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ABSTRACT

Motivated by the training of Generative Adversarial Networks (GANs), we study
methods for solving minimax problems with additional nonsmooth regularizers.
We do so by employing monotone operator theory, in particular the Forward-
Backward-Forward (FBF) method, which avoids the known issue of limit cycling
by correcting each update by a second gradient evaluation. Furthermore, we
propose a seemingly new scheme which recycles old gradients to mitigate the
additional computational cost. In doing so we rediscover a known method, related
to Optimistic Gradient Descent Ascent (OGDA). For both schemes we prove novel
convergence rates for convex-concave minimax problems via a unifying approach.
The derived error bounds are in terms of the gap function for the ergodic iterates.
For the deterministic and the stochastic problem we show a convergence rate of
O(1/k) and O(1/

√
k), respectively. We complement our theoretical results with

empirical improvements in the training of Wasserstein GANs on the CIFAR10
dataset.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have proven to be a powerful
class of generative models, producing for example unseen realistic images. Two neural networks,
called generator and discriminator, compete against each other in a game. In the special case of a
zero sum game this task can be formulated as a minimax (aka saddle point) problem.

Conventionally, GANs are trained using variants of (stochastic) Gradient Descent Ascent (GDA)
which are known to exhibit oscillatory behavior and thus fail to converge even for simple bilinear
saddle point problems, see Goodfellow (2016). We therefore propose the use of methods with
provable convergence guarantees for (stochastic) convex-concave minimax problems, even though
GANs are well known to not warrant these properties. Along similar considerations an adaptation of
the Extragradient method (EG) (Korpelevich, 1976) for the training of GANs was suggested in Gidel
et al. (2019), whereas Daskalakis et al. (2018); Daskalakis & Panageas (2018); Liang & Stokes (2019)
studied Optimistic Gradient Descent Ascent (OGDA) based on optimistic mirror descent (Rakhlin &
Sridharan, 2013a;b). We however investigate the Forward-Backward-Forward (FBF) method (Tseng,
1991) from monotone operator theory, which uses two gradient evaluations per update, similar to EG,
in order to circumvent the aforementioned issues.

Instead of trying to improve GAN performance via new architectures, loss functions, etc., we
contribute to the theoretical foundation of their training from the point of view of optimization.

Contribution. Establishing the connection between GAN training and monotone inclusions moti-
vates to use the FBF method, originally designed to solve this type of problems. This approach allows
to naturally extend the constrained setting to a regularized one making use of the proximal operator.

We also propose a variant of FBF reusing previous gradients to reduce the computational cost per
iteration, which turns out to be a known method, related to OGDA. By developing a unifying scheme
that captures FBF and a generalization of OGDA, we reveal a hitherto unknown connection. Using
this approach we prove novel non asymptotic convergence statements in terms of the minimax gap
for both methods in the context of saddle point problems. In the deterministic and stochastic setting
we obtain rates of O(1/k) and O(1/

√
k), respectively. Concluding, we highlight the relevance of
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our proposed method as well as the role of regularizers by showing empirical improvements in the
training of Wasserstein GANs on the CIFAR10 dataset.

Organization. This paper is structured as follows. In Section 2 we highlight the connection of
GAN training and monotone inclusions and give an extensive review of methods with convergence
guarantees for the latter. The main results as well as a precise definition of the measure of optimality
are discussed in Section 3. Concluding, Section 4 illustrates the empirical performance in the training
of GANs as well as solving bilinear problems.

2 GAN TRAINING AS MONOTONE INCLUSION

The GAN objective was originally cast as a two-player zero-sum game between the discriminator Dy

and the generator Gx (Goodfellow et al., 2014) given by

min
x

max
y

Eρ∼q[log(Dy(ρ))] + Eζ∼p[log(1−Dy(Gx(ζ)))],

exhibiting the aforementioned minimax structure. Due to problems with vanishing gradients in the
training of such models, a successful alternative formulation called Wasserstein GAN (WGAN) (Ar-
jovsky et al., 2017) has been proposed. In this case the minimization tries to reduce the Wasserstein
distance between the true distribution q and the one learned by the generator. Reformulating this
distance via the Kantorovich Rubinstein duality leads to an inner maximization over 1-Lipschitz
functions which are approximated via neural networks, yielding the saddle point problem

min
x

max
y:‖Dy‖Lip≤1

Eρ∼q[Dy(ρ)]− Eζ∼p[Dy(Gx(ζ))].

2.1 CONVEX-CONCAVE MINIMAX PROBLEMS

Due to the observations made in the previous paragraph we study the following abstract minimax
problem

min
x∈Rd

max
y∈Rn

Ψ(x, y) := f(x) + Eξ∼Q [Φ(x, y; ξ)]− h(y), (1)

where the convex-concave coupling function Φ(x, y) := Eξ∼Q [Φ(x, y; ξ)], which hides the stochas-
ticity for ease of notation, is differentiable with L-Lipschitz continuous gradient. The proper, convex
and lower semicontinuous functions f : Rd → R ∪ {+∞} and h : Rn → R ∪ {+∞} act as
regularizers. A solution of (1) is given by a so-called saddle point (x∗, y∗) fulfilling for all x and y

Ψ(x∗, y) ≤ Ψ(x∗, y∗) ≤ Ψ(x, y∗).

In the context of two-player games this corresponds to a pair of strategies, where no player can be
better off by changing just their own strategy.

For the purpose of this motivating section, we will restrict ourselves for now to the special case of the
deterministic constrained version of (1), given by

min
x∈X

max
y∈Y

Φ(x, y),

where f and h are given by indicator functions of closed convex sets X and Y , respectively. The
indicator function δC of a set C is defined as δC(z) = 0 for z ∈ C and δC(z) = +∞ otherwise.

2.2 MINIMAX PROBLEMS AS MONOTONE INCLUSIONS

If the coupling function Φ is convex-concave and differentiable then solving (1) is equivalent to
solving the first order optimality conditions which can be written as a so-called monotone inclusion
with w = (x, y) ∈ Rm and m = d+ n, given by

0 ∈ F (w) +NΩ(w). (2)

The entities involved are
F (x, y) := (∇xΦ(x, y),−∇yΦ(x, y)), (3)
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and the normal cone NΩ of the convex set Ω := X × Y . The normal cone mapping is given by

NΩ(w) = {v ∈ Rm : 〈v, w′ − w〉 ≤ 0 ∀w′ ∈ Ω},

for w ∈ Ω and NΩ(w) = ∅ for w /∈ Ω. Here, the operators F and NΩ satisfy well known properties
from convex analysis (Bauschke & Combettes, 2011), in particular the first one is monotone (and
Lipschitz if ∇Φ is so) whereas the latter one is maximal monotone. We call a, possibly set-valued,
operator A from Rm to itself monotone if

〈u− u′, z − z′〉 ≥ 0 ∀u ∈ A(z), u′ ∈ A(z′).

