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ABSTRACT

The rapid advancement of large language models (LLMs) has catalyzed the deploy-
ment of LLM-powered agents across numerous applications, raising new concerns
regarding their safety and trustworthiness. In addition, existing methods for en-
hancing the safety of LLMs are not directly transferable to LLM-powered agents
due to their diverse objectives and output modalities. In this paper, we propose
GuardAgent, the first LLM agent as a guardrail to protect other LLM agents.
Specifically, GuardAgent oversees a target LLM agent by checking whether its
inputs/outputs satisfy a set of given guard requests, e.g., safety rules or privacy
policies defined by the users. The pipeline of GuardAgent consists of two steps:
1) create a task plan by analyzing the provided guard requests, and 2) generate
guardrail code based on the task plan and execute the code by calling APIs or
using external engines. In both steps, an LLM is utilized as the core reasoning
component, supplemented by in-context demonstrations retrieved from a memory
module storing information from previous sessions. Such knowledge-enabled rea-
soning of GuardAgent allows it to understand various textual guard requests and
accurately “translate” them into executable code that provides reliable guardrails.
Furthermore, GuardAgent is equipped with an extendable toolbox containing
relevant APIs and functions, and requires no additional LLM training, underscoring
its flexibility and low operational overhead. In addition to GuardAgent, we
propose two novel benchmarks: an EICU-AC benchmark for assessing privacy-
related access control for healthcare agents and a Mind2Web-SC benchmark for
assessing safety regulations for web agents. When using Llama3-70B/Llama3.1-
70B/GPT-4 as the core LLM, GuardAgent achieves 98.4%/98.4%/98.7% and
83.5%/84.5%/90.0% guarding accuracy on these two benchmarks in moderating
invalid inputs and outputs of two types of agents, respectively. We also show the
ability of GuardAgent to define necessary functions that are absent from the
toolbox, which further highlights the flexibility of GuardAgent in adaption to
new LLM agents and guard requirements.

1 INTRODUCTION

AI agents empowered by large language models (LLMs) have showcased remarkable performance
across diverse application domains, including finance (Yu et al., 2023), healthcare (Abbasian et al.,
2024; Shi et al., 2024; Yang et al., 2024; Tu et al., 2024; Li et al., 2024), daily work (Deng et al., 2023;
Gur et al., 2024; Zhou et al., 2023; Zheng et al., 2024), and autonomous driving (Cui et al., 2024;
Jin et al., 2023; Mao et al., 2023). For each user query, these agents typically employ an LLM for
task planning, leveraging the reasoning capability of the LLM with the optional support of long-term
memory from previous use cases (Lewis et al., 2020). The proposed plan is then executed by calling
external tools (e.g., through APIs) with potential interaction with the environment (Yao et al., 2023).

Unfortunately, the current development of LLM agents primarily focuses on their effectiveness in solv-
ing specific tasks while significantly overlooking their potential for misuse, which can lead to harmful
consequences (Chen et al., 2024). For example, if misused by unauthorized personnel, a healthcare
LLM agent could easily expose confidential patient information (Yuan et al., 2024a). Indeed, some
existing LLM agents, particularly those used in high-stakes applications like autonomous driving,
are equipped with safety controls to prevent the execution of undesired dangerous actions (Mao
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Figure 1: Illustration of GuardAgent when safeguarding a target LLM agent for healthcare with
the need for access control. The inputs to GuardAgent include: a) a set of guard requests informed
by a specification of the target agent and b) the test-time inputs and output of the target agent.
GuardAgent first generates an action plan following a few shots of demonstrations retrieved
from the memory. Then, a guardrail code is generated following the action plan based on both
demonstrations and a list of callable functions. The outputs/actions of the target agent will be denied
if GuardAgent detects a violation of the guard requests.

et al., 2023; Han et al., 2024). However, these task-specific safeguards are hardcoded into the LLM
agent and, therefore, cannot be generalized to other agents (e.g., for healthcare) with different guard
requests (e.g., for privacy instead of safety).

On the other hand, guardrails for LLMs provide input and output moderation to detect and mitigate
a wide range of potential harms (Markov et al., 2023; Lees et al., 2022; Rebedea et al., 2023; Inan
et al., 2023; Yuan et al., 2024b). This is typically achieved by building the guardrail upon another
pre-trained LLM to understand the input and output of the target LLM contextually. More importantly,
the ‘non-invasiveness’ of guardrails, achieved through their parallel deployment alongside the target
LLM, allows for their application to new models and harmfulness taxonomies with only minor
modifications. However, LLM agents differ from LLMs by involving a significantly broader range of
output modalities and highly specific guard requests. For instance, a web agent empowered by LLM
might generate actions like clicking a designated button on a webpage (Zheng et al., 2024). The guard
request here could involve prohibiting certain users (e.g., those under a certain age) from purchasing
specific items (e.g., alcoholic beverages). Clearly, existing guardrails designed to moderate the textual
inputs and outputs of LLMs cannot address such intricate guard requests.

In this paper, we present the first study on guardrails for LLM agents. We propose GuardAgent, the
first LLM agent designed to safeguard other LLM agents (referred to as ‘target agents’ henceforth)
by adhering to diverse real-world guard requests from users, such as safety rules or privacy policies.
The deployment of GuardAgent requires the prescription of a set of textural guard requests
informed by a specification of the target agent (e.g., the format of agent output and logs). During the
inference, user inputs to the target agent, along with associated outputs and logs, will be provided
to GuardAgent for examination to determine whether the guard requests are satisfied or not.
Specifically, GuardAgent first uses an LLM to generate an action plan based on the guard requests
and the inputs and outputs of the target agent. Subsequently, this action plan is transformed by the
LLM into guardrail code, which is then executed by calling an external engine. For both the action
plan and the guardrail code generation, the LLM is provided with related demonstrations retrieved
from a memory module, which archives inputs and outputs from prior use cases. Such knowledge-
enabled reasoning is the foundation for GuardAgent to understand diverse guard requests for
different types of LLM agents. The design of our GuardAgent offers it three key advantages.
Firstly, unlike safety or privacy controls hardcoded to the target agent, GuardAgent can potentially
adapt to new target agents by uploading relevant functions to the toolbox. Secondly, GuardAgent
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provides guardrails by code generation and execution, which is more reliable than guardrails solely
based on natural language. Thirdly, GuardAgent employs the core LLM by in-context learning,
enabling direct utilization of off-the-shelf LLMs without the need for additional training.

Before introducing GuardAgent in Sec. 4, we investigate diverse guard requests for different types
of LLM agents and propose two novel benchmarks in Sec. 3. The first benchmark, EICU-AC, is
designed to assess the effectiveness of access control for LLM agents for healthcare. The second
benchmark, Mind2Web-SC, focuses on evaluating the safety control mechanisms of LLM-powered
web agents. These two benchmarks are used to evaluate our GuardAgent in our experiments
in Sec. 5. Note that the two types of guard requests considered here – access control and safety
control – are closely related to privacy and safety, respectively, which are critical perspectives of AI
trustworthiness (Wang et al., 2023a). Our technical contributions are summarized as follows:
• We propose GuardAgent, the first LLM agent framework providing guardrails to other LLM

agents via knowledge-enabled reasoning in order to address diverse user guard requests.
• We propose a novel design for GuardAgent, which comprises knowledge-enabled task planning

using in-context demonstrations, followed by guardrail code generation involving an extendable
array of functions. Such design endows GuardAgent with great flexibility, reliable guardrail
generation, and no need for additional training.

• We create two benchmarks with high diversity, EICU-AC and Mind2Web-SC, for evaluating
privacy-related access control for healthcare agents and safety control for web agents, respectively.

• We show that GuardAgent (with Llama3-70B/Llama3.1-70B/GPT-4) effectively safeguards 1)
an EHRAgent for healthcare with a 98.4%/98.4%/98.7% guarding accuracy on EICU-AC and 2)
a SeeAct web agent with an 83.5%/84.5%/90.0% guarding accuracy on Mind2Web-SC, without
affecting the task performance of these target agents. We also demonstrate the capabilities of
GuardAgent in defining new functions during guardrail code generation and execution.

