honest responses (Bai et al., 2022). Despite various non-RL algorithms such
as DPO (Rafailov et al., 2024) are proposed, state-of-the-art applications such as ChatGPT/GPT-4
(OpenAI, 2023), Claude (Anthropic, 2023), and Gemini (Team et al., 2023) adopt the RL algorithm
(e.g., PPO) for policy optimization. The key challenge of RLHF is the inaccuracy of the intermediate
reward model. While there are researchers investigate how to learn reliable reward models (see e.g.,
Wang et al., 2024), we focus on how to learn better policy under the guidance of such inaccurate
reward models.

We observe that, though the reward model gives inaccurate rewards in general, it can be more reliable
in specific regions (e.g., when it gives high rewards) than the others. The observation is based on
the simple experiment: We use a policy model fine-tuned for code generation to generate a set of
responses for prompts in the HumanEval dataset. Later, we score these responses using a reward
model trained with the common recipe (see Ouyang et al., 2022, and also Section 2) and compare them
with the actual scores. We find that, across different sets of samples, the reward model is more reliable
when it gives high or low rewards than when it gives moderate rewards. (This property also holds on
other datasets and see Appendix A for more experiment results and futher discussion.) Considering
that RLHF updates the policy solely based on the reward signal, this observation motivates us to
filter out the samples with possibly unreliable rewards aiming to improve RLHF by increasing the
signal-to-noise ratio on training samples.

Based on this motivation, we propose a simple modification to the standard PPO-based RLHF
algorithm (Ouyang et al., 2022), Policy Filtration for PPO (PF-PPO), that learns a filtered version
of the policy using PPO. Specifically, we generate N samples for each prompt, score these samples
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Figure 1: The reward model can be inaccurate, i.e., the actual score of the response does not align
well with the reward given by the reward model. However, the reward model in specific regions
(e.g., when it gives rewards higher than 0.8) is more reliable, i.e., the responses with similar rewards
result in consistent performance. We use a fine-tuned policy to generate 10 responses for each of the
164 prompts in the HumanEval dataset and use a reward model trained with the common recipe to
generate their rewards. We group the responses with similar rewards and calculate the average of
their actual scores (i.e., the average correctness), indicating each group by one point. To evaluate the
reliability of the reward model, we repeat the process ten times corresponding to the ten lines.

using the reward model, and use a filtered subset of these samples for subsequent policy training. We
design filtering strategies to improve the reliability of the reward model on the filtered samples by
maximizing the coefficient of determination (R2) between the rewards and actual scores on these
filtered samples. We show that the reward model can evaluate more accurately on these filtered
samples, thus providing better training signal and improving the performance of the policy. Our
method is also connected with reject sampling that filters out responses with low rewards during
inference to yield a better response. Reject sampling is a simple but surprisingly strong inference-time
strategy, whereas we adopt similar filtration in an RL algorithm.

Empirically, we show that PF-PPO can greatly improve the performance of LLMs on code generation
tasks, which is challenging since complex logic behind these tasks makes the reward model inaccurate
in general. We conduct extensive ablation studies to validate the design of our algorithm. Moreover,
we illustrate the effectiveness of our algorithm by fine-tuning LLMs that achieves new sota on
HumanEval and LeetCode Contest benchmarks across 7-billion-parameter LLMs. To evaluate
whether PF-PPO can be effective on more challenging coding tasks, we create the LeetCode Contest
benchmark that includes competition-level coding tasks for human experts. We find that the policy
filtration technique can result in even more significant improvement on this challenging benchmark.

2 RELATED WORK

Limitation of reward model. The outcome of RLHF highly relies on the quality of the reward model.
Unfortunately, the reward model can hardly provide accurate scores due to 1) the mis-specified
reward modeling to represent human preferences (Lambert et al., 2023; Pitis, 2023); 2) the presence
of incorrect and ambiguous preferences in the dataset (Ouyang et al., 2022; Bai et al., 2022), and
3) the poor generalization ability of the reward model (McKinney et al., 2023). The inaccuracy of
reward model is attributed as one major cause of reward hacking and hallucination in LLMs (Kalai &
Vempala, 2024). While there are previous papers try to improve the accuracy of the reward model
itself (Wang et al., 2024; Coste et al., 2023; Zhang et al., 2024), the objective of our paper is to design
a better RLHF algorithm in the face of inaccurate reward models.

Reject sampling. Reject sampling (or best-of-N sampling) is a popular and effective inference-time
strategy to enhance the response of an LLM by generating N responses and select the best one
according to a reward model (Nakano et al., 2021; Cobbe et al., 2021). This trick can yield good
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responses while keeping a tight KL constraint to the original policy. Inspired by its effectiveness in
inference, researchers also try to involve this trick in policy optimization. For example, RAFT (Dong
et al., 2023), BOND (Sessa et al., 2024) and vBoN (Amini et al., 2024) learn a policy that distills
the best-of-N policy using supervised fine-tuning losses. In a boarder sense, the rank information
of the N samples can also be leveraged. For example, RRHF (Yuan et al., 2023) and PRO (Song
et al., 2024) train the policy using the combination of a ranking loss and a SFT loss (w.r.t. the
best response) based on N responses for each prompt. However, these algorithms do not adopt an
elaborate RL algorithm, while state-of-the-art language models adopts RL algorithms in alignment,
benefiting from the generalization power of the reward model especially in reasoning tasks (Ivison
et al., 2024). Unlike these algorithms, we adopt the idea of reject sampling in the sampling phase of
an RL algorithm instead of using supervised learning losses.

RLHF algorithms in the face of inaccurate reward models. One key challenge in RLHF is the
inaccuracy of reward model, which can lead to reward over-optimization (Gao et al., 2023; Skalse
et al., 2022; Chaudhari et al., 2024). Optimization with a policy constraint (e.g., a KL divergence
between the target policy and the reference policy) is a remedy frequently used in not only RL-based
algorithms (Ouyang et al., 2022; Wu et al., 2023; Zhu et al., 2023) but also direct policy optimization
algorithms (Rafailov et al., 2024; Zhao et al., 2023; Liu et al., 2023). Going beyond policy constraint,
Moskovitz et al. (2023) only maximize rewards up to a threshold to avoid excessive deviation from a
pre-trained policy. In this paper, we not only rely on the policy constraint to optimize in the face of
inaccurate rewards but also try to avoid using samples with unreliable rewards.

3 PRELIMINARY

Notations. We use [a, b] to denote the set {a, a + 1, · · · , b} and use [b] as the shorthand for [1, b].
We use ⊕ to denote the concatenation on tokens, and use xa:b as the shorthand for the concatenation
(xa ⊕ xa+1 ⊕ · · · ⊕ xb). We use ci and yi to indicate the i-th token in the context c (including task
instruction, prompt, inputs, etc.) and the response y respectively.

