
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAYESIAN ACTIVE LEARNING BY DISTRIBUTION DIS-
AGREEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Active Learning (AL) for regression has been systematically under-researched due
to the increased difficulty of measuring uncertainty in regression models. Since
normalizing flows offer a full predictive distribution instead of a point forecast,
they facilitate direct usage of known heuristics for AL like Entropy or Least-
Confident sampling. However, we show that most of these heuristics do not work
well for normalizing flows in pool-based AL and we need more sophisticated al-
gorithms to distinguish between aleatoric and epistemic uncertainty. In this work
we propose BALSA, an adaptation of the BALD algorithm, tailored for regression
with normalizing flows. With this work we extend current research on uncertainty
quantification with normalizing flows (Berry and Meger, 2023b;a) to real world
data and pool-based AL with multiple acquisition functions and query sizes. We
report SOTA results for BALSA across 4 different datasets and 2 different archi-
tectures.

1 INTRODUCTION

The ever growing need for data for machine learning science and applications has fueled a long his-
tory of Active Learning (AL) research, as it is able to reduce the amount of annotations necessary to
train strong models. However, most research was done for classification problems, as it is generally
easier to derive uncertainty quantification (UC) from classification output without changing the
model or training procedure. This feat is a lot less common for regression models, with few historic
exceptions like Gaussian Processes. This leads to regression problems being under-researched
in AL literature. In this paper, we are focusing specifically on the area of regression and recent
models with uncertainty quantification (UC) in the architecture. Recently, two main approaches
of UC for regression problems have been researched: Firstly, Gaussian neural networks (GNN)
(Flunkert et al., 2017; Madhusudhanan et al., 2024), which use a neural network to parametrize µ
and σ parameters and build a Gaussian predictive distribution and secondly, Normalizing Flows
(Papamakarios et al., 2017; Durkan et al., 2019), which are parametrizing a free-form predictive
distribution with invertible transformations to be able to model more complex target distributions.
Their predictive distributions allow these models to not only be trained via Negative Log Likelihood
(NLL), but also to draw samples from the predictive distribution as well as to compute the log
likelihood of any given point y. Recent works (Berry and Meger, 2023b;a) have investigated
the potential of uncertainty quantification with normalizing flows by experimenting on synthetic
experiments with a known ground-truth uncertainty.
Intuitively, a predictive distribution should inertly allow for a good uncertainty quantification
(e.g. wide Gaussians signal high uncertainty). However, we show empirically that 2 out of
3 well-known heuristics for UC, (standard deviation, least confidence and Shannon entropy)
significantly underperform when used as acquisition functions for AL. We argue that this is due to
the inability of these heuristics to distinguish between epistemic uncertainty (model underfitting)
and aleatoric uncertainty (data noise), out of which AL can only reduce the former. To circumvent
this problem, (Berry and Meger, 2023b;a) have proposed ensembles of normalizing flows and
studied their approximations via Monte-Carlo (MC) dropout. Even though (Berry and Meger,
2023b;a) have demonstrated good uncertainty quantification, their experiments are conducted on
simplified AL use cases with synthetic data. They have not benchmarked their ideas against other
SOTA AL algorithms or used real-world datasets. In this work we propose a total of 4 different
extensions of the BALD algorithm for AL, which relies on MC dropout to separate the two types of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

uncertainty. We adapt BALD’s methodology for models with predictive distributions, leveraging the
distributions directly instead of relying on aggregation methods like Shannon entropy or standard
deviation. Additionally, we extend well-known heuristic baselines for AL to models with predictive
distributions. We report results for GNNs and Normalizing Flows on 4 different datasets and 3
different query sizes.
With a recent upswing in the area of comparability and benchmarking (Rauch et al., 2023; Ji et al.,
2023; Lüth et al., 2024; Werner et al., 2024), we now have reliable evaluation protocols, which help
us to provide an experimental suite that is reproducible and comparable.
Our code is available under: https://anonymous.4open.science/r/
Bayesian-Active-Learning-By-Distribution-Disagreement-8682/

CONTRIBUTIONS

• Three heuristic AL baselines for models with predictive distributions and three adaptations
to the BALD algorithm for this use case, creating a comprehensive benchmark for AL with
models with predictive distributions

• Two novel extensions of the BALD algorithm, which leverage the predictive distributions
directly instead of relying on aggregation methods, which we call Bayesian Active Learning
by DiStribution DisAgreement (BALSA)

• Extensive comparison of different versions of BALD and BALSA on 4 different regression
datasets and 2 model architectures

2 PROBLEM DESCRIPTION

We are experimenting on pool-based AL with regression models. Mathematically we have the fol-
lowing:
Given a dataset Dtrain := (xi, yi) i ∈ {1, . . . , N} with x ∈ X , y ∈ Y (similarly we have Dval and
Dtest) we randomly sample an initial labeled pool L(0) ∼ Dtrain that we call the seed set. We sup-
press the labels from the remaining samples to form the initial unlabeled pool U (0) = Dtrain/L