2 RELATED WORK

LLM agents refer to AI agents that use LLMs as their central engine for task understanding and
planning and then execute the plan by interacting with the environment (e.g., by calling third-
party APIs) (Xi et al., 2023). Such fundamental difference from LLMs with purely textual outputs
enables the deployment of LLM agents in diverse applications, including finance (Yu et al., 2023),
healthcare (Abbasian et al., 2024; Shi et al., 2024; Yang et al., 2024; Tu et al., 2024; Li et al., 2024),
daily work (Deng et al., 2023; Gur et al., 2024; Zhou et al., 2023; Zheng et al., 2024), and autonomous
driving (Cui et al., 2024; Jin et al., 2023; Mao et al., 2023). LLM agents are also commonly equipped
with a retrievable memory module, allowing them to perform knowledge-enabled reasoning (Lewis
et al., 2020). Such property endows LLM agents with the ability to handle different tasks within an
application domain. Our GuardAgent is a very typical LLM agent, but with different objectives
from existing agents, as it is the first one to safeguard other LLM agents.

LLM-based guardrails belong to a family of moderation approaches for harmfulness mitiga-
tion (Yuan et al., 2024a; Qi et al., 2024). Traditional guardrails were operated as classifiers trained on
categorically labeled content (Markov et al., 2023; Lees et al., 2022). Recent guardrails for LLMs can
be categorized into either ‘model guarding models’ approaches (Rebedea et al., 2023; Inan et al.,
2023; Yuan et al., 2024b) or ‘agent guarding models’ approaches (gua, 2023). These guardrails are
designed to detect and moderate harmful content in LLM outputs based on predefined categories,
such as violent crimes, sex crimes, child exploitation, etc. They cannot be applied to LLM agents
with diverse output modalities and safety requirements. For example, an autonomous driving agent
may produce outputs such as trajectory predictions or control signals that must adhere to particular
safety regulations. In this work, we take the initial step towards developing guardrails for LLM agents
by investigating both ‘model guarding agents’ (using an LLM with careful prompt engineering
to safeguard agents) and ‘agent guarding agents’ approaches. We demonstrate that our proposed
GuardAgent, the first ‘agent guarding agents’ framework, surpasses the ‘model guarding agents’
approach in our experiments.

3 SAFETY REQUESTS FOR DIVERSE LLM AGENTS

Before introducing our GuardAgent, we investigate safety requests for different types of LLM
agents in this section. We focus on two representative LLM agents: an EHRAgent for healthcare
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Figure 2: An example from EICU-AC (left) and an example from Mind2Web-SC (right).

and a web agent SeeAct. In particular, EHRAgent represents LLM agents for high-stake tasks, while
SeeAct represents generalist LLM agents for diverse tasks. We briefly review these two agents, their
designated tasks, and their original evaluation benchmarks. More importantly, since there are no
existing benchmarks for privacy or safety evaluation on these two representative agent types, we
propose two novel benchmarks for different safety requests: 1) EICU-AC, which assesses access
control for healthcare agents like EHRAgent, and 2) Mind2Web-SC, which evaluates safety control
for web agents like SeeAct. Specifically, EICU-AC is developed from the EICU dataset which is
commonly used for medical agents, while Mind2Web-SC is developed from Mind2Web is a common
benchmark for web agents. We conduct a preliminary study to test ‘invasive’ approaches for access
control and safety control based on naive instructions added to the system prompts of EHRAgent and
SeeAct, respectively; their ineffectiveness and poor flexibility motivate the need for GuardAgent.

3.1 EHRAGENT AND EICU-AC BENCHMARK

EHRAgent EHRAgent is designed to respond to healthcare-related queries by generating code to
retrieve and analyze data from provided databases (Shi et al., 2024). EHRAgent has been evaluated
and shown decent performance on several benchmarks, including an EICU dataset containing
questions regarding the clinical care of ICU patients (see Fig. 2 for example) and 10 relevant
databases (Pollard et al., 2018). Each database contains several types of patient information stored in
different columns. In practical healthcare systems, it is crucial to restrict access to specific databases
based on user identities. For example, personnel in general administration should not have access to
patient diagnosis details. Thus, LLM agents for healthcare, such as EHRAgent, should be able to deny
requests for information from the patient diagnosis database when the user is a general administrator.
In essence, these LLM agents should incorporate access controls to safeguard patient privacy.

EICU-AC In this paper, we create an EICU-AC benchmark from EICU to evaluate Access Control
approaches for EHRAgent (and potentially other healthcare agents with database retrieval). We
define three user roles, ‘physician’, ‘nursing’, and ‘general administration’, which simulates practical
healthcare scenarios. The access control being evaluated is supposed to ensure that each identity has
access to only a subset of databases and columns of the EICU benchmark. We generate the ground
truth access permission for each role by querying ChatGPT (see App. A.1 for more details). Then,
each example in EICU-AC is designed to include the following information: 1) a healthcare-related
question and the correct answer, 2) the databases and the columns required to answer the question, 3)
a user identity, 4) a binary label ‘0’ if all required databases and columns are accessible to the given
identity or ‘1’ otherwise, and 5) the required databases and columns inaccessible to the identity if the
label is ‘1’. An illustration of a generated EICU-AC example is shown in Fig. 2.

In particular, all questions in EICU-AC are sampled or adapted from the EICU dataset. We ensure
that all these questions are correctly answered by EHRAgent using GPT-4 (at temperature zero) as
the core LLM so that the evaluation using our benchmark will mainly focus on access control without
much influence from the task performance of the target agent. Initially, we generate three EICU-AC
examples from each question by assigning it with the three roles respectively. After labeling, we
found that the two labels are highly imbalanced for all three identities. Thus, for each identity, we
remove some of the generated examples while adding new ones to achieve a relative balance between
the two labels (see more details in App. A.2). Ultimately, EICU-AC contains 52, 57, and 45 examples
labeled to ‘0’ for ‘physician’, ‘nursing’, and ‘general administration’, respectively, and 46, 55, and 61
examples labeled to ‘1’ for the three roles respectively. Among these 316 examples, there are 226
unique questions spanning 51 ICU information categories, underscoring the diversity of EICU-AC.
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Table 1: Access control hardcoded to EHRAgent (with GPT-4) and safety control hardcoded to
SeeAct (with GPT-4), both based on system instructions, are ineffective on EICU-AC and Mind2Web-
SC, respectively. Hardcoded control also degrades the task performance of the agents significantly;
therefore, a new guardrail approach that is ‘non-invasive’ to the target agent is needed.

access/safety control LPP ↑ LPR ↑ CCA ↑ FRA ↑

EHRAgent (GPT-4) on EICU-AC Unimplemented - - - 100
Hardcoded (invasive) 76.6 90.7 50.0 3.2

SeeAct (GPT-4) on Mind2Web-SC Unimplemented - - - 100
Hardcoded (invasive) 95.1 58.0 58.0 71.0

3.2 SEEACT AND MIND2WEB-SC BENCHMARK

SeeAct SeeAct is a generalist web agent that follows natural language instructions to complete
tasks on any given website by sequential generation of actions, including clicking on a button, typing
specific texts, etc. (see Fig. 2 for example) (Zheng et al., 2024). SeeAct is evaluated on the Mind2Web
benchmark containing over 2,000 complex web tasks spanning 137 websites across 31 domains (e.g.,
car rental, shopping, entertainment, etc.) (Deng et al., 2023). However, it is essential for practical
web agents like SeeAct to integrate safety controls that restrict certain actions for specific users. For
example, in most regions of the world, a driver’s license is required for car rental.

Mind2Web-SC We create a Mind2Web-SC benchmark to evaluate Safety Control applicable to
SeeAct and other web agents that operate based on action generation. The objective of safety control
is to ensure that the agent obeys six rules we created based on common web regulations and regional
conventions: 1) user must be a member to shop, 2) unvaccinated user cannot book a flight, 3) user
without a driver’s license cannot buy or rent a car, 4) user aged under 18 cannot book a hotel, 5) user
must be in certain countries to search movies/musics/video, 6) user under 15 cannot apply for jobs.

