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ABSTRACT

Electromagnetic structure (EMS) design aims to optimize a material distribution,
e.g., metals over a printed circuit board, which is crucial for antenna and meta-
material. This task, however, is inherently a highly non-convex problem with no
explicit objective function, making it extremely challenging to solve. The most
common approach to addressing this problem relies on evolutionary algorithms
(e.g., Genetic Algorithm), where candidate structures are evaluated through electro-
magnetic simulation using specialized software. However, these methods struggle
with inefficiency, especially when dealing with large structural design space and
time-consuming simulations. To address this, we propose a Deep Progressive
Search method called DPS, which leverages a Deep Neural Network (DNN) as
a surrogate model to identify a satisfactory structure within a limited simulation
budget. Specifically, we develop a tree-search-based design space control strategy
that models the design space as a tree and incrementally refines it through node
expansions, enabling adaptive exploration of more complex regions while leverag-
ing insights from simpler subspaces. Moreover, we introduce a consistency-based
sample selection strategy to balance exploration and exploitation. Experiments
on two real-world engineering tasks, i.e., Dual-layer Frequency Selective Surface
and High-gain Antenna show the effectiveness of the proposed DPS in terms of
efficiency under limited evaluation budgets.

1 INTRODUCTION

Electromagnetic structure (EMS) is designed to interact with electromagnetic waves, which is
crucial for various domains, ranging from telecommunications to 5G antennas, including frequency-
selective surface (Zhu et al., 2022), metamaterials (Chen et al., 2023; Deng et al., 2021), photonic
crystals (Peurifoy et al., 2018), and circuit (Cheng et al., 2022; Shahane et al., 2023). Despite its
broad range of applications, EMS design is inherently challenging due to its non-convex nature and
the lack of an explicit objective function. In these cases, optimization problems typically resort to
evolutionary algorithms, like Genetic Algorithms, which can explore the solution space without
relying on gradient information. However, such algorithms are still inefficient in solving this problem
due to two major challenges.

One of the primary challenges in EMS design is the vast problem space. EMS optimization involves
an enormous design space with bd possible candidate solutions, e.g., for a 12 × 24 grid with each
position having only two states (metal or empty), where b = 2, d = 288, leading to 2288 ≈ 1086

kinds of possibilities. This vast problem space makes it extremely challenging for both human experts
and algorithms to efficiently learn and identify effective patterns. The second major challenge is the
Costly Evaluation. Assessing EMS designs necessitates real-time simulations that are computationally
expensive, typically involving the solution of complex partial differential equations (PDEs), which
cannot be substituted by simpler analytical methods (Koziel & Ogurtsov, 2014). The time required
for simulating a single design ranges from 660 seconds to 42,780 seconds (see Table 1), according to
a technical report from Inceptra 1. This substantial time investment makes it infeasible to evaluate a
large number of candidate designs through trial and error. Consequently, the development of efficient

1https://www.inceptra.com/how-computer-hardware-impacts-cst-electromagnetic-simulation-speed/

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Candidate Designs

Objectives Feedback

Electromagnetic Structure

Performance Criteria Optimizer maxx�∈�
�(y�)

111
111 00

0
00

0 0

m

n
Copper

Null

(b) Workflow of traditional Optimizer.

�(y�)

Simulation Software

Top-K {x�}Samples Design 
Space

Simulation
Software

Objectives
{x�} �(�(x�))

Performance
Ranking

Reliable {x�}

(c) Workflow of our Optimizer.

Design 
Space

Performance
Ranking

Space Management

DNN Surrogate Model

���−2

���

�(���(x�))
���−1

Temporal Consistency

(a) Workflow of electromagnetic structure optimization.

x� ⊆ {0,1}�×�y� = �(x�)

{x�}

Performance Score

{x�}
Performance Evaluation

Figure 1: Illustration of the EMS design workflow. Subfigure (a) shows the overall workflow
(Forrester et al., 2008), while Subfigures (b) and (c) depict its Optimizer, with (b) representing the
traditional method and (c) ous.

sample selection strategies becomes essential, as they can significantly reduce the number of samples
that need to be evaluated, thus lowering computational costs and speeding up the design process.

Recent advanced methods have attempted to solve the EMS design tasks, which can be broadly
divided into two categories. For instance, predictor-based methods (Koziel et al., 2022; Jing et al.,
2022) train a DNN-based predictor to replace traditional time-consuming evaluation processes and
use it for sample selection; conditional generative models based methods (Brookes et al., 2019;
Gao et al., 2023) train a generator to craft design schemes aligning with predetermined performance
criteria. Unfortunately, these methods face the difficulty of high data-collection costs since they
merely shift the time cost from the evaluation phase to the collection of the training data, rendering
them of limited practical utility. Specifically, to create high-quality DNN models within a large design
space, they often necessitate substantial evaluation costs to simulate enormous structures as training
data. For example, Wang et al. (2023) use 10∼20 thousand data and Majorel et al. (2022) employ
20∼2, 000 thousand for training, meaning an immense time investment in the data collection phase
ranging from two months to thirty years. This reliance on vast amounts of training data makes these
methods impractical in real-world scenarios, where computational resources and time are limited.
Therefore, reducing the evaluation costs is critical for the EMS design task.

To address these challenges, we propose a Deep Progressive Search (DPS) that focuses on design
space management and sample selection. DPS introduces a Tree-Search-based Design Space
Control (TSS) strategy, which models the design space as a tree and dynamically refines it by
expanding and adjusting nodes, enabling efficient discovery of satisfactory designs within a compact
search area. Coupled with the TSS, we incorporate an Consistency-based Sample Selection (CSS)
strategy to optimize the sample evaluation process. Recognizing the challenges of unreliable model
predictions, especially few-shot settings, CSS strategy dynamically adjusts the selection criteria based
on the consistency of model outputs over time. This approach ensures that candidates with initially
lower predicted performance are not prematurely discarded, reducing the risk of overlooking truly
potential designs. By balancing exploration and exploitation, CSS enhances search efficiency and
provides a more thorough evaluation of the design space. Together, these two strategies minimize the
data collection and evaluation costs typically associated with EMS design, while accelerating the
discovery of high-quality designs, even within the constraints of a vast and complex design space.

Our contributions are summarized as follows:

• A Deep Progressive Search (DPS) paradigm for efficient EMS design. We propose DPS method
to reduce the high data dependency and computational costs in EMS design by optimizing both
search efficiency and resource usage. By refining the exploration within a compact search space,
our method significantly reduces the need for extensive simulations and large training datasets. Em-
pirical results show that DPS not only finds high-performance solutions but also lowers evaluation
costs, making it practical for large-scale EMS tasks with limited resources.

• A Tree-Search-based Design Space Control (TSS) strategy for progressive design exploration.
Our TSS models the design space as a dynamically evolving tree. By progressively expanding
and refining nodes, TSS directs the search toward more promising areas, enabling the efficient
discovery of satisfactory designs. This strategy accelerates exploration and enhances the predictor’s
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Table 1: Comparison of different structure design tasks.