(0).
We define an acquisition function to be a function that selects a batch of samples of size τ from
the unlabeled pool a(U (i)) := {x(i)b } ∈ U (i) b := [0, . . . , τ]. We then recover the corresponding
labels y(i)b for these samples and add them to the labeled pool L(i+1) := L(i) ∪ {(x(i)b , y

(i)
b)} and

U (i+1) := U (i)/{x(i)b } b := [0, . . . , τ]. The acquisition function is applied until a budget B is
exhausted.
We measure the performance of a model ŷ : X → Y on the held out test set Dtest after each acquisi-
tion round by fitting the model ŷ(i) on L(i) and measuring the Negative Log Likelihood (NLL)

3 BACKGROUND

UNCERTAINTY QUANTIFICATION IN REGRESSION MODELS

Uncertainty quantification (UC) in regression models can broadly be archived by two approaches:
(i) The architecture of the regression model is set up to produce an UC itself, or (ii) the training or
inference of a model is subjected to an additional procedure to generate UCs.
Examples of (i) are Gaussian Processes and density-based models, which use an encoder to produce
the parameters of a predictive distribution. The most common example is a Gaussian neural network
(GNN), where the encoder produces the mean and variance parameters which create a Gaussian
predictive distribution. Recently, Normalizing flows (NF) have been proposed as an alternative to
pre-defined output distributions (like Gaussians). NFs parametrize non-linear transformations that
transform a Gaussian base-distribution into a more expressive density and use that for prediction
(Papamakarios et al., 2017).
Examples of (ii) are Monte-Carlo-Dropout, which uses dropout layers in combination with multiple
forward passes to approximate samples from the parameter distribution of a Bayesian Neural Net-
work, as well as Langevin Dynamics for Neural Networks and ”Stein Variational Gradient Descent”
(SVGD), which estimate the parameter distribution via an updated gradient descent algorithm. Both
approaches are model agnostic (apart from requiring dropout and gradient descent training).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Hyperparameters of all proposed variations of our extension to BALD. While BALD (Gal
et al., 2017) was proposed for classificaition and uses categorical entropy, BALDH uses continuous
entropy. A dropout rate of 0.05 was showing the best AL performance across all datasets. A *
denotes the optimal dropout rate for each dataset. Optimal dropout rates for each dataset are between
0.008 and 0.05.

Param. Sampling Aggregation Dist. Function Drop Train Drop Eval
BALD MC dropout Shannon Entr. subtraction 0.5 0.5
NFlows Out MC dropout −

∑
log p subtraction 0.05 0.05

BALDσ MC dropout std subtraction 0.05 0.05
BALDH MC dropout Shannon Entr. subtraction 0.05 0.05
BALSAEMD MC dropout - EMD 0.05 0.05
BALSAEMD

dual MC dropout - EMD * 0.1

BALSAKL MC dropout - KL-Div. 0.05 0.05
BALSAKL

dual MC dropout - KL-Div. * 0.1

Models from category (i) are (to the best of our knowledge) not capable of distinguishing between
aleatoric uncertainty and epistemic uncertainty. However, in Active Learning, we are primarily in-
terested in quantifying the epistemic uncertainty, as this is the only quantity that we can reduce by
sampling more data points. For that reason, we chose to extend BALD, a well-known algorithm for
AL that uses MC-Dropout. Generally, our proposed method also works for Langevin Dynamics or
SVGD, but as they change the training procedure itself by adding new terms and a minimum number
of epochs, they are not directly comparable to the bulk of AL algorithms. We compiled an overview
of our algorithms in Table 1. Without changing the ”Aggregation” or ”Distance Function” columns
(contents detailed in Section 5) we could replace the parameter sampling with Langevin Dynamics
or SVGD. We defer studies of the resulting algorithms to future work.

4 RELATED WORK

DEEP ACTIVE LEARNING FOR REGRESSION

Most approaches for Active Learning for Regression are based on geometric properties of the data,
with a few notable approaches of uncertainty sampling that are bound to specific model architectures.
Geometric methods include Coreset (Sener and Savarese, 2017), CoreGCN (Caramalau et al., 2021)
and TypiClust (Hacohen et al., 2022). All three approaches first embed any candidate point using
the current model and apply their distance calculations in latent space. Coreset picks points with
maximal distances to each previously sampled point. CoreGCN does one more embedding step by
training a Graph Convolutional Model on a node classification task, where each node represents an
unlabeled data point. Finally, Coreset sampling is applied in this updated embedding space from the
Graph Convolutional Model. TypiClust uses KNN-Clustering to bin the points into |L(i)|+ τ many
clusters and then select at most one point from each cluster.
Many UC approaches for AL with regression are not agnostic to the model architecture (Jose et al.,
2024; Riis et al., 2022) and cannot directly be applied to our setting with normalizing flows. One of
the few exceptions to this is the BALD algorithm itself, as it’s only requirement are dropout layers
in the model architecture.

