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Abstract

We present first experimental results from the Turing Game, a modern implementa-
tion of the original imitation game as proposed by Alan Turing in 1950. The Turing
Game is a gamified interaction between two human players and one AI chatbot
powered by state-of-the-art Large Language Models (LLMs). The game is designed
to explore whether humans can distinguish between their peers and machines in
chat-based conversations, with human players striving to identify fellow humans
and machines striving to blend in as one of them. To this end, we implemented
a comprehensive framework that connects human players over the Internet with
chatbot implementations. We detail the experimental results after a public launch
at the Ars Electronica Festival in September 2024. While the experiment is still
ongoing, in this paper we present our initial findings from the hitherto gathered data.
Our long term vision of the project is to deepen the understanding of human-AI
interactions and eventually contribute to improving LLMs and language-based user
interfaces.

1 Introduction

AI systems are built with the goal of performing activities that were traditionally reserved to humans,
from playing strategy games, like chess [4], Go [10] or Dota-2 [9], to generating artistic imagery [1]
or written texts [25, 17]. They became better and better up until the point where some have already
surpassed human performances in fields that have traditionally been believed to require human
abstract thinking and strategic planning. In the field of content generation, we have arrived at the
point where we find it hard to discern whether images or clips are generated or represent real footage
or whether texts stem from a human or a machine.

Alan Turing, one of the founding fathers of modern-day computer science, pondered the question
whether machines can think [34, 27]. Motivated on one hand by the theoretical construction of the
so-called Turing Machines, capable of computing anything that is computable, and on the other hand
by the emerging understanding of the brain’s inner working, Turing suggested that the human brain
is performing the same kind of computations when solving tasks, and imagined that it should be
possible to create a machine that imitates the thinking process of the brain, and thus “thinks” like a
human. Turing recognized the difficulties in the notion of the word “thinking” as a quicksand, and
therefore proposed an objective measurement approach, termed the Turing Test (also known as the
Imitation Game), that involves a machine, a human, and an interrogator communicating via a text-
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Figure 1: The setup of the proposed Turing Game.

based interface without knowing which is which. The machine’s goal is to persuade the interrogator
that it is human, while the human assists the interrogator in making the correct identification. In
Turing’s Imitation game, the interrogator interacts with both a machine and a human; accepting the
machine as human means rejecting the real human as machine. The machine passes the Turing Test if
the interrogator cannot discern it from an actual human. The assumption is that, by passing the test,
the machine must simulate some aspects of the human thinking processes. By construction, the test
highly depends on the human participants as some may be easier to fool than others. Furthermore,
their motivation to give their best during the test matters: the results are meaningless if humans guess
at random or if the assisting human gives careless answers. To the best of our knowledge, these issues
remain unaddressed, both in the original formulation of the Turing Test or in any instantiations of the
test, like the “Löbner Prize” [30, 8] or the web-based test “Human or Not?” [16].

In this paper, we propose to extend the Imitation Game by symmetrizing the roles of the original two
human participants, see Fig. 1. This seemingly slight redesign of the test shifts the focus away from
the simple question-answering to the collaboration between the humans and the inference of their
mutual intentions, a characteristic feature of human communications [33]. Due to that, the question
comes down to which of the interlocutors understands the intentions better, a human or a machine.
Note that in this way we also avoid the quicksand of the notion of thinking, allowing participants to
decide what behaviour is human-like, and what is not. Just like Alan Turing, we leave the kind and
length of the conversation fully up to the humans.

Humans often express their verbalized thoughts in a non-explicit and incomplete way. In order for a
machine to correctly understand human desires and needs, it needs to understand our thoughts on a
large enough joint context (common knowledge), and thus behave as human-like as possible [5, 2].
Contributions:

• We propose a generalization of the Turing Test, termed the Turing Game, which is symmetric
with respect to the role of the two humans. We also develop a tailored matching algorithm
pair human players according to their playing performance and their average time to make
decisions.

• We have developed and installed the Turing Game as a platform and made it publicly
available.1 Our platform may serve as a sandbox for testing various LLMs and chatbot
implementations intended to imitate human-like thinking, as judged by an open, yet qualified,
public community. By design, the most qualified humans contribute the most to the resulting
ratings of the bots.

• We present the preliminary experimental results from the hitherto gathered data, mainly
from a public exposition and public installation at the well-known Ars Electronica Festival.