MDP formulation. We adopt a Markov decision process (MDP) formulation for RLHF. Specifically,
language generation is formulated as an MDP M = (S,A, P,R) with states s ∈ S, actions a ∈ A,
transition probabilities P ∈ ∆(S)S×A, and the next-state-based reward function R : S → [0, 1].
Given a context c with Tc tokens, on each step t ∈ [Tc +1, T ]1, the language model πθ(at|st) selects
a token at = yt−Tc

based on the state st := (c1:Tc
⊕y1:t−Tc−1). Then, the language model enters the

next state st+1 := (c1:Tc
⊕ y1:t−Tc

) until the language model completes the response y1:T−Tc
. For

simplicity, we will also use contextual-bandit-style notations, e.g., we denote the language generation
process as y ∼ πθ(·|c).
RLHF. Reinforcement learning with human feedback (RLHF) is an important process to address
objective mismatch between the next-token-prediction objective in pre-training and our expectation
of LLMs to follow the instructions and assist humans to complete various tasks. We briefly review
the pipeline of RLHF.

• Supervised fine-tuning. In the supervised fine-tuning (SFT) phase, a pre-trained LLM is
fine-tuned with a high-quality supervised dataset collected for specific downstream tasks.
Typically, the LLM is fine-tuned with a maximum likelihood loss, and we denote the output
of this phase as πSFT. While subsequent RLHF procedure is necessary for training high-
quality LLMs, this phase alone can also yield an LLM that reasonably follows human
instructions (see e.g., Longpre et al., 2023).

• Reward model learning. In the reward model learning phase, we learn a reward model
rϕ(y|c) ∈ [−1, 1] parameterized by ϕ that scores the response y to the context c based on
collected preference data DHF := {(c, yw, yl)} specifying that yw is a preferred response
to c than yl. The reward model is initialized by πSFT with an additional output layer. A
preference model links the reward model with the preference data, and Bradley-Terry model
(Bradley & Terry, 1952) is a common choice:

P(yw ≻ yl|c) = σ(Rϕ(y
w|c)−Rϕ(y

l|c)), (1)

1We fix the index of the terminal state to be the maximum length T . To adapt responses of different lengths,
we left pad the context c.
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where σ is the sigmoid function. The learning objective of reward model is to maximize the
log-probability on preference data:

max
ϕ

E(c,yw,yl)∼DHF [logP(yw ≻ yl|c)] . (2)

• RL fine-tuning. In this stage, we fine-tune the language model πθ to maximize the rewards
given by the reward model with a policy constraint. The optimization problem is formulated
as

max
θ

EcEy∼πθ(·|c)
[
rϕ(y|c)− βDKL(πθ(·|c)||πSFT(·|c))

]
. (3)

The second term prevents the learned policy deviating too much from the SFT model,
and this is a popular technique to alleviate reward over-optimization (Jaques et al., 2019;
Stiennon et al., 2020).

PPO. Proximal policy optimization (PPO) (Schulman et al., 2017) is an RL algorithm that uses
a clipped version of the policy gradient for more conservative and stable learning. It becomes a
standard algorithm for RL fine-tuning in RLHF that optimizes the modified (cumulative) reward

rϕ(y|c)−
T∑

t=Tc+1

β
(
log πθ(yt|c⊕ y1:t−1)− log πSFT(yt|c⊕ y1:t−1)

)
(4)

where the reward model gives sparse rewards and the policy constraint yields dense rewards. PPO is
an on-policy algorithm where the policy gradient is estimated based on the samples collected by the
current policy πθ.

Algorithm 1 Proximal policy optimization (PPO)

for iteration = 1, 2, · · · do
Fill the buffer B with samples collected by the current language model πθ

Update πθ using PPO w.r.t. the cumulative reward defined in Equation equation 4 based on B
end for

4 METHODS

Our method is motivated by the observation that the reward model is more reliable for the responses
assigned with high/low rewards (cf. Figure 1). Consequently, we conjecture that, if we wrap the
policy with proper filtration during policy optimization of RLHF, the reward model can avoid yielding
unreliable rewards and thus give better signal to guide policy learning.

Policy filtration. Given an unfiltered policy model πθ(y|c) that generates responses y to the context c,
we denote the corresponding filtered policy as µθ(y|c). We consider a family of policy filtration, from
which we can sample responses to the context c as follows: We first sample N responses from πθ(·|c)
and rank them by the reward model Rϕ, obtaining y1, · · · , yN with Rϕ(y1|c) ≥ · · · ≥ Rϕ(yN |c).
Then, given a weight vector w = (w1, · · · , wN ) satisfying

∑
i∈[N ] wi = 1, we sample a one-hot

vector z = (z1, · · · , zN ) from the categorical distribution parameterized by w such that P[zi = 1] =
wi. At last, the filtered policy µθ(·|c) yields the response selected by z following y =

∑
i∈[N ] ziyi.

We can define several filtered policies under this family. Specifically, we obtain the best-of-N
(BoN), best-random (BR), and best-worst (BW) filtered policy by setting the weight vector to

wBoN = (1, 0, · · · , 0), wBR =

(
1

2
,

1

2(N − 1)
, · · · , 1

2(N − 1)

)
, and wBW =

(
1

2
, 0, · · · , 0, 1

2

)
respectively.

Training objective. Since our target is to learn a good filtered policy µθ, we consider the follow
objective:

max
θ

EcEy∼µθ(·|c)
[
rϕ(y|c)− βDKL(µθ(·|x)||πSFT(·|x))

]
. (5)

In practice, use the samples collected by the filtered policy πθ as if they were collected by µθ in the
original PPO algorithm. This leads to Policy Filtration Proximal Policy Optimization (PF-PPO) listed
in Algorithm 2, which is an algorithm that only modifies the sampling process of PPO.
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Algorithm 2 Policy Filtration Proximal policy Optimization (PF-PPO)

for iteration = 1, 2, · · · do
Fill the buffer B with samples collected by the current language model µθ

Update πθ using PPO w.r.t. the cumulative reward defined in Equation equation 4 based on B
end for

No filter BoN filter BR filter BW filter

SFT policy 0.886 0.454 0.922 0.952
Middle RLHF policy 0.907 0.389 0.935 0.956

Final RLHF policy 0.876 0.431 0.916 0.946

Table 1: The coefficient of determination (R2) of unfiltered policy πθ and different filtered policies
µθ between the rewards given by the reward model and the actual scores. This metrics correlates well
with the final performance (see Section 5) and helps us to determine the weight vector (or the policy
filtering strategy) in our algorithm PF-PPO.

Weight choice. By defining different weight vectors w, we can obtain different policy filtering
strategies for PF-PPO. Our objective is to choose a weight vector w such that the accuracy of the
reward model on the responses generated by the filtered policies can be maximized. To measure
this accuracy, we calculate the coefficient of determination (aka R-squared or R2) (Draper, 1998)
between the rewards and the actual scores of the responses generated by the policy. R2 measures how
well the actual scores can be predicted by the rewards with a linear model. Specifically, given a set of
responses {(ci, yi)} sampled from the filtered policy yi ∼ µθ(·|ci), we can collect the corresponding
reward Ri := Rϕ(yi|ci) and the actual score si. Then, we fit a linear model f to predict the actual
score based on the reward and denote the predicted score as ŝi = f(Ri). The R-squared is calculated

as 1 −
∑

i(si−ŝi)
2∑

i(si−s̄)2 where s̄ is the average of actual scores. Since PF-PPO optimizes the policy
based on the rewards on these responses, how well these rewards indicate the actual performance is
closely related to the final performance of our algorithm. We find R2 well correlates with the final
performance and can imply the level of reward over-optimization of the subsequent RLHF algorithm,
therefore serving as a useful metrics to determine the weight vector used in PF-PPO.