The examples in Mind2Web-SC are created by the following steps. First, we obtain all tasks with
correct action prediction by SeeAct (using GPT-4 as the core LLM) from the travel, shop, and
entertainment domains of the test set of Mind2Web . Second, for each task, we randomly create a
user profile containing ‘age’ in integer and ‘domestic’, ‘dr_license’, ‘vaccine’, and ‘membership’, all
boolean (see the right of Fig. 2). Note that each user information is non-trivial, as it is related to at
least one of the six safety rules we created. Third, we manually label each example based on the task
and the user information. If the task itself is not related to any of the six rules, the example will be
labeled to ‘0’ for ‘action permitted’. If the task is related to at least one of the rules (e.g. the one for
car rental), we check the user information and will label the example to ‘1’ for ‘action denied’ if the
rule is violated (e.g. ‘dr_license’ is ‘false’) and ‘0’ otherwise. For each example labeled to ‘1’, the
violated rules are also included. Finally, we balance the two classes by creating additional examples
(based on existing tasks but with different user information) while removing some examples with
tasks irrelevant to any of the rules (see details in App. B). The created Mind2Web-SC benchmark
contains 100 examples in each class with only unique tasks within the class.

3.3 PRELIMINARY STUDIES ON THE TWO BENCHMARKS

Naive ‘invasive’ baselines We use the EICU-AC benchmark to evaluate a naive approach that
hardcodes the access control into the system prompt of EHRAgent by specifying the three roles with
their accessible databases and columns. During the evaluation, this modified EHRAgent will be
provided with both the role and the query of the EICU-AC examples. Its system prompt will include
instructions to display a ‘denial message’ along with the inaccessible databases and columns for
the given role, if there are any. Similarly, we incorporate textual instructions for safety checks into
the system prompt of SeeAct and evaluate it on Mind2Web-SC. If any of the rules are violated for
the given user profile, the safety-enforced SeeAct is supposed to print a ‘denial message’ with the
violated rules. Details about the system prompts for the modified agents are deferred to App. C.

Metrics We consider four evaluation metrics shared by both benchmarks: label prediction precision
(LPP), label prediction recall (LPR), comprehensive control accuracy (CCA), and final response
accuracy (FRA), all in percentage. LPP and LPR are the precision and recall for label prediction,
respectively, both calculated over all examples in each dataset. Here, a prediction of label ‘1’ is
counted only if the denial message (‘access denied’ or ‘action denied’) appears. CCA considers
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all examples with ground truth labeled ‘1’. It is defined as the proportion of these examples being
correctly predicted to ‘1’ AND with all inaccessible databases and columns (for EICU-AC) or all
violated rules (for Mind2Web-SC) successfully detected. In contrast, FRA considers all examples
with ground truth labeled ‘0’. It is defined as the proportion of these examples being correctly
predicted to ‘0’ (i.e. access/action granted) and with the agent producing the correct answer or action.

Results As shown in Tab. 1, the naive ‘invasive’ baseline fails to protect the target agents, exhibiting
either low precision or recall in label prediction. Specifically, the naive access control hardcoded to
EHRAgent is overly strict, resulting in an excessive number false positives. Conversely, the naive
safety control for SeeAct fails to reject many unsafe actions, leading to numerous false negatives.
Moreover, the ‘invasion’ that introduces additional tasks imposes heavy burdens on both agents,
significantly degrading their performance on their designated tasks, particularly for EHRAgent
(which achieves only 3.2% end-to-end accuracy on negative examples as measured by FRA). Finally,
despite their poor performance, both naive approaches are hardcoded to the agent, making them
non-transferable to other LLM agents with different designs. These shortcomings highlight the need
for our GuardAgent, which is both effective and flexible in safeguarding different LLM agents.

4 GUARDAGENT FRAMEWORK

In this section, we introduce GuardAgent with three key features: 1) flexible – unlike the in-
vasive baseline, the non-invasiveness of GuardAgent, along with its extendable memory and
toolbox, allows it to address new target agents with novel guard requests; 2) reliable – outputs
of GuardAgent are obtained only if the generate guardrail code is successfully executed; 3)
training-free – GuardAgent is in-context-learning-based and does not need any LLM training.

4.1 OVERVIEW OF GUARDAGENT

The intended user of GuardAgent is the developer or administrator of a target LLM agent who
seeks to implement a guardrail on it. The mandatory textual inputs to GuardAgent include a set
of guard requests Ir, a specification Is of the target agent, inputs Ii to the target agent, and the
output log Io by the target agent corresponding to Ii. Here, Ir is informed by Is, which includes
the functionality of the target agent, the content in the inputs and output logs, their formats, etc.
The objective of GuardAgent is to check whether Ii and Io satisfy the guard requests Ir and then
produce a label prediction Ol, where Ol = 0 means the guard requests are satisfied and Ol = 1
otherwise. The outputs or actions proposed by the target agent will be admitted by GuardAgent if
Ol = 0 or denied if Ol = 1. If Ol = 1, GuardAgent should also output the detailed reasons Od

(e.g., by printing the inaccessible databases and columns for EICU-AC) for potential further actions.

The key idea of GuardAgent is to leverage the logical reasoning capabilities of LLMs with knowl-
edge retrieval to accurately ‘translate’ textual guard requests into executable code. Correspondingly,
the pipeline of GuardAgent comprises two major steps (see Fig. 1). In the first step (Sec. 4.2),
a step-by-step action plan is generated by prompting an LLM with the above-mentioned inputs to
GuardAgent. In the second step 4.3), we prompt the LLM with the action plan and a set of callable
functions to get a guardrail code, which is then executed by calling an external engine. A memory
module is available in both steps to retrieve in-context demonstrations.

4.2 TASK PLANNING

The objective for task planning is to generate a step-by-step action plan P from the inputs to
GuardAgent. A naive design is to prompt a foundation LLM with [Ip, Is, Ir, Ii, Io], where Ip
contains carefully designed planning instructions that 1) define each GuardAgent input, 2) state
the guardrail task (i.e., checking if Ir is satisfied by Ii and Io), and 3) guide the generation of action
steps (see Fig. 8 in App. D for example). However, understanding the complex guard requests and
incorporating them with the target agent remains a challenging task for existing LLMs.

We address this challenge by allowing GuardAgent to retrieve demonstrations from a memory
module that archives target agent inputs and outputs from past use cases. Here, an element D in the
memory module is denoted by D = [Ii,D, Io,D, PD, CD], where Ii,D and Io,D are the target agent
inputs and outputs respectively, PD contains the action steps, and CD contains the guardrail code.
Retrieval is based on the similarity between the current target agent inputs and outputs and those from
the memory. Specifically, we retrieve k demonstrations by selecting k elements from the memory
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with the smallest Levenshtein distance L([Ii,D, Io,D], [Ii, Io]). Then the action plan is obtained by
P = LLM([Ip, Is, Ir, [Ii,D1

, Io,D1
, PD1

], · · · , [Ii,Dk
, Io,Dk

, PDk
], Ii, Io]). Note that the guardrail

code in each demonstration has been removed for the brevity of the prompt.

In the cases where GuardAgent is applied to a new LLM agent for some specific guard requests,
we also allow the user of GuardAgent to manually inject demonstrations into the memory module.
In particular, we request the action plan in each demonstration provided by the user to contain four
mandatory steps, denoted by PD = [p1,D, p2,D, p3,D, p4,D], where the four steps form a chain-of-
thought (Wei et al., 2022). In general, p1,D summarizes guard requests to identify the keywords, such
as ‘access control’ with three roles, ‘physician’, ‘nursing’, and ‘general administration’ for EICU-AC.
Then, p2,D filters information in the guard request that is related to the target agent input, while p3,D
summarizes the target agent output log and locates related content in the guard request. Finally, p4,D
instructs guardrail code generation to compare the information obtained in p2,D and p3,D, as well as
the supposed execution engine. Example action plans are shown in Fig. 14 of App. H.

4.3 GUARDRAIL CODE GENERATION AND EXECUTION

The goal of this step is to generate a guardrail code C based on the action plan P . Once generated,
C is executed through the external engine E specified in the action plan. However, guardrail code
generated by directly prompting an LLM with the action plan P and straightforward instructions
may not be reliably executable. One of our key designs to address this issue is to adopt more
comprehensive instructions that include a list F of callable functions with specification of their input
arguments. The definitions of these functions are stored in the toolbox of GuardAgent, which can
be easily extended by users through code uploading to address new guard requests and target agents.
The LLM is instructed to use only the provided functions for code generation; otherwise, it easily
makes up non-existent functions during code generation.

