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Abstract

Noun-noun compounds interpretation is the001
task where a model is given one of such con-002
structions, and it is asked to provide a para-003
phrase, making the semantic relation between004
the nouns explicit, as in carrot cake is “a cake005
made of carrots.” Such a task requires the abil-006
ity to understand the implicit structured repre-007
sentation of the compound meaning.008

In this paper, we test to what extent the re-009
cent Large Language Models can interpret the010
semantic relation between the constituents of011
lexicalized English compounds and whether012
they can abstract from such semantic knowl-013
edge to predict the semantic relation between014
the constituents of similar but novel com-015
pounds (e.g., carrot dessert). We test both Sur-016
prisal metrics and prompt-based methods to017
see whether i.) they can correctly predict the018
relation between constituents, and ii.) the se-019
mantic representation of the relation is robust020
to paraphrasing.021

Using a dataset of lexicalized and annotated022
noun-noun compounds, we find that LLMs023
can infer some semantic relations better than024
others (with a preference for compounds in-025
volving concrete concepts). When challenged026
to perform abstractions and transfer their in-027
terpretations to semantically similar but novel028
compounds, LLMs show serious limitations.029

1 Introduction030

Noun-noun compounds represent an important031

challenge for all the applications related to Natu-032

ral Language Understanding, given the implicit se-033

mantic relation assumed between the two compo-034

nents, namely: head and modifier (Nakov, 2008b).035

Their correct interpretation is an essential step036

for several Natural Language Processing applica-037

tions such as question answering, machine trans-038

lation, and information extraction. For example,039

if a question answering system is asked some-040

thing about birthday cake, it must understand that041

the user is talking about a cake made for birth- 042

days; while if it is asked about a carrot cake, it 043

must understand that the query refers to a cake 044

made with carrots (not for carrots). The capac- 045

ity to grasp the semantic connection underlying 046

the pairing of two terms in a compound repre- 047

sents a form of abstraction inherent to human cog- 048

nition, applicable to concrete and abstract con- 049

cepts alike (concrete such as carrot cakes and ab- 050

stract such as bank loans). This skill is often 051

wielded even for never-encountered-before com- 052

pounds (Van Jaarsveld and Rattink, 1988). 053

Previous research stressed the role of structured 054

world knowledge in the interpretation of com- 055

pounds (Wisniewski and Love, 1998; Ó Séaghdha, 056

2008), which includes the knowledge of the 057

constituent entities and their potential relations. 058

Moreover, people are able to interpret novel com- 059

pounds by abstracting from knowledge based on 060

past experiences with similar conceptual combi- 061

nations (Gagné and Spalding, 2006b; Gagné and 062

Shoben, 1997, 2002, among others) and to extend 063

them by relying on analogical comparisons (Krott, 064

2009). Can the modern Large Language Models 065

(LLMs) do the same? 066

The main goal of our study is to propose a more 067

refined methodology to understand when and how 068

LLMs are capable of performing abstractions that 069

humans routinely do, namely: understanding the 070

semantic relation existing between the two compo- 071

nents of a lexicalized compound and then extend- 072

ing such relation to novel compounds that are con- 073

structed in such a way to maintain the semantics of 074

the original components. To do so, we manually 075

manipulated existing compounds by replacing one 076

of the two terms (head or modifier) with their hy- 077

pernym, namely a word denoting a superordinate 078

concept (Cruse, 1986). This allowed us to gener- 079

ate novel compounds such as birthday dessert and 080

event cake, based on the lexicalized birthday cake. 081

To test the LLM’s ability to understand the seman- 082
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compound coarse-grained
(Tratz, 2011)

fine-grained
(Tratz, 2011)

Hatcher-Bourque
(Pepper, 2022)

paraphrase
(Pepper, 2021)

plastic bag containment
SUBSTANCE
-MATERIAL-
INGREDIENT

COMPOSITION-R a bag that is composed of plastic

trash bag containment CONTAIN CONTAINMENT-R a bag that contains trash
supermarket shelf loc_part_whole LOCATION LOCATION a shelf that is located in a supermarket

car door loc_part_whole
WHOLE+
PART_OR

_MEMBER_OF
PARTONOMY a door that is part of a car

food company purpose

CREATE-
PROVIDE-

GENERATE-
SELL

PRODUCTION a company that produces food

bank loan causal
CREATOR-
PROVIDER-
CAUSE_OF

PRODUCTION-R a loan that a bank produces

research group purpose PERFORM&
ENGAGE_IN PURPOSE a group intended for research

art class topical TOPIC TOPIC-R a class that is about art

Table 1: Semantic relations of Tratz (2011) and their mapping onto the Hatcher-Borque classification.