CLOSEST RELATED WORK

The authors of (Berry and Meger, 2023b;a) already researched using normalizing flows in an ensem-
ble and how to approximate this construct via MC dropout. They proposed two different ways of
applying dropout masks to normalizing flows: either in the bijective transformations (called NFlows
Out) or in a network that parametrizes the base distribution of the normalizing flow (called NFlows
Base). Their methods are evaluated on a synthetic uncertainty quantification tasks, as well as a syn-
thetic AL task with random sampling and a fixed query size of τ = 10. We differ from the work of
(Berry and Meger, 2023b;a) in the following ways:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 2: Characteristics of used datasets for this work. Datasets are selected to cover a large range of
size and complexity and provide maximal intersection with other literature for AL with regression

Name #Feat #Inst (Train) L(0) B
Parkinsons (Tsanas and Little, 2009) 61 3760 200 800
Supercond. (Hamidieh, 2018) 81 13608 200 800
Sarcos (Fischer, 2022) 21 28470 200 1200
Diamonds (Mueller, 2019) 26 34522 200 1200

(i) While (Berry and Meger, 2023b;a) proposes to implement the uncertainty function H in BALD
as −

∑
log [ŷθ(x)], we use Shannon-Entropy and propose multiple additional implementations.

(ii) (Berry and Meger, 2023b;a) conducted their experiments solely on synthetic data from simula-
tions and compared NFlows only against other dropout-based AL algorithms. We extend this use
case to 4 real world datasets with multiple acquisition functions and query sizes.
(iii) Finally, we opt for applying dropout masks only to the conditioning model and to sample ran-
dom dropout masks instead of using the fixed masks from (Berry and Meger, 2023b;a). Even though
we acknowledge the potential usefulness of these approaches, none of them have yet been tested on
pool-based AL on real world data. We focus first on the most natural application of MC dropout for
normalizing flows and defer the other versions to future work.

MONTE-CARLO DROPOUT FOR ACTIVE LEARNING

MC dropout for AL was first proposed by BALD (Gal et al., 2017) as a way to estimate parameter
uncertainty (epistemic uncertainty). The core idea of BALD is to sample a model’s parameter distri-
bution p(θ) multiple times and measure the total (aleatoric+epistemic) uncertainty of each sample.
As an approximation of aleatoric uncertainty, the authors then measure the uncertainty of the average
prediction and contrast that from the uncertainty of each parameter sample to obtain the epistemic
uncertainty (Eq. 1). The authors derived their algorithm for softmax-classification with neural net-
works, but the general idea of measuring the uncertainty of k parameter samples contrasted by the
uncertainty of the average prediction is applicable to regression as well.

BALD(x) =

k∑
i=1

(H [ȳ(x)]−H [ŷθi(x)]) (1)

ȳ(x) =
1

k

k∑
j=1

ŷθj (x)

Natural choices for the uncertainty function H for predictive distributions are the standard deviation
or the Shannon-Entropy. The subtraction in Eq. 1 serves as a distance measure between the total
uncertainty of a parameter sample and the uncertainty of the average prediction. Following that
idea, if a metric ϕ exists that can measure the distance between ŷθi and ȳ directly, we can apply the
following variant of Eq. 1:

BALD(x) =

k∑
i=1

ϕ (ŷθi(x), ȳ(x)) (2)

Based on Eq. 2, we are proposing two variants of a novel algorithm, which we call BALSA.

5 METHODOLOGY

BALSA

We define the conditional predictive distribution that a model produces after a point x was fed to the
encoder ψθ, which conditions the distribution, as p̂|ψθ(x) or p̂θ|x for short.
To employ Eq. 2, we have to solve one main problem: how is the ”average” predictive distribution
p̄|x (analogous to ȳ(x)) defined? We are proposing two solutions:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Overview of our regression models. Both models use an MLP encoder to create a latent
embedding z of the input, before using z to parametrize a predictive distribution.

Grid Sampling Since there exist no sound way of averaging iid samples (and their likelihoods)
from arbitrary distributions to obtain p̄|x, we are changing the sampling method to a more rigid
structure. To this end we are normalizing our target values between [0..1] during pre-processing and
distribute samples on a grid with a resolution of 200. We use our constructed samples to obtain
likelihoods from our model and denote the vector of likelihoods on the grid as p̂⊣θ |x ∈ R200. Finally,
we can average multiple likelihood vectors like this across k parameter samples to obtain p̄|x ∈
R200.

p̄|x =
1

k

k∑
j=1

p̂⊣θj |x

As a vector of averaged likelihoods is no longer normalized, we need to re-normalize the values by
the area under the curve to obtain a proper distribution. However, we observed in our experiments
that the un-normalized version of BALSA performs comparable to or worse than the re-normalized
one (We provide the respective ablation study in Sec 7). Therefore, we focus on the un-normalized
version and omit the normalization step in our formulas. The formulas including the normalization
step can be found in Appendix B.