We say A is maximal monotone, if there exists no monotone operator A′ such that the graph of A is
properly contained in the graph of A′.

Problems of type (2) have been studied thoroughly in convex optimization, with the most established
solution methods being Extragradient (Korpelevich, 1976) and Forward-Backward-Forward (Tseng,
1991). Both methods are known to generate sequences of iterates converging to a solution of (2).
Note that in the unconstrained setting (i.e. if Ω is the entire space) both of these algorithms even
produce the same iterates.

2.3 SOLVING MONOTONE INCLUSIONS

The connection between monotone inclusions and saddle point problems is of course not new. The
application of Extragradient (EG) to minimax problems has been studied in the seminal paper Ne-
mirovski (2004) under the name of Mirror Prox and a convergence rate of O(1/k) in terms of the
function values has been proven. Even a stochastic version of the Mirror Prox algorithm has been
studied in Juditsky et al. (2011) with a convergence rate of O(1/

√
k). Applied to problem (2), with

PΩ being the projection onto Ω, it iterates

EG:
⌊
wk = PΩ[zk − αkF (zk)]
zk+1 = PΩ[zk − αkF (wk)].

The Forward-Backward-Forward (FBF) method, introduced in Tseng (1991), has not been studied
rigorously for minimax problems in terms of function values yet, despite promising applications
in Boţ et al. (2020) and its advantage of it only requiring one projection, whereas EG needs two. It is
given by

FBF:
⌊
wk = PΩ[zk − αkF (zk)]
zk+1 = wk + αk(F (zk)− F (wk)).

(4)

Both, EG and FBF, have the “disadvantage” of needing two gradient evaluations per iteration. A
possible remedy — suggested in Gidel et al. (2019) for EG under the name of extrapolation from the
past — is to recycle previous gradients. In a similar fashion we consider

FBFp:
⌊
wk = PΩ[zk − αkF (wk−1)]
zk+1 = wk + αk(F (wk−1)− F (wk)),

(5)

where we replaced F (zk) by F (wk−1) twice in (4). As a matter of fact, the above method can be
written exclusively in terms of the first variable wk by incrementing the index k in the first update
and then substituting in the second line. This results in

wk+1 = PΩ

[
wk − αk+1F (wk) + αk(F (wk−1)− F (wk))

]
. (6)

This way we rediscover a known method which was studied in Malitsky & Tam (2020) for general
monotone inclusions under the name of forward-reflected-backward. It reduces to optimistic mirror
descent (Rakhlin & Sridharan, 2013a;b) in the unconstrained case with constant step size αk = α,
giving

wk+1 = wk − α(2F (wk)− F (wk−1)) (7)
which has been proposed for the training of GANs under the name of Optimistic Gradient Descent
Ascent (OGDA), see Daskalakis et al. (2018); Daskalakis & Panageas (2018); Liang & Stokes (2019).

All of the above methods and extensions rely solely on the monotone operator formulation of the
saddle point problem where the two components x and y play a symmetric role. Taking the special
minimax structure into consideration, Hamedani & Aybat (2018) showed convergence of a method
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that uses an optimistic step (7) in one component and a regular gradient step in the other, thus
requiring less storing of past gradients in comparison to (6).

On the downside, however, by reducing the number of required gradient evaluations per iteration, the
largest possible step size is reduced from 1/L (see Korpelevich (1976) or Section 3) to 1/2L (see Gidel
et al. (2019); Malitsky & Tam (2020); Malitsky (2015) or Section 3). To summarize, the number of
required gradient evaluations is halved, but so is the step size, resulting in no clear net gain.

2.4 REGULARIZERS

The role of regularizers is well studied in many fields such as statistics (Tibshirani, 1996), signal
processing (Palomar & Eldar, 2010) or inverse problems (Rudin et al., 1992). They serve different
purposes such as inducing sparsity in the solution or conditioning of the problem. In the context of
deep learning this has been explored from different perspectives, e.g. in incremental convex neural
networks where neurons with zero weights are removed from the network and new ones are inserted
according to different policies, see Bach (2017); Bengio et al. (2006); Rosset et al. (2007); Pieper
& Petrosyan (2020). Other examples include the box-constraints for WGANs with weight clipping
(see Arjovsky et al. (2017)) or spectral normalization (see Miyato et al. (2018)) which has so far
rather been considered as part of the architecture, but can at the same time seen as a regularization
term of the function values.

In the framework of monotone operator theory the optimality condition of the regularized minimax
problem (1) can be written as

0 ∈ F (w) + ∂r(w), (8)

where r is given by (x, y) 7→ f(x) + h(y). The possibly set-valued operator ∂r denotes the
subdifferential of r and is given by

∂r(w) := {v ∈ Rm : 〈v, w′ − w〉+ r(w) ≤ r(w′) ∀w′ ∈ Rm}.

The monotone inclusion (8) generalizes (2) in a natural way, since NΩ = ∂δΩ. Similarly, the
projection constitutes a special case of the so-called proximal mapping which for the function r and
λ > 0 is given by

proxλr (w) := arg min
w′∈Rm

{
r(w′) +

1

2λ
‖w′ − w‖2

}
.

In particular, the proximal mapping of the indicator δΩ yields the projection onto the set Ω, i.e.
proxλδΩ = PΩ.

3 MAIN RESULTS

Motivated by the considerations above we study the inclusion problem

0 ∈ F (w) + ∂r(w), (9)

where F : Rm → Rm is a monotone and Lipschitz operator and r : Rm → R ∪ {+∞} is a proper
convex lower semicontinuous function.

3.1 MEASURE OF OPTIMALITY

There are two common quantities measuring the quality of a point with respect to the monotone
inclusion (8). The most natural one is the distance to the solution set for which typically only
asymptotic convergence can be proved. If F arises from a saddle point problem (1) meaning that
F has the form (3), we want to use a more problem specific measure, the minimax gap, which for a
point w = (u, v) ∈ Rd × Rn is given by

sup
y∈Rn

Ψ(u, y)− inf
x∈Rd

Ψ(x, v)
(

= sup
x∈Rd,y∈Rn

Ψ(u, y)−Ψ(x, v)
)
. (10)

This minimax gap can be interpreted from a game theoretic standpoint as the sum of the maximal
payoffs achievable by the two players by playing their respective best responses, given the current
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strategy of the opponent. In the more general monotone inclusion setting where no function values
are available, an appropriate generalization of (10) is given for any w ∈ Rm by

sup
z∈Rm

〈F (z), w − z〉+ r(w)− r(z).

If r is the indicator δΩ of the compact and convex set Ω it is clear that the supremum is only taken
over z ∈ Ω and will thus be finite.