tics of lexicalized and novel compounds, we as-083

sess whether Surprisal, a metric directly based on084

the log probabilities of the LLMs, is able to dif-085

ferentiate between the possible interpretations of a086

compound. We hypothesize that LLMs may be ac-087

curate in recognizing the correct semantic relation088

holding between the two components of a lexical-089

ized compound. Moreover, if we were to observe090

any differences in the performance across differ-091

ent types of compounds, we would argue that such092

differences may be (at least partially) explained093

by the concreteness of the compound, in line with094

previous psychological findings showing that con-095

crete concepts are processed more easily than ab-096

stract ones (Jessen et al., 2000). As a complement097

to Surprisal analyses, we performed a metalinguis-098

tic prompt asking to identify the correct interpre-099

tation of a compound from a list of options. We100

relied on LLMs trained with Instruction tuning,101

a method that has recently been proposed to en-102

hance the generalization capability of LLMs, and103

assessed the performance of some of the most pop-104

ular architectures on this task. Our contributions105

can be summarized as follows:106

1. To the best of our knowledge, we are the first107

to investigate compound interpretation with108

the most recent LLMs, including instruction-109

tuned variants;110

2. We introduce a dataset designed to manipu-111

late compounds at several levels of linguis-112

tic information and present a methodology113

to generate novel compounds that could be114

helpful for future investigations.115

2 Related Work 116

The problem of the interpretation of compounds 117

has generally been addressed via two different 118

tasks: the first one is the classification in a limited 119

inventory of ontological/semantic relations hold- 120

ing between the two nouns (Nastase and Szpakow- 121

icz, 2003), and the second one is the free gen- 122

eration of a paraphrase describing the same rela- 123

tions (Hendrickx et al., 2013; Shwartz and Wa- 124

terson, 2018; Shwartz and Dagan, 2019). With 125

the introduction of Transformer-based language 126

models, several studies have proposed to inves- 127

tigate their internal representations to understand 128

how the constituent meanings are composed (e.g. 129

Ormerod et al. (2023); Miletić and Schulte im 130

Walde (2023); Buijtelaar and Pezzelle (2023)), 131

and if and to what extent they are able to general- 132

ize to interpret unseen compounds (Li et al., 2022). 133

Coil and Shwartz (2023) proposed a few-shot 134

model based on GPT-3 to tackle interpretation, and 135

they were able to achieve almost perfect perfor- 136

mance on a SemEval noun compounds benchmark 137

by Hendrickx et al. (2013). However, by measur- 138

ing the ngram overlap between the generated para- 139

phrases and the C4 corpus, they found that GPT-3 140

might just be parroting word sequences seen in the 141

training data, and the strategy turned out to be less 142

effective with rare or novel compounds. 143

Is the knowledge encoded in recent LLMs, in- 144

cluding instruction-tuned ones, sufficient to inter- 145

pret the relation between constituent nouns and 146

to generalize the interpretations to novel com- 147

pounds? Language models retain a non-trivial 148
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amount of knowledge about the world, and this is149