To select a weight vector, we first checkpoint three policies πθ collected from different stages of a
standard RLHF process and collect responses using filtered policies µθ in combination with different
policy filtering strategies. Then, we group the responses with similar rewards, record the average
actual score and reward for each group, and calculate the R2 by treating each group as a sample point.
We exam how different policy filtering strategies can improve the reliability of the rewards on the
responses generated by the corresponding filtered policies.

We present the results in Table 1. We observe that best-random (BR) and best-worst (BW) can
improve the reliability of the given reward model on sampled responses compared with unfiltered
policy. The BoN strategy does not improve the R2, which indicates that learning a BoN filtered
policy may not result in good performance in RL, although learning for a best-of-N policy using
supervised learning presents good performance (Sessa et al., 2024).

5 EXPERIMENTS

5.1 BENCHMARKS

To demonstrate the effectiveness of our method, we conduct experiments on the code generation task,
which is a typical reasoning task where the quality of the responses from code LLMs can be precisely
measured. Specifically, we compare different algorithms on two widely used benchmarks and a new
challenging benchmark:

HumanEval benchmark and MBPP benchmark. HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021) are two popular benchmarks for evaluating code LLMs. HumanEval
consists of 164 hand-written Python problems, each of which is validated using test cases to assess
the accuracy of the code generated by a code LLM in a zero-shot setting. MBPP includes 378 test
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problems, each of which includes the problem description, the standard code solution, and test cases
to help us evaluate the model’s ability to generate code. Both benchmarks play crucial roles These
two benchmarks are widely used to evaluate the performance of large language models on code
generation tasks.

LeetCode contest benchmark. To further evaluate the capability of the model on more challeng-
ing coding problems, we construct the LeetCode Contest benchmark. This benchmark includes
competition-level problems designed for human, and therefore is more challenging since it requires
human-level problem understanding and code generation skills. In this benchmark, we collect 160
problems from LeetCode weekly contests from July 2022 to January 2024. For each problem, we
include 100 test cases to ensure the generated code is assessed thoroughly.

5.2 DATASETS AND PRE-PROCESSING

For our experiments on the HumanEval and MBPP benchmarks, we select data from the 75k
Magicoder-OSS-instruct dataset (Wei et al., 2023b) and the 55k evol-codealpaca-v1 dataset (Luo
et al., 2023) to construct the SFT dataset, the reward model dataset, and the PPO query dataset.
Specifically, we use all the 130k training samples from Magicoder-OSS-instruct and evol-codealpaca-
v1 as the SFT dataset. To train a reward model, we curate 7k prompts from these 130k samples and
generate five responses using the SFT model for each prompt. Following the methodology in Pal
et al. (2024), we select two responses with the maximum edit distance to create response pairs for
each prompt. We use these 7k prompts with generated response pairs as the reward model dataset.
For policy optimization, we curate 3k prompts from the 130k samples as the PPO query dataset.

For the LeetCode benchmark, we construct LeetCode training datasets comprising 1,000 problems
collected from the LeetCode website. For SFT, we use self-generated correct answers to create the
SFT dataset following the methodology in Setlur et al. (2024). For reward modeling, we generate five
responses using the SFT model for each of the 400 curated prompts and selected two responses with
the maximum edit distance to form the response pairs for each prompt. We use these prompts and
response pairs to train the reward model. Finally, we used the full 1,000 prompts as our PPO query
dataset to train the code LLM.

5.3 IMPLEMENTATION DETAILS

We use deepseek-6.7B (Guo et al., 2024) as our base model. In the SFT phase, we train on the SFT
dataset for 5 epochs with the learning rate 1× 10−5, resulting in the SFT policy. In the reward model
training phase, we follow Ouyang et al. (2022) and train on our reward model dataset for 1 epoch
with the learning rate 1× 10−5. In the PPO phase, we adopt the training tricks from the blog (Shen
et al., 2024). Specifically, we adopt reward normalization and advantage normalization for stable
training. In addition, we set the learning rate for the policy network as 5× 10−7 and learning rate for
the value network as 9× 10−6. In the PPO algorithm, we collect responses for the context in the PPO
query dataset and iterate through this dataset for 5 iterations (enough for convergence) and select the
best checkpoints on evaluation set as the outcome policy. For each collected context-response pair,
we use it to accumulate loss and gradient for 3 times on average. We use full parameter fine-tuning in
all the phases. We provide the source code for all experiments in the supplementary.

5.4 BASELINES

We compare different variants of PF-PPO with not only reinforcement learning algorithms but also
supervised fine-tuning methods and direct policy optimization methods. We use greedy decoding
during inference and pass@1 (Chen et al., 2021) as the performance metrics. For fair comparison
between different baselines, we re-implement these baselines with the same code base and the same
datasets. We also use the same reward model and the same SFT policy if applicable.

Supervised fine-tuning. Starting from deepseek-6.7B, we first fine-tune this policy on the SFT
dataset. Other algorithms learn based on this SFT policy. RAFT (Dong et al., 2023) and BOND (Sessa
et al., 2024) train the policy to fit the best-of-N (BoN) responses or the BoN policy via different
supervised learning losses. RAFT maximizes the log-probability of the BoN response, whereas
BOND minimizes a combination of the forward and backward KL divergence w.r.t. the BoN policy.
We set the coefficient to combine these two loss terms as βBOND = 1.0. BOND is an iterative
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Family Method HumanEval MBPP LeetCode

Supervised Fine-Tuning SFT 74.2 70.8 15.2
RAFT (Dong et al., 2023) 76.9 71.3 17.8
BOND (Sessa et al., 2024) 80.8 75.2 30.0

Direct Policy Optimization DPO (Rafailov et al., 2024) 78.4 73.7 23.0
IPO (Azar et al., 2024) 78.2 72.9 23.2
KTO (Ethayarajh et al., 2024) 77.9 72.5 22.4
Iterative-DPO (Pang et al., 2024) 78.1 74.8 23.8

Reinforcement Learning PPO-S (Hu et al., 2024) 78.1 73.8 25.2
PPO-M (cf. Shao et al., 2024) 80.2 75.0 29.8
PF-PPO (BoN) 75.8 71.7 16.8
PF-PPO (BR) 82.9 75.9 33.0
PF-PPO (BW) 82.4 76.2 30.4

SOTA (7B models) Magicoder (Wei et al., 2023b) 76.8 75.7

Table 2: The performance of different algorithms on three benchmarks. We compare pass@1
of PF-PPO (our algorithm) against baseline methods. For each benchmark, we select the best score
across 5 epochs for each method. The highest and the second highest scores on each benchmark are
highlighted in bold and underline respectively. All experiments are based on the same code base for
fair comparison, except for the scores reported by Magicoder which is the best 7B model so far.

algorithm to fit the BoN policy based on the policy of the last iteration, and we train the policy for 4
iterations.