Field Complexity Evaluation Method

DNA Sequence (Barrera et al., 2016) 104 ∼ 106 Dataset
Drug Discovery (Gaulton et al., 2012) 106 Dataset
NAS (Siems et al., 2021; Dong & Yang, 2020) 104 ∼ 1018 Dataset or Surrogate
EMS Design(ours) 1086; 1090 Costly Simulation

generalization across various design regions. Experiments confirm that TSS significantly reduces
evaluation costs while guiding the search toward high-quality designs.

• A Consistency-based Sample Selection (CSS) mechanism to enhance search reliability and
efficiency. Our DPS incorporates a CSS that dynamically adjusts the reliance on model predictions
based on their consistency, particularly in few-shot settings. By ensuring that seemingly suboptimal
candidates are not prematurely discarded, CSS maintains a balance between exploration and
exploitation. This strategy reduces the interference caused by inaccurate model prediction during the
search process, accelerating the identification of high-quality solutions from candidate alternatives.

2 RELATED WORK

2.1 ELECTROMAGNETIC STRUCTURE DESIGN

Advanced technique are increasingly applied to designing electromagnetic structures, notably in
optimizing designs like Frequency Selective Surfaces (FSS) using surrogate models with various
algorithms (Naseri et al., 2022; Jia et al., 2023; Zheng et al., 2023). However, creating accurate
models in enormous design spaces poses challenges. Researchers have introduced methods like
Knowledge-Based Domain-Constrained Deep Learning Surrogates (Koziel et al., 2022), which restrict
the model’s domain to relevant parameter regions, and MLAO-AGD (Wu et al., 2024), which updates
models dynamically during searches. Additionally, generative models like cGAN (An et al., 2021)
and cVAE (Lin et al., 2022) facilitate inverse design by generating compliant structures. Techniques
combining generative models with heuristic algorithms, such as using VAE (Koziel et al., 2022) and
Particle Swarm Optimization, enhance design stability. Moreover, Yin et al. (2024) and Yin et al.
(2023) apply Monte Carlo tree search to optimize the design of wireless power transfer systems and
inductors for improved efficiency and performance. However, these approaches require large datasets
for high-quality models, leading to increased simulation costs.

2.2 ANALOGOUS STRUCTURE DESIGN

In addition to electromagnetic structure design, data-driven techniques are making significant strides
in various other fields(Mirhoseini et al., 2021; Sammut et al., 2022). Notably, within the domain of
protein structure prediction, a three-track network (Baek et al., 2021) has been devised by researchers
to offer valuable insights into the functions of proteins with currently unknown structures. Moreover,
AlphaFold (Jumper et al., 2021) merges physical and biological knowledge into protein structure by
leveraging multiple sequence alignments within the framework of its deep learning algorithm. In
drug discovery, neural networks predict antibacterial molecules (Stokes et al., 2020), with DrugGPS
(Zhang & Liu, 2023) enhancing design through a motif-based 3D generation approach. GFlowNets
(Madan et al., 2023) excel in generating diverse sequences efficiently, even in sparse or long-action
environments. In chip design, RL-based models (Cheng et al., 2022; Lai et al., 2022) optimize macro
placement. Notably, fields like drug discovery often rely on offline data for surrogate models, whereas
tasks like neural network architecture search (Liu et al., 2018) and electromagnetic design benefit
from real-time evaluation, supporting an online optimization framework that continuously updates
models during design.

3 PROBLEM FORMULATION

In this paper, we focus on optimizing the design of EMS under limited computational resources. To
formulate this problem, we first give some necessary definitions.

3
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Algorithm 1 General scheme of DPS for EMS.
Require: Initial dataset D0, maximum of simula-

tion runs Tmax, maximum of tree nodes Nmax.
Dataset D ← D0.
Current runs of simulation T ← length(D0).
while T ≤ Tmax do

Train initial predictor fθ .
Conduct optimization under Tree-Search-based
Design Space Control in algorithm 2.
Conduct Consistency-based Sample Selection
based on Eqn. (10).
Conduct Simulation and obtain feedback
{(x, y)}.
Add {(x, y)} to dataset D.
Update predictor fθ using D.
Update Current runs of simulation T .

end while
return The satisfactory solutions from D.

Algorithm 2 EMS Optimization with TSS.
Require: Maximum of leaf nodes Nmax, predictor fθ ,

size K of Top-K, Maximum iterations M .
Initialize the root node nroot, leaf node set L and
Top-K list.
for each i ∈ [1,M ] do

while |L| < Nmax do
Randomly select a leaf node n from L.
Resample node state sn ∼ Uniform({0, 1}) or
split the node based on Eqn. (4).
Reconstruct the design matrix x based on
Eqn. (5) and evaluate O(fθ(x)).
Update the Top-K list.

end while
end for
Conduct Depth-wise Importance Assignment based
on Eqn. (7).
return The Top-K best designs {x∗

k}Kk=1.

Design Space: We denote a design parameter space as X ⊆ {0, 1}m×n, where each sample x ∈ X
has an element xij indicating whether some specific material is utilized in the area at the i-th row and
j-th column of the electromagnetic structure.

Performance Evaluation: The evaluation of electromagnetic structures often involves complex
electromagnetic field behaviors, involving the solution to Maxwell’s equations (Bondeson et al.,
2012), where this process is hard to solve analytically. To remedy this, the evaluation is usually done
numerically using simulation software. We denote the simulation process as a function S to map x
from the design parameters to a p-dimensional vector, i.e., S(x) = (S1(x), . . . , Sk(x), . . . , Sp(x)),
where each Sk(x) represent a performance criterion corresponding to a specific performance char-
acteristic of the electromagnetic structure. By simulating a set of sample points {xi}, we obtain a
dataset {(xi,yi)}, where yi = S(xi).

Optimization Formulation: The aim of solving EMS design problem is to maximize the perfor-
mance of EMS design under limited evaluation budget, which can be characterized as a non-convex
non-differentiable optimization problem. The objective function O is employed to integrate multiple
performance criterion, defined as O : Rp → R, employing a linear weighted sum method, i.e.,
O(S(x)) =

∑p
k=1 wkSk(x), where wk represents the weight of the k-th performance indicator.

Consequently, the optimization problem for the design of electromagnetic structures is formulated as:

max
x∈X

O(S(x)) =

p∑
k=1

wkSk(x), s.t. T ≤ Tmax, (1)

where T represents the number of simulations performed to evaluate the candidate solutions, and
Tmax is the budget of simulations. This constraint ensures that the optimization process remains
feasible within the computational resources and time limits available, as extensive simulations can be
both time-consuming and costly.

To reduce the simulations when optimizing (1), it is common to introduce a predictor fθ, defined by
parameters θ, which can approximate the simulation result S(x). This optimization problem can thus
be approximated as the following equation to accelerate the optimization process:

max
x∈X

O(fθ(x)). (2)

Usually, since deep neural networks like can achieve a speedup of over 25,000 times compared
to traditional simulation software (e.g., 30ms vs 660s), evaluating numerous designs and selecting
solutions becomes highly efficient. However, due to approximation errors, these candidates must
undergo validation through high-fidelity simulations before being confirmed as satisfactory designs.