reflected in the log probability scores that they as-150

sign to real world situations and events described151

by natural language sentences (Pedinotti et al.,152

2021; Kauf et al., 2023); moreover, the recent153

progress on instruction tuning have led to even bet-154

ter alignment with conceptual representations in155

the human brain (Aw et al., 2023). Therefore, our156

investigation will focus on three of the most pop-157

ular LLMs (Llama-2, Falcon and Mistral), both in158

their Base and in their Instruct version, to see if159

instruction tuning leads to performance improve-160

ments also in the interpretation of compounds.161

3 Do LLMs Grasp Semantic Relations in162

Lexicalized Noun Compounds?163

3.1 Data164

For our experiment, we selected compounds from165

two previously released datasets. Tratz (2011)166

gathered in his dataset around 19K compositional167

noun compounds human-annotated with a seman-168

tic relation (37 fine-grained relations, 12 coarse-169

grained relations). Conversely, Muraki et al.170

(2023) collected concreteness ratings for over 60K171

multiword expressions from 2,825 online partici-172

pants. Expressions were rated from 1 to 5, where 1173

indicates that the expression was very abstract and174

5 that the expression was very concrete. In order175

to use the concreteness ratings collected by Mu-176

raki as a predictor for the accuracy of the LLMs177

in identifying the correct semantic relation exist-178

ing between head and modifier, we retained only179

the compounds from Tratz associated with con-180

creteness ratings in Muraki. The intersection of181

the two datasets resulted in 2,268 noun-noun com-182

pounds annotated with word and bigram frequency183

(extracted from enTenTen20 corpus), concreteness184

score, semantic relation class, and the semantic185

type of the compound (provided by three annota-186

tors who followed the coding scheme of Villani187

et al., 2024). We believe that the more linguistic188

features are added to a compound, the more we189

can glimpse which factors influence LLMs’ plau-190

sibility of noun compounds.191

Additionally, we associated a paraphrase cre-192

ated for each compound for the following rea-193

son. Using abstract semantic categories to de-194

scribe compounds is considered problematic be-195

cause i.) it is unclear which relation inventory is196

the best one, ii) such relations capture only part of197

the semantics (e.g., classifying malaria mosquito198

as CAUSE obscures the fact that mosquitos do 199

not directly cause malaria, but just transmit it), 200

and iii.) multiple relations are possible (Nakov, 201

2008a). Therefore, common compound datasets 202

used in NLP typically provide linguistic para- 203

phrases of compounds produced by human anno- 204

tators. However, if multiple paraphrases are re- 205

ported for each compound, this causes an expo- 206

nential generation of similar paraphrases in the 207

data; for instance, golf course can be “course for 208

golf,” “course for playing golf,” “course for the 209

game of golf,” etc. (from Hendrickx et al. (2013)). 210

We decided to follow a different approach to 211

reduce the variability of paraphrases. We con- 212

verted Tratz’s relations into the Hatcher-Bourque 213

classification (Pepper, 2022), a classification of 214

semantic relations suitable for typologically dif- 215

ferent languages. The classification comprises 17 216

low-level relations, and some of them can be re- 217

versible (the first word of the compound, usually 218

the modifier, is the semantic head). These rela- 219

tions are grouped according to the three high-level 220

relations (similarity, containment, and direction). 221

We chose this classification not just because it was 222

conceived to be cross-linguistically consistent but 223

also because Pepper (2021) proposed an Excel- 224

based tool for the computer-assisted analysis of se- 225

mantic relations called the “Bourquifier”. For in- 226

stance, the relation USAGE, which expresses the 227

relation between something that is “used” and the 228

entity (“user”) that uses it, can be translated as 229

“an H that an M uses” (e.g., a lamp oil is “(an) 230

oil that a lamp uses"). Conversely, animal doc- 231

tor is annotated with the semantic class PURPOSE 232

and expresses the relation between an entity and 233

its purpose, and it is paraphrased as “a doctor 234

intended for animals." We used the Bourquifier as 235

a template to create compound paraphrases; as a 236

result, compounds classified under the same se- 237

mantic relation have a similar paraphrase. 238

For the present study, we selected only com- 239

pounds with a clear map between Tratz and 240

Hatcher-Bourque classifications from the overall 241

dataset, disregarding ambiguous compounds or 242

odd paraphrases. The final subset consists of 243

668 lexicalized (and compositional) noun-noun 244

compounds (henceforth, LNC) and contains com- 245

pounds for nine semantic relations. Table 1 illus- 246

trates the final relations together with the associ- 247

ated paraphrase. 248

In addition, we used the dataset of Nakov 249

(2008b), which contains 250 compounds anno- 250
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Relation Count Mean Conc
COMP-R 85 4.47
CONT-R 54 4.49
LOCATION 107 4.15
PARTONOMY 16 4.58
PROD-R 13 3.18
PRODUCTION 47 4.34
PURPOSE 270 4.01
TOPIC-R 66 3.30
USG-R 10 4.24

Table 2: Statistics of frequency and mean concreteness
ratings for the LNC dataset.

Relation Verb Count
ABOUT involve 18
BE be 42
CAUSE1 cause 8
CAUSE2 be caused by 17
FOR contain 16
FROM come from 22
HAVE1 contain 14
HAVE2 come from 14
IN occur in 22
MAKE1 make 4
MAKE2 be made of 20
NOMIN:ACT be made by 15
NOMIN:AGENT give 6
NOMIN:PATIENT work for 5
NOMIN:PRODUCT be made by 11
USE use 16

Table 3: Descriptive statistics for Nakov dataset. We
report the most frequent verbal expression associated
with each of the 16 semantic relations.