The paper is organized as follows: in Sec. 2 we detail the related work and shortcomings of hitherto
implementations of Turing-like tests; in Sec. 3 we describe the proposed Turing Game; in Sec. 4
we present results and their analysis from the already gathered data. We conclude and reflect on
our contributions in Sec. 5. In the Appendix, Sec.A discusses potential ethical consequences, Sec.B
complements the presented scores, Sec.C describes our platform, Sec.D supplements the results from
Sec.4, and Sec.E details our installation at the Ars Electronica Festival.

1https://www.turinggame.ai/
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2 Related Work

Turing(-like) tests before LLMs. In [21, 22], the authors proposed the Winograd Scheme Chal-
lenge (WSC), as a possible alternative to the Turing Test. The challenge consists in a set of cleverly
constructed pairs of sentences that differ by only one or two words. Correct interpretation of these
sentences relies on resolving pronoun ambiguities, a task that seemingly requires common-sense
reasoning. [19]. In addition to the Turing Test, numerous other tests have been proposed. Examples
include The Marcus Test that evaluates AI system’s ability to understand the meaning behind video
content, such as plot, humor and sarcasm. To pass, an AI system needs to describe the video content
like a human would [24]. The Lovelace Test, which examines whether AI can generate original ideas
that exceed its training data [3]. The Reverse Turing Test, in which the AI acts as the interrogator
and must determine if the human participant is actually a machine. The human passes the test if the AI
misidentifies them as a machine. [29]. The Visual Turing Test, designed to assess computer vision
systems by asking binary questions about an image. An operator answers or dismisses each question
for ambiguity. The system one question at a time, focusing solely on visual understanding without
natural language processing. The test aims to evaluate the system’s ability to interpret complex visual
narratives and relationships between objects [14]. The Löbner Prize [30], established in 1990 by
Hugh Löbner, was an annual competition based on the Turing Test that challenged AI programs to
mimic human conversation. Judges would determine if responses came from humans or machines.
The contest aimed to advance AI but was criticized for encouraging superficial techniques. The
competition continued until 2019, without ever awarding its prize for a fully indistinguishable AI.

Turing(-like) tests and LLMs. In [16], the authors presented “Human or Not”, an online game
aimed to measure the capability of AI chatbots to mimic humans in conversation, as well as humans’
ability to tell bots from other humans. Over 1.5 million unique users participated, engaging in
two-minute chat sessions with either another human or an AI language model simulating human
behavior.

Relatively big-scale and multimodal experiments were performed by [11]. The results revealed that
current AIs are not far from being able to impersonate humans across different ages, genders, and
educational levels in complex visual and language challenges. In [17], the authors evaluate GPT-4 in a
public online Turing Test to find out that familiarity with LLMs did increase the detection rate. From
a game design perspective, making AI interacting more like a human improves players’ enjoyment
levels, and an overall satisfaction from the game [15].

In [36], the authors examine the use of Large Language Models (LLMs) as evaluators ("judges")
of chatbot performance, an approach called "LLM-as-a-judge." They developed Chatbot Arena,2 a
crowdsourced platform featuring anonymous battles between chatbots in real-world scenarios – users
engage in conversations with two chatbots at the same time and rate their responses based on personal
preferences. The system ranks AI bots through pairwise comparisons. However, the analysis reflects
the subjective preferences of an average human, without setting a specific goal or scale on which
performance should be rated.

2.1 Shortcomings

In [23], the author identified several major issues related to Turing’s original question, summarized
as follows. Deception: The machine is forced to construct a false identity, which is not part of
intelligence. Conversation: A lot of interaction may qualify as "legitimate conversation" — jokes,
clever asides, points of order — without requiring intelligent reasoning. Evaluation: Humans make
mistakes and judges might disagree on the results. The Chinese Room argument by John Searle
challenges the notion that computers can truly understand or think [28]. It describes a scenario where
a person in a room follows instructions to manipulate symbols in a foreign language, suggesting
apparent competence without actual comprehension. Searle argues that, like this person, computers
may simulate understanding through processes but do not possess actual consciousness or genuine
understanding.