Direct policy optimization. To implement direct policy optimization methods, we use our reward
model dataset as the preference dataset required in these methods. We implement DPO (Rafailov
et al., 2024), IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024), and iterative DPO (Pang et al.,
2024). For iterative DPO, we train the DPO model for three iterations. For each iteration, we
construct the preference dataset as follows: The prompts are sampled from the reward model dataset
and responses are generated by the trained DPO model from the previous iteration (if exists) or the
previous SFT phase.

Reinforcement Learning. For standard RLHF, we use the implementation from OpenRLHF (Hu
et al., 2024), which incorporates several advanced PPO training techniques and has demonstrates
strong performance on various benchmarks. We denote this baseline as PPO-S. For our method
PF-PPO, we implement three variants (BoN, BR, and BW) as introduced in the previous section.
Since PF-PPO collects multiple responses given a prompt/context, we introduce a baseline called
PPO-M (PPO with multiple responses) that uses all the N responses for training without filtering.
Comparing with PPO-M can help us distinguish the effect of collecting multiple responses and that
of filtering collected responses. The effective difference between PPO-S and PPO-M is that the buffer
B in PPO-M contains more samples with the same context c but with different responses y which
may provide detailed token-level instruction by comparing the responses corresponding to the same
context. PPO-M can also be regarded as integrating GRPO (Shao et al., 2024) into PPO, which
has been adopted by Deepseek-V2 (Zhu et al., 2024) and Qwen2 (Yang et al., 2024). We also refer
the readers to Section 5.7 for the analysis on the computational efficiency of PPO-S, PPO-M, and
PF-PPO.

5.5 EXPERIMENT RESULTS ON THREE BENCHMARKS

We present the pass@1 results of different methods on the three benchmarks in Table 2. The
experiment results show that PF-PPO (BR) and PF-PPO (BW) obtain the highest scores on these
benchmarks, indicating the effectiveness of our method. Furthermore, we have the following
observations:

• IPO and KTO (improved versions of DPO) do not outperform DPO when trained on
properly selected datasets. This indicates that appropriate dataset construction can address
the weaknesses of DPO found in previous papers, enabling DPO to achieve a performance
comparable to its improved versions.

7
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• PPO-based algorithms outperform SFT-based and DPO-based algorithms in general, demon-
strating that PPO is superior to these algorithms on reasoning tasks. We speculate that the
good performance of PPO may stem from the generalization ability of the reward model
and the value network used in PPO, which can be used to transform trajectory-level reward
modeling to token-wise advantages and thus provides more fine-grained guidance. More-
over, the gap between PPO-based algorithms and the others becomes larger on the more
challenging LeetCode benchmark, which further highlights the advantage of RL on complex
reasoning tasks

• BOND achieves the highest score among the baseline methods. It demonstrates that iterative
best-of-N (BoN) distillation is an effective alignment approach. We speculate that BOND
also benefits from its ability to reduce learning on samples with unreliable rewards by
selecting the best candidate from a set of N samples.

• Motivated by the good performance of BOND, we implement PF-PPO (BoN) as a natural
attempt to apply BoN to an RL-based algorithm. However, PF-PPO (BoN) results in poor
performance. This indicates that compared with SFT methods that only need good samples,
bad samples for the contrastive learning purposes are also important for RL-based methods.
This explains the reason why PF-PPO (BR) and PF-PPO (BW) outperform PF-PPO (BoN).

• PF-PPO (BR) and PF-PPO (BW) outperform the others with a larger gap challenging
LeetCode tasks. We find that the accuracy of the reward model decreases on this benchmark
since it is more difficult for the reward model to distinguish whether one response is better
than another, especially when both responses contain errors. This decreases the reliability
of the reward model in the moderate reward region (cf. Figure 1). Consequently, PF-PPO
(BR) and PF-PPO (BW) can improve the performance in these complex reasoning tasks by
avoiding learning on unreliable rewards.

5.6 CHOOSING FROM DIFFERENT POLICY FILTERING STRATEGIES

PF-PPO modifies the sampling procedure of standard PPO by sampling N responses and randomly
filtering responses based on their ranks. In this part, we consider other alternatives to filter by
threshold or down-weight the responses with unreliable rewards in the sampling procedure.

• Filtering based on reward thresholds. Given a reward model, we can filter the responses
based on their rewards using specified threshold. This results in three strategies, PPO-top
that only keeps the top samples whose rewards exceeding a certain threshold, PPO-top-
random that keeps also keeps random samples with 50% probability, and PPO-top-bottom
that keeps top samples and bottom samples whose rewards are below another specified
threshold. These strategies can be regarded as the threshold version of PF-PPO (BoN),
PF-PPO (BR) and PF-PPO (BW) respectively. The thresholds are tuned coarsely to achieve
good results on a separate validation set.

• Filtering based on reward reweighting. Compared with the above strategies that use
thresholds, we consider a softer version that adjusts the sample weights based on their
rewards, aiming at down-weight the samples with moderate and possibly unreliable rewards.
Specifically, we increase the sample weight of the responses with rewards in the reliable
region and decrease the sample weight otherwise. To achieve this goal, given a reward
model Rϕ that returns rewards in the range [−1, 1], we assign the weight for the sample
(c, y) proportional to |Rϕ(y|c)|k and collect samples with these weights from the buffer B to
train the policy network and the value network. We denote these strategies as PPO-pow-k.

A question then arises: how to choose a policy filtering strategy from these strategies? To answer this
question, we propose to calculate the R2 between the rewards and the actual scores on the samples
collected by different strategies, and then choose a strategy with good results on this metrics. We can
use the SFT policy as the unfiltered policy and calculate R2 as described in Section 4. Since the SFT
policy is obtained prior to the PPO training phase, this metric can be used to predict the results of
different filtering strategies before actually conduct costly PPO training.

We compare theses strategies on HumanEval and present the performance of different policy filtering
strategies and their corresponding R2 in Table 3. We make the following observations: First, the R2

of different strategies positively correlate with their performance in general, indicating R2 can serve
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Policy filtering strategies pass@1 on
HumanEval

pass@1 on MBPP R2 based on SFT
policy

PPO 78.1 73.8 0.782
PPO-M 80.8 75.0 0.886
PF-PPO (BoN) 75.8 71.7 0.454
PF-PPO (BR) 82.9 75.9 0.841
PF-PPO (BW) 82.4 76.2 0.952
PPO-top 80.5 71.2 0.621
PPO-top-random 81.9 75.3 0.889
PPO-top-bottom 81.7 75.4 0.927
PPO-pow-1 81.0 74.2 0.926
PPO-pow-2 81.3 75.4 0.939
PPO-pow-3 81.9 76.5 0.946

Table 3: The comparison on the pass@1 results of different policy filtering strategies on HumanEval
and their corresponding R2 based on the SFT policy. The background are colored based on their
values with blue and red indicating the minimum and the maximum respectively.

as a tool to predict the performance of different policy filtering strategies. Second, different policy
filtering strategies (except for BoN versions) improve the performance of the base PPO algorithms.
This indicates that filtering samples with unreliable rewards can increase the signal-to-noise ratio
of the reward model feedback and thus improve the performance. Third, PF-PPO strategies (which
are rank-based) outperforms other strategies (which are threshold-based or reweighting-based). This
may due to the fact that rank-based strategies are more robust to the reward distribution of the given
reward model.