Furthermore, we utilize past examples retrieved from memory, employing the same approach
used in task planning, to serve as demonstrations for code generation. Thus, we have C =
LLM(Ic(F), D1, · · · , Dk, Ii, Io, P ), where Ic(F) are the instructions based on the callable func-
tions in F and D1, · · · , Dk are the retrieved demonstrations. The outputs of GuardAgent are
obtained by executing the generated code, i.e., (Ol, Od) = E(C,F). Finally, we adopt the debugging
mechanism proposed by Shi et al. (Shi et al., 2024), which invokes an LLM to analyze any error
messages that may arise during execution to enhance the reliability of the generated code. Note that
this debugging step is seldom activated in our experiments, since in most cases, the code produced by
GuardAgent is already executable.

5 EXPERIMENTS

Overview of results. In Sec. 5.2, we show the effectiveness of GuardAgent in safeguarding
EHRAgent on EICU-AC and SeeAct on Mind2Web-SC, compared with the baseline using an LLM
to safeguard agents. Using Llama3-70B/Llama3.1-70B/GPT-4 as the core LLM, GuardAgent
achieves 98.4%/98.4%/98.7% and 83.5%/84.5%/90.0% guarding accuracy on the two benchmarks,
respectively, without any degradation to the task performance of the target agent. We also illustrate
through a case study that the advantage of GuardAgent over the ‘model-guard-agent’ baseline is
mainly attributed to the more reliable guardrail based on code generation and execution.

In Sec. 5.3, we conduct the following ablation studies: 1) We present a breakdown of results for the
roles in EICU-AC and the rules in Mind2Web-SC, showing that GuardAgent performs consistently
well across most roles and rules, enabling it to manage complex guard requests effectively. 2) We
assess the significance of long-term memory by varying the number of demonstrations provided
to GuardAgent. We show that a few shots of demonstrations are sufficient for GuardAgent
to perform well. 3) We show the importance of the toolbox of GuardAgent by observing a
performance decline when critical tools (i.e., functions) are removed. Interestingly, GuardAgent
compensates for such removal by autonomously defining necessary functions, demonstrating its
ability to handle emergent guard requests.

5.1 SETUP

Datasets and agents We test GuardAgent on EICU-AC and Mind2Web-SC with EHRAgent
and SeeAct (using their original settings) as the target agents, respectively. The role and question
from each EICU-AC example are inputs to EHRAgent, and the output logs include the reasoning
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Table 2: Performance of GuardAgent in safeguarding EHRAgent on EICU-AC and SeeAct on
Mind2Web-SC, compared with the ‘model-guard-agent’ baseline, for three core LLM choices. For
each metric on guarding efficacy (LPA, LPP, LPR, and CCA), the top performer for each LLM choice
is shaded, and the best across all LLMs is bolded. Overall, GuardAgent outperforms the baseline
and achieves the best results with GPT-4. Both methods maintain a 100% FRA in all settings, i.e.,
they do not impair the task performance of the target agents, as they are ‘non-invasive’ to these agents.

EHRAgent on EICU-AC SeeAct on Mind2Web-SC

core LLM method LPA LPP LPR CCA FRA LPA LPP LPR CCA FRA
LlamaGuard3-8B LlamaGuard 50.3 100.0 3.1 n.a. 100 51.0 100.0 2.0 n.a. 100

Llama3-70B Baseline 92.1 95.4 88.9 41.4 100 76.5 93.4 57.0 57.0 100
GuardAgent 98.4 100 96.9 96.9 100 83.5 98.6 69.0 68.0 100

Llama3.1-70B Baseline 92.7 97.3 88.3 45.7 100 81.5 95.9 70.0 66.0 100
GuardAgent 98.4 100 96.9 95.7 100 84.5 85.6 83.0 83.0 100

GPT-4 Baseline 97.5 95.3 100 67.9 100 82.5 100 65.0 65.0 100
GuardAgent 98.7 100 97.5 97.5 100 90.0 100 80.0 80.0 100

steps, the generated code, and the final answer produced by EHRAgent. The inputs to SeeAct contain
the task and user information from each example in Mind2Web-SC, and the output logs include the
predicted action and the reasoning by SeeAct. Example inputs (Ii) and output logs (Io) of the two
target agents are shown in App. D. Other inputs to GuardAgent, including the specifications of the
two target agents (Is), the guard requests associated with the two benchmarks (Ir), and the planning
instructions (Ip), are also shown in App. D due to space limitations.

Settings of GuardAgent In the main experiments, we set the number of demonstrations to k = 1
and k = 3 for EICU-AC and Mind2Web-SC, respectively. Other choices will be considered in our
ablation study in Sec. 5.3. For each benchmark, we initialize the memory of GuardAgent by k
manually created demonstrations (see App. H for example). For both GuardAgent and the baseline,
we consider version 2024-02-01 with temperature zero when GPT-4 is used as the core LLM. We use
Python as the default code execution engine, with two initial functions in the toolbox, ‘CheckAccess’
and ‘CheckRules’, which are defined in App. E. Note that users of GuardAgent can easily upload
new functions or engines into the toolbox. Finally, we allow three debugging iterations, though in
most cases, the guardrail code generated by GuardAgent is directly executable.

Baselines Since GuardAgent is the first LLM agent designed to safeguard other agents, we
compare it with baselines using models with carefully crafted prompts to safeguard agents. Here, we
consider the same choices for the core LLM of GuardAgent, GPT-4, Llama3-70B, and Llama3.1-
70B, as the guardrail models. We create comprehensive prompts containing high-level instructions I ′p
adapted from the one for GuardAgent, the same number of demonstrations as for GuardAgent
but without guardrail code generation, denoted by D′

1, · · · , D′
k, and the same set of inputs as for

GuardAgent. Example prompts for both benchmarks are shown in App. G. Then the outputs of
the guardrail models are obtained by (Ol, Od) = LLM(I ′p, Is, Ir, D

′
1, · · · , D′

k, Ii, Io). Additionally,
we consider LlamaGuard as a ‘model guarding models’ baseline, which is designed to detect harmful
content in LLM outputs, which is completely unaligned with the guard requests (Inan et al., 2023).

Evaluation metrics We consider four metrics measuring the efficacy of GuardAgent and the
baseline in safeguarding the target agent, which are LPP, LPR, LPA, and CCA. LPP and LPR measure
the precision and recall for label prediction, respectively, which are defined in Sec. 3.3. LPA is
the label prediction accuracy (a.k.a. guarding accuracy), defined as the proportion of correct label
prediction over all examples in each dataset. CCA measures the prediction recall for the inaccessible
datasets on EICU-AC or the violated rules on Mind2Web-SC, which is also defined in Sec. 3.3.
Additionally, we report the FRA metric defined in Sec. 3.3, which measures the influence of the
guardrail on the task performance of the target agent.

5.2 GUARDRAIL PERFORMANCE

In Tab. 2, we show the performance of GuardAgent compared with the baseline using our
comprehensive evaluation metrics. Both methods achieve 100% FRAs for all settings since they
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Figure 3: Left: A failure case of the GPT-4 baseline where the same column name (‘patientunit-
stayid’) shared by different databases cannot be effectively distinguished. Right: A failure case of
GuardAgent where a rule violation is not detected due to the overwhelming details in the query.

Table 3: Breakdown of GuardAgent results with GPT-4 over the three roles in EICU-AC and the
six rules in Mind2Web-SC. GuardAgent performs uniformly well for all roles and rules except for
rule 5 related to movies, music, and videos.