The restricted gap. Since the problem (9) is in general unconstrained and the supremum can be
infinite we consider instead, as done for example in Nesterov (2007), the restricted gap where the
above supremum is taken over an auxiliary compact set B ⊂ Rm instead of the entire space. Note
that the restricted gap is in general only a reasonable measure of optimality for elements of B. It
is nonnegative on B and zero for points of B which solve (9). Additionally we want to be able to
conclude that if a point w∗ has zero gap it solves (9). This is for example the case if w∗ is in the
interior of B, which can always be ensured if B is chosen large enough.

In order to capture both at the same time we define the following unifying gap

GB(w) :=

{
sup(x,y)∈B Ψ(u, y)−Ψ(x, v) if F and r come from (1)
supz∈B 〈F (z), w − z〉+ r(w)− r(z) otherwise.

(11)

3.2 METHODS

We now present a novel unifying scheme for solving problem (9), which generalizes FBF (4) and
in addition recovers the method motivated in (5) as FBFp. Let us point out again that the latter
algorithm was already introduced in Malitsky & Tam (2020) and corresponds to OGDA (Rakhlin
& Sridharan, 2013a; Daskalakis et al., 2018; Daskalakis & Panageas, 2018) if F stems from the
minimax setting (3).

Algorithm 3.1 (generalized FBF). For a starting point z0 ∈ Rm and step sizes αk > 0 we consider
for all k ≥ 0 ⌊

wk = proxαkr
(zk − αkF (♦k))

zk+1 = wk + αk(F (♦k)− F (wk)).

For ♦k = zk this reduces to the well known FBF method, whereas ♦k = wk−1, with the additional
initial condition w−1 = z0, recycles previous gradients (FBFp).

Consider the scenario where F is given as an expectation Eξ[F (· ; ξ)], e.g. coming from (1), and only
a stochastic estimator F (· ; ξ) is accessible instead of F itself. In this case we adapt Algorithm 3.1 in
the following way.

Algorithm 3.2 (generalized stochastic FBF). For a starting point z0 ∈ Rm and step sizes αk > 0
we consider for all k ≥ 0⌊

ξk ∼ Q (optionally ηk ∼ Q)
wk = proxαkr

(zk − αkF (♦k;4k))
zk+1 = wk + αk(F (♦k;4k)− F (wk; ξk)).

For ♦k = zk and 4k = ηk this results in a stochastic version of FBF, whereas ♦k = wk−1 and
4k = ξk−1 recycles previous gradients (stochastic FBFp) with the additional initial condition
w−1 = z0 and ξ−1 = η0.

Even though both methods encompassed by the unifying scheme Algorithm 3.1 have been studied
in the deterministic setting before, the stated convergence results are new. Note that while the rate
for FBF is completely new our result for FBFp provides only a generalization of the known rate for
OGDA, see Mokhtari et al. (2019). Similarly, the stochastic version of FBF has been considered
before in Bot et al. (2019) and rates have been obtained, but only in terms of the fixed point residual
and not the function values. However, we want to point out that the stochastic version of FBFp has
not been considered prior to this work.
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3.3 CONVERGENCE

Let in the following B ⊂ Rm be the compact set of the restricted (unifying) gap function (11) with
D := supw,z∈B ‖z − w‖ denoting its diameter. For convenience in the estimation we assume that
the starting point z0 of the discussed methods is in B.
Theorem 3.1 (deterministic). Let (wk)k≥0 be the sequence generated by Algorithm 3.1. If

(i) FBF, i.e. ♦k = zk, with step size αk = α ≤ 1/L, or

(ii) FBFp, i.e. ♦k = wk−1, with step size αk = α ≤ 1/2L

is chosen, then for all K ≥ 1 the averaged iterates w̄K := 1
K

∑K−1
k=0 wk fulfill

GB(w̄K) ≤ D2

2αK
,

where GB is the restricted gap defined in (11).

In order to derive similar convergence statements for the stochastic algorithm we need to assume
(standard) properties of the gradient estimator F (· ; ξ).
Assumption 1. Unbiasedness: Eξ[F (w; ξ)] = F (w)∀w ∈ Rm.

Assumption 2. Bounded variance: Eξ[‖F (w; ξ)− F (w)‖2] ≤ σ2 ∀w ∈ Rm.

In particular we actually only need the above assumption to hold for all iterates wk. Such an
hypothesis is in practice difficult to check, but could be exploited in special cases where additional
properties of the variance and boundedness of the iterates are known a priori.
Assumption 3. The samples ξk are independent of the iterates wk, for all k ≥ 0.

Equipped with these assumptions we are now able to prove the statement.
Theorem 3.2 (stochastic). Let Assumption 1, 2 and 3 hold and let (wk)k≥0 be the sequence generated
by Algorithm 3.2. If

(i) stochastic FBF, i.e. ♦k = zk and4k = ηk, with step size αk ≤ α ≤ 1/
√

2L, or

(ii) stochastic FBFp, i.e. ♦k = wk−1 and4k = ξk−1, with step size αk ≤ α ≤ 1/3L

is chosen, then for all K ≥ 1 the averaged iterates w̄K :=
∑K−1

k=0 αkwk∑K−1
k=0 αk

fulfill

E[GB(w̄K)] ≤
D2 + 24σ2

∑K−1
k=0 α2

k∑K−1
k=0 αk

,

where GB is the restricted gap defined in (11).

The above theorem exhibits a classical step size dependence (Robbins & Monro, 1951), yielding
convergence for sequences (αk)k≥0 that are square summable

∑∞
k=0 α

2
k < +∞ but not summable∑∞

k=0 αk = +∞. Additionally, if in the setting of Theorem 3.2 the step size is chosen to be
αk = α/

√
k + 1, a convergence rate can be obtained and is given by

E[GB(w̄K)] = O
( 1√

K

)
. (12)

If the step size does not go to zero, the gap can usually not be expected to vanish either. However, we
can still show decrease in the gap up to a residual stemming from the variance. In particular, for a
constant step size αk = α we have

E[GB(w̄K)] ≤ D2

αK
+ 24σ2α. (13)

Additionally, if the number of iterations K is fixed beforehand, a conclusion similar to (12) can be
obtained by choosing α = 1/

√
K in (13).
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4 EXPERIMENTS

The aim of this section is to show how the use of methods with convergence guarantees, albeit only in
the monotone setting, can yield better training performance for different architectures and objectives.
In particular, we demonstrate that FBF can perform at least as good as EG although requiring less
evaluations of the regularizers.

4.1 2D TOY EXAMPLE

Following Goodfellow (2016); Mescheder et al. (2018) and others we consider the canonical example
minx maxy xy, illustrating the cycling behavior of (even bilinear) minimax problems. We augment
this approach by adding a nonsmooth L1-regularizer for one player, with κ > 0, resulting in

min
x∈R

max
y∈[−1,1]

κ|x|+ xy. (14)

The aforementioned issue of GDA (and its proximal extension PGDA) cycling around the solution is
highlighted in Figure 1. The other methods, for which we display the averaged iterates, however do
converge to a solution and show a decrease in the restricted gap according to theory. Even though the
proximal steps provide improvement towards the solution (0, 0) and FBF only uses half the amount
of evaluations compared to EG, it outperforms the competing algorithms.
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Figure 1: A comparison of the methods presented in Section 2.3 applied to problem (14) with
κ = 0.01. PGDA denotes (alternating) gradient descent ascent with proximal steps. As mentioned
in the introduction it fails to converge. EGp denotes the method presented in Gidel et al. (2019) as
extrapolation from the past. For the restricted gap we use B1 = B2 = [−1, 1].