Discussion. The performance of different policy filtering strategies may vary across different tasks,
different reward models, and different base models. Therefore, although we find that PF-PPO (BR)
and PF-PPO (BW) are the best strategies in our setting, other policy filtering strategies may be a better
choice in other settings. Therefore, a more practical procedure should be first calculate the R2 using
the given reward model and the corresponding SFT policy on the specific task and select candidate
policy filtering strategies. Note that R2 is not a perfect tool to select policy filtering strategies and we
leave seeking for better predictive metrics as a future research direction.

5.7 FURTHER ANALYSIS

The training process of PPO-S, PPO-M, and PF-PPO. To provide a comprehensive view of the
three algorithms, we show the training process.

We first present the training curves of PPO-S, PPO-M, and PF-PPO in Figure 2 (left). The training
reward are evaluated on the samples collected by the filtered policy µθ and the evaluation rewards are
calculated on the unfiltered policy πθ. We observe that both the training reward and evaluation reward
of PPO-M and PF-PPO surpass those of PPO-S. This indicates that sampling multiple responses from
a context enhances the performance of the RLHF method, consistent with the findings in Shao et al.
(2024). Moreover, in terms of optimizing reward for the given reward model, FP-PPO achieves a
higher or equal reward compared with PPO-S and PPO-M, which indicates that the approximation
made in the FP-PPO (i.e., optimizing πθ as if it were µθ) does not induce negative effect on its
capability to optimize the reward.

We also show the pass@1 results of different algorithms in Figure 2 (right). We observe that, while
PF-PPO achieves a similar reward to that of PPO-M, the pass@1 result of PF-PPO exceeds that of
PPO-M significantly. This results from the fact that PF-PPO optimizes on the reliable region of the
reward model and thus alleviate the reward over-optimization issue.

Computational efficiency of PPO-S, PPO-M, and PF-PPO. PPO-S, PPO-M, and PF-PPO all collect
different number of responses per query and train using different number of samples. For clarity,
we list the computational complexity of these algorithms in Table 4. Note that, for all algorithms,
we select the best checkpoint on the evaluation set and report the performance of this checkpoint.
Combining the results in Table 4 and Figure 2, we can draw the following conclusions: First, the
total computational complexity of PPO-S and PPO-M is almost the same, and the only difference is

9
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Figure 2: Left: The training and evaluation reward of PPO-S, PPO-M, and FP-PPO on HumanEval.
The training reward and the evaluation reward are evaluated on the samples generated by the filtered
policy µθ and the unfiltered policy πθ respectively. Right: The pass@1 of PPO-S, PPO-M, and
PF-PPO on the HumanEval benchmark.

PPO-S PPO-M PF-PPO (BR / BW)

Queries sampled per iteration 5n n n
Responses sampled per query 1 5 5
#Query-response pairs per iteration 5n 5n 5n
Reward model forward pass per iteration 5n 5n 5n
Critic forward&backward pass per iteration 5nm 5nm 2nm
Policy forward&backward pass per iteration 5nm 5nm 2nm

HumanEval 100% +2.69% +6.15% / +5.51%
MBPP 100% +1.63% +2.85% / +3.25%
LeetCode 100% +18.25% +30.95% / +20.63%

Table 4: Comparison of computational complexity and the performance of PPO-S, PPO-M, and
PF-PPO. We use n to denote the number of queries in the PPO query dataset, and use m to denote
the number of PPO epochs (i.e., each query-response pair is used to accumulate loss and gradient
for m times on average). PPO-M and PF-PPO collect N = 5 responses per query, and PF-PPO
select 2 out of the N = 5 responses (on average) for network update. We also show the performance
improvement of PPO-M and PF-PPO based on PPO-S.

that PPO-M is more likely to learn from different responses with the same query in the same batch
or adjacent batches, which improves the performance. Second, the computational complexity of
PF-PPO is less than that of PPO-S and PPO-M, while PF-PPO outperforms them. This indicates the
effectiveness of our method.

6 CONCLUSION

In this paper, we propose a new reinforcement learning with human feedback (RLHF) method, Policy
Filtration for Proximal Policy Optimization (PF-PPO), aimed at mitigating the adverse effects
of reward noise. When training the reward model using the Bradley-Terry approach, the reward
signal is generally more reliable in the high or low reward regions but less reliable in the moderate
reward regions. Motivated by this observation, we adopt a rank-based method to selectively use
sample from these reliable regions more in PPO to improve the quality of the signal provided by the
reward model. We conduct comprehensive experiments on code generation tasks, demonstrating
that PF-PPO outperforms existing baselines. Additionally, we analyze PF-PPO, standard PPO, and
PPO with multiple responses in details and show that filtering samples with unreliable rewards can
improve the performance of the outcome policy.
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A REWARD MODEL

The design of our algorithm is motivated by the observation that the reward model is less reliable
when it yields moderate rewards. To provide more evidence that this property is universal across a
broader range of benchmarks, we provide analyze the reward function on the MBPP and LeetCode
benchmarks. We repeat the process in Figure 1 on MBPP and LeetCode and plot the figures in Figure 3.
Note that we train different reward functions based on the datasets from these two benchmarks. We
observe that the property holds on these two additional benchmarks, indicating this property may
extend to broader fields.

Intuitively, this property should be universal to a broader range of tasks. For code generation tasks,
it is quite common that some samples (e.g., the response matches the known correct answer or the
response contains an obvious error) are easier to evaluate than others (e.g., the response tries to solve
the problem by a novel approach). Therefore, those samples that are hard to evaluate by human
should also be hard instances for the reward model.

B EXPERIMENT RESULTS ON MATH REASONING TASKS

To evaluate the effectiveness of PF-PPO in other domains, we applied PF-PPO to solve math
problems. We use Qwen1.5-7B (Team, 2024) as the SFT model and Ape210K (Zhao et al., 2020)
and CMATH (Wei et al., 2023a) as the evaluation benchmarks. Other experimental settings are the
same as Zhou et al. (2024). We use three types of reward models: the original reward model (ORM)
that is trained on preference datasets using a Bradley–Terry model (Bradley & Terry, 1952), an oracle
model (Oracle) that extracts the final answer from the response and compares it with the ground truth,
and a combined reward model (CRM) that integrates the above two models, similar to the approach
used in Qwen-Math (Yang et al., 2024). We compare PF-PPO to the standard PPO (PPO-S) using
these reward models. We select the policy filtration strategy according to the procedure described in
our main text, and choose the BR variant of PF-PPO.