EHRAgent on EICU-AC SeeAct on Mind2Web-SC

physician nursing GA rule 1 rule 2 rule 3 rule 4 rule 5 rule 6
LPA ↑ 97.9 98.2 100.0 89.5 91.7 87.5 83.3 52.4 83.3
CCA ↑ 95.7 96.4 100.0 89.5 91.7 87.5 83.3 52.4 83.3

are ‘non-invasive’ to the target agents thus causing zero degradation to their task performance.
GuardAgent achieves better LPAs than the baseline with also clear gaps in CCAs for all LLM
choices on the two benchmarks, showing the advantage of ‘agent guarding agents’ over ‘model
guarding agents’. We attribute this advantage to our design of reasoning-based code generation. In
many failure cases of the baseline on EICU-AC, we found that guardrails based on natural language
cannot effectively distinguish column names if they are shared by different databases. For example,
in Fig. 3, the entire database ‘vitalperiodic’ that contains a column named ‘patientunitstayid’ is not
accessible to ‘general administration’, while the column with the same name in the database ‘patient’
is accessible to the same role. In this case, the model-based guardrail fails to determine the column
‘patientunitstayid’ in the database ‘vitalperiodic’ as ‘inaccessible’. In contrast, our GuardAgent
based on code generation accurately converts each database and its columns into a dictionary, avoiding
the ambiguity in column names. The ‘model guarding model’ approach LlamaGuard cannot safeguard
LLM agents since it is designed for content moderation.

On the right of Fig. 3, we show a typical failure case of GuardAgent where the violated rule
is undetected. We found that the query failed to be connected to the designated rule in the first
step of the chain-of-thought reasoning during task planning, possibly due to the overwhelming
details in the query. However, this issue can be mitigated by involving demonstrations with better
linguistic diversity. Alternatively, more powerful core LLMs may also improve the performance of
GuardAgent, since in Table 2, GuardAgent using GPT-4 achieves generally better performance
than using the other two core LLMs.

5.3 ABLATION STUDIES

Breakdown results In Tab. 3, we show LPA and CCA of GuardAgent with GPT-4 for a)
EHRAgent for each role in EICU-AC and b) SeeAct for each rule in EICU-AC (by only considering
positive examples). In general, GuardAgent performances uniformly well for the three roles in
EICU-AC and the six rules in Mind2Web-SC except for rule 5 related to movies, music, and videos.
We find that all the failure cases for this rule are similar to the one in Fig. 3 where the query cannot be
related to the rule during reasoning. Still, GuardAgent demonstrates relatively strong capabilities
in handling complex guard requests with high diversity.

9
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Figure 4: Performance of GuardAgent (with GPT-4 as the core LLM) provided with different
numbers of demonstrations on EICU-AC and Mind2Web-SC.

Table 4: The executable rate (ER, the percentage of executable code) before debugging and after
debugging, and the LPA for GuardAgent (with GPT-4) on EICU-AC. Both ERs and LPA reduce
when the toolbox and memory bank of GuardAgent are removed.

ER before debugging ER after debugging LPA
w/o toolbox and memory 90.8 93.7 90.8
w/ toolbox and memory 100 100 98.7

Influence of memory We vary the number of demonstrations retrieved from the memory base
of GuardAgent and show the corresponding LPAs and CCAs in Fig. 4. Again, we consider
GuardAgent with GPT-4 for brevity. The results show the importance of memory and that
GuardAgent can achieve descent guardrail performance with very few shots of demonstrations.
More evaluation and discussion about memory retrieval are deferred to App. K.

Influence of toolbox We test GuardAgent with GPT-4 on EICU-AC by removing a) the functions
in the toolbox relevant to the guard requests and b) demonstrations for guardrail code generation
(that may include the required functions). Specifically, the guardrail code is now generated by
C ′ = LLM(Ic(F ′), Ii, Io, P ), where F ′ represents the toolbox without the required functions. In
this case, GuardAgent either defines the required functions (see Fig. 12 in App. F) or produces
procedural code towards the same goal, and has achieved a 90.8% LPA with a 96.1% CCA (compared
with the 98.7% LPA and the 97.5% CCA with the required functions) on EICU-AC. The removal of
the toolbox and memory mainly reduces the executable rate of generated code, as shown in Tab. 4.
More details about code generation and debugging of GuardAgent are deferred to App. I. The
clear performance drop supports the need for the relevant tools (i.e. functions) in the code generation
step. The results also demonstrate the adaptability of GuardAgent to address new guard requests.

The trend of code-based guardrails. We further consider a very challenging model-guard-agent task
where GPT-4 is used to safeguard EHRAgent on EICU-AC but with all instructions related to code
generation removed. In this case, the LLM has to figure out whether or not to create a code-based
guardrail by itself. Interestingly, we find that for 68.0% examples in EICU-AC, the LLM chose
to generate a code-based guardrail (though mostly inexecutable). This result shows the intrinsic
tendency of LLMs to utilize code as a structured and precise method for guardrail, supporting our
design of GuardAgent based on code generation. More analysis of this tendency is deferred to
App. J due to space limitations.

6 CONCLUSION AND FUTURE RESEARCH

In this paper, we present the first study on guardrails for LLM agents to address diverse user safety or
privacy requests. We propose GuardAgent, the first LLM agent framework designed to safeguard
other LLM agents. GuardAgent leverages knowledge-enabled reasoning capabilities of LLMs to
generate a task plan and convert it into a guardrail code. It is featured by the flexibility in handling
diverse guardrail requests, the reliability of the code-based guardrail, and the low computational
overhead. In addition, we propose two benchmarks for evaluating privacy-related access control and
safety control of LLM agents for healthcare and the web, respectively. Future research in this direction
includes automated toolbox design, advanced reasoning strategies for task planning, multi-agent
frameworks for managing various guard requests or modules, and integration of advanced tools to
handle more complex guard requests.
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(a) List of all databases and columns. (b) Databases and columns accessible by ‘physician’.

(c) Databases and columns accessible by ‘nursing’.
empty space

(d) Databases and columns accessible by ‘general ad-
ministration’.

Figure 5: Databases and columns accessible to the three roles defined for EICU-AC, and the complete
list of databases and columns for reference. Accessible columns and inaccessible columns for each
role are marked in green while inaccessible ones are shaded.

SOCIAL IMPACTS

We propose GuardAgent with potentially positive social impacts. GuardAgent is the first LLM
agent framework that safeguards other LLM agents. GuardAgent directly addresses the safety
and trustworthiness concerns of LLM agents and will potentially inspire more advanced guardrail
approaches for LLM agents.

A DETAILS ABOUT THE EICU-AC BENCHMARK

A.1 ROLE-BASED ACCESS PERMISSION

For the EICU-AC benchmark, we consider three roles: ‘physician’, ‘nursing’, and ‘general admin-
istration’. These roles are selected based on our understanding of the ICU environment. Although
various other roles exist, we focus on these three roles due to their prevalence, ensuring sufficient
queries relevant to each role when creating the benchmark.

For each role, we select a subset of accessible databases and columns from the EICU benchmark, as
shown in Fig. 5. Our selection rule is to query ChatGPT about the access permission for the three roles
over each database and then verify the suggested access permission by human experts1 For example,
for the ‘diagnosis’ database with four columns, ‘patientunitstayid’, ‘icd9code’, ‘diagnosisname’, and
‘diagnosistime’, we query ChatGPT using the prompt shown in Fig. 6. ChatGPT responds with the
recommended access permission (‘full access’, ‘limited access’, or ‘no access’) for each role to each
of the four columns. Here, we follow all ‘full access’ and ‘no access’ recommendations by ChatGPT.
For ‘limited access’, we set it to ‘no access’ if it is recommended for ‘physician’ or ‘nursing’; if it is

1Our human experts are from the Nationwide Children’s Hospital, Ohio, USA and Peking University Third
Hospital, Beijing, China.
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Figure 6: Our prompt to ChatGPT for the access permission for the three roles to the ‘diagnosis’
database (with four columns, ‘patientunitstayid’, ‘icd9code’, ‘diagnosisname’, and ‘diagnosistime’),
and the responses of ChatGPT.

recommended for ‘general administration’, we set it to ‘full access’. This is to ensure both ‘physician’
and ‘nursing’ roles have sufficient inaccessible databases so that there will be sufficient queries that
should be denied in the ground truth (to achieve relatively balanced labeling for both roles).