4 PROPOSED METHODS

In this paper, we propose a Deep Progressive Search (DPS) method, which aims to find satisfactory
solutions for EMS design within the constraints of limited computational resources. We achieve

4
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Figure 2: An illustration of the proposed DPS. The top section presents the complete flowchart of the
algorithm. Given an expected objective y∗ and a computational budget Tmax, a Tree-search-based
Design Space Control obtains candidate designs {x} within dynamical design space. Then, our
Consistency-based Sample Selection exploit the consistency of the prediction to choose reliable
designs for simulation. When simulated samples {x, y} come, we determine whether to continue
search with an expanded dataset. The lower sections provide details of specific modules: (a) our Tree-
search-based Design Space Control is conducted through two stages, first performing a hierarchical
tree search strategy space and then refining the designs through Depth-wise Importance Assignment;
(b) Consistency-based Sample Selection uses the model’s temporal prediction consistency to decide
whether to adopt a conservative or greedy strategy.

this by focusing on reducing the size of design space and minimizing the ineffective utilization of
knowledge due to the subpar performance of predictors. As shown in Figure 2, our DPS consists
of two parts. 1) Tree-Search-based Design Space Control (c.f. Section 4.1) aims to enhance the
management of design space. It models the design space as a controlled search tree, allowing the
model to start learning in a simple space and progressively expand to more complex spaces. 2)
Consistency-based Sample Selection (c.f. Section 4.2) is developed to enable the search process to
accommodate a model with weaker performance. This is achieved by assessing the reliability of the
model’s historical predictions, which in turn guides the degree to which the model’s knowledge is
applied. The pseudo-code of DPS is summarized in Algorithm 1.

4.1 TREE-SEARCH-BASED DESIGN SPACE CONTROL

Precise management of the design space is critical for EMS design. An excessively large search space
can lead to exponential growth in space complexity. Conversely, a design space that is too small limit
the optimizer’s ability to find satisfactory solutions. To address this challenge, we propose a method
called Tree-Search-based Design Space Control (TSS). TSS consists of a Quadtree-based EMS design
representation module, which manages varying resolutions across different regions through recursive
subdivision, and a design space tree search module, which progressively refines the design space for
efficient search and optimization. The pseudo-code of TSS is summarized in Algorithm 2.

Representation of EMS Design Based on Quadtree. Traditional pixel matrices apply a uniform
resolution across all regions, which leads to significant redundancy when processing large regions
of uniform values. Our idea thus starts from allowing for varying resolutions across different
regions. To implement this, we employ a quadtree to manage and subdivide these regions. The
quadtree allows simple regions to be represented by leaf nodes, while more complex regions undergo
further subdivision by expanding the leaf nodes, enabling finer resolution, reducing redundancy, and
ultimately enhancing representation efficiency.

Specifically, our quadtree Q is a recursive structure used to provide a simplified representation for
EMS design. Each node n in Q corresponds to a subregion of the matrix and holds values that record
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the row i and column j ranges of the region:

rstart
n ≤ i ≤ rend

n , cstart
n ≤ j ≤ cend

n , (3)

where rstart
n and rend

n represent the starting and ending rows, and cstart
n and cend

n represent the starting
and ending columns of the subregion. Each leaf node is a terminal node that can represents a fixed
subregion of the matrix. Each leaf node has a additional value sn ∈ {0, 1}, which indicates whether
the corresponding subregion is entirely 0 or 1. By using this value, leaf nodes efficiently simplify
the representation of matrix subregions without needing to store individual matrix elements. A leaf
node can further split into four child nodes, representing the four quadrants of the region: upper-left
(n0), upper-right (n1), lower-left (n2), and lower-right (n3). These child nodes recursively divide the
region associated with their parent node. Each child node’s row and column ranges are determined
by calculating the midpoints of the parent node’s ranges as follows:

rmid =

⌊
rstart
n + rend

n

2

⌋
, cmid =

⌊
cstart
n + cend

n

2

⌋
, (4)

Thus, the row and column ranges for the child node n0 are [rstart
n , rmid] and [cstart

n , cmid], respectively,
with similar adjustments for the other child nodes. As nodes continue to subdivide, the quadtree grows
from the root, and the division process reflects the progressive refinement of the matrix subregions.
For each element xi,j in the EMS design matrix, its value is determined by the subregion defined by
the corresponding leaf node. Therefore, the design matrix can be reconstructed as follows:

xi,j =
∑
n∈L

sn · In(i, j), (5)

where L is the set of leaf nodes, and In(i, j) is an indicator function that determines whether position
(i, j) belongs to the subregion associated with node n.

The entire growth process of the quadtree proceeds by recursively subdividing the matrix regions,
gradually refining the simple initial matrix into a more complex structure, with each leaf node
determining whether its subregion is entirely 0 or 1. This structure efficiently compresses matrix
information and manages different region resolutions via the tree.

The design space consists of all possible combinations of leaf node values. Let L be the set of leaf
nodes in the current quadtree, then the design space is defined as:

S = {s = {sn}n∈L | sn ∈ {0, 1}}. (6)

The size of the search space is 2|L|, where |L| is the number of leaf nodes. This indicates that the
complexity of the search space can be increased by expanding the leaf nodes in the quadtree. Thus,
we are able to perform progressive search within a well-managed design space.

Tree Search with Well-managed Design Space. We propose a hierarchical search strategy, which
starts from a simple design space and gradually increases the complexity of the design. By partitioning
the design matrix into smaller subregions, the search process can adaptively explore finer subregions.

As shown in Figure 2(a), the tree search process begins with the root node nroot, which represents a
sample in the most simplified design space. Subsequently, based on the current set of leaf nodes L,
the design matrix x is reconstructed, and its performance O(fθ(x)) is evaluated by a predictor fθ.
The tree search process maintains the current Top-K best design matrices x∗k and their corresponding
performance values O∗k, where O∗k = O(fθ(x

∗
k)) represents the k-th best performance found so far.

At each iteration, a leaf node n is randomly selected from L, and either its state sn is resampled or is
split into four child nodes with randomly initialized states, with both actions following a Bernoulli
distribution with parameter 0.5. Resampling explores alternative configurations without expanding
the design space, while splitting increases search granularity. The design matrix x is reconstructed
based on the results of these operations and evaluated by the predictor. If the new performance
exceeds the current k-th best performance O∗k, the Top-K list is updated, replacing the k-th best
design matrix x∗k with x, and recording the corresponding performance value O∗k ← O(fθ(x)). The
iteration repeats until the number of leaf nodes reaches the preset limit Nmax, at which point the
algorithm terminates and returns the final Top-K best design matrices x∗k.