Ape210K CMATH

PPO-S + ORM 84.1 92.3
PF-PPO + ORM 86.2 95.1
PPO-S + Oracle 82.1 90.8
PF-PPO + Oracle 83.8 91.2
PPO-S + CRM 83.9 93.1
PF-PPO + CRM 84.3 94.2

Table 5: Comparison between PF-PPO and PPO-S on two math benchmarks (Ape210K and CMATH)
using three different reward functions (the original reward model, the oracle model, and the combined
reward model). Better results for each reward model is highlighted in bold.

We can observe that PF-PPO consistently outperforms the PPO algorithm on these two benchmarks
across different reward models. In addition, the experiment results indicate that even if we can have
access to the ground truth, using the oracle as the reward function does not perform as well as using a
reward model (either the original reward model or the combined model). This finding is consistent
with experiment results in Qwen-Math (Yang et al., 2024) and Deepseek-Math (Shao et al., 2024).
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(a) The actual scores vs. the reward values for the reward model evaluated on MBPP

(b) The actual scores vs. the reward values for the reward model evaluated on LeetCode

Figure 3: We provide additional evidence that the reward model is less reliable when it yields
moderate rewards than when it yields high or low rewards. We conduct the same statistics as in
Figure 1 but on different benchmarks. Specifically, the reward models for the MBPP and LeetCode
benchmarks are trained separately using the corresponding datasets for these two benchmarks. The
MBPP and LeetCode benchmarks contains 378 and 1570 prompts respectively and we collect 10
responses for each prompt using a fine-tuned policy. We group the responses with similar rewards
and calculate the average of their actual scores (i.e., the average correctness), indicating each group
by one point. To evaluate the reliability of the reward model, we repeat the process ten times resulting
in ten lines.
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C QUALITATIVE RESULTS

In this section, we provide qualitative results on 1) how responses with high/middle/low rewards look
like and why responses with middle rewards are unreliable; and 2) the qualitative difference between
the code generated by the PF-PPO policy and the standard PPO (PPO-S) policy.

C.1 ANALYSIS ON THE THE RESPONSES ASSOCIATED WITH DIFFERENT REWARDS

We present a prompt along with several responses, including a correct response but assigned with
a low reward, an incorrect response but assigned with a high reward, an incorrect response with a
low reward, and a correct response with a high reward. The prompt describes a coding problem that
requires to convert fractions to decimals.

We have the following findings:

• For the correct response but assigned with a low reward, the generated code is less clear and
harder to read. For example, the code may mix several steps into one line.

• For the incorrect response but assigned with a high reward, the response incorrectly mixes
two correct approaches. This mistake can hardly be identified by the reward model (and
even GPT-4).

• For the incorrect response assigned with a low reward, the response contains an obvious
mistake which is easily detected by the reward model.

We also provide detailed analysis into the solutions to this problem. The given prompt is a coding
task to convert fraction to decimal.

1 Given two integers representing the numerator and denominator of a
fraction, return the fraction in string format.

2 If the fractional part is repeating, enclose the repeating part in
parentheses.

3 If multiple answers are possible, return any of them.
4 It is guaranteed that the length of the answer string is less than 104

for all the given inputs.
5
6 Please complete the following python code precisely:
7 ‘‘‘python
8 class Solution:
9 def fractionToDecimal(self, numerator: int, denominator: int) -> str:

10 ‘‘‘

This is a correct response with a high reward. This solution is thorough with clear variable names and
properly structured steps. It is easier to read due to breaking down steps explicitly such as calculating
the integer part and handling the remainder.

1
2
3 To solve the problem of converting a fraction to its decimal

representation, we can follow these steps:
4
5 1. **Determine the sign of the resultant decimal**: If both the numerator

and the denominator are negative, the result should be positive.
Otherwise, the result will have a leading minus sign if and only if
either the numerator or the denominator is negative.

6
7 2. **Convert the numerator and denominator to positive values**: Since

the division process involves integer division and the decimal part
requires modulus operation, both numerator and denominator should be
made positive for easier computation.

8
9 3. **Calculate the integer part**: The integer part is the result of

integer division of the numerator by the denominator.
10
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11 4. **Manage the remainder**: As we perform integer division, the
remainder will be used to form the fractional part. This remainder
will be treated as the new numerator for the next step.

12
13 5. **Use a dictionary to manage repetition**: To detect recurring

decimals, we need to keep track of all remainders we have seen and
their respective positions in the decimal expansion. If a remainder
repeats, it indicates a recurring decimal.

14
15 6. **Build the result string**: Start with the integer part, then append

a decimal point. Then, use a loop to compute each digit of the
fractional part. Use the dictionary to detect and mark any recurring
decimals.

16
17 7. **Return the result**: Finally, return the constructed string for the

result.
18
19 Below is the complete Python code for the ‘fractionToDecimal‘ method:
20
21 ‘‘‘python
22 class Solution:
23 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
24 if numerator == 0:
25 return "0"
26
27 # Determine the sign of the result
28 result_sign = "-" if (numerator < 0) ^ (denominator < 0) else ""
29
30 # Make both numerator and denominator positive
31 numerator = abs(numerator)
32 denominator = abs(denominator)
33
34 # Calculate the integer part of the result
35 integer_part = numerator // denominator
36 remainder = numerator % denominator
37
38 # If there’s no remainder, return the integer part
39 if remainder == 0:
40 return result_sign + str(integer_part)
41
42 # Prepare to build the fractional part
43 result = []
44 result.append(".") # Start with the decimal point
45 remainder_map = {} # To keep track of remainders and their

positions
46
47 # Process each place value in the fractional part
48 position = 0
49 while remainder not in remainder_map:
50 remainder_map[remainder] = position
51 remainder *= 10
52 result_digit = remainder // denominator
53 result.append(str(result_digit))
54 remainder %= denominator
55 if remainder == 0:
56 break
57 position += 1
58
59 # If there’s a repeat, insert parentheses
60 if remainder in remainder_map:
61 repeat_start = remainder_map[remainder]
62 result.insert(repeat_start + 1, "(")
63 result.append(")")
64
65 return result_sign + str(integer_part) + "".join(result)
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66 ‘‘‘
67
68 This code correctly handles edge cases like zero denominator, negative

numbers, repeating decimals, and ensures that the result is less than
10^4 characters long.

This is a correct response but assigned with a low reward. Compared with the previous response with
high reward, this response mixes multiple operations in one line, making it harder to understand (e.g.,
Line 34).