Pair Comparison To avoid the computation of p̄|x entirely, we propose to approximate Eq. 2 with
pairs of parameter samples instead. Given k parameter samples, we define k − 1 pairs of predictive
distributions and measure their distances.

k−1∑
i=1

ϕ
(
p̂θi |x, p̂θi+1

|x
)

Since the parameter samples θi are drawn iid, the sum is not influenced by sequence effects from
the ordering of the k samples.

Finally, we need a distance metric ϕ to measure the difference between two arbitrary predictive
distributions. We propose KL-Divergence and Earth Mover’s Distance (EMD) and call our resulting
algorithms BALSAKL and BALSAEMD respectively.

BALSAKL KL-Divergence is measured on likelihood vectors of two distributions and is propor-
tional to the expected surprise when one distribution is used as a model to describe the other. The
higher the surprise, the more different the two distributions are.
Implementing both above mentioned approaches we have a grid sampling version BALSAKL Grid

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and a pair comparison version BALSAKL Pair.

BALSAKL Grid(x) =

k∑
i=1

KL
(
p̂⊣θi |x, p̄|x

)
(3)

BALSAKL Pair(x) =

k−1∑
i=1

KL
(
p̂θi |x, p̂θi+1

|x
)

(4)

A mathematical analysis of the differences between the resulting BALSAKL Grid algorithm and
BALD can be found in Appendix A. We omitted this analysis for BALSAKL Pair and the following
BALSAEMD, because both use fundamentally different computations and are therefore considered
different algorithms.

BALSAEMD The Earth Mover’s Distance (a.k.a. Wasserstein Distance) is computed over iid sam-
ples drawn from distributions and is proportional to the cost of transforming one distribution into
the other. Since EMD relies on iid samples, we cannot use p̂⊣θi |x in this context. We only implement
the pair comparison version, simply called BALSAEMD.

BALSAEMD(x) =

k−1∑
i=1

EMD
(
y′θi , y

′
θi+1

)
(5)

y′θ ∼ p̂θ|x

BASELINES

We are using Coreset (Sener and Savarese, 2017), CoreGCN (Caramalau et al., 2021) and Typi-
Clust (Hacohen et al., 2022) as clustering based competitors to our uncertainty based algorithms.
Additionally, we adapt 3 well-known uncertainty sampling heuristics to models with predictive dis-
tributions. Neither the clustering approaches, nor the heuristics rely on MC dropout, hence we omit
the index on the parameters θ.
For the heuristics, we measure (i) the standard deviation σ of samples from the predictive distribu-
tion, (ii) the log likelihood of the most probable prediction (least confident sampling) and (iii) the
Shannon entropy of the predictive distribution.
We denote baseline (i) as Std = σ(y′θ), which is computed based on 200 samples from the predic-
tive distribution.
We denote baseline (ii) as LC = − argmaxy′ p̂θ|x(y′) where the most probable sample is again
found by sampling 200 points.
We denote baseline (iii) asEntr = −p̂θ|x log [p̂θ|x]. Since we are dealing with regression problems
and predictive distributions, we use continuous entropy in this work. Calculating continuous entropy
entails integrating

∫
−p̂θ|x log [p̂θ|x] dx, which we approximate by employing our grid sampling

approach, computing the entropy of the resulting likelihood vector p̂⊣|x and finding the total entropy
with the trapezoidal rule

Entr(x) = trapz
(
−p̂⊣θ |x log[p̂⊣θ |x]

)
(6)

As all baselines (i - iii) are viable replacements of the function H in BALD (Eq. 1), we can construct
additional baselines in a straightforward fashion by creating adaptations of BALD for models with
predictive distributions.
Based on baseline (i), we construct BALDσ . Since the standard deviation needs to be computed
over iid samples from p̂θ|x we use pair comparisons (analogous to BALSAEMD).

BALDσ(x) =

k−1∑
i=1

(
σ
[
y′θi

]
− σ[y′θi+1

]
)

(7)

y′θ ∼ p̂θ|x

Based on baseline (ii), we construct BALDLC. Following BALDσ , this baseline is also computed
over pairs.

BALDLC(x) =

k−1∑
i=1

(
LC [p̂θi |x]− LC[p̂θi+1 |x]

)
(8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Based on baseline (iii), we construct BALDH. To stay as close as possible to BALD, BALDH uses
p̂⊣θ |x to compute p̄|x and reproduces Eq. 1.