Depth-wise Importance Assignment. In the process of expanding the design space, the division
of nodes is initially uniform, treating each newly created leaf node as having equal importance

6
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within the matrix. However, it is possible that some regions may have a greater impact on overall
performance. Therefore, we introduce a further refinement phase for Top-k designs to better optimize
the EMS design, where the design space is formulated as: In the process of expanding the design
space, the initial division of nodes assumes a uniform distribution, treating each newly created leaf
node as having equal importance within the EMS matrix. However, certain regions may contribute
more significantly to overall performance. To address this, we introduce a further refinement phase
targeting the Top-k designs to better optimize the EMS structure. The optimization problem is
formulated as:

max
s′∈S′

O(fθ(xs′)), (7)

where xs′ represents the EMS matrix defined by the quadtree structure, and S ′ is the search space
comprising all possible partition parameters in the quadtree:

S ′ = {(rstart
n , rend

n , cstart
n , cend

n ) | n ∈ Q}. (8)

4.2 CONSISTENCY-BASED SAMPLE SELECTION

After the TSS module generates candidate samples, evaluating all of them at once is impractical
due to the time-consuming nature of simulations. Therefore, it is crucial to prioritize the most
promising samples for performance evaluation through simulation. To achieve this, we propose a
Consistency-based Sample Selection (CSS) strategy, which optimizes the evaluation process to
enhance search efficiency by dynamically adjusting the search process to accommodate predictors
with moderate or even low accuracy. The core steps of this strategy are as follows.

Ranking-based Prediction Consistency. Optimizer prioritize ranking accuracy over prediction
precision because the goal is to identify the best solution. A model that ranks solutions correctly can
still guide the optimization effectively, even with imprecise predictions. Thus, we use Kendall’s tau
(Kendall, 1938) coefficient to directly measures the consistency of ordering results. Specifically, in
each iteration, we calculate the predicted performance O(fθt(x)) of the model at the current time
point t for candidate samples x, and compare these values with the predicted values O(fθt−1(x)) at
the time point t− 1. The Kendall’s tau coefficient τ is calculated as follows:

τ =
2

n(n− 1)

∑
i<j

sign(O(fθt(xi))−O(fθt−1(xi)))

∗ sign(O(fθt(xj))−O(fθt−1
(xj))),

(9)

where n is the number of data points, and xi, xj are the candidate samples. A value of τ close to 1
indicates high consistency, while a value close to 0 or negative indicates lower consistency.

Mixed Selection. When the model’s predictions show instability or inaccuracy, relying solely on the
model’s current predictions may not be the optimal choice. To mitigate the bias caused by inaccurate
predictions, introducing randomness to increase exploration becomes essential. This is achieved by
combining the predictor’s selection with random selection. Specifically, we determine the proportion
of samples selected by the predictor based on the value of Kendall’s tau coefficient τ . For example, if
τ is 0.8, then 80% of the samples are selected by the predictor, and the remaining 20% are determined
by random selection. The total number of samples R, with the number of best samples selected by
the predictor Rp and the number of samples selected randomly Rr, are determined as follows:

Rp = τ ×R, Rr = (1− τ)×R. (10)

Through this approach, the Consistency-based Sample Selection strategy effectively balances explo-
ration and exploitation.

5 EXPERIMENTS

We conducted a series of experiments designed to evaluate the effectiveness and robustness of our
proposed method in real-world optimization tasks. The experiments answers two key questions: 1)
How does our method compare to state-of-the-art approaches in terms of optimization performance
and efficiency? 2) How do the individual components of our method contribute to its overall

7
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Table 2: Detailed setting of Engineering Tasks.

Problem x Design Space Dimension S(x) Objectives1 Objectives2

DualFSS 14*14*2 1086 S-Parameters S2,1 maxx minu∈[31.5,34.5]−S(x)(u) maxx maxu∈[10.5,15.5]−S(x)(u)
HGA 15*20 1090 Realized Gain maxx minu∈[2.45,2.55] S(x)(u) maxx minu∈[5,6] S(x)(u)

Table 3: Comparisons on Dual-layer Frequency Selective Surface and High-gain Antenna.
Dual-layer Frequency Selective Surface High-gain Antenna

Method Agg Obj ↑ Obj1 ↑ Obj2 ↑ #Simulations Agg Obj ↑ Obj1 ↑ Obj2 ↑ #Simulations

RS 7.2824 7.2824 36.6861 1000 0.6314 0.6314 0.7196 1000
Surrogate-RS 5.8116 5.8116 30.2771 1000 3.0857 3.0857 3.1845 1000
Surrogate-GA 4.1946 4.1946 32.1198 1000 1.5802 1.5802 4.5598 1000
cGAN 10.0891 10.0891 45.6102 7000 -6.0131 -6.0131 0.0711 4000
cVAE 1.1478 1.1478 28.9435 7000 -3.1992 -3.1992 1.2794 4000
IDN 4.7335 4.7335 28.8207 7000 -1.7527 4.1657 -1.7527 4000
InvGrad 2.8941 2.8941 24.6731 7000 3.1783 3.1783 4.4287 4000
GenCO 1.1819 3.9466 1.1819 7000 -5.3032 -5.3032 0.6394 4000
DPS (Ours) 15.1964 15.1964 31.0443 1000 3.4922 3.4922 7.7311 1000

performance? Through these investigations, we aim to demonstrate the practical advantages of our
approach in handling complex real-world optimization problems. Upon acceptance of the paper, the
source code will be made publicly available for further research and validation.

Task Settings. Our method is applied to two real-world engineering tasks: 1) Dual-layer Frequency
Selective Surface (DualFSS), used for electromagnetic noise shielding around chips, and 2) High-gain
Antenna (HGA), commonly used in WiFi routers, both involve two optimization objectives. Details
of these tasks are provided in Table 2 and Appendix. A.

Comparison Methods. Our study contrasts against a variety of typical approaches, which can be
broadly classified into three categories: predictor-based methods, generative methods, and random
search. The predictor-based methods include: 1) Surrogate-assisted Genetic Algorithm (Surrogate-
GA) (Zhu et al., 2020), which adapts a Genetic Algorithm guided by a predictor; 2) Surrogate-assisted
Random Search (Surrogate-RS), which employs a random search guided by a predictor; 3) Surrogate-
assisted Gradient Ascent (InvGrad) (Trabucco et al., 2022), which utilizes a predictor to acquire the
gradient regarding performance with respect to design, and employs the gradient ascent optimization.
The generative methods include: 1) cGAN (Generative Adversarial Network) (An et al., 2021) and
2) cVAE (Conditional Variational Autoencoder) (Lin et al., 2022), designed to generate solutions
meeting specified design goals; 3) IDN (Inverse Design Network) (Ma et al., 2020), which achieves
direct inverse design prediction to fulfill specified design goals by constructing reverse predictors; 4)
GenCO (Ferber et al.) leverages VQ-VAE to generate structures.

Evaluation Metrics. 1). Aggregation Value of Objectives (Agg Obj): To evaluate the search
or generation capabilities of different methods, we compare their optimal performance using the
O(S(x)). For fair comparison, all methods use the same objective function to guide their optimization
or generation process. We use the Maximin objective function to focus on maximizing the value
of the worst-performing objective, ensuring a balanced optimization of multiple goals. 2). Single
Objective Value (Obj1, Obj2): Considering that structures with similar objective function values can
still exhibit differences in quality. For instance, consider two solutions with objectives (10,9) and
(11,9). Both have a objective value of 9. However, the second solution (11,9) is clearly superior
because it performs better in one of the objectives without sacrificing the worst-case performance.
Therefore, when the compared methods produce optimal results with closely matched objective
function values, we continue to compare the merits of individual objectives.