In addition to shortcomings of the Turing Test discussed in the literature (see [12] for a comprehensive
overview), we identify problems related to the role of the judge: to the best of our knowledge, all
previous work assumes an "average" judge, and bases their analysis on this assumption. In contrast,

2https://chat.lmsys.org/
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Figure 2: Left: A human player incorrectly suspected a fellow human of being a machine, losing the
game. Right: A human player correctly identified the machine. The game is not won yet, as the other
human still has to correctly identify the machine.

we propose employing highly skilled judges who have specifically demonstrated proficiency in
distinguishing between machines and humans.

To identify these top-performing judges, we propose dividing the experiment into two phases: the
phase designed to assess which humans excel as judges, and the phase where we evaluate how the
bots perform against highly skilled judges. Note that this approach encourages a more rigorous test,
not an easier one. Additionally, we do not enforce any time constraints and allow for deliberate
decision-making, encouraging System 2 reasoning rather than impulsive System 1 judgements.

3 The Turing Game

Motivated by the reported theoretical and also practical shortcomings of the original implementation,
we start by symmetrizing the interaction between the two human participants by allowing everyone to
interact with everybody else. We further remove the predetermined role of an interrogator (see Fig. 2).
That gives rise to a gamified interaction between players, called the Turing Game. We posit that
already with three participants we will observe an effect of siding between any two players, absent in
one-on-one interactions [32]. Further, as participants interact through the use of the written language
without additional cues such as body language or mimics, they are more reliant on a deliberate
reasoning rather than intuitional judgement [20]. At any point during the game, players may cast
votes for whom they presume to be the machine. The game finishes either if both humans have
correctly identified the machine (humans win), or at least one of the humans misidentified a human
for a machine (humans lose). Hence, humans can win only collectively if they agree on the identity
of the machine. By design, the participants benefit from forming collaborations within the group, a
typically human feature [33]. Their interaction’s style may range from fully collaborative, to fully
interrogative, or anything in between. The presence of two players further mitigates the reverse effect
of the Turing Test as the machine’s responses do not get influenced solely by one player [29].

3.1 Scores for Humans

In order to identify high performing judges, we propose a tailored ranking to score the players.
Moreover, ranking in the context of games has been explored in the context of feedback systems and
has been shown to have a positive effect on the motivation of players [26, 6]. We create a leaderboard
of players aimed at the identification of the most proficient ones, and matching the players based
on their game-strength, as an experienced human player may underperform if matched with an
inexperienced one.

Player’s Game-Strength. Note that the frequently used ELO rating [7] (or its derivatives) is not
applicable as both players either win or lose together. Instead, we focus on estimating the odd, with
a prior of one, that the player will win in the next game, constructed as follows. Suppose a human
player Pi played Ni games. We focus on the cumulative number of victories,

∑Ni

k=1 vik, and the
cumulative number of the lost games

∑Ni

k=1 lik, where lik = 1− vik and vik is defined as

vik =

{
1 if the kth game is won,
0 if the kth game is lost,

(1)

with k enumerating the games in reverse order, i.e. the game with index 1 is the last game played and
the game with index Ni is the first ever game of that player.
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As the score should be a predictor of the player’s current strength, we take into account roughly the
last 100 games. We use a modified sigmoid to achieve a smooth drop off:

σ100(k) := 1− 1

1 + e−0.1(k−100)
(2)

The smoothed cumulative number of victories and losses can then be expressed as
Vi =

∑Ni

k=1 vikσ100(k) and Li =
∑Ni

k=1 likσ100(k). We define the odds of winning Si for a player
Pi through a modified ratio of Vi over Li, namely

Si =
Vi + 11

Li + 11
. (3)

In order to ensure a strong prior towards Si ≈ 1, we add 11 to both the nominator and denominator
of the score such that in combination with the weighting by σ100(k) the maximum achievable score
is around 10.