BALDH(x) =

k∑
i=1

(
Entr [p̄|x]− Entr

[
p̂⊣θ |x

])
(9)

p̄|x =
1

k

k∑
j=1

p̂⊣θj |x

6 IMPLEMENTATION DETAILS

All experiments are run with PyTorch on Nvidia 2080, 3090 and 4090 GPUs. The total runtime for
all experiments was approximately 7 days on 40-50 GPUs.
As backbone model we are using a standard MLP encoder with dropout layers and ReLU activation.
The encoder is conditioning the predictive distribution of our model either via a µ-decoder and a
σ-decoder (GNN) or as a conditioning input for the normalizing flow. Our normalizing flow is
an autoregressive Neural Spline Flow with rational-quadratic spline transformations (Durkan et al.,
2019). For detailed descriptions on both models, please refer to Appendix C. We optimize all our
hyperparameters on random subsets of size B (e.g. Parkinsons has a budget of 800). To that end,
we evaluate any hyperparameter setting on 4 different random subsets and use average validation
performance as metric for our search.
Evaluating algorithms that include MC dropout is especially tricky, as few guidelines exist on how to
choose an appropriate dropout rate. Instead of forcing a (too) high dropout rate onto every algorithm,
in this work we include dropout in our hyperparameter search so it will be optimized for validation
performance on each dataset. This creates an optimal evaluation scheme for algorithms without
MC dropout. This is an important step in order to not underestimate the performance of algorithms
that do not require high dropout rates. We then let each BALD or BALSA algorithm overwrite the
dropout rate to a fixed value. The specific rate of MC dropout for overwriting the default setting is
optimized for AL performance across all datasets on very few trials in order to find a suitable default
value. Finally, we propose an alternative to overwriting the optimal dropout rate to a fixed value: We
test BALSA in ”dual” mode, retaining the optimal dropout during training and switching to a higher
fixed value during evaluation phases. A fixed evaluation rate of 0.05 is chosen as the highest of our
optimal dropout rates (0.008-0.05 per dataset). This is still a full magnitude lower than common
rates of 0.5 for MC dropout in the literature (Gal et al., 2017; Kirsch et al., 2019). Please refer to
Table 1 for the dropout settings of our algorithms and Appendix C for our used hyperparameters.
The results for ”dual” mode can be found in Section 7 in the respective ablation study.

Figure 2: Critical Difference Diagram for all datasets and query size 1. (lower is better) Horizontal
bars indicate statistical significance according to the Wilcoxon-Holm test.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

500 1000
of labeled datapoints

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

NL
L

NF Diamonds NLL

500 1000
of labeled datapoints

0.016

0.018

0.020

0.022

0.024

0.026

0.028

M
AE

NF Diamonds MAE
LC
Entropy
BALD LC
Coreset
CoreGCN
Std
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

Figure 3: AL trajectories of all tested algorithms in the Diamonds dataset. Curves based on NLL
(left) and MAE (right); lower is better. Trajectories are averaged over 30 restarts of each experiment.

7 EXPERIMENTS

We test our proposed algorithms from Section 5 on conditional normalizing flows and GNNs on
4 datasets (Details of our datasets in Table 2) and across query sizes of τ = {1, 50, 200}. Every
experiment is repeated 30 times and implemented according to the guidelines of (Ji et al., 2023) and
(Werner et al., 2024). We compare our results mainly on query size 1, as we are mostly interested
in the ability of our proposed algorithms to capture uncertainty in the model rather than adapting to
larger query sizes. Following (Werner et al., 2024) we choose CD-Diagrams as aggregation method
for comparison. To this end, we compute a ranking of each algorithm’s AUC value for each dataset
and for each repetition and compare the ranks via the Wilcoxon signed-rank test. Computing ranks
out of the AUC values enables us to compare results across datasets without averaging AUC values
from different datasets. The AUC values are computed based on test NLL (Fig. 2) and test MAE
(Fig. 4). For context, we evaluate Coreset (Sener and Savarese, 2017), CoreGCN (Caramalau et al.,
2021) and TypiClust (Hacohen et al., 2022) and display the final ranking across all datasets on query
size 1 in Figure 2. Additionally, we exemplarily display the AL trajectories of all algorithms for the
Diamonds dataset in Figure 3. The remaining figures for all datasets can be found in Appendix D. In
our experiments, BALSAKL Pairs is the best AL algorithm on average, followed by BALSAKL Grid,
BALDH and Coreset. Notably, common AL heuristics, namely the Shannon Entropy, Std and Least
Confidence baselines, which usually are among the most reliable methods for AL with classification,
performed especially bad. These results indicate, that not every kind of measure on the uncertainty
quantification is useful for AL, even when the UC is inert to the model architecture and the measure
is well-tested in other domains. Interestingly, Coreset and CoreGCN perform a lot better with GNN
architectures, both gaining about 3 ranks, while TypiClust - the also a clustering algorithm - loses
ranks. To investigate and compare these algorithms further, we provide additional results in Figure
4, computing the ranks of each algorithm based on MAE instead of NLL. The two main differences
are (i) Nflows Out loses drastically, scoring last on average and (ii) Coreset is now the best perform-
ing algorithm, winning closely against BALSAKL Pairs and TypiClust.
Finding the right (mix of) metrics to evaluate our models remains a challenging task, as every chosen
measure inevitably introduces a bias into the evaluation. Since we have optimized our hyperparam-
eters for validation NLL, we opt for NLL as our main metric. We have included results for our main
experiments (Fig. 2) measured with the CRPS score instead of NLL in Appendix E. The CRPS
score resulted in the same ranking as likelihood did, so we opted to use the less involved score.
Additionally, we provide multiple ablation studies for our proposed BALSA algorithm:
Dual Mode: We test BALSA in ”dual” mode by switching between the optimal dropout and a static
value during training and evaluation phases respectively. This approach poses an alternative to the
highlighted problems of setting dropout rates described in Section 6. Unfortunately, the results in
Figure 5 are inconclusive, as across all datasets and model architectures the dual mode archives one
clear loss (BALSAEMD