Implementation Details. In the predictor-based approach, we employ ResNet50 as the predictor
model, initialized with a dataset of 300 samples. The total number of simulation runs is limited to
1000 to maintain computational efficiency for Surrogate-GA and Surrogate-RS. For methods like
Surrogate-Grad and the generative approaches (cGAN, cVAE, and IDN), which require higher model
accuracy due to their more complex architectures, larger datasets are necessary. Specifically, we
use 6800 and 3800 initial samples for DualFSS and HGA, resulting in final sizes of 7000 and 4000,
respectively. More implementation details are in Appendix. B.
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Table 4: Effectiveness of Number of Variables Nmax.

N Agg Obj↑ Obj1(dB)↑ Obj2(dB)↑ Kendall’s Tau↑
16 3.0867 3.0867 6.0295 0.2838 ± 0.0527
32 3.4922 3.4922 7.7311 0.2324 ± 0.0523
64 3.0233 3.0233 5.1847 0.1255 ± 0.0297

Table 5: Effectiveness of TSS and CSS.

TSS CSS Agg Obj↑ Obj1(dB)↑ Obj2(dB)↑
3.0857 3.0857 3.1845

3 3.2209 3.2209 6.3369
3 3 3.4922 3.4922 7.7311

5.1 COMPARISONS ON DUAL-LAYER FREQUENCY SELECTIVE SURFACE

We report the comparisons on Dual-layer Frequency Selective Surface in Table 3. Our approach
outperforms every baseline methods by a wide margin on aggregation of objective value. It is
worth-noting that the objective values of predictor-based methods are significantly worse than random
search under the few-shot setting of 1000 samples. This confirms that in few-sample situations, the
inferior performance of predictor models indeed affects search capabilities. In contrast, our method
achieved a 109% improvement in the objective value under the same simulation cost, substantially
enhancing the optimization capability.

On the other hand, generative models struggle to complete training with only 1000 simulation samples,
often leading to model collapse. Even when the number of simulation samples is increased to 7000,
among all generative methods, only cGAN exceeds random search, yet it still falls short compared
to our DPS. This reveals that, in comparison to existing generative methods, DPS not only reduces
simulation costs by a factor of seven but also improves performance by at least 50.6%.

5.2 COMPARISONS ON HIGH-GAIN ANTENNA

Table 3 presents comparisons on High-Gain Antenna. Our DPS method outperforms the baseline,
requiring only 1000 samples to achieve an objective function value of 3.49dB, with gains of 3.49dB
and 7.73dB in two WiFi bands. While InvGrad and IDN perform better than Random Search, they
demand more simulations and fail to meet both objectives for dual-band router antenna design.

The results show that DPS excels across various real-world tasks. Its success is due to TSS, which
enhances structural feature learning for higher prediction accuracy with small samples, and CSS,
which balances exploration and exploitation. In contrast, existing methods struggle with limited data,
hindering their ability to capture the full problem space and achieve cost-efficient designs.

5.3 ABLATION STUDIES

Study on the Number of Variables. As outlined in Section 4.1, the variable Nmax shapes the
complexity of the design space and directly influences the challenge of identifying high-quality
samples. In this section, we examine the impact of varying Nmax in the context of the HGA task
detailed in the Implementation Details section. We evaluate Nmax values of 16, 32, 64, and as
shown in Table 4, our DPS achieves satisfactory performance with an objective function value of
3.49 dB when Nmax = 32. It indicates that a smaller Nmax is prone to trapping the search in locally
sub-optimal regions, while a largerNmax makes it difficult to construct accurate models given limited
computational resources.

We computed the mean and variance of Kendall’s Tau (KTau) for predictors trained on samples
generated with varying Nmax values, with a fixed total sample size of 1000. Samples were split
into validation, test, and training sets, and hyperparameter tuning was performed separately for each
dataset. Using optimal parameters, we conducted 10 trials per predictor and calculated KTau. Results
showed that Nmax significantly affects KTau, with Nmax = 16 yielding the best performance. As
Nmax increased, KTau decreased, indicating that predictors map the design space more accurately
when it is smaller. This supports TSS, showing that expanding from low to high-dimensional spaces
enhances predictor performance with limited samples, improving optimization reliability.

Effectiveness of Tree-Search-based Design Space Control. We conduct experiments to further
demonstrate the effectiveness of our progressive space design. Specifically, we compare our methods
with a variant which replaces progressive design strategy with random sampling. Our experiments are
conducted in High-gain Antenna under the same computational budget and the results are reported in
Table 5. From the results, our method outperform the variant without progressive search, generating
EMS design with higher objective function value (e.g., 3.22dB vs 3.09dB). These results demonstrate
the necessity of the proposed progressive search.
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cGANSurrogate-GARS DPS(ours)

Figure 5: Satisfactory Electromagnetic Structures of Different Methods on the High-gain Antenna.

Effectiveness of Consistency-based Sample Selection. To verify the effectiveness of the proposed
CSS strategy, we compare our methods with a variant that simply select the top-M structures evaluated
by the predictor. Our experiments are conducted in High-gain Antenna and we present the objective
value in Table 5.It is evident that our method outperforms the variant without CSS, yielding EMS
design with higher objective function values (e.g., 3.22 dB vs. 3.09 dB). These results show that our
method could alleviate the bias induced by inaccurate predictions.

Figure 3: Simulation Costs for Optimal So-
lution Across Sample Selection Strategy.

To more clearly demonstrate the advantages of our
method, we designed an additional experiments. A
dataset of 1000 samples was randomly divided into
two equal parts. The first part was used as the initial
training for the predictor.The labels of the second part
were masked. We applied three different sample selec-
tion strategies—CSS (ours), Top-K, and Random—to
identify the actual optimal solution within the set. In
each round, 20 samples were selected and added to the
training set to update the predictor, with this process
continuing until the optimal sample was found. Each
experiment was repeated 20 times. The results in Figure
3 demonstrate that our method outperforms traditional
approaches, improving search efficiency by 50%.

5.4 VISUALIZATIONS

Figure 4: Simulation Results for Satisfac-
tory Electromagnetic Structures of Differ-
ent Methods on the High-gain Antenna.

Visualizations of Electromagnetic Structures on
High-gain Antennas. We illustrate the satisfactory elec-
tromagnetic structures from our proposed DPS and some
of the compared methods. More visualizations are pre-
sented in Appendix. C. As illustrated in Figure 5, the
structures generated by DPS are more regular and bet-
ter aligned with the practical manufacturing constraints
of engineering applications. By avoiding fragmented
designs that are difficult to fabricate in real-world set-
tings, our approach ensures improved manufacturability,
thereby enhancing its practicality for engineering imple-
mentation. Besides, the results indicate that the satisfac-
tory structures obtained through our proposed method
exhibit higher values in the frequency ranges [2.45, 2.55]
and [5.00, 6.00]. This implies that our design demon-
strates superior performance, providing validation for
the effectiveness of our algorithm.