4.2 WGAN TRAINED ON CIFAR10

In this section we apply the above proposed techniques from monotone inclusions to the training
of Wasserstein GANs employing DCGAN (Radford et al., 2015) and ResNet (He et al., 2016)
architectures. All models are trained on the CIFAR10 dataset (Krizhevsky et al., 2009) which consists
of 60,000 images in 10 different classes (with 50,000 training images and 10,000 test images) using
an NVIDIA RTX 2080Ti GPU.

For the DCGAN experiments we work with the original WGAN formulation including weight clip-
ping, since it includes regularizers innately (the indicator of a box for the weights of the discriminator).
In addition we propose a modification of the WGAN formulation which replaces the box constraint
on the discriminator’s weights with an L1-regularization, under the name of WGAN-L1. This results
in a soft-thresholding operation instead of the “harsh” clipping.

For the experiments on ResNet we use the WGAN-GP formulation (Gulrajani et al., 2017) which
penalizes the norm of the gradient of the discriminator to enforce the Lipschitz constraint, together
with spectral normalization of the weight matrices (Miyato et al., 2018) which can be seen as a
projection.
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Table 1: The best Inception Score (IS) and Fréchet Inception Distance (FID). The column denoted
by WGAN, WGAN-L1 and WGAN-GP refers to the standard formulation with weight clipping, our
regularized implementation using the 1-norm and the formulation with gradient penalty and spectral
normalization, respectively.

WGAN WGAN-L1 WGAN-GP

IS FID IS FID IS FIDMethod
AltAdam1 4.12±.06 56.44±.62 4.43±.03 50.86±2.17 6.01±.31 28.11±3.65
Extra Adam 4.07±.05 56.67±.61 4.67±.11 47.24±1.21 6.58±.08 21.40±.58
FBF Adam 4.54±.04 45.85±.35 4.68±.16 46.60±.76 6.57±.10 21.22±1.29
Opt. Adam 4.35±.06 50.41±.46 4.63±.13 47.98±1.49 6.42±.10 23.01±.95

Given the ubiquity and dominance of Adam (Kingma & Ba, 2014) as an optimizer for many deep
learning related training tasks, instead of using vanilla SGD we opt for Adam updates. This results
in a method we call FBF Adam. Analogous approaches have been applied in Gidel et al. (2019)
and Daskalakis et al. (2018) resulting in Extra Adam and Optimistic Adam, respectively. We compare
the aforementioned methods with the status-quo in GAN training, namely alternating one Adam step
for each network: AltAdam1.

Our hyperparameter search was limited to the step sizes when using the WGAN-L1 and WGAN-GP
formulation, while all other parameters were kept the same as in Gidel et al. (2019); Boţ et al. (2020).
It seems noteworthy that in the case of soft-thresholding bigger step sizes performed better with the
only exception of AltAdam1.

Figure 2: Left: Average and best/worst IS on the WGAN objective with weight clipping. Right:
Average and best/worst IS on the WGAN-L1 objective using the proximal operator; The WGAN-
L1 objective improves the IS in comparison to weight clipping and stabilizes the behavior of all
considered methods during the training procedure.

The two evaluation metrics used are the Inception Score (IS, higher is better) (Salimans et al., 2016)
and the Fréchet inception distance (FID, lower is better) (Heusel et al., 2017), both computed on
50,000 samples. In the case of the IS we use the updated and corrected implementation from Barratt
& Sharma (2018). All results are averaged over 5 runs for each method.

Figure 3: Average and best/worst results regarding IS (left) and FID (right) using ResNet architecture
on the WGAN-GP objective including spectral normalization. Middle: Samples from the generator
trained with FBF Adam.

In Table 1 the best IS and FID for each method are reported. FBF Adam performs at least as good as
all considered competitors with respect to both evaluation metrics. One can also see that WGAN-L1
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using the proximal operator improves the performance of all considered methods. Figure 2 shows the
training progress regarding IS for each method and both problem formulations. The graphs suggest
that making use of WGAN-L1 objective has a stabilizing effect during training, leading to a smoother
and more consistent learning curve — a property that only FBF Adam seems to exhibit for weight
clipping. Figure 3 as well as Table 1 show that for the WGAN-GP formulation FBF Adam maintains
the improved performance of EG compared to GDA, while only requiring half the amount of spectral
normalizations, resulting in time savings of up to 10% as reported in Miyato et al. (2018).

5 CONCLUSION

By highlighting the connection between GAN objectives and monotone inclusions, we are able to
tackle their training via the Forward-Backward-Forward method which is known to converge to a
solution for convex-concave minimax problems. We deepened this theoretical understanding by
proving novel convergence rates in terms of the function values. We complement these rigorous
considerations by promising practical results, indicating that application of FBF can lead to improved
performance and saved computation time (compared to EG).
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A DEFINITIONS

In Section 2.4 we require the regularizers to be proper, convex and lower semicontinuous which are
common properties in convex analysis. We call a function r : Rm → R ∪ {+∞} proper if it is not
constant +∞, which means that it takes a finite value for at least a single point. In addition, we say
that r is lower semicontinuous if for all z0 ∈ Rm

lim inf
z→z0

r(z) ≥ r(z0).

It is easy to see that if C ⊂ Rm is nonempty, closed and convex, then the indicator δC of this set,
given by

δC(z) =

{
0 if z ∈ C
+∞ otherwise

fulfills the assumptions of being proper, convex and lower semicontinuous.