tated with 16 semantic classes (coming from251

the classification by Levi (1978)) and human-252

proposed paraphrasing verbs (see Table 3). For253

our purposes, we selected the most frequently pro-254

duced verb expressing the correct underlying rela-255

tion for each compound and created a short sen-256

tence. For example, beacon grease becomes “(a)257

grease that comes from (a) bacon." This dataset258

serves as a diagnostic test for the evaluation of259

our dataset. Specifically, we assess whether LLMs260

show higher performance when asked to recog-261

nize paraphrases that are generated spontaneously262

by humans instead of those generated from the263

Bourquifier templates.264

3.2 Methods265

Models We evaluated three open-source LLMs266

and their instruction-tuned variant: Llama-2 (Tou-267

vron et al., 2023), Falcon (Almazrouei et al.,268

2023), and Mistral (Jiang et al., 2023). All models269

are open-source, pre-trained generative text mod- 270

els with 7 billion parameters. As a baseline, we se- 271

lected BERT-large-uncased (Devlin et al., 2019), a 272

bi-directional masked language model, and GPT2- 273

xl (Radford et al., 2019).1 274

Tasks The aim of this study is to evaluate 275

whether LLMs are able to correctly identify 276

the semantic relation underlying noun-noun com- 277

pounds. We propose not to make the model gen- 278

erate the correct paraphrase but to pick the correct 279

one from a list of possible paraphrases. From the 280

LNC dataset, we used the Bourquifier templates to 281

make implausible paraphrases of the compound. 282

For the Nakov dataset, we selected the most fre- 283

quent verbal phrase associated with each relation 284

(Table 3) and used it to create the distractors. 285

We designed two complementary tasks to eval- 286

uate the ability to interpret compounds: i.) di- 287

rect probability measures and ii.) metalinguistic 288

prompting. In the first task, we compute the Sur- 289

prisal at the sentence level. The Surprisal St of 290

the single token ti is defined as the negative of the 291

log probability of ti, conditioned on the preceding 292

sentence tokens w<i. The Surprisal of the over- 293

all sentence (Ss) is then defined as the sum of the 294

Surprisals of each token (St), normalized by the 295

length of the sentence: 296

Ss =

∑T
t∈S St

count(t)
(1) 297

For BERT, a bidirectional masked language 298

model, the Surprisal of sentences was computed 299

using a modified version of the metric by Kauf 300

and Ivanova (2023). In short, each sentence to- 301

ken is successively masked, the Surprisal score 302

is retrieved by using the sentence context in a 303

masked language modeling setting, and then the 304

partial scores finally get summed; additionally, for 305

out-of-vocabulary words, all the tokens within the 306

word also get masked, and not just the target one 307

(this helps to avoid the probability overestima- 308

tion of rare words). The Surprisal scores were 309

extracted using the minicons library v. 0.2.33 310

(Misra, 2022). 311

Our assumption is that the correct paraphrase of 312

a given compound (goodNC) should have a lower 313

Surprisal score than the scores of all incorrect al- 314

1We only focus on open LLMs i.) for reproducibility rea-
sons, and ii.) because we are interested in comparing the Base
and the Instruct version of the very same models.
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baselines LLMs (Base) LLMs (Instruct)
BERT-large GPT2-xl Llama-2 Falcon Mistral Llama-2 Falcon Mistral

LNC Acc 0.262 0.338 0.401 0.433 0.403 0.448 0.38 0.428
MRR 0.509 0.542 0.583 0.595 0.569 0.599 0.557 0.592

Nakov Acc 0.484 0.548 0.592 0.568 0.6 0.632 0.56 0.648
MRR 0.641 0.682 0.722 0.707 0.73 0.746 0.698 0.756

Table 4: Surprisal results on the LNC and Nakov datasets.

ternatives (badNC).315

∀s ∈ badNC , S(goodNC) < S(s) (2)316

As a more natural way of evaluating the per-317

formance of instruct-tuned models, we decided to318

prompt them to select the best paraphrases for a319

given compound. Specifically, the model is asked320

to choose a correct paraphrase from a list of ex-321

pressions (full example in Appendix A):322

Which is the most likely description323

of "olive oil"?324

1. an oil that uses olives;325

...326

9. an oil that is composed of olives327

We ran three different versions of prompting328

strategies: zero-shot (no examples of the task are329

provided), one-shot, and three-shot learning (one330

and three examples are provided, respectively).331

Since we observed inconsistent output from the332

zero-shot prompting, we just reported results for333

the other two settings. For this task, we selected334

only the instruction-tuned variants of Llama-2,335

Falcon, and Mistral and used the same hyperpa-336

rameters for all models2. All experiments were337

run on Colab TPU and A100.338

3.3 Results339

Surprisals Table 4 reports LLMs’ performance340

over the two datasets. We computed two differ-341

ent performance metrics: i.) Accuracy, the pro-342

portion of compounds where the model assigns343

the lowest Surprisal to the correct paraphrase, and344

ii.) Mean Reciprocal Rank (MRR). For this met-345

ric, we ranked the paraphrases in terms of their346

Surprisal (from the smallest values to the largest347

ones) and computed the multiplicative inverse of348

the rank of the correct answer (1 if it is in the349

first place, 0.5 for the second, and so on). The350

overall Accuracy of recent LLMs is higher than351

2Temperature:0, do_sample:False, top-k:10,
top-p:5, max-tokens:50, frequency and presence
penalty:0.