6 CONCLUSION

In this paper, we propose a Deep Progressive Search method under Limited Data. Specifically,
we devise a Tree-Search-based Design Space Control method. By progressively searching in the
simplified space, the quality of samples is improved, thus reducing dependence on the number of
training samples. In addition, we introduce a Consistency-based Sample Selection. With this strategy,
the search process can achieve a better balance between exploration and exploitation. Extensive
experimental results on real-world engineering tasks demonstrate the effectiveness of our method.
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APPENDIX
In the supplementary, we provide more implementation details and more experimental results of our
DPS. We organize our supplementary as follows.

• In Section A, we provide more details of the considered two real-world challenging electromagnetic
structures, dual-layer frequency selective surface and high-gain antenna

• In Section B, we depict more implementation details of our DPS and the compared methods.

• In Section C, we give more experimental results to demonstrate the effectiveness of our DPS.
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A MORE DETAILS ON ELECTROMAGNETIC STRUCTURES

Dual-layer Frequency Selective Surface. The dual-layer Frequency Selective Surface (DualFSS)
is an electromagnetic structure specifically designed for selectively filtering electromagnetic waves.
It consists of two layers of conductive elements, each containing a grid or array of metallic elements
exhibiting specific resonant behavior at particular frequencies. This configuration endows the Du-
alFSS with frequency-dependent transmission and reflection characteristics. Despite its more intricate
structure compared to a single-layer FSS, the DualFSS provides higher degrees of freedom, allowing
for more flexible performance adjustments across different frequencies. In practical applications, the
DualFSS finds common usage in scenarios demanding enhanced performance and broader frequency
coverage, such as RF communication, radar systems, and engineering designs within the radio fre-
quency spectrum. In our experiments, we utilized the proposed methodology to design the structure
of the DualFSS, focusing on the two layers of metallic grids. The designed structure aims to meet
specific performance criteria, with detailed parameters and expected metrics outlined below.

Specifically, the DualFSS under investigation is depicted in Figure 6. The FSS is composed of three
layers of boards, each having a thickness of 0.035mm, and features cylindrical elements with a radius
of 0.1mm. It is noteworthy that the bottommost layer, representing the grounded metallic surface,
remains unaltered throughout the optimization process. In contrast, the upper two layers, initially
comprising entirely of air, constitute the optimization space. The objective of the optimization
is to strategically convert certain regions within the air layers into metallic elements, adhering to
the constraint that each designed metallic block must have a minimum size of 0.2*0.2mm. The
optimization encompasses determining the specific configuration of metallic blocks within the upper
layers to achieve desired electromagnetic properties. Importantly, the maximum extent of the air
region available for optimization corresponds to the footprint of the bottommost layer.

In terms of optimization objectives, this scenario aims to eliminate electromagnetic noise caused by
ultra-high-frequency circuits, preventing such noise from interfering with the operation of mobile
phone cameras. The high-frequency noise primarily occurs in two frequency bands: 10.5–15.5 GHz
and 31.5–34.5 GHz. We evaluate the suppression capability using the S-Parameter S2,1, which is a
parameter that takes only negative values. A smaller magnitude of this parameter indicates stronger
suppression performance. We aim to achieve broad absorption capability in the 31.5–34.5 GHz
range, while maximizing suppression in the 10.5–15.5 GHz range. To enhance generalization, it is
necessary to minimize the maximum value within the 31.5–34.5 GHz band, while minimizing the
minimum value within the 10.5–15.5 GHz band to strengthen absorption performance. Accordingly,
we define the first objective as minimizing the maximum value of S-Parameters S2,1 over the
31.5–34.5 GHz band, represented by the formula minx maxu∈[31.5,34.5] S(x)(u). By taking the
inverse, we can transform it into a maximization problem and define it using a new mathematical
expression maxx minu∈[31.5,34.5]−S(x)(u), and denote this as Obj1. Similarly, the second objective
is to minimize the minimum value of S-Parameters S2,1 over the 10.5–15.5 GHz band, defined by
the formula minx minu∈[10.5,15.5] S(x)(u). We can also transform it into a maximization problem
and represented by the formula maxx maxu∈[10.5,15.5]−S(x)(u), and referred to as Obj2. In this
formulation, x represents the vector of structural design parameters, while u denotes the frequency in
GHz, serving as the independent variable across both frequency bands. The term S(x)(u) refers to
the S-Parameters S2,1 of the FSS for a given design x at a specific frequency t.

An aggressive objective function is set to maximize the worst-case performance of the sin-
gle objective to achieve balanced shielding capabilities. This is mathematically expressed
as maxx (min (Obj1(x), Obj2(x))), where Obj1(x) represents minu∈[31.5,34.5]−S(x)(u) while
Obj2(x) represents maxu∈[10.5,15.5]−S(x)(u).
High-gain Antenna. The high-gain antenna is a specialized electromagnetic structure designed
to achieve significant directional amplification of radio frequency signals. This type of antenna is
characterized by its ability to focus transmitted or received signals in a specific direction, resulting in
a concentrated radiation pattern. In the design of it, the integration of a metal array plays a crucial
role in shaping the antenna’s radiation pattern and achieving enhanced performance. The metal
array structure involves a carefully arranged grid or array of metallic elements, such as reflectors
and directors, strategically positioned to optimize the antenna’s gain and directional characteristics.
High-gain antennas find extensive applications in scenarios requiring long-range communication,
satellite communication, and situations where a concentrated signal strength is essential.
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Specifically, our structure is a rectangular prism with dimensions of 60 mm in length, 40 mm in width,
and 4.6 mm in thickness in Figure 7. The prism is then divided into two halves along the midpoint of
its length, parallel to the width. One half is designated as the design region, and after the design is
completed, it is mirrored across the vertical plane of symmetry.

The target of this scenario is to design a dual-band router antenna operating at both 2.4 GHz and
5 GHz, ensuring optimal communication performance in both frequency bands simultaneously,
rather than having one band perform well while the other lags. Consequently, our two objective
functions represent the minimum Realized Gain for the 2.4 GHz and 5 GHz bands, respectively. An
Aggregation Value of Objective is set to maximize the worst-case performance across both objectives,
aiming to achieve effective dual-band communication.

Specifically, since the minimum value within a given range dictates the weakest communication
capability of that band, to meet the communication requirements of the 2.4 GHz band, the first
objective is defined as maximizing the minimum Realized Gain in the 2.45–2.55 GHz frequency
range. This is mathematically expressed as maxx minu∈[2.45,2.55] S(x)(u) and denoted as Obj1.
In this formulation, x represents the vector of structure design, while u denotes the frequency in
GHz, acting as the independent variable across both frequency bands. The term S(x)(u) denotes the
Realized Gain of the antenna for a given design x at a specific frequency u. Similarly, to ensure robust
communication in the 5 GHz band, the second objective is defined as maximizing the minimum
Realized Gain in the 5.0–6.0 GHz frequency range, expressed as maxx minu∈[5,6] S(x)(u) and
denoted as Obj2.