B ABOUT THE GAP FUNCTION

Typically in monotone inclusions, the distance to the set of solutions is used as a measure of quality
of a given point due to the lack of more specific structure in general. Asymptotic convergence of
the iterates has been established for FBF and FBFp in Bauschke & Combettes (2011, Proposition
27.13) and Malitsky & Tam (2020), respectively. Furthermore, no convergence rates can be expected
without stronger monotonicity assumptions. We want to take into account the special structure of the
monotone inclusion coming from the minimax problem (1). For this reason we use the following
(restricted) minimax gap, common for saddle point problems, which for a point (u, v) is given by

GB(u, v) = sup
(x,y)∈B

Ψ(u, y)−Ψ(x, v). (15)

For the general case, i.e. F being an arbitrary monotone and Lipschitz operator this is connected to
the other measure of optimality we use in (11), for w ∈ Rm given by

GB(w) = sup
z∈B
〈F (z), w − z〉+ r(w)− r(z), (16)

where we interpret the possible occurrence of∞−∞ as +∞. It stems from the field of Variational
Inequalities where such a function is also known as merit function (Nesterov, 2007). The relevance
of the above two quantities will be made clear by the following statements.
Theorem B.1. Let Φ : Rd × Rn → R be continuously differentiable and f : Rd → R ∪ {+∞},
h : Rn → R ∪ {+∞} be proper, convex and lower semicontinuous and B ⊂ Rd × Rn. A point
(x∗, y∗) in the interior of B solves the saddle point problem (1) if and only if its minimax gap (15) is
zero, GB(x∗, y∗) = 0. For all other elements of B the gap is nonnegative.
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Proof. A saddle point (x∗, y∗) clearly fulfills that sup(x,y)∈Rd×Rn Ψ(x∗, y)−Ψ(x, y∗) = 0. On the
other hand let GB(x∗, y∗) = 0. For an arbitrary point (x, y) we can choose α ∈ (0, 1) large enough
such that (u, v) := α(x∗, y∗) + (1− α)(x, y) is in the interior of B. Therefore,

Ψ(x∗, v)−Ψ(u, y∗) = Ψ(x∗, αy∗ + (1− α)y)−Ψ(αx∗ + (1− α)x, y∗) ≤ 0.

Using the convex-concave structure of Ψ we deduce that

αΨ(x∗, y∗) + (1− α)Ψ(x∗, y)− αΨ(x∗, y∗)− (1− α)Ψ(x, y∗) ≤ 0,

which implies that Ψ(x∗, y) ≤ Ψ(x, y∗). Since (x, y) was chosen arbitrary (x∗, y∗) is a saddle
point.

Similarly, an analogous statement can be shown for (16). The proof, however is split up into multiple
lemmas to highlight the connection to Variational Inequalities.
Theorem B.2. Let F : Rm → Rm be monotone and continuous, r : Rm → R ∪ {+∞} proper,
convex and lower semicontinuous and B ⊂ Rm. A point w∗ in the interior of B solves the monotone
inclusion

0 ∈ F (w) + ∂r(w) (17)
if and only if its restricted gap (16) is zero, GB(w∗) = 0. For all other elements of B the gap is
nonnegative.

Let the assumptions of Theorem B.2 hold true for the following lemmas as we break up the proof
into separate statements. We do so by making use of the associated Variational inequality (VI)

find w such that 〈F (w), z − w〉+ r(z)− r(w) ≥ 0 ∀z ∈ Rm. (18)

Lemma B.3. The monotone inclusion (17) is equivalent to the VI (18).

Proof. The equivalence of (17) and (18) follows immediately from the definition of the subdifferential
of r.

The formulation (18) is typically referred to as the strong form of the VI, whereas

find w such that 〈F (z), z − w〉+ r(z)− r(w) ≥ 0 ∀z ∈ Rm, (19)

is known as the weak formulation.
Lemma B.4. Under the given assumptions the notion of weak and strong VI are equivalent.

Proof. For the monotone operator F it is clear that if w∗ is a solution to the strong formulation (18),
it is also a solution to the weak formulation (19). In fact, if F is continuous the reverse implication
also holds true. To see this, let w∗ be a solution to the weak VI (19) and z = αw∗ + (1− α)u for an
arbitrary u ∈ Rm and α ∈ (0, 1), then

〈F (αw∗ + (1− α)u), (1− α)(u− w∗)〉+ r(αw∗ + (1− α)u)− r(w∗) ≥ 0.

This implies by the convexity of r that

(1− α)〈F (αw∗ + (1− α)u), (u− w∗)〉+ (1− α)(r(u)− r(w∗)) ≥ 0.

By dividing by (1− α) and then taking the limit α→ 1 we obtain that w∗ is a solution of the strong
form (18).

With the notion of VIs in mind, the above defined gap (16) becomes natural as it measures how much
the statement of (19) is violated.
Lemma B.5. GB is nonnegative on B and zero for solutions of the weak VI.

Proof. It is clear that GB(w) ≥ 0 for w ∈ B as z = w can be chosen in the supremum. On the other
hand if w∗ ∈ B is a solution to the weak VI (19) then GB(w∗) = 0. This follows from the fact that
for a solution of (19) for all z ∈ B

〈F (z), w∗ − z〉+ r(w∗)− r(z) ≤ 0.

Therefore the supremum over the above expression in z is also less than zero, but clearly zero is
obtained for z = w∗.

12
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For the reverse implication to hold true, we may not use points on the boundary of B.
Lemma B.6. If a point w∗ in the interior of B exhibits zero gap GB(w∗) = 0, then it is a solution
to the weak VI (19).

Proof. Since w∗ is in the interior of B we can, for an arbitrary w ∈ Rm, choose α ∈ (0, 1) large
enough such that z := αw∗ + (1− α)w ∈ B. Using this z in the supremum of the gap we deduce
that

〈F (αw∗ + (1− α)w), w∗ − αw∗ − (1− α)w〉+ r(w∗)− r(αw∗ + (1− α)w) ≤ 0.

This implies that

(1− α)〈F (αw∗ + (1− α)w), w − w∗〉+ (1− α)(r(w)− r(w∗)) ≥ 0.

By dividing by (1− α) and then taking the limit α→ 1 we deduce that w∗ solves the strong form of
the VI (18).

Now, we can turn to proving the theorem.

Proof of Theorem B.2. Combine Lemma B.3, B.4, B.5 and B.6.

C REFINED THEOREMS

Recall that restricted (unifying) gap function GB defined in (11) is computed with respect to a
set B ⊂ Rm where D := supw,z∈B ‖z − w‖ denotes its diameter and it is assumed that z0 ∈ B.
Furthermore, the averaged iterates w̄K for K ≥ 1 are given by

w̄K :=

∑K−1
k=0 αkwk∑K−1
k=0 αk

.

C.1 DETERMINISTIC STATEMENTS

The convergence statement of Theorem 3.1 actually holds true not just for a constant step size as
presented in Section 3, but for variable step sizes as well.
Theorem C.1. Let (wk)k≥0 be the sequence generated by Algorithm 3.1. If

(i) FBF, i.e. ♦k = zk, with step size 0 < αk ≤ α ≤ 1/L, or

(ii) FBFp, i.e. ♦k = wk−1, with step size 0 < αk ≤ α ≤ 1/2L

is chosen, then for all K ≥ 1

GB(w̄K) ≤ D2

2
∑K−1
k=0 αk

.

C.2 STOCHASTIC STATEMENTS

We actually prove a slightly more general version of Theorem 3.2. In particular the step size can be
chosen larger than initially claimed, however, at the cost of a worse constant.
Theorem C.2. Let Assumption 1, 2 and 3 hold and let (wk)k≥0 be the sequence generated by FBF,
i.e. Algorithm 3.2 with ♦k = zk and4k = ηk. Let the step size αk ≤ α < 1

L , then

E[GB(w̄K)] ≤
D2 + 4(1− α2L2)

−1
σ2
∑K−1
k=0 α2

k

2
∑K−1
k=0 αk

,

for all K ≥ 1.