dual), a marginal loss (BALSAKL Pairs
dual) and a marginal win (BALSAKL Grid

dual).
We hypothesize that the switch of dropout rate between training and evaluation can in some cases

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Critical Difference Diagrams with ranks computed based on MAE instead of NLL. Same
experimental parameters as Fig. 2

Figure 5: Comparison of ”dual” evaluation mode for both BALSA algorithms as well as the re-
normalized version of BALSAKL Grid. Based on NLL and τ = 1

degrade the models prediction to much, as the model was not trained to cope with higher than opti-
mal dropout.
Re-normalization: We also tested a version of BALSAKL Grid where we re-normalize p̄|x with its
area under the curve as described in Section 5. We included BALSAKL Grid

norm in Figure 5, but ob-
served the slightly lower performance compared to un-normalized BALSAKL Grid. For the sake of
brevity and simplicity, we therefore opt to leave the normalization step out of our formulas.
Query Sizes: To gauge how well our proposed variants of BALD and BALSA adapt to larger query
sizes, we test our proposed methods on τ = {50, 200} and compare the results in Figure 6. For
ease of comparison, we exclude the 4 worst performing algorithms. Interestingly, when increas-
ing the query size τ , clustering algorithms like Coreset and TypiClust are losing performance more
quickly than our proposed uncertainty sampling methods. This finding contradicts experiments on
AL for classification, where those methods are very stable as τ increases (Ji et al., 2023; Werner
et al., 2024). The uncertainty sampling methods are behaving as expected, gradually losing their
advantage over random sampling with increasing query size, as they suffer from missing diversity
sampling components.

Figure 6: Comparison of our best performing algorithms across different query sizes. Both model
architectures, based on NLL.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

8 CONCLUSION

In this work, we extended the foundation of (Berry and Meger, 2023b;a) by applying the idea of
using MC dropout normalizing flows to real world data and pool-based AL. To that end, we adapted
3 heuristic AL baselines to models with predictive distributions, proposed 3 straightforward adap-
tations of BALD and created 2 novel algorithms, based on the BALD algorithm. This creates a
comprehensive benchmark suite for uncertainty sampling for the use case of AL with models with
predictive distributions. We demonstrate strong performance across 4 datasets for normalizing flows
forBALSAKL Pairs, narrowly losing against Coreset for GNN models. For larger query sizes, we ob-
served unexpected behavior for clustering algorithms like Coreset and TypiClust, which were falling
behind uncertainty based algorithms for τ = {50, 200}, while uncertainty based algorithms retain
their performance. This goes against common knowledge in AL, which attributes high potential to
clustering algorithms to scale to larger query sizes. This work is but the first step to understanding
the dynamics of AL for regression models with uncertainty quantification.

REPRODUCIBILITY STATEMENT

Our code is publicly available under: https://anonymous.4open.science/r/
Bayesian-Active-Learning-By-Distribution-Disagreement-8682/
We did not provide pseudo-code or algorithms for our experiments, because our setup is identical to
(Werner et al., 2024). Please refer to their work for details.
The employed hyperparameters can be found in Appendix C or in the ”configs” folder in the code.

REFERENCES

Lucas Berry and David Meger. Escaping the sample trap: Fast and accurate epistemic uncertainty
estimation with pairwise-distance estimators. arXiv preprint arXiv:2308.13498, 2023a.

Lucas Berry and David Meger. Normalizing flow ensembles for rich aleatoric and epistemic uncer-
tainty modeling. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37,
pages 6806–6814, 2023b.

Razvan Caramalau, Binod Bhattarai, and Tae-Kyun Kim. Sequential graph convolutional network
for active learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9583–9592, 2021.

Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows. Ad-
vances in neural information processing systems, 32, 2019.

Sebastian Fischer. Sarcos Data. OpenML, 2022. OpenML ID: 43873.

Valentin Flunkert, David Salinas, and Jan Gasthaus. Deepar: Probabilistic forecasting with autore-
gressive recurrent networks. CoRR, abs/1704.04110, 2017. URL http://arxiv.org/abs/
1704.04110.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In International conference on machine learning, pages 1183–1192. PMLR, 2017.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies
suit high and low budgets. arXiv preprint arXiv:2202.02794, 2022.