To achieve strong communication performance across both bands, the smaller of the two objec-
tive values is chosen as the Aggregation Value of Objective. This is mathematically expressed
as maxx min

(
minu∈[2.45,2.55] S(x)(u),minu∈[5,6] S(x)(u)

)
. This formulation ensures that the

antenna design is optimized for both frequency bands by focusing on improving the worst-case
communication performance across the two bands, thereby achieving balanced and robust dual-band
communication.

B MORE IMPLEMENTATION DETAILS

DPS (ours). For the proposed DPS, we maintain a consistent setup across both experimental
scenarios. In both cases, the initial dataset comprises 300 samples, derived from a progressive
design strategy, which allows for more adaptive and efficient sampling. The design variable Nmax
is set to 32. This consistency across scenarios highlights the flexibility and robustness of DPS, as
it maintains performance while adapting to different experimental conditions. Additionally, we
also utilize ResNet50 with the same network architecture as the predictor, ensuring consistency in
model structure across different approaches and facilitating a fair comparison of performance. We set
maximum iteration M = 10000000 and K = 10. In CSS, the total number of samples R is 10.

Compared Methods. We re-implement the following state-of-the-art electromagnetic structures
design methods in our two challenging task, dual-layer frequency selective surface and high-gain
antenna. More details of the baseline design methods are provided in the subsequent discussion.

• Random Search (RS). In this approach, we randomly generate 1000 electromagnetic structures,
evaluating them with the simulation software.

• Surrogate-assisted Random Search (SRS). This approach adopts the ResNet50 architecture as
the surrogate model in both scenarios, consistent with the setup in DPS, to ensure a fair comparison
between the methods. The surrogate model is designed to provide prediction of the objective
function given the input of the electromagnetic structures and is ultilized to guide the random
search. Specifically, we begin by randomly sampling 300 electromagnetic structures to train an
initial surrogate model. In each subsequent iteration, the surrogate model guides the selection of the
Top-K samples from M randomly sampled candidates (where M � K), which are then evaluated
through simulation. The surrogate model is updated accordingly, and this process is repeated until
the total number of simulated samples reaches the predefined limit of 1000. Finally, we select the
best one as optimized result. In practice, we set M = 200000 and K = 10 for our experiments in
both two real-world tasks.

• Surrogate-GA (Zhu et al., 2020). This method exploit a surrogate model to accelerate the evolu-
tionary algorithm. Specifically, this method fit a DNN-based surrogate model with a simulated
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Figure 7: Designs of the High-gain Antenna.

dataset to assist fitness evaluation during the evolution process. In particular, we have adapted
the mutation operator to suit our electromagnetic structural scenario by modifying it to perform
transformations between 0 and 1 in the matrix elements. In our experiments, we use the ResNet50
model as the surrogate model. The model’s batch size is set to 256, trained for 200 epochs, with a
learning rate of 0.01. First, 300 samples were obtained through random sampling, and simulations
were performed on these samples to train the surrogate model. Based on the surrogate model, we
set K=10 for our experiments, meaning that in each generation, the top 10 samples are selected
using a Top-K strategy for simulation verification. The surrogate model is then updated with
these results, and a new population is generated. This process continues until the total number of
simulated samples reaches 1000.

• InvGrad (Trabucco et al., 2022). Trabucco et al. introduces a simple baseline method based
on gradient ascent. In this approach, a ResNet50-based surrogate model is initially trained on a
dataset of electromagnetic structures, which is designed to establish an accurate mapping between
the electromagnetic structure and the objective function. Specifically, the dataset consists of
6800 randomly sampled simulation samples for DualFSS and 3800 for HGA, which represent the
minimum number of samples required to ensure the stability and reliability of the model without
compromising its performance. Subsequently, the method performs multiple gradient updates on
the input electromagnetic structure based on the surrogate model output, ultimately yielding an
satisfactory electromagnetic structure that satisfies the specified criteria. The gradient update could
be formulated as xt+1 ← xt + α∇xf(x), where t represents the update step and α denotes the
learning rate. In pratice, we set T = 1000, α = 0.01 for two design tasks. We randomly sampled
10 electromagnetic structures, input them into the surrogate model for optimization, and forwarded
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the optimized results to the simulation software for evaluation. The surrogate model is then updated
with these results, and this process is repeated until the total number of simulated samples reaches
the predefined limit of 7000 for DualFSS and 4000 for HGA.

• IDN (Ma et al., 2020). Ma et al. introduces a baseline method for inverse design based on
Convolutional Autoencoder Network (CAN) and Inverse Design Network (IDN). In this approach,
the authors utilized CAN to compresses input spectrums with the dimension of 1*1000 into low-
dimensional spectrums with the dimensionof 1*50. Subsequently, the compressed latent space
values were fed into the IDN with the expectation of generating structures that conform to the
input spectrum. In our experiments, we set the target values as either the maximum or minimum
values within a specific frequency range, eliminating the involvement of high-dimensional inputs.
Consequently, we exclusively adopted the IDN component of the method for our purposes.In
terms of network architecture, we introduced an additional fully connected layer before the first
convolutional layer of the Inverse Design Network. This layer elevates the input target values to
a 50-dimensional space to align with subsequent dimensions. The model’s batch size is set to
128, trained for 200 epochs, with a learning rate of 0.0001. Adam optimizer is employed, and
MAE(Mean Absolute Error) is used for loss computation. Initially, we performed random sampling
to generate 6800 samples for DualFSS and 3800 samples for HGA. These samples were simulated
to calculate their respective objective values, which were subsequently used to train the initial
models. In the next stage, the models were utilized to generate 10 additional samples, which
underwent simulation-based validation. The validated samples were then added to the dataset, and
the models were retrained iteratively. This process was repeated until the simulation budget of
7000 and 4000 was reached for DualFSS and HGA, respectively. Ultimately, the sample with the
best simulation performance during this process was selected as the final result.

• cGAN (An et al., 2021) An et al. presents a generative adversarial network that can generate
metasurface designs to meet design goals . Generative adversarial nets can be extended to a
conditional model if both the generator and discriminator are conditioned on some extra information.
It could be any kind of auxiliary information, such as class labels or data from other modalities.
We can perform the conditioning by feeding extra information into the both the discriminator and
generator as additional input layer. Consequently, cGAN introduces extra information as conditions
in both the encoder and decoder inputs to confer the ability to generate pecific structures based on
varying conditions.The model’s batch size is set to 64, trained for 200 epochs, with a discriminator
learning rate of 0.00005 and generator learning rate of 0.0002. In addition, the latent dimension
is set to 100, Adam optimizer is employed. We began by randomly sampling 6800 instances for
DualFSS and 3800 instances for HGA, followed by simulations to derive their objective values
for training the initial models. Using these models, 10 new samples were generated and validated
through simulations. These validated samples were incorporated into the dataset, and the models
were updated iteratively. This iterative procedure continued until the simulation budgets—7000 for
DualFSS and 4000 for HGA—were exhausted. The final result was determined by selecting the
sample exhibiting the optimal performance during simulations.