Theorem 3.2 (i) can be deduced from the above statement by using α = 1/
√

2L which yields that
(1− α2L2)

−1
= 2.
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Theorem C.3. Let Assumption 1, 2 and 3 hold and let (wk)k≥0 be the sequence generated by FBFp,
i.e. Algorithm 3.2 with ♦k = wk−1 and4k = ξk−1. Let the step size αk ≤ α < 1

2
√

2L
, then

E[GB(w̄K)] ≤
D2 + 6

(
1 + 4α2L2

1−8α2L2

)
σ2
∑K−1
k=0 α2

k∑K−1
k=0 αk

,

for all K ≥ 1.

Theorem 3.2 (ii) is obtained from the above theorem by using the particular step size bound of
α = 1/3L, which yields that

4α2L2

1− 8α2L2
= 4.

Although, the step size in the refined statements Theorem C.2 and C.3 can be chosen arbitrarily close
to 1/L and 1/(2

√
2L) for stochastic FBF and stochastic FBFp, respectively. This does not mean it

should be — since the constant in the convergence rate deteriorates when the step size is close to its
allowed upper bound.

D PROOFS

D.1 PREPARATIONS

We introduce the notation connected to the strong formulation of the VI (18) associated to the
monotone inclusion (9), given by

g(w, z) := 〈F (w), w − z〉+ r(w)− r(z),
for g : Rm × Rm → R ∪ {+∞}. Next we will establish the fact that this function can be used to
bound the (restricted) unifying gap function, which we remind, is defined as

GB(w) =

{
sup(x,y)∈B Ψ(u, y)−Ψ(x, v) if F is (3)
supz∈B 〈F (z), w − z〉+ r(w)− r(z) otherwise,

where in the first case (u, v) ∈ Rd × Rn is identified with w ∈ Rm. In particular the dimensions
fulfill d+ n = m, and r(w) is given by f(u) + h(v).
Lemma D.1. It holds that for all K ≥ 1

sup
z∈B

{
1∑K−1

k=0 αk

K−1∑
k=0

αkg(wk, z)

}
≥ GB(w̄K).

Proof. First we will prove the case if F is derived from a saddle point problem. Note that from the
convex-concave structure of Φ we get that

Φ(u, y) ≤ Φ(u, v) + 〈∇yΦ(u, v), y − v〉
and

Φ(u, v) + 〈∇xΦ(u, v), x− u〉 ≤ Φ(x, v).

By summing the two up we obtain

Φ(u, y)− Φ(x, v) ≤
〈
−∇xΦ(u, v), x− u
∇yΦ(u, v), y − v

〉
.

We can reformulate the above inequality in terms of g to see that for z = (x, y) ∈ Rd × Rn

〈F (w), w − z〉 ≥ Φ(u, y)− Φ(x, v).

The statement of the first case is obtained by adding r(w)− r(z) on both sides and using the fact that
Ψ is convex-concave.

If F is a general monotone operator, then we use its monotonicity to deduce that

〈F (w), w − z〉 ≥ 〈F (z), w − z〉.
The desired result follows from using the linearity of the inner product.
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Notation. We denote the error of the stochastic estimator via
Zk := F (♦k;4k)− F (♦k) and Wk := F (wk; ξk)− F (wk). (20)

Furthermore, we will denote via E[ · |U ], the conditional expectation with respect to the random
variable U .

We will also need the following lemma.
Lemma D.2. Let (pk)k≥0 ∈ Rd be a given sequence and (vk)k≥0 recursively defined for all k ≥ 0

by vk+1 := vk − pk for some v0 ∈ Rd, then
K−1∑
k=0

〈pk, vk − u〉 ≤
1

2
‖v0 − u‖2 +

1

2

K−1∑
k=0

‖pk‖2.

Proof. From the three point identity it follows immediately that

〈pk, vk − u〉 = 〈vk − vk+1, vk − u〉 =
1

2

(
‖vk − u‖2 − ‖vk+1 − u‖2 + ‖vk+1 − vk‖2

)
from which the statement of the lemma follows.

D.2 A UNIFIED DECREASE RESULT

We will start with a unifying proposition which covers the common parts of all convergence proofs.
Proposition D.3. For a γ > 0 we have that for all k ≥ 0 and z ∈ Rm

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖♦k − wk‖2

+ αk 〈Wk, z − wk〉+ (1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

(21)

Proof. Let k ≥ 0 and z ∈ Rm be arbitrary. Using the decomposition (20) it follows that
〈αkF (wk; ξk), wk − z〉 = αk〈Wk, wk − z〉+ αk〈F (wk), wk − z〉. (22)

Since proxαkr
= (Id + αk∂r)

−1 we deduce that

〈z − wk, wk − zk + αkF (♦k;4k)〉 ≥ αk(r(wk)− r(z)). (23)
Adding (22) and (23) gives that
〈αk(F (wk; ξk)− F (♦k;4k)) + zk − wk, wk − z〉 ≥ αk 〈Wk, wk − z〉+ αkg(wk, z),

which, using the definition of zk+1, is equivalent to
〈z − wk, zk+1 − zk〉 ≥ αk〈Wk, wk − z〉+ αkg(wk, z). (24)

We estimate the inner product on the left side of the inequality by inserting and subtracting zk and
using the three point identity twice to deduce
〈z − wk, zk+1 − zk〉 = 〈z − zk + zk − wk, zk+1 − zk〉

=
1

2

(
‖z − zk‖2 − ‖zk+1 − z‖2 + ‖zk+1 − wk‖2 − ‖zk − wk‖2

)
.

(25)

The first two summands are fine as they will telescope, so we are left with estimating ‖zk+1 − wk‖2.
By the definition of zk+1 we have that

‖zk+1 − wk‖2 = α2
k‖F (♦k;4k)− F (wk; ξk)‖2

= α2
k‖F (♦k)− F (wk) + Zk −Wk‖2

≤ (1 + γ)α2
k‖F (♦k)− F (wk)‖2 + (1 + γ−1)α2

k‖Zk −Wk‖2

≤ (1 + γ)α2
kL

2‖♦k − wk‖2 + 2(1 + γ−1)α2
k(‖Zk‖2 + ‖Wk‖2),

(26)

where we inserted and subtracted F (♦k) and F (wk) and applied Young’s inequality to deduce the
result. Adding (26), (25) and (24) we conclude that

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖♦k − wk‖2

+ αk 〈Wk, z − wk〉+ (1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).
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D.3 FORWARD-BACKWARD-FORWARD

Proof for deterministic FBF, Theorem C.1 (i). We start off by plugging ♦k = zk into (21). Since
Wk = Zk = 0 we can use γ → 0 to deduce that for all k ≥ 0

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
(1− α2

kL
2)‖zk − wk‖2.