the two baselines (BERT: 26,2%; GPT2: 33,8%), 352

with BERT performing poorly. The MRR scores 353

align with Accuracy. Instruction-tuned variants 354

are not consistently better than their pre-trained 355

variants: Llama-2 Instruct reaches a statistical sig- 356

nificance of the improvement over the Base model, 357

but the opposite trend is observed for Falcon, 358

whose instruction-tuned version performs statis- 359

tically worse than its Base counterpart. Finally, 360

Mistral’s improvement of the Instruct model over 361

the Base one does not reach statistical signifi- 362

cance. Considering the instruction-tuned models, 363

Llama-2 gains the highest performance (44,8%), 364

but there is no statistical difference with Mistral 365

(42,2%), while both models are statistically better 366

than Falcon (38%)3. Overall, 200 compounds are 367

always correctly categorized by Llama-2, Falcon, 368

and Mistral. 369

To further gather an idea of which semantic re- 370

lations are commonly mistaken by all models and 371

to identify similar patterns across their Surprisal 372

distributions, we also computed each class’s accu- 373

racy. In this case, per-class Accuracy is considered 374

as the proportion of compounds where the model 375

assigns the lowest Surprisal to the paraphrase of 376

the correct class over the total compounds anno- 377

tated with that semantic relation/class in the gold 378

standard. By looking at Figure 1, the analysis 379

by category reveals an interesting trend across 380

LLMs: some semantic relations have higher Ac- 381

curacy (COMP-R and PRODUCTION are almost 382

perfect), whilst others are commonly mistaken 383

(PURPOSE, PROD-R, and TOPIC-R). It is worth 384

noticing that the semantic relations that are less 385

understood are also the ones referring to less con- 386

crete referents (the average of concreteness ratings 387

is 3.18 for PROD-R and 3.30 for TOPIC-R, cf. Ta- 388

ble 2). A binomial generalized linear mixed model 389

demonstrates that there is a positive, significant ef- 390

3We determine the significance of differences between
model accuracies with McNemar’s Chi-Square Test, applied
to a 2x2 contingency matrix containing the number of cor-
rect and incorrect answers. Statistical significance is reached
when p-value < 0.01.
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Figure 1: LNC dataset: Distribution of semantic relations with the lowest Surprisal scores for each relation.

fect between Accuracy (dependent variable) and391

concreteness (independent variable) (coefficient=392

0.703, SE=0.133, p<0.001), showing that accu-393

racy increases with concreteness (AIC: 894.7 BIC:394

908.2).395

The evaluation of the Nakov dataset gives sim-396

ilar results (cf. Appendix B): Instruction-tuned397

LLMs have higher performance (Llama-2: 63,2%,398

Mistral: 64,8%). In this case, the compounds that399

are accurately recognized are from the semantic400

classes of FROM (between 86-94% of accuracy),401

CAUSE2 (between 84-94% of accuracy), MAKE2402

(between 80-92% of accuracy), and NOMINAL-403

IZATION_PATIENT (but this group consists of404

5 compounds only).While accuracy scores are405

higher than those computed for our LNC dataset,406

this outcome does not demonstrate that a more nat-407

uralistic input changes the Surprisal distributions.408

Prompting The results of the prompting exper-409

iment are in line with Surprisal scores. As re-410

ported in Table 5, Mistral obtains the highest val-411

ues, reaching 59% of Accuracy in the 1-shot set-412

ting. It is interesting to notice that adding ex-413

amples to the prompt negatively affects the mod-414

els’ answers. Considering the best variant, PRO-415

DUCTION is almost always identified correctly416

(96%), but its counterpart PROD-R is hardly cho-417

sen (15%).418

The evaluation of Nakov compounds (Table 6)419

is in line with the LNC dataset, and Mistral per-420

forms very well in both settings (one-shot:80%,421

three-shot:75%). Overall, the best model is more422

model 1-shot 3-shot
Llama-2-7B-chat-hf .41 .18
Mistral-7B-Instruct .59 .56
Falcon-7B-Instruct .15 .14

Table 5: Prompt Accuracy over the LNC dataset.

model 1-shot 3-shot
Llama-2-7B-chat-hf .42 .33
Mistral-7B-Instruct .80 .75
Falcon-7B-Instruct .15 .21

Table 6: Prompt Accuracy over the Nakov dataset.

confused with the ABOUT relation (just 61% of 423

accuracy). Finally, the models sometimes tend to 424

justify their choice, giving us an idea of what their 425

interpretation is. Interestingly, they do not halluci- 426

nate but answer coherently even when they fail to 427

select the preferred option. This qualitative analy- 428

sis of the answers further confirms that instruction- 429

tuned LLMs can provide definitions similar to hu- 430

man ones but do not always process the underlying 431

relation encoded into the semantics of compounds. 432

4 Are LLMs Generalizing Semantic 433

Relations over Novel Compounds? 434

Interpreting a novel compound (e.g, birthday 435

dessert) involves both the conceptual and lexical 436

systems; one must: i.) access the concepts de- 437

noted by the words and ii.) select a relation (e.g., 438

a dessert intended for a birthday) to form a unified 439
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conceptual representation (Gagné and Spalding,440