Kam Hamidieh. Superconductivty Data. UCI Machine Learning Repository, 2018. DOI:
https://doi.org/10.24432/C53P47.

Yilin Ji, Daniel Kaestner, Oliver Wirth, and Christian Wressnegger. Randomness is the root of all
evil: More reliable evaluation of deep active learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 3943–3952, 2023.

Ashna Jose, João Paulo Almeida de Mendonça, Emilie Devijver, Noël Jakse, Valérie Monbet, and
Roberta Poloni. Regression tree-based active learning. Data Mining and Knowledge Discovery,
38(2):420–460, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in neural information processing systems,
32, 2019.

Carsten Lüth, Till Bungert, Lukas Klein, and Paul Jaeger. Navigating the pitfalls of active learning
evaluation: A systematic framework for meaningful performance assessment. Advances in Neural
Information Processing Systems, 36, 2024.

Kiran Madhusudhanan, Shayan Jawed, and Lars Schmidt-Thieme. Hyperparameter tuning mlp’s
for probabilistic time series forecasting. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 264–275. Springer, 2024.

Andreas Mueller. Diamonds Data. OpenML, 2019. OpenML ID: 42225.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. Advances in neural information processing systems, 30, 2017.

Lukas Rauch, Matthias Aßenmacher, Denis Huseljic, Moritz Wirth, Bernd Bischl, and Bernhard
Sick. Activeglae: A benchmark for deep active learning with transformers. In Joint Euro-
pean Conference on Machine Learning and Knowledge Discovery in Databases, pages 55–74.
Springer, 2023.

Christoffer Riis, Francisco Antunes, Frederik Hüttel, Carlos Lima Azevedo, and Francisco Pereira.
Bayesian active learning with fully bayesian gaussian processes. Advances in Neural Information
Processing Systems, 35:12141–12153, 2022.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Athanasios Tsanas and Max Little. Parkinsons Telemonitoring. UCI Machine Learning Repository,
2009. DOI: https://doi.org/10.24432/C5ZS3N.

Thorben Werner, Johannes Burchert, Maximilian Stubbemann, and Lars Schmidt-Thieme. A cross-
domain benchmark for active learning, 2024. URL https://openreview.net/forum?
id=OOItbUUQcd.

A DIFFERENCE BETWEEN BALD AND BALSAKL

BALD(x | p̂1:K) :=

K∑
k=1

H(p̄(y | x))−H(p̂k(y | x)), with p̄(y|x):= 1
K

K∑
k=1

p̂k(y|x)

Let KL(p, q) :=
∫
y
p(x) log p(y)

q(y)dy be Kullback-Leibler divergence.

BALSA(x | p̂1:K) :=

K∑
k=1

KL(p̂k(y | x)), p̄(y | x))

To see the differences between bald and balsa more clearly: write the k-th balsa term shorter drop-
ping the throughout dependency on x:

KL(p̂k, p̄) =
∫
p̂k(y) log

p̂k(y)

ˆ̄p(y)
dy

=

∫
p̂k(y) log p̂k(y)dy −

∫
p̂k(y) log p̄(y)dy

= −H(p̂k(y))−
∫
p̂k(y) log p̄(y)dy

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

which is different from the k-th bald term

BALD(x | p̂k) = H(p̄(y | x))−H(p̂k(y | x))

= −H(p̂k(y)) +

∫
p̄(y) log p̄(y)dy

B BALSAKL GRID WITH NORMALIZATION

Formulas for BALSAKL Grid
Norm as tested in the respected ablation in Section 7.

We found this version to perform identical to the un-normalized version ofBALSAKL Grid and opted
for the less involved formulation.

BALSAKL Grid(x) =

k∑
i=1

KL

(
p̂⊣θi |x,

p̄|x
trapz(p̄|x)

)

p̄|x =
1

k

k∑
j=1

p̂⊣θj |x

trapz(p⊣) =
|p⊣|−1∑
n=1

1

2

(
p⊣n + p⊣n+1

)
The trapz-method is a well-known method to approximate an integral. We use the PyTorch-
Implementation of trapz.

C MODEL ARCHITECTURES

We use a MLP encoder model for both architectures. In our Normalizing Flow models, the encod-
ings are used as conditioning input for the bijective transformations (decoder). Our GNNs use a
linear layer to decode µ and σ from the encodings.
Our Normalizing Flow model is a masked autoregressive flow with rational-quadratic spline trans-
formations, which has demonstrated good performance on a variety of tasks in (Durkan et al., 2019).