From this it is clear that the step size is constrained by α ≤ 1/L as stated in the theorem. By summing
up from k = 0 to K − 1 and dividing by

∑K−1
k=0 αk we obtain

1∑K−1
k=0 αk

K−1∑
k=0

αkg(wk, z) ≤
‖z0 − z‖2

2
∑K−1
k=0 αk

.

The claimed statement is then derived by taking the supremum in z over B and applying Lemma D.1.

Proof for stochastic FBF, Theorem C.2. Plugging ♦k = zk and 4k = ηk into (21) gives for all
k ≥ 0

αkg(wk, z) +
1

2
‖zk+1 − z‖2

≤ 1

2
‖zk − z‖2 −

1

2
(1− (1 + γ)α2

kL
2)‖zk − wk‖2 + αk 〈Wk, z − vk〉

+ αk 〈Wk, vk − wk〉+ (1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

By summing this inequality up and applying Lemma D.2 with v0 = z0, pk = −αkWk and vk+1 :=
vk − pk we deduce that

K−1∑
k=0

〈−αkWk, vk − z〉 ≤
1

2
‖z0 − z‖2 +

1

2

K−1∑
k=0

α2
k‖Wk‖2, (27)

and therefore
K−1∑
k=0

αkg(wk, z) ≤ ‖z0 − z‖2 +

K∑
k=0

αk 〈Wk, vk − wk〉+ 2(1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

By choosing γ such that α = (
√

1 + γL)
−1 we deduce that 1 + γ−1 = 1/(1 − α2L2). Next, we

take the supremum over z ∈ B and the expectation to obtain

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]
≤ D2 + 4(1− α2L2)

−1
σ2

K−1∑
k=0

α2
k,

where we used that

E[〈Wk, vk − wk〉] = E
[
E
[
〈Wk, vk − wk〉

∣∣w[k], ξ[k−1]

]]
= E

[〈
E
[
Wk

∣∣w[k], ξ[k−1]

]
, vk − wk

〉]
= 0,

with ξ[k−1] = (ξ0, . . . , ξk−1) and w[k] = (w0, . . . , wk). The final statement follows by dividing by∑K−1
k=0 αk and applying Lemma D.1.

D.4 FORWARD-BACKWARD-FORWARD-PAST

Proof for deterministic FBFp, Theorem C.1 (ii). We start off by plugging ♦k = zk into (21). Since
Wk = Zk = 0 we can use γ → 0 to conclude that for all k ≥ 0

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
α2
kL

2‖wk−1 − wk‖2. (28)

Now we need to bound the term ‖wk−1 − wk‖2 by ‖zk − wk‖2. Since

2‖zk − wk‖2 + 2‖zk − wk−1‖2 ≥ ‖wk − wk−1‖2 (29)
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we have for all k ≥ 1

‖zk − wk‖2 ≥ −‖zk − wk−1‖2 +
1

2
‖wk−1 − wk‖2

≥ −α2
k−1L

2‖wk−1 − wk−2‖2 +
1

2
‖wk−1 − wk‖2

(30)

whereas for k = 0, since w−1 = z0, we have that

‖z0 − w0‖2 = ‖w−1 − w0‖2. (31)

Plugging (31) into (28) for k = 0 we get that

α0g(w0, z) +
1

2
‖z1 − z‖2 +

1

2
(1− α2

0L
2)‖w0 − w−1‖2 ≤

1

2
‖z0 − z‖2. (32)

Plugging (30) into (28) we get that for all k ≥ 1

αkg(wk, z) +
1

2
‖zk+1 − z‖2 +

1

2

(
1

2
− α2

kL
2

)
‖wk − wk−1‖2

≤1

2
‖zk − z‖2 +

1

2
α2
k−1L

2‖wk−1 − wk−2‖2.
(33)

In order to be able to telescope we need to ensure that for all k ≥ 0(
1

2
− α2

kL
2

)
≥ α2

kL
2.

This is equivalent to the condition αk ≤ 1/2L which was required in the statement of the theorem.
Now we sum up (33) from k = 1 to K − 1 which yields

K−1∑
k=1

αkg(wk, z) +
1

2
‖zK − z‖2 +

1

2

(
1

2
− α2

K−1L
2

)
‖wK−1 − wK−2‖2

≤ 1

2
‖z1 − z‖2 +

1

2
α2

0L
2‖w0 − w−1‖2.

(34)

Adding (34) and (32) and dividing by
∑K−1
k=0 αk to deduce

1∑K−1
k=0 αk

K−1∑
k=0

αkg(wk, z) ≤
‖z0 − z‖2

2
∑K−1
k=0 αk

,

where we used that 1 − α2
0L

2 ≥ α2
0L

2 to get rid of ‖w0 − w−1‖2. The final statement follows by
taking the supremum in z over B and applying Lemma D.1.

Proof for stochastic FBFp, Theorem C.3. By using ♦k = wk−1 we deduce from (21) for all k ≥ 0
that

αkg(wk, z) +
1

2
‖zk+1 − z‖2 ≤

1

2
‖zk − z‖2 −

1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖wk−1 − wk‖2

+ αk 〈Wk, z − wk〉+ 2(1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2).

As in (27) we can split 〈αkWk, z−wk〉 into 〈αkWk, z−vk〉+〈αkWk, vk−wk〉 and use Lemma D.2
to deduce

K−1∑
k=0

αkg(wk, z) ≤ ‖z0 − z‖2 −
K−1∑
k=0

(1

2
‖zk − wk‖2 +

1

2
(1 + γ)α2

kL
2‖wk−1 − wk‖2

+ 〈αkWk, vk − wk〉+ 3(1 + γ−1)α2
k(‖Wk‖2 + ‖Zk‖2)

)
.

Taking now the supremum over z ∈ B and then the expectation we conclude that the inequality

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]
≤ D2 − 1

2

K−1∑
k=0

(
‖zk − wk‖2 − (1 + γ)α2

kL
2‖wk−1 − wk‖2

)
+ 3(1 + γ−1)σ2

K−1∑
k=0

α2
k

(35)
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holds. Let from now on k ≥ 1 as we will treat the case k = 0 separately. Using (29) we deduce that

‖zk − wk‖2 ≥ −‖zk − wk−1‖2 +
1

2
‖wk−1 − wk‖2

≥ −α2
k−1‖F (wk−1; ξk−1)− F (wk−2; ξk−2)‖2 +

1

2
‖wk−1 − wk‖2.