A.2 SAMPLING FROM EICU

As mentioned in the main paper, each example in EICU-AC contains 1) a healthcare-related question
and the correct answer, 2) the databases and the columns required to answer the question, 3) a user
identity, 4) a binary label (either ‘0’ for ‘access granted’ and ‘1’ for ‘access denied’), and 5) databases
and the columns required to answer the question but not accessible for the given role (if there are
any). The examples in EICU-AC are created by sampling from the original EICU dataset following
the steps below. First, from the 580 test examples in EICU, we obtain 183 examples that are correctly
responded to by EHRAgent with GPT-4 at temperature zero. For each of these examples, we manually
check the code generated by EHRAgent to obtain the databases and columns required to answer the
question. Second, we assign the three roles to each example, which gives 549 examples in total. We
label these examples by checking if any of the required databases or columns are inaccessible to the
given role (i.e., by comparing with the access permission for each role in Fig. 5). This will lead to
a highly imbalanced dataset with 136, 110, and 48 examples labeled ‘0’ for ‘physician’, ‘nursing’,
and ‘general administration’, respectively, and 47, 73, and 135 examples labeled ‘1’ for ‘physician’,
‘nursing’, and ‘general administration’, respectively. In the third step, we remove some of the 549
created examples to a) achieve a better balance between the labels and b) reduce the duplication of
questions among these examples. We notice that for ‘general administration’, there are many more
examples labeled ‘1’ than ‘0’, while for the other two roles, there are many more examples labeled
‘0’ than ‘1’. Thus, for each example with ‘general administration’ and label ‘1’, we remove it if
any of the two examples with the same question for the other two roles are labeled ‘1’. Then, for
each example with ‘nursing’ and label ‘1’, we remove it if any example with the same question for
‘physician’ is labeled ‘1’. Similarly, we remove each example with ‘physician’ and label ‘0’ if any
of the two examples with the same question for the other two roles are also labeled ‘0’. Then for
each example with ‘nursing’ and label ‘0’, we remove it if any example with the same question for
‘general administration’ is labeled ‘0’. After this step, we have 41, 78, and 48 examples labeled ‘0’ for
‘physician’, ‘nursing’, and ‘general administration’, respectively, and 47, 41, and 62 examples labeled
‘1’ for ‘physician’, ‘nursing’, and ‘general administration’, respectively. Finally, we randomly remove
some examples for ‘nursing’ with label ‘0’ and ‘general administration’ with label ‘1’, and randomly
add some examples for the other four categories (‘physician’ with label ‘0’, ‘general administration’
with label ‘0’, ‘physician’ with label ‘1’, and ‘nursing’ with label ‘1’) to achieve a better balance.
The added examples are generated based on the questions from the training set2 of the original EICU

2In the original EICU dataset, both the training set and the test set do not contain the ground truth answer for
each question. The ground truth answers in the test set of EICU are provided by Shi et al. Shi et al. (2024).
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Table 5: Number of examples in EICU-AC for each role and each label.

physician nursing general administration
label ‘0’ (access denied) 52 57 45
label ‘1’ (access granted) 46 55 61

Table 6: Number of examples labeled ‘1’ in Mind2Web-SC for each rule violation. Note that examples
labeled ‘0’ do not violate any rules.

Safety rules No. examples
Rule 1: User must be a member to shop. 19

Rule 2: Unvaccinated user cannot book a flight 12
Rule 3: User without a driver’s license cannot buy or rent a car. 24

Rule 4: User aged under 18 cannot book a hotel. 18
Rule 5: User must be in certain countries to search movies/musics/video. 21

Rule 6: User under 15 cannot apply for jobs. 6

benchmark. The ultimate number of examples in our created EICU-AC benchmark is 316, with the
distribution of examples across the three roles and two labels displayed in Tab 5.

A.3 HEALTHCARE QUESTIONS INVOLVED IN EICU-AC

As mentioned in the main paper, our created EICU-AC dataset involves healthcare questions spanning
50 different ICU information categories, i.e., columns across all 10 databases of the EICU benchmark.
We further categorize the questions in EICU-AC following the ‘template’ provided by EICU (extracted
from the ‘q_tag’ entry of each example Shi et al. (2024)). This gives 70 different question templates,
showing the high diversity of healthcare questions involved in our EICU-AC benchmark.

B DETAILS ABOUT THE MIND2WEB-SC BENCHMARK

In Sec. 3.2, we have defined six safety rules for the Mind2Web-SC Benchmark. Rule 1 requires
‘membership’ in the user information to be ‘true’. Rule 2 requires ‘vaccine’ in the user information to
be ‘true’. Rule 3 requires ‘dr_license’ in the user information to be ‘true’. Rule 4 requires ‘age’ in
the user information to be no less than 18. Rule 5 requires ‘domestic’ in the user information to be
‘true’. Rule 6 requires ‘age’ in the user information to be no less than 15. In Tab. 6, we show the
number of examples labeled ‘1’ in Mind2Web-SC for each rule violation. Note that examples labeled
‘0’ do not violate any rules.

During the construction of Mind2Web-SC, we added some examples with label ‘1’ and removed
some examples with label ‘0’ to balance the two classes. By only following the steps in Sec. 3.2
without any adding or removal of examples, we obtain a highly imbalanced dataset with 178 examples
labeled ‘0’ and only 70 examples labeled ‘1’. Among the 178 examples labeled ‘0’, there are 148
examples with the tasks irrelevant to any of the rules – we keep 50 of them and remove the other
(148 − 50 =) 98 examples. All 30 examples labeled ‘0’ but related to at least one rule are also
kept. Then, we create 30 examples labeled ‘1’ by reusing the tasks for these 30 examples labeled ‘0’.
We keep generating random user profiles for these tasks until the task-related rule is violated, and
the example is labeled to ‘1’. Note that the tasks are randomly selected but manually controlled to
avoid duplicated tasks within one class. Similarly, we created 20 examples labeled ‘0’ by reusing the
tasks for examples labeled ‘1’, with randomly generated user information without any rule violation.
Finally, we obtain the Mind2Web-SC dataset with 100 examples in each class (200 examples in total).
Among the 100 examples labeled ‘0’, 50 are related to at least one of the rules.
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Figure 7: Instructions injected into the system prompt of EHRAgent for access control and SeeAct
for safety control, as naive baselines that motivate our GuardAgent.

C DETAILED SYSTEM PROMPTS FOR NAIVE ACCESS CONTROL AND SAFETY
CONTROL BASED ON INSTRUCTIONS

In our preliminary studies, We created a naive access control for EHRAgent and a naive safety control
for SeeAct by directly modifying their system prompts for planning. These approaches are either
ineffective in safeguarding the agents or degrade the benign performance of the agents. In Fig. 7, we
show the instructions we injected into the system prompts of these two agents.

D COMPLETE INPUTS AND OUTPUTS OF GUARDAGENT

Complete Inputs to GuardAgent As described in Sec. 4.2, the inputs to GuardAgent include
a specification Is of the target agent, a set of guard requests Ir, inputs Ii to the target agent, and the
output log Io by the target agent corresponding to Ii. In Fig. 8, we show the actual Is and Ir for
GuardAgent in our experiments for both EHRAgent on EICU-AC and SeeAct on Mind2Web. In
the same figure, we also show the actual planning instruction Ip and the actual instruction Ic used for
code generation. In Fig. 9, we show real examples for the target agent inputs Ii and output logs Io
for both EHRAgent on EICU-AC and SeeAct on Mind2Web.

Outputs of GuardAgent The intermediate outputs of GuardAgent, including the generated
action plan P and the guardrail code C, are similar to those in the manually created demonstrations
(see App. H); thus, we do not repeatedly show them. Here, we show example outputs, including the
label prediction Ol and the detailed reasons Od of GuardAgent for both benchmarks in Fig. 10.

E CALLABLE FUNCTIONS

Our experiments involve two callable functions shown in Fig. 11. However, the user of GuardAgent
can easily extend the toolbox by uploading more functions. The actual toolbox of GuardAgent in
practice will contain much more callable functions than for our experiments.

F SELF-DEFINED FUNCTION BY GUARDAGENT

As shown in Fig. 12, when there is no toolbox (and related functions) installed, GuardAgent
defines the necessary functions on its own. The example is a function defined for the access control
on EICU-AC.
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Figure 8: The actual planning instruction Ip, instruction Ic for guardrail code generation, target agent
specification Is and guard requests Ir we used in our experiments for the two agents, EHRAgent and
SeeAct, and the two benchmarks, EICU-AC and Mind2Web-SC.