Matching players. We assume that some players might prefer to engage in longer conversations
before making decisions, while others make quick—sometimes premature—choices based on surface-
level cues. To account for this, we pair players with similar average decision times. However,
to ensure a seamless experience, we prioritize reducing wait times, even if it means occasionally
matching players with slightly different decision patterns. We define the distance dij between two
players Pi and Pj as the Euclidean distance in a 2-dimensional plane, where the player’s score Si

(Eq. (3)) is the first axis, and the player’s average time to decision Ti in minutes is the second axis
(see Fig. 3). The distance is then given by

dij =
√

(Si − Sj)2 + (Ti − Tj)2. (4)

Figure 3: Every dot denotes a different player with its position due to its average decision time and
its score. Shown are all registered players that have played 5 or more games. The size of each dot is
proportional to the number of games played by the user, the maximum number is 79. Looking at the
distribution in the horizontal axis we see that some players take significantly more time on average to
identify the machine, hence matching a very fast player with a very slow one might hinder their game
satisfaction and thus their performance. The scores (Eq. (3)) only span the interval from 0.6 to 2.1.
This is due to the fact that the shown experimental data is yet preliminary, higher scores are yet to
be achieved. The green area illustrates an example of the matching radius (Eq. (4)) around the one
player marked in red as an example.

Matching penalty. A penalty p is computed for each player pair to reduce the possibility of pairing
the same players multiple times in a row. We refer to the Appendix Sec. B for more details. Both d
and p (Equations (4) and (9), respectively) are then added together to form the final distance value.
As this value is computed for every queued player-pair, they form a quadratic matrix D, where:

Dij =

{
dij + pij , if i ̸= j

∞, if i = j
(5)

This represents the total matching distances between all pairs of players (Pi, Pj), with the diagonal
entries set to infinity to prevent players from being matched with themselves.
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Figure 4: "MadTalker" and "AllTalker" chatbots playing the game with two humans (left and right,
respectively). The snips where takes once the game finished, that’s why the bot’s identity is already
visually revealed.

Player Selection. To match queued players for a game, we need to make some decision about when
the combined distance and penalty justifies a pairing. To this end, we normalize the total matching
distance D (Eq. (5)) by a threshold τ ∈ R. Our initial threshold of τ = 1 allows the matching of two
players with a combined distance of 1 in their scores and decision times. We increased to τ = 5 to
allow for faster matching as long as the game has low numbers of players:

D̂ij :=
Dij

τ
− 1. (6)

We match players pair (i∗, j∗) such that (i∗, j∗) = argmin(i,j) D̂ij , provided that D̂ij < 0.

Distance Adjustment by Time. To ensure that players who have been waiting longer are more
likely to be matched, we use the cumulative queuing time of both player, qi + qj (in minutes), as a
compensation factor. The final adjusted distance is

D̃ij = D̂ij − (qi + qj) . (7)

3.2 Scores for Bots

In this section, we propose a score to measure the strength of the individual bots in the second phase
of the ongoing experiment, taking into account the achieved scores of the humans. Note that the two
phases are not temporally separated but intertwined. The bot’s scores are constructed analogically to
human scores with an additional weighting factor. The outcome of each played game k with humans
Pi and Pj , is weighted with ξk defined as

ξk = max
(
0, S

(k)
i − 1

)
·max

(
0, S

(k)
j − 1

)
· σ1000(k), (8)

where S
(k)
i and S

(k)
j refer to the score of the respective player. Novice players have no effect, the

bot’s score is dominated by the strongest players only.

4 Results

In this section, we present the results of the games played during the Ars Electronica Festival in
September, 2024. In Fig. 4 we provide two snips of conversations as illustrative examples. See App. F
for more examples.

We start our analysis by looking at the distribution of games’ outcomes (Fig. 5, left). Observe
that humans won 47.69%, while bots won only 14.96% of the time. Around a quarter (25.42%)
of games were surrendered by a human, possibly because of incompatibility of the players. If
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Table 1: The scores for the bots
bot overall overall score weighted nonzero

win ratio number of games (see Sec. 3.2) win ratio Eq. (8) weighted games

AllTalker 24.73% 388 0.126 11.70% 214
MetaSim 22.38% 161 0.141 14.08% 74
MadTalker 21.74% 46 0.053 6.81% 31

we consider only valid games with a loss or win results (Fig. 5, middle), humans won 76.12%
of the time, while machines won 23.88% of the time. On the machine side, the majority of the
games has been processed by AllTalker (68.42%), which speaks English and German, followed
by MetaSim (24.06%), and MadTalker (7.52%), which both speak English only (Fig. 5, right).
For a precise description of the bots, see Appendix C. Across the number of games played by
respective bots, the ratio of victories was similar for all three bots, MetaSim, MadTalker and
AllTalker, (22.38%, 21.74%, 24.73%, respectively). Yet, the calculation of the bots’ scores as defined
in Sec. 3.2 shows a much more differentiated picture as shown in Table 1. Taking the ξk weighting
into account, the win ratios of the bots drop to 6.8% to 14.1%. This shows, that already with the
small amount of games that we have acquired, the preselection of players has a very significant effect
on the quality of the resulting judgment.