1 To solve the problem of converting a fraction to its decimal
representation, we can use the following approach:

2
3 1. Handle the sign of the result.
4 2. Calculate the integral part of the result, which is the part before

the decimal point.
5 3. Handle the case where the fractional part is repeating.
6 4. Calculate the fractional part and handle cycles.
7
8 Here’s the completed Python code:
9

10 ‘‘‘python
11 class Solution:
12 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
13 # Handle sign of result
14 sign = ’-’ if numerator * denominator < 0 else ’’
15 numerator, denominator = abs(numerator), abs(denominator)
16
17 # Calculate integral part
18 integral_part = numerator // denominator
19
20 # Calculate fractional part
21 remainder = numerator % denominator
22 if remainder == 0:
23 return sign + str(integral_part)
24
25 # Use a dictionary to track remainders and their positions
26 # in the fractional part to detect cycles
27 seen_remainders = {}
28 result = []
29 index = 0
30
31 while remainder not in seen_remainders:
32 seen_remainders[remainder] = index
33 result.append(str(remainder * 10 // denominator))
34 remainder = (remainder * 10) % denominator
35 if remainder == 0:
36 break
37 index += 1
38
39 # If there’s a cycle, insert the parentheses
40 if remainder in seen_remainders:
41 index = seen_remainders[remainder]
42 result.insert(index, ’(’)
43 result.append(’)’)
44
45 return sign + str(integral_part) + ’.’ + ’’.join(result)
46 ‘‘‘
47
48 ### Explanation:
49
50 - We first handle the signs of the numerator and denominator.
51 - We then calculate the integral part of the result by integer division.
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52 - If the remainder is zero, the fraction is an integer and we return it
as a string.

53 - We use a dictionary ‘seen_remainders‘ to keep track of the positions
where each remainder appears, allowing us to detect cycles.

54 - If a cycle is detected, we insert parentheses at the start of the
repeating part.

55 - Finally, we assemble the result as a string and return it.

This is an incorrect response but assigned with a high reward. In Line 32, the decimal point is added
to the result list but is not later counted when getting wrapped by the parentheses, leading to
the wrong format. This is a mixture of two correct approaches, one that adds the decimal points to
result but sets an offset for this (cf. Line 44 and Line 62 in the first response) and one that outputs
the decimal point separately (cf. Line 45 in the second response).

1 To solve the problem of converting a fraction to a decimal string, we
need to handle the following cases:

2
3 1. **Integers**: If the numerator and denominator are both integers, the

decimal representation is straightforward: divide the numerator by
the denominator and convert the result to a string.

4
5 2. **Decimal Representation**: If the division produces a remainder, it

indicates a repeating decimal pattern. Use a dictionary to keep track
of the remainders and their corresponding positions in the resultant
decimal string. Whenever a remainder repeats, enclose the repeating

part in parentheses.
6
7 3. **Handling Negative Numbers**: Handle both positive and negative

numbers appropriately.
8
9 Here is the complete code for the solution:

10
11 ‘‘‘python
12 class Solution:
13 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
14 # Handle sign of the result
15 sign = ’-’ if numerator * denominator < 0 else ’’
16 numerator, denominator = abs(numerator), abs(denominator)
17
18 # Calculate integral part
19 integral_part = numerator // denominator
20 numerator %= denominator
21
22 # Handle zero remainder
23 if numerator == 0:
24 return sign + str(integral_part)
25
26 # Prepare list to store the decimal digits
27 result = []
28 # Dictionary to keep track of remainders and their positions
29 remainder_map = {}
30
31 # Initialize the decimal part
32 result.append(’.’)
33 position = 0
34
35 # Loop until the remainder repeats or becomes zero
36 while numerator > 0:
37 # If the remainder has already appeared before, it’s a

repeating part
38 if numerator in remainder_map:
39 result.insert(remainder_map[numerator], ’(’)
40 result.append(’)’)
41 break
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42
43 # Record the position of the current remainder
44 remainder_map[numerator] = position
45 numerator *= 10
46 result.append(str(numerator // denominator))
47 numerator %= denominator
48 position += 1
49
50 return sign + str(integral_part) + ’’.join(result)
51 ‘‘‘
52
53 ### Explanation:
54 - We use a dictionary ‘remainder_map‘ to track the position of each

remainder seen. This helps us identify the repeating part of the
decimal if it exists.

55 - The loop continues until the remainder becomes zero or repeats itself.
56 - If the remainder repeats, we insert the opening ‘(‘ immediately before

the repeated part, and close it with ‘)‘.
57 - The result is assembled from the integral part, the decimal point, and

the decimal digits or parenthesized pattern.

This is an incorrect response with a low reward. In Line 59-61, the program contains an obvious error
that it cannot handle the scenario where there exists a decimal part but does not contain any repeating
part.

1
2
3 To solve the problem of converting a fraction to its decimal

representation, we need to consider the following steps:
4
5 1. **Handling Zero Denominator**: If the denominator is zero, it’s

impossible to divide, so we should return "NaN" (Not a Number) or
handle it according to the problem constraints.

6
7 2. **Handling Negative Numbers**: If either the numerator or denominator

is negative, the sign of the result should be negative.
8
9 3. **Calculate the Integral Part**: The integral part is the part before

the decimal point, which can be calculated by integer division.
10
11 4. **Calculate the Fractional Part**:
12 - Use a dictionary to keep track of the positions where the same

remainder started repeating.
13 - Divide the remainder by the denominator repeatedly, building the

fractional part digit by digit.
14 - If the remainder repeats, it indicates a recurring decimal, and we

should insert parentheses to mark it.
15
16 Here’s the complete code implementation:
17
18 ‘‘‘python
19 class Solution:
20 def fractionToDecimal(self, numerator: int, denominator: int) -> str:
21 # Handle zero denominator
22 if denominator == 0:
23 return "NaN"
24
25 # Handle signs
26 result_sign = ’-’ if (numerator < 0) ^ (denominator < 0) else ’’
27 numerator, denominator = abs(numerator), abs(denominator)
28
29 # Calculate the integral part
30 integral_part = numerator // denominator
31 numerator %= denominator
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32
33 # Initialize the fractional part list and a dictionary to track

remainders
34 fractional_part = []
35 remainder_index = {}
36
37 # Continue while there is a remainder
38 position = 0
39 while numerator > 0:
40 # If the remainder has already occurred before, it’s a

repeating decimal
41 if numerator in remainder_index:
42 break
43
44 # Record this remainder’s position
45 remainder_index[numerator] = position
46
47 # Calculate the next digit
48 numerator *= 10
49 fractional_part.append(str(numerator // denominator))
50 numerator %= denominator
51 position += 1
52
53 # Build the result
54 if not fractional_part:
55 # No repeating part, return integral part
56 return result_sign + str(integral_part)
57 else:
58 # Repeating part detected
59 repeating_start = remainder_index[numerator]
60 return result_sign + str(integral_part) + ’.’ + ’’.join(

fractional_part[:repeating_start]) + \
61 ’(’ + ’’.join(fractional_part[repeating_start:]) + ’)’
62 ‘‘‘
63
64 ### Explanation:
65
66 - **Integral Part**: We calculate the integral part as ‘numerator //

denominator‘.
67 - **Non-repeating Part**: We use a dictionary to track positions of

remainders, and if the same remainder appears again, we know the
fraction is repeating.

68 - **Repeating Part**: When a repeating part is detected, we insert
parentheses around the repeating part.