2006b). Coil and Shwartz (2023) observed that441

even for rare compounds, GPT-3 is able to gen-442

eralize and make sense of new concepts, but the443

model tends to parrot incorrect paraphrases from444

the training set more often than correct ones.445

We hereby designed and explored a diagnos-446

tic dataset to investigate how LLMs deal with447

novel compound interpretation. Instead of relying448

on randomly generated infrequent combinations,449

we manipulated our original dataset of lexicalized450

compounds by replacing the head or the modi-451

fier with one of its hypernyms in order to answer452

the following questions: i.) Can LLMs generalize453

(i.e., can they abstract) an implicit semantic rela-454

tion that ties the two constituents of a conventional455

compound and transfer it to a semantically similar456

but novel compound? ii.) Does the LLMs perfor-457

mance change, as a function of the type of compo-458

nent (head or modifier) replaced for the construc-459

tion of the novel compound?460

4.1 Data and Methods461

From the original dataset, we extracted the hy-462

pernyms of the head and modifier using Word-463

Net 3.04. Only hypernyms occurring more than464

1000 times in the enTenTen20 corpus were se-465

lected. The frequency of the new bigram (the466

novel compound) was then calculated, and only467

meaningful expressions with a frequency of occur-468

rence lower than 30 were retained as novel com-469

pounds. For instance, given the compound apple470

orchard (“an orchard that produces apples”), we471

created the compounds pome orchard (“an orchard472

that produces pomes”) as a novel compound with473

the same head (sameHead) but replaced modifier,474

and apple parcel (“a parcel that produces apples”),475

as a same modifier (sameMod) but replaced head476

novel compound. This diagnostic dataset consists477

of 64 novel compounds covering four semantic re-478

lations: CONTAINMENT-R, LOCATION, PRO-479

DUCTION, and PURPOSE.480

4.2 Results481

Surprisals We computed the Surprisal scores on482

the novel compounds’ paraphrases containing the483

original semantic relation (e.g., “pome orchard is484

an orchard that produces pomes”) and compared485

them with the Surprisals of the corresponding dis-486

tractor paraphrases (e.g., “pome orchard is an or-487

4We queried WordNet by relying on NLTK package, ver-
sion 3.8.1. (Bird et al., 2009).

Figure 2: Surprisal Accuracy over the NNC dataset.

chard that is located in pomes”), following the 488

same methodology presented in the previous ex- 489

periment. As expected, the results are lower than 490

the previous experiment. An aspect to notice is 491

that the models tend to assign the lower score to 492

the paraphrase of the original semantic relation 493

more often when the head is fixed (blue bar) than 494

when the modifier is fixed (orange bar, Figure 2). 495

This is valid for Llama-2 (Base and Instruct), Fal- 496

con Base, and Mistral Instruct. It is worth noticing 497

that BERT performs better than some of the larger 498

models but shows the opposite trend. 499

Prompting We observe that Llama-2 and Falcon 500

perform poorly on this task, while Mistral achieves 501

good performance, obtaining accuracy scores of 502

.578 (1-shot) and .531 (3-shot) for the sameHead 503

part of the NNC dataset and .469 (1-shot) and 504

.30 (3-shot) for the sameDep. Considering just 505

the results for this model, we observe that chang- 506

ing the head or the modifier affects the ability of 507

the model to recognize good paraphrases differ- 508

ently. For example, the CONTAINMENT-R re- 509

lation (CONT-R) is not particularly problematic 510

when the novel word is the modifier (accuracy 1- 511

shot: .474, 3-shot: .737). For instance, the novel 512

compound equipment box (from glove box) is cor- 513

rectly paraphrased as “a box that contains equip- 514

ments” by the two versions of Mistral. However, 515

performance drops when changing the head (accu- 516

racy 1-shot: .37, 3-shot: .05). Given the previous 517

example, Mistral (3-shot setting) associated to the 518

compound glove container (from glove box) the 519

paraphrase “a container intended for gloves” in- 520

stead of “a container that contains gloves,” which 521
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sameHead sameMod
model 1 3 1 3

shot shot shot shot
Llama-2-7B-chat-hf .156 .172 .141 .219
Mistral-7B-Instruct .578 .531 .469 .30
Falcon-7B-Instruct .047 .063 .079 .047

Table 7: Prompt accuracy over the NNC dataset.