Figure 5: Basic statistics. Note a high number of surrendered games, possibly due to incompatibility
of players (left). If we consider only games with a win/ loss result, humans win 76% of time (middle).
Finally, we present a pie chart of games played by different machines (right).

In the further analysis, we focus on the changes of the distribution of human victories as the function
of the game duration, or the number of the exchanged messages. We observe that initially the ratio of
human-won games increases with time, up until around 3 minutes of interaction, when it plateaus
(Fig. 6). Further, note that the decisions that are taken with less than around 3 minutes of interaction
are characterized by a lower detection rate of a bot. It indicates that: (1) for the current bots it is
necessary to interact for about 3 minutes in order to make a deliberate guess about the bot’s identity,
(2) if we were to impose a strict time limit on the duration of the interaction, we would have forced
humans to rely more on the intuitive judgement rather than a deductive one. That further explains
why the authors of [16] achieve lower identification rates of machine by a human. We posit, that it
happens because of the involvement of the System 2 reasoning that gets engaged without the enforced
time limits. Further, note that more that half of the games lasted at least 3 minutes. Hence, with an
enforced time limit this same number of games would rely essentially on a random guess, making
humans prone to an error in judgement. It is possible that some humans tend to abort the game after
that period, a sign of impatience. We posit that, had they played longer, they would have increased
their chances of a correct identification of the bot.

Additionally, we have gathered IP addresses of players to analyze the provenance of the players
(Fig. 7). A vast majority of our data stem from games conducted in Austria, but our game so far has
been played by players from around 30 countries on six continents.
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Figure 6: Histograms of total games (orange) and human victories (light green) in function of the
number of messages written. Boxplots represent the distribution of messages written at different
stages of the game, plotted as a function of game duration (above), or the number of messages
exchanged (below). The blue line shows that humans achieve about 80% accuracy after 2-3 minutes
or 15-20 messages, with performance before and after being lower but still above random guessing.

Figure 7: Histogram of the provenance of connected players. Ars Electronica Festival visitors are
shown separately, as they represent diverse nationalities and cannot be grouped under AT.

5 Conclusions

We have proposed a framework designed to understand how proficient people are in telling their
kind from machines in a direct, text-based, interaction. In our extended version of the Turing Test,
involving two humans and one machine without predetermined roles, we aim to engage the System 2
cognitive processes of the participants. This setup requires players to employ analytical reasoning and
critical thinking to meticulously evaluate responses and discern subtle cues indicative of non-human
behavior [35, 18]. The nature of the interaction fosters strategic dialogue and collaboration, where
players must formulate insightful questions and share their observations to collectively identify the
machine. This collaborative effort invokes meta-cognition and theory of mind, as players reflect on
their own thought processes and anticipate the reasoning of others [13]. By consciously overcoming
cognitive biases and avoiding snap judgments, participants engage in deliberate decision-making
characteristic of System 2 thinking [31]. The game’s complex problem-solving environment not
only enhances cognitive engagement but also provides deeper insights into differentiating human
intelligence from artificial intelligence.
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A Ethical Consequences

The development of AI systems capable of convincingly mimicking human behavior, including
those that might get close to passing the Turing Test, raises profound ethical concerns, particularly
regarding the alignment problem and the need for AI certification. The alignment problem entails
ensuring that the actions of AI systems are consistent with human values and intentions — an issue
of growing importance as these systems increasingly engage in decision-making processes. However,
passing tests such as the Turing Test does not inherently demonstrate that an AI system is aligned
with ethical norms, nor does it guarantee its (functional) trustworthiness. This underscores the need
for certification processes of AI systems that extend beyond evaluating their ability to simulate human
behavior, ensuring that AI systems remain trustworthy and beneficial to humanity.