• cVAE (Lin et al., 2022). Lin et al. introduces an approach utilizing Conditional Variational
Autoencoder (cVAE) to generate metasurface retroreflectors (MRF) structures satisfying specified
performance criteria. cVAE represents a variant incorporating both Variational Autoencoder (VAE)
and Autoencoder (AE) principles. While VAE extends the encoding-decoding training paradigm of
AE by transforming it from encoding inputs into a single point in latent space to encoding inputs
into a distribution in latent space, endowing it with generative capabilities, the generated content
is inherently uncontrollable. Consequently, cVAE introduces conditions in both the encoder and
decoder inputs to confer the ability to generate specific structures based on varying conditions.The
model’s batch size is set to 128, trained for 200 epochs, with a learning rate of 0.0005. In addition,
the latent dimension is set to 20, Adam optimizer is employed, and the loss function is obtained
through linear summation of Mean Squared Error (MSE) and 0.00000001 times the Kullback-
Leibler (KL) divergence. An initial random sampling of 6800 samples for DualFSS and 3800
samples for HGA was conducted, with simulations performed to compute the corresponding
objective values for initial model training. The trained models then produced 10 new samples,
which were subjected to simulation validation. These validated samples were appended to the
dataset, and the models were retrained iteratively until the simulation budgets of 7000 for DualFSS
and 4000 for HGA were fully utilized. The final output was chosen as the sample demonstrating
the highest simulation performance during the process.
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Table 6: Effect of Importance Assignment.

Method Objective Function Value↑ Objective1(dB)↑ Objective2(dB)↑
DPS w/o IA 2.32 2.32 5.57
DPS 3.49 3.49 7.73

• GenCO (Ferber et al.) GenCO utilizes VQ-VAE (Variational Quantized Autoencoders) to generate
a variety of designs that account for specific constraints, such as those encountered in nanophotonic
materials. Following the approach outlined in the original paper, we integrate electromagnetic
structure performance as a constraint objective into the model’s training loss function. GenCO
requires computing the gradient of the objective function with respect to the design variables.
However, in our case, obtaining such gradient information directly through simulation is unavailable.
To overcome this challenge, we use a surrogate model to approximate the gradient. The surrogate
model, implemented using ResNet50, serves to predict the objective function’s gradient efficiently.
The training parameters of the surrogate model, such as the network architecture and optimization
procedure, are consistent with those used in similar works. Since the original paper does not
provide detailed hyperparameter settings for VQ-VAE, we made reasonable choices based on
standard practices for training generative models. We use a four-layer convolutional and transposed
convolutional network architecture for the VQ-VAE model. The specific training parameters for
our implementation are as follows: latent dimension = 256, number of embeddings = 512, learning
rate = 1e-3, and the number of epochs = 100.

C MORE EXPERIMENTAL RESULTS

Figure 8: Comparison of Sample Performance Distribution under Different Parameter N Settings.

Effect of the Number of VariablesNmax. To further illustrate the effect of the parameterNmax, we
present kernel density estimation (KDE) plots of the sample performance distribution under different
parameter settings in Figure 8. We sampled and simulated 1000 samples for each parameter setting
and random sampling. The experimental results demonstrate that our method is more likely to sample
higher-performing instances across various parameter configurations, whereas most of the samples
generated through random sampling tend to cluster in the lower performance range.

Effect of Depth-wise Importance Assignment. We investigate the effect of the depth-wise impor-
tance assignment. For a fair comparison, we conduct this experiment under the same simulation
budget in high-gain antenna design task. From Table 6, without importance assignment, the DPS
tends to find sub-optimal electromagnetic structure. When equipped with the proposed importance
assignment, the searched structure consistently outperforms that without importance assignment
(e.g., 3.49dB vs 2.32dB). These findings illustrate the essential nature and efficacy of the introduced
depth-wise importance assignment.
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Figure 9: Satisfactory Electromagnetic Structures of Different Methods on Dual-layer Frequency
Selective Surface.

Comparisons of electromagnetic structures on Dual-layer Frequency Selective Surface. In
Figure 9, we visualize the satisfactory electromagnetic structures searched by our proposed method
and the baseline methods in the task of dual-layer frequency selective surface. It can be observed that,
compared to the baseline methods, the structures designed by our approach exhibit a better adherence
to physical priors, showcasing a more regular and manufacturable design.

Comparisons of Simulated Results on Dual-layer Frequency Selective Surface. In Figure 10,
We present the simulated results of the optimize electromagnetic structures for our methods and
all baseline methods. From the results, it is evident that the satisfactory electromagnetic structures
obtained through our proposed method exhibit lower values in the frequency ranges [31.5, 34.5] and
[10.5, 15.5]. This indicates that our dual-layer frequency-selective surface performs better, providing
empirical evidence for the effectiveness of our optimization algorithm.

Comparisons of electromagnetic structures on High-gain Antenna. In Figure 11, we visualize
the satisfactory electromagnetic structures designed by our proposed method and the baseline methods
in the task of high-gain antenna. It can be observed that, compared to the baseline methods, the
structures designed by our approach also exhibit a better adherence to physical priors, showcasing a
more regular and manufacturable design. This further demonstrates the strong generalization ability
and robustness of our proposed method, proving its effectiveness across multiple real-world tasks.

Comparisons of Simulated Results on High-gain Antenna. In Figure 12, We further present the
simulated results of the satisfactory electromagnetic structures for our methods and all baseline
methods. The experiments further demonstrate that in the frequency ranges [2.45, 2.55] and [5.00,
6.00], the structures designed by our method significantly outperform all baseline methods, achieving
substantial performance improvements in the target frequency bands.

Visualizations of Satisfactory Dual-layer Frequency Selective Surface.We illustrate the satis-
factory electromagnetic structures obtained through our proposed methodology and the reference
methods in the High-gain Antenna task. In Figure 13, in contrast to the reference methods, the struc-
tures formulated by our approach demonstrate a heightened conformity to physical priors, presenting
a more regular and manufacturable design.
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Figure 10: Simulated Results of Satisfactory Electromagnetic Structures on Dual-layer Frequency
Selective Surface.

Figure 13: (a) Satisfactory Electromagnetic Structures of Different Methods on Dual-layer Frequency
Selective Surface. (b) Simulated Results of Satisfactory Electromagnetic Structures on Dual-layer
Frequency Selective Surface.

Visualizations of Satisfactory High-gain Antenna. In Figure 14, the results indicate that the
satisfactory electromagnetic structures obtained through our proposed method exhibit higher values
in the frequency ranges [2.45, 2.55] and [5.00, 6.00]. This implies that our high-gain antenna
demonstrates superior performance, providing validation for the effectiveness of our algorithm.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 11: Satisfactory Electromagnetic Structures of Different Methods on Dual-layer Frequency
Selective Surface.

Figure 12: Simulated Results of Satisfactory Electromagnetic Structures on High-gain Antenna.
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Figure 14: (a) Satisfactory Electromagnetic Structures of Different Methods on the High-gain
Antenna. (b) Simulated Results of Satisfactory Electromagnetic Structures on High-gain Antenna.
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