should be expected if the model retains the same522

semantic relation of the original compound. From523

a qualitative analysis, we observed a tendency for524

the model to answer with the PURPOSE category525

instead of the appropriate one; indeed, this cate-526

gory gets the highest number of correct answers527

among the four classes (1-shot: .82; 3-shot: .53).528

5 General Discussion529

This paper evaluated recent LLMs on their ability530

to interpret Noun-Noun compounds and, specif-531

ically, to correctly identify the semantic relation532

underlying existing and novel compounds.533

For the interpretation of existing compounds534

(LNCs), we released a dataset that assembles sev-535

eral linguistic and conceptual features associated536

with each compound, extracted from previous re-537

sources or added by the authors (concreteness, se-538

mantic type, semantic relation from different clas-539

sifications) together with a limited set of para-540

phrases generated from Pepper (2022)’s classifi-541

cation. LLMs accuracy was tested on both the542

Surprisal scores and metalinguistic knowledge ex-543

tracted by prompting strategies. In both set-544

tings, the models showed different performance545

levels in the identification of different semantic546

relations. Some relations like PRODUCTION547

are easy to recognize; that is, its paraphrase is548

the most expected (considering Surprisal scores)549

and more frequently identified in a metalinguistic550

prompt task. Moreover, compounds characterized551

by higher concreteness were interpreted more ac-552

curately overall, as hypothesized. This effect may553

be explained by the so-called concreteness effect554

(Jessen et al., 2000), which suggests that concrete555

concepts are processed faster and more easily than556

abstract ones.557

Previous studies reported that LLMs gener-558

ate compound definitions that highly resemble559

human-generated paraphrases, reaching an almost560

perfect performance. However, the analyses pre-561

sented here reveal that they are not as perfect when562

asked to identify the correct paraphrase, given al-563

ternatives. Our outcomes confirm what was ob-564

served by Coil and Shwartz (2023): LLMs’ perfor- 565

mance can largely be attributed to parroting defi- 566

nitions or parts of definitions extracted from the 567

training corpora. However, it is unclear to what ex- 568

tent LLMs extract the relational linguistic patterns 569

they learn from corpora and use them to hypoth- 570

esize about the most likely relationship underpin- 571

ning a noun compound. In other words, while the 572

models can somehow interpret the semantic rela- 573

tion underlying compounding, there is still a ques- 574

tion far from being completely answered: what 575

linguistic properties make compounds more or 576

less difficult to interpret by LLMs? For this rea- 577

son, we believe that more effort should be made in 578

designing a comprehensive dataset of noun-noun 579

compounds annotated with different factors influ- 580

encing the plausibility of the noun compounds. 581

The second experiment represents the first at- 582

tempt to model novel compounds to understand 583

LLMs’ abilities to abstract and transfer knowl- 584

edge. According to previous studies, the interpre- 585

tation of a novel combination relies on previous 586

language experience (Gagné and Shoben, 1997, 587

2002; Gagné and Spalding, 2006a, among others). 588

That is, people are able to interpret novel com- 589

pounds by abstracting from their knowledge of 590

past experiences with similar conceptual combi- 591

nations, which provide an analogical basis for the 592

production and interpretation of novel compounds 593

(Krott, 2009) 5. We manipulated a subset of lex- 594

icalized compounds by replacing the modifier or 595

the head word with a hypernym and observed how 596

harder it is for the LLMs to interpret the generated 597

compounds. As expected, language models are 598

challenged by this task, but we observe that they 599

still look for a suboptimal solution. For instance, 600

they choose the PURPOSE relation, which has a 601

more general paraphrase (indended for) than other 602

relations (such as LOCATION or CONTAINER). 603

We believe that this task could provide a window 604

into a specific aspect of the creative abilities of 605

LLMs. 606

In conclusion, the present study illustrates that 607

there are still questions unanswered regarding 608

how LLMs interpret compounding. Future works 609

will focus on expanding both the LNC and the 610

NNC datasets, including more linguistic features 611

and evaluating the acceptability of selected para- 612

phrases with human judgments. 613

5On the possible role of analogy compositionality pro-
cess, see also the vector composition approach presented in
Rambelli et al. (2022).
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Limitations614