Nevertheless, the Turing Test plays a significant role in discussions about transparency and awareness
with regards to modern-day AI systems, especially LLMs, by highlighting how easily these systems
can imitate human conversations. As LLMs become more adept at passing this test, it raises ethical
concerns about users potentially being unaware that they are interacting with an AI. This lack of
transparency can lead to confusion, misplaced trust, or manipulation, as users may assume they are
conversing with a sentient being or a human expert. The Turing Test underscores the need for clear
disclosure when AI systems are in use, ensuring that people are aware they are engaging with a
machine, not a person. Without such transparency, the increasing sophistication of LLMs could blur
the line between human and AI interaction, eroding trust and ethical standards in communication.

B Scores

Matching penalty. A penalty is computed for each player pair to reduce the possibility of pairing
the same players multiple times in a row. It is implemented as follows. Let Gi represent the sequence
of the playing partners of Pi in all played games of Pi, again in reverse order. In the sequence, each
value indicates the index number j of the other player:

Gi = ⟨gi1, gi2, . . . , giNi
⟩ .

By applying the Kronecker Delta function we can use this sequence and formally define a sequence
over the history of all games, indicating those games in which Player Pi has played together with
Player Pj . We call that sequence ∆ij

∆ij = ⟨δ(gi1 − j), δ(gi2 − j), . . . , δ(giNi
− j)⟩ .

Every 1 in ∆ij indicates a joined game of Pi and Pj in the list of games of Pi. Conversely ∆ji

captures the same games, as indicated in the list of games of Pj . Each game is weighted in order to
decrease the relevance of the older games. The weighting function w : N → R is defined as:

w(k) =
3

2 + k
,

where k is the index of the game, starting from k = 0 for the most recent game, k = 1 for the
penultimate game, and so on. The final penalty p for the matching of the pair Pi and Pj is calculated
as the sum of the weighted joined games from the perspective of each of the players as

pij = pji =

Ni∑
k=1

δ(gik − j) · w(k) +
Nj∑
k=1

δ(gjk − i) · w(k). (9)

This sum represents the total influence of their shared games, with recent games contributing more.
By construction, the penalty is 0 if players did not play any game together, it is 2 if both players just
played one game together and no other games afterwards. Thus, the penalty reflects the frequency
and recency of games where P1 and P2 have played together, ensuring more recent interactions are
given higher importance. By construction the penalty can grow slowly without limits effecting an
ever longer waiting time until matching can occur between players that regularly play together.

C Implementation Details

We implemented a comprehensive framework that connects human players over Internet with chat-
bot implementations. The Python Framework FLET was used to implement an online platform
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Figure 8: A player can identify himself using OAuth2 Providers, or an e-mail based verification.

which delivers the functionalities necessary to connect and pair players together, reachable on
play.turinggame.ai. The decision to use FLET was made due to the possibility of developing a mono-
lithic program without having to split frontend from backend. Additionally, FLET offers multiuser
features, which we needed to develop the game. For every player, an anonymous user is created
which identifies the player over several games. This allows the game to rank players and pair them
based on their performance, as each player can be tracked as long as the system can recognize the. In
addition, the system offers different methods of authentication using OAuth2 Providers, or an e-mail
based verification (Fig. 8), which allows users to identify themself to the system over several devices.

Chat Interface. The goal of the chat interface was to be minimalistic yet functional. We took
great care to make it impossible to identify the other connected players in the chat. We use colors
to identify each player. The colors are selected randomly from a pool of four colors: red, yellow,
blue and purple. The chat is limited to 255 characters per message and it is not possible to send
empty messages. In addition to the chat interface itself, two sliders are used to accuse one of the
two other players. The sliders are only usable once and are locked when a vote is cast (Fig. 10). A
game is always accessible by its unique game id, which is a positive integer. Every game can be
viewed by anyone who knows the id or the corresponding link, which always follows the pattern
"play.turinggame.ai/chat/game-id". The system is able to distinguish between players and spectators
for live games. Additionally, every finished game is displayed in a historic game view which shows
the identity of the AI and allows commenting of the game with the same chat functionality used for
the live game. For an example of a finished game interface, see Fig. 9.

C.1 Turing Game as a Platform

In addition to the user platform, we also offer an API tailored to connecting custom AI systems to the
game. Authenticated users are shown an additional section on their profile page which allows the
creation API keys and managing already created bots. API keys follow the UUID-4 format and are
only displayed once at their creation. The keys are stored as sha-256 hashed strings.