69 - **Edge Cases**: We handle edge cases such as negative numbers, zero
denominator, and ensuring the result is within the constraints of the
problem.

70
71 This implementation correctly handles both whole number and repeating

decimal results, adhering to the problem statement’s requirements.

C.2 ANALYSIS ON THE RESPONSES GENERATED BY PF-PPO COMPARED WITH STANDARD
PPO (PPO-S)

We compare the answers from PF-PPO and PPO-S respectively for the same prompts, and conclude
that the answer from the PF-PPO policy is more inclined to follow a standard approach and the
response is more concise (or shorter), making it easier to understand and implement.

Specifically, we present their responses for the prompt that request the agent to write a code to find
all safe nodes in a directed graph. The two responses given by PF-PPO and PPO-S are both correct.
However, the difference is that PF-PPO adopts the deep first search (DFS) method while PPO-S
adopts the topological sorting approach. The logic is simpler for DFS and the implementation is
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easier, making it easier to understand. Both approaches have roughly equivalent time and space costs,
but the DFS method is slightly more space efficient.

These findings suggest an advantage in terms of readability and implementation simplicity when
using the PF-PPO policy, particularly for those familiar with recursive techniques.

Prompt (find all safe nodes in a directed graph):

There is a directed graph of n nodes with each node labeled from 0 to n -
1. The graph is represented by a 0-indexed 2D integer array graph

where graph[i] is an integer array of nodes adjacent to node i,
meaning there is an edge from node i to each node in graph[i].

A node is a terminal node if there are no outgoing edges. A node is a
safe node if every possible path starting from that node leads to a
terminal node (or another safe node).

Return an array containing all the safe nodes of the graph. The answer
should be sorted in ascending order.

Please complete the following python code precisely:
‘‘‘python
class Solution:

def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:
‘‘‘

The response from PF-PPO:

To solve the problem of finding all safe nodes in a directed graph, we
can use a topological sorting approach. The idea is to explore the
graph using depth-first search (DFS) and maintain a status for each
node indicating whether it is safe or not. Here’s the step-by-step
breakdown of the solution:

1. **Initialize Status**: We will use a status array to track the safety
of each node. 0 means the node is not visited yet, 1 means it is a
safe node, and -1 means it is currently in the recursion stack (i.e.,
being processed in the current DFS path).

2. **DFS Function**:
- For each node, if it’s safe or not is already determined (i.e.,

status is not 0), return the status.
- Set the status to -1 to indicate that we are currently processing it

.
- For each neighbor of the current node, call DFS. If any neighbor

returns false, it indicates that this path has a cycle and the
node is not safe.

- If no cycle is found for all neighbors, mark the node as safe and
return true.

3. **Iterate over all nodes**: Starting from each node that is not
visited, perform a DFS.

4. **Collect Results**: All nodes that return true from DFS are safe
nodes. Collect these node indices and return them in ascending order.

Here’s the complete Python code for the solution:

‘‘‘python
from typing import List

class Solution:
def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:

n = len(graph)
# status: 0 for unvisited, 1 for safe, -1 for processing
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status = [0] * n

def dfs(node):
# If the node is already processed (i.e., marked as safe or

unsafe), return its status
if status[node]!= 0:

return status[node] == 1

# Mark the node as being processed
status[node] = -1

# Visit all neighbors
for neighbor in graph[node]:

# If any neighbor is unsafe or in a cycle, the node is
unsafe

if not dfs(neighbor):
return False

# All neighbors are safe, mark the node as safe and return
true

status[node] = 1
return True

# Try to DFS from each node
safe_nodes = []
for i in range(n):

if dfs(i):
safe_nodes.append(i)

return safe_nodes
‘‘‘

### Explanation:
- **Topological Sorting**: We are using DFS to check if a path exists

from a node to a terminal node. If a cycle is detected, the node is
not safe.

- **DFS Function**: The ‘dfs‘ function determines if a node is safe by
checking all of its neighbors recursively. If any neighbor is unsafe
or in a cycle, the node is unsafe.

- **Status Tracking**: The status array is used to track if a node is
safe or not, and helps avoid redundant computations.

- **Result Collection**: All nodes that return ‘True‘ from the ‘dfs‘
function are safe nodes, and are added to the result list.

This approach efficiently identifies safe nodes by using a topological
sorting approach and a depth-first search approach to detect cycles.

The response from PPO-S:

To solve this problem, we can use a \red{topological sort approach}
combined with a depth-first search (DFS) approach to determine the
terminal and safe nodes in the graph. The topological sort ensures
that we process nodes in the order of their out-degree, which is
suitable for directed acyclic graphs (DAGs), where no cycles can form
.

The idea is to traverse the graph using DFS, keeping track of the current
path during traversal to detect cycles. Nodes that do not lead to a

cycle are considered terminal, and nodes that are part of a cycle or
are part of a path that leads to a cycle are considered unsafe.

Here’s the Python implementation of the solution:
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‘‘‘python
from typing import List
from collections import defaultdict, deque

class Solution:
def eventualSafeNodes(self, graph: List[List[int]]) -> List[int]:

# Initialize a dictionary to store the out-degree of each node
out_degree = defaultdict(int)
# Initialize a dictionary to store the dependencies (incoming

edges) of each node
dependencies = defaultdict(list)

n = len(graph)
# Build the dependencies and out-degree dictionaries
for u in range(n):

out_degree[u] = len(graph[u])
for v in graph[u]:

dependencies[v].append(u)

# Initialize a queue for BFS and a set to keep track of safe
nodes

queue = deque()
safe_nodes = set()

# Add all nodes with no outgoing edges (terminals) to the queue
for u in range(n):

if out_degree[u] == 0:
queue.append(u)

# BFS to find safe nodes
while queue:

u = queue.popleft()
safe_nodes.add(u)
# For each node v that depends on u, decrement its out-degree
# If v’s out-degree becomes zero, it becomes a terminal
for v in dependencies[u]:

out_degree[v] -= 1
if out_degree[v] == 0:

queue.append(v)

# Sort and return safe nodes
return sorted(safe_nodes)

‘‘‘

### Explanation:
1. **Dependencies**: We build a ‘dependencies‘ dictionary, where each key

is a node and the values are a list of nodes that depend on the key.
This is used to track back edges.

2. **Out-degree**: We also keep track of the out-degree of each node.
This is used to determine which nodes are terminal (i.e., have no
outgoing edges).

3. **Topological Sort (BFS)**: We start by adding all nodes with no
outgoing edges (terminals) to the queue. We then process each node
from this queue. For each node, we mark it as safe, reduce the out-
degree of its dependencies, and if any of those dependencies become
terminals (i.e., have no outgoing edges), they are added to the queue
. This ensures we process all nodes that are part of cycles and
prevent future revisits to nodes involved in such cycles.

4. **Result**: The safe nodes are collected and sorted and returned as
the final result.

This approach ensures that we correctly identify terminal nodes and use
them to establish safe nodes, as well as handle cycles in the graph.
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