(36)

Now we bound the difference of the two estimators by inserting±F (wk−1),±F (wk−2) and applying
the inequality ‖a+ b+ c‖2 ≤ 3(‖a‖2 + ‖b‖2 + ‖c‖2) which yields

‖F (wk−1; ξk−1)− F (wk−2; ξk−2)‖2 ≤ 3‖Wk−1‖2 + 3‖Wk−2‖2 + 3‖F (wk−2)− F (wk−1)‖2.
We conclude that

E
[
‖F (wk−1; ξk−1)− F (wk−2; ξk−2)‖2

]
≤ 6σ2 + 3L2E‖wk−1 − wk−2‖2. (37)

Using (37) in (36) we deduce that

E‖zk − wk‖2 ≥ −α2
k−1(6σ2 + 3L2E‖wk−1 − wk−2‖2) +

1

2
E‖wk−1 − wk‖2, (38)

whereas for k = 0 we have (31). Now we plug (38) into (35) to conclude that

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]

≤ D2 − 1

2

K−1∑
k=1

(
−3α2

k−1L
2E‖wk−1 − wk−2‖2 +

(1

2
− (1 + γ)α2

kL
2
)
‖wk−1 − wk‖2

)

+
1

2
((1 + γ)α2

0L
2 − 1)‖w−1 − w0‖2 + 6(1 + γ−1)σ2

K−1∑
k=0

α2
k

(39)
From this we conclude that in order to be able to telescope we need to enforce(

1

2
− (1 + γ)α2

kL
2

)
≥ 3α2

kL
2

which is equivalent to
1

2(4 + γ)
≥ α2

kL
2.

Since αk ≤ α, we can ensure this by choosing γ such that

1

2(4 + γ)
= α2L2. (40)

With (40) in place conclude from (39) that the inequality

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]

≤ D2 +
1

2
((4 + γ)α2

0L
2 − 1)‖w−1 − w0‖2 + 6(1 + γ−1)σ2

K−1∑
k=0

α2
k

Using the fact that 3α2
0L

2 ≤ 1− (1 + γ)α2
0L

2 from (40) to discard the ‖w0 − w−1‖2 term, yields

E

[
sup
z∈B

{
K−1∑
k=0

αkg(wk, z)

}]
≤ D2 + 6(1 + γ−1)σ2

K−1∑
k=0

α2
k (41)

Through (40), we can estimate
1

γ
=

2α2L2

1− 8α2L2
. (42)

Plugging (42) into (41), dividing by
∑K−1
k=0 αk and applying Lemma D.1, deduces the final statement.
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E ARCHITECTURE

E.1 DCGAN

Table 2: DCGAN architecture used for the CIFAR10 experiments.

Generator

Input: z ∈ R128 ∼ N (0, I)
Linear 128→ 512× 4× 4

Batch Normalization
ReLU

transposed conv. (kernel: 4× 4, 512→ 256, stride: 2, pad: 1)
Batch Normalization

ReLU
transposed conv. (kernel: 4× 4, 256→ 128, stride: 2, pad: 1)

Batch Normalization
ReLU

transposed conv. (kernel: 4× 4, 128→ 3, stride: 2, pad: 1)
Tanh(·)

Discriminator

Input: x ∈ R3×32×32

conv. (kernel: 4× 4, 1→ 64, stride: 2, pad: 1)
LeakyReLU (negative slope: 0.2)

conv. (kernel: 4× 4, 64→ 128, stride: 2, pad: 1)
Batch Normalization

LeakyReLU (negative slope: 0.2)
conv. (kernel: 4× 4, 128→ 256, stride: 2, pad: 1)

Batch Normalization
LeakyReLU (negative slope: 0.2)

Linear 128× 4× 4× 4→ 1

E.2 RESNET

Table 3: ResNet architecture used for the CIFAR10 experiments.

Generator
Input: z ∈ R128 ∼ N (0, I)
Linear 128→ 128× 4× 4

ResBlock 128→ 128
ResBlock 128→ 128
ResBlock 128→ 128

ReLU
transposed conv. (kernel: 3×3, 128→ 3, stride: 1, pad: 1)

Tanh(·)
Discriminator

Input: x ∈ R3×32×32

ResBlock 3→ 128
ResBlock 128→ 128
ResBlock 128→ 128
ResBlock 128→ 128

Linear 128→ 1
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F HYPERPARAMETERS

For the WGAN formulation with weight clipping, see Table 4, we used the extensively tuned
hyperparameters from Gidel et al. (2019) for ExtraAdam, Adam1 and OptimisticAdam. Note that our
values of the Inception Score (IS) differ from the ones reported in Gidel et al. (2019) as we use the
newer implementation of the IS proposed in Barratt & Sharma (2018). For FBF-Adam we tuned the
step size and kept all other hyperparameters equal.

Table 4: Hyperparameters used for the WGAN formulation (with weight clipping).

(DCGAN) WGAN Hyperparameters
Batch size = 64
Number of generator updates = 500, 000
Adam β1 = 0.5
Adam β2 = 0.9
Weight clipping for the discriminator = 0.01
Learning rate for discriminator = 5× 10−4 (Extra Adam)

= 2× 10−4 (AltAdam1, FBF Adam, Optim. Adam)
Learning rate for generator = 5× 10−5 (Extra Adam)

= 2× 10−5 (AltAdam1, FBF Adam, Optim. Adam)

For our newly proposed WGAN-L1 formulation using 1-Norm regularization, see Table 5, we limited
the hyperparameter search to the step sizes, with the values in Table 4 as initial guesses. We chose
the value performing the best in terms of IS and FID for a sample seed. All other parameters were
kept the same as in Gidel et al. (2019); Boţ et al. (2020).

Table 5: Hyperparameters used for the WGAN-L1 formulation (with soft thresholding).

(DCGAN) WGAN-L1 Hyperparameters
Batch size = 64
Number of generator updates = 500, 000
Adam β1 = 0.5
Adam β2 = 0.9
L1 regularization for the discriminator = 1× 10−4

Learning rate for discriminator = 1× 10−3 (FBF Adam, Extra Adam)
= 5× 10−4 (Optim. Adam)
= 2× 10−4 (AltAdam1)

Learning rate for generator = 1× 10−4 (FBF Adam, Extra Adam)
= 5× 10−5 (Optim. Adam)
= 2× 10−5 (AltAdam1)

For the experiments based on the WGAN-GP formulation including spectral normalization we limited
the hyperparameter search to the step sizes, with the values recommended in Gidel et al. (2019) as
initial guesses. We used a single power iteration for the spectral normalization as suggested in Miyato
et al. (2018) and reduced the number of generator updates by a factor of two to ease the computational
burden.
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Table 6: Hyperparameters used for the WGAN-GP formulation (with spectral normalization).

(ResNet) WGAN-GP Hyperparameters
Batch size = 64
Number of generator updates = 250, 000
Adam β1 = 0.5
Adam β2 = 0.9
Gradient penalty = 10
Power iterations for spectral normalization = 1
Learning rate for discriminator = 5× 10−4 (FBF Adam, Extra Adam, Optim. Adam)

= 2× 10−5 (AltAdam1)
Learning rate for generator = 5× 10−4 (FBF Adam, Extra Adam, Optim. Adam)

= 2× 10−5 (AltAdam1)
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