For implementing bots, we offer the python-library turing-bot-client which handles every game-
related communication. With the registered API key, the bot can be connected to the game. To this
end, we use an encrypted websocket connection which allows for true two-way communication. The
server which handles these connections is implemented with FastAPI.
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Figure 9: A finished game. For illustration purposes, two of the team members connected over the
platform (see Sec. C.1) and identified the machine.

Figure 10: Starting interface of the game. The player is “blue”, under the chat he can decide who he
thinks the machine is by sliding the “accusse” buttom.
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Figure 11: The API key generator allows the generation of keys for named bots. Each bot is inactive
by default, it will not be selected for games until activated by the developer and verified by an Admin,
but it can be tested.

Figure 12: The bot test interface allows the full simulation of a game. Developers can choose the
language, start/stop the game and play both human players.

As a bot needs to be able to handle multiple games at once, we use asyncio to call the message
handlers. For each game message, the bot receives the game id as described above, the message itself
and the colors of who wrote the message and also the color of the bot itself. It has to be noted that the
bot also receives its own messages.

Bot Test Interface. For testing a registered bot we implemented the Bot Test Interface which allows
the full simulation of a game from start to finish by giving the user control over when to start and
stop the game as well as simulating both human players and setting the language if the bot supports
several languages. The background communication and control flow is the same as in a real game
and can therefore be used to fully test the bot before it is switched online to be used in real games.
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1 def on_message(self, game_id: int, message: str, player: str, bot: str) -> str:
2

3 #We check if we (the bot) wrote the previous message or not
4 if player == bot:
5 #If yes, we store the message with the role assistant
6 self.chat_store[game_id].append({"role":"assistant",
7 "content": f"{player}: {message}"})
8 else:
9 #If not, we store the message with the role user

10 self.chat_store[game_id].append({"role":"user",
11 "content": f"{player}: {message}"})
12

13 #We only answer when the previous message was not written by us
14 answer = self.client.chat.completions.create(
15 messages=self.chat_store[game_id] +
16 [{"role":"user",
17 "content":"""Only provide the message without
18 including your player name any other tags or
19 labels at the front"""}],
20 model = self.model_name).choices[0].message.content
21 return answer

Listing 1: Example implementation of the on_message callback inherited from turing-bot-client. It is
always called when a message is posted into the chat. This allows the bot to react to human players
as well as its own messages.

Exemplary Prompt. We provide an exemplary prompt used to instruct one of the bots how to act.

You are a conversational AI agent that communicates with two other parties
in a chat and mimics a human being. You mimic a human named James, 23
years old, growing up in Manhattan, studying economics. You are not
particularly polite but curious in general. Your language is a little
bit teenager-like but short in answering. Important: always respond if
users explicitly mention you in the chat! - always respond if users ask a
general question in the chat! - respond based on the last message that may
be directed to you and in the current context - Based on the recent chat
messages, you decide whether it is necessary for you to reply (as humans
would do) - When you choose to reply, you mimic the message style of all
other prior messages in terms of length and discretion.

D Additional Results

In this section, we supplement results presented in the Sec. 4. We check the relationship between the
number of times machine won and the absolute time difference between human decisions (Fig. 13,
left). Furthermore, we plot a distribution (histogram) of the absolute value of time differences between
the decisions (Fig. 13, right).

E Physical Installation

In Figure 15 we present the view from above of our installation at Ars Electronica Festival, and in
Figure 16 we present an external view of our installation and the playing stand (right and left pictures,
respectively).
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Figure 13: Histograms of time differences. Left: the absolute value of time differences between
decisions made by the two humans who lost the game. Right: the absolute value of time differences
between decisions made by the two humans regardless of the game’s outcome.

Figure 14: Left: Posterior of probability distributions on the machine detection rate (modeled as
a beta distribution). Right: A corresponding heatmap of probability of detection. We see a clear
peak for 10, 20, and 25 exchanged messages (x-axis). It means that when exchanging less messages,
humans are not yet convinced about the identity of the machine, while exchanging more messages
does not provide a clear advantage in detecting the machine.

Figure 15: A sketch from-above of our stand.

17



Figure 16: The physical installation of our stand at Ars Electronica Festival. The left picture represents
an outside view, and the right the four physical playing stations.

Figure 17: Snips of conversations where the bot revealed itself.

F Additional Conversations

In Fig. 17 we present additional snips of conversations. This time, we aimed at showing how a
machine can reveal itself.
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