Table 3: Used Hyperparameters for Normalizing Flow models

Parkinsons Diamonds Supercond. Sarcos
Encoder [32, 64, 128] [32, 64, 128] [32, 64, 128] [32, 64, 128]
Decoder [128, 128] [128, 128] [128, 128] [128, 128]
Budget 800 1200 800 1200
Seed Set 200 200 200 200
Batch Size 64 64 64 64
Optimizer NAdam NAdam NAdam NAdam
LR 0.001 0.0004 0.0008 0.0007
Weight Dec. 0.0018 0.008 0.0003 0.0004
Dropout 0.0163 0.0194 0.0491 0.0261

Table 4: Used Hyperparameters for GNN models

Parkinsons Diamonds Supercond. Sarcos
Encoder [32, 64, 128] [32, 64, 128] [32, 64, 128] [32, 64, 128]
Decoder linear linear linear linear
Budget 800 1200 800 1200
Seed Set 200 200 200 200
Batch Size 64 64 64 64
Optimizer NAdam NAdam NAdam NAdam
LR 0.0007 0.0004 0.0003 0.0006
Weight Dec. 0.0008 0.005 0.005 0.0009
Dropout 0.0077 0.0122 0.0121 0.0074

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

D AL TRAJECTORIES

PAKINSONS

Normalizing Flows

200 400 600 800 1000
of labeled datapoints

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

NL
L

NF Pakinsons NLL

200 400 600 800 1000
of labeled datapoints

0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
AE

NF Pakinsons MAE
LC - AUC: 0.0171
Entropy - AUC: 0.0206
BALD LC - AUC: 0.0167
Coreset - AUC: 0.0080
CoreGCN - AUC: 0.0110
Std - AUC: 0.0113
Random - AUC: 0.0117
TypiClust - AUC: 0.0093
NFlows Out - AUC: 0.0220
BALSA EMD - AUC: 0.0120
BALD H - AUC: 0.0118
BALSA KL Grid - AUC: 0.0120
BALSA KL Pairs - AUC: 0.0118
BALD Std - AUC: 0.0117
Full Dataset

Gaussian Neural Networks

200 400 600 800 1000
of labeled datapoints

4

3

2

1

0

NL
L

GNN Pakinsons NLL

200 400 600 800 1000
of labeled datapoints

0.000

0.010

0.020

0.030

0.040

0.050

0.060

M
AE

GNN Pakinsons MAE
LC
Entropy
Std
BALD LC
Coreset
CoreGCN
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

DIAMONDS

Normalizing Flows

500 1000
of labeled datapoints

3.00

2.75

2.50

2.25

2.00

1.75

1.50

1.25

NL
L

NF Diamonds NLL

500 1000
of labeled datapoints

0.016

0.018

0.020

0.022

0.024

0.026

0.028

M
AE

NF Diamonds MAE
LC
Entropy
BALD LC
Coreset
CoreGCN
Std
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Gaussian Neural Networks

500 1000
of labeled datapoints

3.0

2.5

2.0

1.5

1.0

0.5

0.0
NL

L

GNN Diamonds NLL

500 1000
of labeled datapoints

0.016

0.018

0.020

0.022

0.024

0.026

0.028

M
AE

GNN Diamonds MAE
LC
Entropy
BALD LC
Std
Coreset
CoreGCN
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

SARCOS

Normalizing Flows

500 1000
of labeled datapoints

3.0

2.5

2.0

1.5

1.0

0.5

0.0

NL
L

NF Sarcos NLL

500 1000
of labeled datapoints

0.010
0.013
0.015
0.018
0.020
0.022
0.025
0.028
0.030

M
AE

NF Sarcos MAE
LC
Entropy
BALD LC
Coreset
CoreGCN
Std
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

Gaussian Neural Networks

500 1000
of labeled datapoints

3

2

1

0

1

NL
L

GNN Sarcos NLL

500 1000
of labeled datapoints

0.010
0.012
0.014
0.016
0.018
0.020
0.022
0.024
0.026

M
AE

GNN Sarcos MAE
LC
Entropy
BALD LC
Std
Coreset
CoreGCN
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

SUPERCONDUCTORS

Normalizing Flows

200 400 600 800 1000
of labeled datapoints

2

1

0

1

NL
L

NF Superconductors NLL

200 400 600 800 1000
of labeled datapoints

0.050

0.055

0.060

0.065

0.070

0.075

M
AE

NF Superconductors MAE
LC
Entropy
BALD LC
Std
Coreset
CoreGCN
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

Gaussian Neural Networks

200 400 600 800 1000
of labeled datapoints

2

1

0

1

2

NL
L

GNN Superconductors NLL

200 400 600 800 1000
of labeled datapoints

0.050

0.055

0.060

0.065

0.070

M
AE

GNN Superconductors MAE
LC
Entropy
Std
BALD LC
Coreset
CoreGCN
Random
TypiClust
NFlows Out
BALSA EMD
BALD H
BALSA KL Grid
BALSA KL Pairs
BALD Std
Full Dataset

E CRPS RESULTS

Reproduction of our main experiment (Figure 2) with ranks computed based on CRPS score in-
stead of NLL. The ranking is identical to Fig. 2, so we opted for the less involved metric for our
experiments.

15