G PROMPTS FOR BASELINES

In the main experiments, we compare GuardAgent with two baselines using LLMs to safeguard
LLM agents. The guardrail is created by prompting the LLM with a system instruction, the specifi-
cation of the target agent, the guard requests, the user inputs to the target agent with the associated
output logs, and a few show of examples. Here the system instruction is adapted from the one used
by GuardAgent for task planning. However, we include additional instructions about the format of
the guardrail outputs. The baselines do not involve any guardrail code generation, and this is reflected
by the demonstrations we created that generate guardrails solely based on reasoning over the textual
inputs to the LLM. In Fig. 13, we show the modified system prompt template for the baselines, with
two example demonstrations for the two benchmarks, respectively.
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Figure 9: Examples for target agent inputs Ii and output logs Io, as the inputs to GuardAgent, for
the two agents, EHRAgent and SeeAct, and the two benchmarks, EICU-AC and Mind2Web-SC.

Figure 10: Example outputs of GuardAgent, including the label prediction Ol, the detailed reasons
Od, and the final answer/action of the target agent with guardrail, for the two agents, EHRAgent and
SeeAct, and the two benchmarks, EICU-AC and Mind2Web-SC.

H MANUALLY CREATED DEMONSTRATIONS

We manually created a set of demonstrations for each benchmark. In Fig. 14, we show two example
demonstrations for EHRAgent on EICU-AC and SeeAct on Mind2Web-SC, respectively.

I FURTHER ANALYSIS OF THE DEBUGGING MECHANISM

In most cases in our main experiments, the code generated by GuardAgent is directly executable
without the need for debugging. Here, we investigate the error handling of GuardAgent for the more
challenging scenario where the toolbox and memory are both removed. In this scenario, 29/316
generated codes are not executable initially, including 11 name errors, 3 syntax errors, and 15
type errors. Logical errors will not trigger the debugging process since the code is still executable.
Debugging solves 9/29 errors, including 8 name errors and 1 type error. None of the syntax errors
have been successfully debugged – they are all caused by incorrectly printing the change-line symbol
as ‘\\n’.
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Figure 11: Callable functions in the toolbox of GuardAgent involved in our experiments.

Figure 12: When relevant functions are not provided in the toolbox, GuardAgent defines its own.

J FURTHER ANALYSIS OF THE “THE TREND OF CODE-BASED GUARDRAILS”

In the main paper, we show that when the instructions related to code-based guardrails are removed,
there are still 68% code-based guardrails generated by GuardAgent on EICU-AC. The tendency
for GuardAgent to generate code-based guardrails may relate to the structure in the input guard
requests that enables easier code generation. Especially for the access control on EICU-AC, the
accessible databases for each role are formatted as:

allergy: drugname, allergytime, . . . ; cost: uniqueqid, chargetime, . . . ; . . .

Such formatting facilitates the date representation in code generation via .csv or .json.

Here, we remove the structured format by providing accessible databases using natural language:
“Physicians have access to the allergy database (patientunitstayid, drugname, allergyname, allergy-
time), diagnosis database (patientunitstayid, icd9code, . . . ), . . . ” With this change, the percentage of
generating code-based guardrails reduces from 68% to 62%.

K MORE DETAILS ABOUT MEMORY USAGE OF GUARDAGENT

Normally, LLM agents retrieve the most similar past use cases as in-context demonstrations. Thus,
the relevance of these retrieved demonstrations to the current query is usually high; and the diversity
between the retrieved demonstrations is usually low (since they are all neighbouring to the test query).
GuardAgent follows the same design. However, how does the relevance of the stored memory
affect the performance of GuardAgent?

In Tab. 7, we show the performance of GuardAgent when the retrieval of the demonstrations
is based on “least similarity”. That is, we follow the same setting as in our main experiments in
Sec. 5.2, where k = 1 and k = 3 demonstrations are retrieved for EICU-AC and Mind2Web-SC,
respectively. But these demonstrations are those with the largest Levenshtein distances to the test
query. From the table, we observe that the accuracy of the guardrail (measured by LPA) reduces with
the relevance of the retrieved demonstrations, which supports our design of memory retrieval based
on the “most-similarity” rule.
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Figure 13: System prompt template for the baselines and the two example demonstrations for EICU-
AC and Mind2Web-SC, respectively.

Table 7: The performance of GuardAgent (with GPT-4) on the two datasets when the retrieval of
demonstrations is based on lease-similarity and most-similarity, respectively. The accuracy of the
guardrail (measured by LPA) reduces with the relevance of the retrieved demonstrations.

EHRAgent on EICU-AC SeeAct on Mind2Web-SC

LPA LPP LPR CCA LPA LPP LPR CCA
least-similarity 98.1 99.4 96.9 96.9 84.0 100.0 79.0 79.0

most-similarity (default) 98.7 100 97.5 97.5 90.0 100.0 80.0 80.0

L COST OF GUARDAGENT

In Tab. 8, we show the average execution time of GuardAgent with GPT-4, Llama3-70B, and
Llama3.1-70B, compared with the ‘model guarding agent’ baseline with GPT-4. The average
execution time of the target agents on their designated tasks is also shown for reference. Additionally,
the time costs for one debugging iteration on EICU-AC and Mind2Web-SC are 15.2s and 17.8s,
respectively, though in most cases, the code generated by GuardAgent is directly executable
without the need for debugging. Furthermore, in Tab. 9, we show the average word count of one
demonstration, full prompts with one demonstration, and full responses for GuardAgent on the
two benchmarks.

From the results, we found that while slower than the baseline, the execution time for GuardAgent
is comparable to the execution time of the target agent. Moreover, human inspectors will likely need
much more time than our GuardAgent to read the guard requests and then moderate the inputs and
outputs of the target agent correspondingly. Given the effectiveness of our GuardAgent as shown
in the main paper, GuardAgent is the current best for safeguarding LLM agents.
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Figure 14: Example demonstrations for EHRAgent on EICU-AC and SeeAct on Mind2Web-SC.

Table 8: Average execution time (in second) of GuardAgent with GPT-4, Llama3-70B, and
Llama3.1-70B, compared with the ‘model guarding agent’ baseline with GPT-4. The average
execution time of the target agent on their designated tasks is shown for reference.

EICU-AC Mind2Web-SC
Target Agent (reference) 31.9 30.0

Baseline (GPT-4) 8.5 14.4
GuardAgent (GPT-4) 45.4 37.3

GuardAgent (Llama3-70B) 10.1 9.7
GuardAgent (Llama3.1-70B) 16.6 15.5

Table 9: Average word count of one demonstration, full prompts with one demonstration, and full
responses (including both task plan and code) for GuardAgent on EICU-AC and Mind2Web-SC.

EICU-AC Mind2Web-SC
one demonstration 298 494

full prompts with one demonstration 571 1265
full responses 195 277
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M CHOICE OF THE CORE MODEL FOR GUARDAGENT

In the main paper, we show in Tab. 2 that the capability of the core LLM does affect the performance
of GuardAgent. This is generally true for most specialized LLM agents, such as those used in
autonomy, healthcare, and finance. However, EHRAgent achieves only 53.1% task accuracy on the
EICU dataset, even when utilizing GPT-4 as the core LLM. Similarly, SeeAct achieves 40.8% task
accuracy on Mind2Web using GPT-4 as the core LLM. As a consequence, it is unlikely for these
agents to adopt much weaker models (e.g. with 7B or 13B parameters). Thus, as the guardrail for
these target agents, GuardAgent will likely share the same (powerful) core, and it is not interesting
to discuss the case where GuardAgent is equipped with a weak core LLM.

N INVESTIGATING THE CODE GENERATION DESIGN FOR GUARDAGENT

The code generation design enables GuardAgent to provide reliable and precise guardrails, as
discussed in the case studies in Sec. 5.2. This is the main motivation for us to adopt the code
generation design for GuardAgent. However, is the code-based guardrail really a better design
than guardrails based on natural language? What if the designated task of the target agent does
not require any code generation, e.g., being a complex Q&A task? If the guard requests require
GuardAgent to respond with non-binary outputs, i.e., risk-based or threshold-based responses, is
code generation still a good design? The answer is ‘Yes’.