The work focuses only on English The present615

dataset and work are focused only on English.616

Expanding the dataset to other languages would617

be beneficial, but we currently lack the same618

amount of resources for other languages anno-619

tated with the same amount of linguistic infor-620

mation, such as concreteness ratings and seman-621

tic relations. However, we chose Pepper (2022)622

classification precisely because it has been imple-623

mented to be suitable across languages, and the624

Bourquifier templates could be easily converted625

into other languages. Additionally, the method-626

ology presented to generate novel compounds627

could be replicated for other languages by relying628

on language-specific WordNet versions released629

within the OpenMultiWordNet project (Bond and630

Paik, 2012; Bond et al., 2016), accessible through631

the NLTK package.632

Prompting strategies are conservative For the633

present study, we evaluated models in a conser-634

vative setting by using a low temperature. Fur-635

ther studies could investigate how the same mod-636

els with higher temperatures answer, that is, how637

augmenting the linguistic creativity of LLMs af-638

fects models’ performance on compound inter-639

pretations. An additional limitation concerns the640

prompt used. We evaluated all LLMs on the641

question “Which is the most likely description642

of COMPOUND?” followed by a list of possible643

paraphrases. However, we did not test whether644

other questions could improve the models’ accu-645

racy, nor did we explore whether different ex-646

amples within the prompt could yield varied out-647

comes.648

Comparing LLMs’ performance over humans’649

judgments A limitation of this dataset comes650

from the annotations of Tratz (2011). We used an651

aggregated version of this dataset, so it is impos-652

sible to determine the degree of agreement across653

annotators for each compound. However, litera-654

ture reports that some expressions show greater655

entropy of conceptual relations, i.e., greater com-656

petition between possible underlying semantic re-657

lations (Benjamin and Schmidtke, 2023). This in-658

formation could be useful for a more fine-grained659

evaluation of LLMs’ performance. A related con-660

sideration is that, when collecting paraphrases for661

compounds, there can be various relationships662

with different degrees of acceptability (Spald-663

ing and Gagné, 2014; Benjamin and Schmidtke, 664

2023), while we simplify by assuming there is 665

only one correct relationship. While it was out 666

of the scope of the present paper, we would fur- 667

ther investigate these hypotheses and collect the 668

acceptability of paraphrases for both lexicalized 669

and novel compounds. 670

Ethics Statement 671

Data The datasets used to build our LNC 672

dataset are publicly available online. Con- 673

creteness ratings of Muraki et al. (2023) 674

can be downloaded from the authors’ OSF 675

project: https://osf.io/ksypa/. For 676

the Tratz (2011) dataset, we used the data 677

released by Shwartz and Dagan (2018) at 678

https://github.com/vered1986/panic/tree/ 679

master/classification/data. (Nakov, 2008b) 680

dataset is available from the SIGLEX-MWE 681

archive (https://multiword.sourceforge. 682

net/PHITE.php%3Fsitesig%3DFILES%26page% 683

3DFILES_20_Data_Sets) under Creative Com- 684

mons Attribution 3.0 Unported License. We will 685

release all additional data and code used in the 686

present experiment. 687

Models For reasons of replicability, we used 688

only open-access models available from hugging- 689

face. Given a limited GPU, we relied on 7 bil- 690

lion parameter models and used quantization tech- 691

niques to reduce memory and computational costs 692

(we used the bitsandbytes library). 693

There are well-known ethical concerns about 694

LLMs, which have been shown to produce fac- 695

tually incorrect output, which may generate of- 696

fensive content if prompted with certain inputs. 697

Instruction-tuned LLMs have been trained to re- 698

duce the harm of model responses, as we also 699

observed in our analyses. For instance, when 700

asked to choose the correct paraphrase, the Llama- 701

2 answered: “It is important to clarify that child 702

pornography is a criminal and morally reprehen- 703

sible activity. Therefore, none of the descriptions 704

provided accurately describe child pornography. 705

Instead, it is essential to understand that child 706

pornography involves the production..”. However, 707

some responses may still contain offensive con- 708

tent. Finally, any demonstrations of LLMs’ lin- 709

guistic generalizations should not imply that they 710

are safe to use or can be expected to behave in a 711

way that is aligned with human preferences and 712

values. 713
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A Experiment 1-Prompt Example 894

We report below an example of the prompt used as 895

an example (1-shot setting) for the LNC dataset. 896

Which is the most likely description of "olive 897
oil"? 898

1. an oil that uses olives; 899
2. an oil that is part of olives; 900
3. an oil that olives produce; 901
4. an oil that produces olives; 902
5. an oil that contains olives; 903
6. an oil that is about olives; 904
7. an oil that is composed of olives; 905
8. an oil that is located in olives; 906
9. an oil intended for olives 907

We report below an example of the prompt 908

used as an example (1-shot setting) for the Nakov 909

dataset. 910

Which is the most likely description of 911
“pumpkin pie"? 912

1. a pie that uses a pumpkin; 913
2. a pie that is caused by a pumpkin; 914
3. a pie that is made from a pumpkin; 915
4. a pie that gives a pumpkin; 916
5. a pie that comes from a pumpkin; 917
6. a pie that is made by a pumpkin; 918
7. a pie that causes a pumpkin; 919
8. a pie that is a pumpkin; 920
9. a pie that involves a pumpkin 921

B Experiment 1-Additional Analyses 922

As for the LNC dataset, we plot the distribution of 923

semantic relations with the lowest Surprisal scores 924

inside each class for the Nakov dataset. Figure 3 925

allows us to grasp common errors across LLMs. 926
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Figure 3: Navok dataset: Distribution of semantic relations with the lowest Surprisal scores for each relation.

C Experiment 2 - Additional results927

NNC
sameHead sameMod

BERT-large .219 .167
GPT2-xl .100 .094
Llama-2 (Base) .133 .109
Falcon (Base) .217 .125
Mistral (Base) .117 .125
Llama-2 (Instruct) .283 .141
Falcon (Instruct) .150 .141
Mistral (Instruct) .283 .156

Table 8: Surprisal accuracy of instruction-based mod-
els on the NNC dataset, distinguishing when we sub-
stitute the first word (sameHead) or the second word
(sameMod) of a compound with a hypernym.
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