N.1 SETUP

To show this, we consider two commonly used Q&A datasets: CSQA and MMLU (Talmor et al.,
2019; Hendrycks et al., 2021). CSQA consists of multiple-choice questions for common sense
reasoning, while MMLU consists of multiple-choice questions from 57 subjects, including elementary
mathematics, US history, computer science, and law. The AI system performing these two Q&A
tasks can be either an LLM agent or just an LLM. Here, we consider a GPT-4 model for simplicity
since GuardAgent will only use the input question and the output answer of the AI system. Note
that these two Q&A tasks do not require any code generation and the AI system will also not generate
any code when answering the questions.

Since there are no safety rules (i.e. guard requests) associated with the two datasets, we create a set
of “pseudo rules”. Note that these rules do not reflect any practical safety requirements – they are
created merely to test the performance of GuardAgent on AI systems for Q&A tasks. For CSQA, we
create four pseudo-rules to mimic a guard request for safety control:
1) When there are multiple answer choices containing the same words (including words with the
same root, for example, “eye” and “eyes”, “slow” and “slowly”, “to” in “work to advantage” and
“matter to”, etc.), none of these options should be selected.
2) If the question is longer than or equal to 15 words, do not pick A, B, or C.
3) If the question contains animals, the answer should be B.
4) If the question contains a number ranging from one to five, the answer should not be the corre-
sponding letter. The mapping should follow this rule: 1 = A, 2 = B, 3 = C, 4 = D, 5 = E. For example,
if the question contains the number one, the answer should not be A.
Moreover, we set five risk levels: “no risk” for zero rule violations, “low risk” for one rule violation,
“medium risk” for two rule violations, “high risk” for three rule violations, and “very high risk” for
four rule violations. In other words, GuardAgent is requested to output non-binary and risk-based
responses. Based on our design, the inputs to GuardAgent include the guard request, a description
of the Q&A task, the question, and the answer produced by the AI system (i.e., the GPT-4 model).

For the MMLU dataset, we define four identities and the subjects of questions accessible by each
identity to mimic an access control request:
1) Identity: Mathematics and Logic
Subjects: abstract algebra, college mathematics, elementary mathematics, high school mathematics,
formal logic, logical fallacies, econometrics, high school statistics
2) Identity: Natural Sciences
Subjects: anatomy, astronomy, college biology, college chemistry, college physics, conceptual physics,
high school biology, high school chemistry, high school physics, virology, human aging, nutrition,
medical genetics

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

3) Identity: Social Sciences
Subjects: business ethics, high school government and politics, high school macroeconomics, high
school microeconomics, high school psychology, sociology, global facts, US foreign policy
4) Identity: Technology and Engineering
Subjects: college computer science, computer security, electrical engineering, high school computer
science, machine learning, security studies
For MMLU, the inputs to GuardAgent include the guard request, a description of the Q&A task,
the input question with its subject information and a prescribed identity, and the answer produced
by GPT-4. The outputs will include an indicator about whether the “access” is denied, the required
identity if the access is denied, or the answer to the question if access is granted by GuardAgent.

For MMLU, we sample 80 questions from the original dataset. Based on the guard requests, 40 of
these questions are assigned with identities permitted for the subject of the question (and labeled ‘0’),
and the other 40 questions are assigned with identities forbidden for the subject of the question (and
labeled ‘1’). For CSQA, we also sample 80 questions from the original dataset, with 39 questions
not violating any rules in the guard requests and 41 questions violating at least one rule. As a result,
among these 41 questions with rule violations, 18 are labeled ‘low risk’, 22 are labeled ‘medium
risk’, and 1 is labeled ‘high risk’. For all the questions in the test, the answer produced by GPT-4 is
correct, so that the test will mainly focus on the quality of the guardrail.

For the settings of GuardAgent, we use GPT-4 as the core LLM and one demonstration for both
the task planning step and the code generation step based on the same retrieval mechanism in our
main experiments. We introduce three functions for CSQA and one function for MMLU respectively,
as shown in Fig. 15. We compare GuardAgent with the “model guarding agents” baseline based
on GPT-4, where the prompt generation follows the principles described under “baseline” in Sec. 5.1.

N.2 RESULTS AND CASE STUDIES

As shown in Tab. 10, GuardAgent outperforms the baseline on the two Q&A tasks. For CSQA,
we report for each “risk level” the recall achieved by the two methods respectively. GuardAgent
first identifies the rules relevant to the question in the task planning phase, then generates code to
validate each rule deemed ‘relevant to the question’, and finally counts the number of rule violations
to estimate the risk level. Among the six instances where GuardAgent fails to respond with the
correct risk level, two are due to the failure to relate the question to rule 2, one is due to the failure
to relate the question to rule 3, and three are due to the failure to relate the question to rule 4. The
baseline approach achieves lower recall than GuardAgent, possibly due to the entanglement of
multiple tasks, including identifying rules related to the given question, validating the related rules,
and estimating the risk level based on the number of rule violations. In Fig. 16, we show the logs of
GuardAgent and the model output of the baseline, respectively, for an example question where
GuardAgent makes the correct guardrail decision but the baseline is wrong. The “model guarding
agent” baseline fails to recognize the shared word “have” in answer choices C and D, thus failing to
relate the question to rule 1.

For MMLU with binary GuardAgent output, we report the same set of evaluation metrics as in
the main experiments for the two methods. Both GuardAgent and the baseline approach achieve a
100% label prediction accuracy and a 100% comprehensive control accuracy. However, we observe
that in two cases, the baseline “model guarding agents” approach fails to accurately produce the
correct answer format when the guardrail result is “access granted”. An example is shown in Fig. 17

O MORE DISCUSSION ON FUTURE RESEARCH

As the initial work on ‘agent guarding agents’ approaches, GuardAgent can be further improved in
the following directions:
1) Like most existing LLM agents, the toolbox of GuardAgent is specified manually. An important
future research is to have the agent (or an auxiliary agent) create the required tools.
2) The reasoning capabilities of GuardAgent can be further enhanced. Currently, the reasoning is
based on a simple chain of thought without any validation of the reasoning steps. One possible future
direction is to involve more advanced reasoning strategies, such as self-consistency or reflexion (Wang
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Figure 15: Toolbox functions for: (left) the “pseudo access control” on CSQA and (right) the “pseudo
safety control” on MMLU.

Table 10: Performance of GuardAgent on the two Q&A tasks compared with the “model guarding
agents” baseline, both based on a GPT-4 core model. For CSQA, the recall for each “risk level”
is reported for both approaches. For MMLU, the same set of evaluation metrics as in the main
experiments are reported. GuardAgent outperforms the baseline with better guardrail performance.

CSQA MMLU

no risk low risk med risk high risk LPA LPP LPR CCA FRA
Baseline w/ GPT-4 38/39 14/18 13/22 1/1 100 100 100 100 95.0

GuardAgent w/ GPT-4 39/39 16/18 18/22 1/1 100 100 100 100 100

et al., 2023b; Shinn et al., 2023) to achieve more robust task planning.
3) GuardAgent is still a single-agent system. The future development of GuardAgent can in-
volve a multi-agent design, for example, with multiple agents handling task planning, code generation,
and memory management respectively. The multi-agent system can also handle more complicated
guardrail requests. For example, suppose for an access control task, the user profile includes attributes
like the college, department, and position of the user. Consider a set of complicated access require-
ments, such as “faculty members from colleges A and B, and graduate assistants from college C and
department a of college D cannot access database α”. We could involve a coordinate agent to divide
the guardrail task into subtasks, for example, one corresponding to an access requirement. Then a
group of “sub-agents” will be employed, each handling a subtask. The coordinate agent will then
aggregate the results from all the sub-agents to make a final guardrail decision. Such a separation of
roles may improve the performance of each individual step of GuardAgent, leading to an improved
overall performance.
4) GuardAgent may potentially be integrated with more complex tools. For example, an au-
tonomous driving agent may require a complex module (a Python package with a set of functions) to
test if there is a collision given the environment information.
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Figure 16: An example on CSQA where GuardAgent effectively detects the rule violation with a
correct inference of the risk level while the “model guarding agent” baseline fails. The failure of the
baseline is due to its overlooking the repeated use of the word “have” in both options C and D, which
relate the question to rule 1.
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Figure 17: An example on MMLU (with our pseudo access control) where the “model guarding
agent” baseline fails to output the correct answer format when access is granted.
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