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ABSTRACT

We introduce CF-GISS, a novel framework for generative 3D indoor scene syn-
thesis that ensures collision-free scene layouts by incorporating an image-based
intermediate layout representation. In contrast to existing methods that directly
construct the scene graph or object list, our approach facilitates substantially more
effective prevention of collision artifacts as out-of-distribution (OOD) scenarios
during generation. Furthermore, CF-GISS conditions layout generation on floor
plans controllable via images or textual descriptions, enabling the production of
coherent, house-wide layouts that are robust to variations in geometric and seman-
tic structures. Our framework demonstrates state-of-the-art performance on the
3D-FRONT dataset, delivering high-quality, collision-free scene synthesis while
offering flexibility in accommodating a range of floor plan structures. Addition-
ally, we propose a novel dataset with significantly expanded coverage of house-
hold items and room configurations, as well as improved data quality.

1 INTRODUCTION

Generative 3D indoor scene synthesis (Xu et al., 2002; Merrell et al., 2011; Yu et al., 2011; Fisher
et al., 2012; Qi et al., 2018; Zhang et al., 2018; Li et al., 2018a; Ritchie et al., 2019; Wang et al.,
2019; Yao et al., 2024; Min et al., 2024; Vaswani et al., 2017; Hu et al., 2020; Wang et al., 2020;
Paschalidou et al., 2021; Leimer et al., 2022; Tang et al., 2024; Lin & Mu, 2024) is essential not only
for creative and technical workflows such as interior design, architectural planning, video game
development, and virtual or augmented reality, but also for advancing embodied AI by providing
simulated environments for training. This approach facilitates rapid prototyping, reduces manual
labor, lowers deployment costs, and accelerates iteration. Despite advances in neural representations
such as NeRFs (Mildenhall et al., 2020) and Gaussian splatting (Kerbl et al., 2023), mesh-based
assets remain the predominant 3D representation in these applications due to their superior rendering
quality and explicit interactivity, particularly in video games, design, and simulation. Consequently,
most generative indoor scene synthesis methods (Zhang et al., 2018; Li et al., 2018a; Ritchie et al.,
2019; Wang et al., 2019; Paschalidou et al., 2021; Tang et al., 2024; Lin & Mu, 2024) follow a
procedural generation paradigm, constructing a scene graph or object list for the scene layout, with
each node containing detailed specifications for individual scene objects, which can be subsequently
retrieved from a CAD asset dataset and rendered by various graphics engines.

However, a fundamental limitation of directly constructing scene graphs or object lists is the inability
to prevent implausible collisions or overlaps between objects, such as a bed intersecting with cabi-
nets, during the generation process. While collision detection can be performed as a post-processing
step, it is computationally expensive, and resolving the detected collisions during post-processing
remains nontrivial.

In this paper, we propose CF-GISS, a novel framework aimed at resolving the issue of strictly pre-
venting collision artifacts in generative 3D indoor scene synthesis during the generation process.
Central to our approach is the synthesis of an RGB image representing the scene layout as an in-
termediate step in the procedural workflow, which is subsequently converted into an object list or
graph, rather than directly constructing the graph in a single step. Our key insight is that, compared
to graph representations, which are inherently tabular, introducing an RGB image as an intermediate
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representation enables more effective detection of collision artifacts as out-of-distribution (OOD)
scenarios. Such collisions are characterized by a lower likelihood of occurrence during training,
leading to a large loss value, which ultimately facilitates strict avoidance of collisions during the
generation process without the need for post-processing. Our extensive evaluation of CF-GISS on
the 3D-FRONT dataset (Fu et al., 2021a) demonstrates its state-of-the-art performance both qual-
itatively and quantitatively, particularly in the near elimination of unreasonable object collisions, a
prevalent issue in existing methods.

Meanwhile, the floor plan structure serves as a crucial yet often overlooked constraint in recent
works on generative indoor scene synthesis, as room sizes, along with the placement of doors and
windows, substantially influence the logical arrangement of household layouts. Unlike methods
that focus on generating single-room layouts (Zhang et al., 2018; Li et al., 2018a; Ritchie et al.,
2019; Wang et al., 2019; Paschalidou et al., 2021; Tang et al., 2024; Lin & Mu, 2024), CF-GISS
is conditioned on the overall floor plan structure, which can be controlled via either images or text
prompts, to synthesize coherent, house-wide indoor scenes adaptable to floor plan variations in
geometric and semantic structures.

Finally, we introduce a large-scale dataset comprising 9,706 scenes with floor plans and scene lay-
outs, approximately 1.4 times larger than 3D-FRONT. Our dataset expands household item coverage
to 26 super-categories, including items from kitchens, bathrooms, and balconies, addressing gaps in
3D-FRONT, which lacks furnishings in these areas and occasionally leaves living rooms or bed-
rooms unfurnished. It also resolves common issues found in 3D-FRONT, such as misclassified
objects, unrealistic placements, and collisions, providing clean layouts without requiring extensive
data cleaning. We demonstrate applications of this new dataset using CF-GISS.

Our contributions are summarized as: i) Novel framework - a novel framework for collision-free
generative 3D indoor scene synthesis with controllable floor plans via images or text prompts, op-
timized room layouts, and photorealistic rendering; ii) Performance - state-of-the-art performance
on the 3D-FRONT dataset, both qualitatively and quantitatively, especially the near elimination of
unreasonable object collisions; and iii) Dataset1 - a novel dataset of 9,706 scenes with floor plans
and scene layouts, 1.4 times larger than 3D-FRONT, with improved item coverage and data quality.

2 RELATED WORK

Early work employed a rule-based constraint satisfaction formulation to generate 3D room layouts
for pre-specified sets of objects (Xu et al., 2002). Other approaches optimized cost functions based
on interior design principles (Merrell et al., 2011) and object-object statistical relationships (Yu et al.,
2011). The earliest data-driven approach modeled object co-occurrences using a Bayesian network
and Gaussian mixtures to capture pairwise spatial relations extracted from 3D scenes (Fisher et al.,
2012). With the availability of large datasets of 3D environments, such as SUNCG (Song et al.,
2017), 3D-FRONT (Fu et al., 2021a), SUN3D (Xiao et al., 2013), Matterport3D (Chang et al.,
2017), InteriorNet (Li et al., 2018b), Structured3D (Zheng et al., 2020), and 3D-FURNITURE (Fu
et al., 2021b), learning-based approaches have gained popularity. Various methods for indoor scene
synthesis have been proposed, including: human-centric probabilistic grammars (Qi et al., 2018),
Generative Adversarial Networks (GANs) trained on matrix representations of scene objects (Zhang
et al., 2018), recursive neural networks for sampling 3D scene hierarchies (Li et al., 2018a), con-
volutional neural networks (CNNs) trained on top-down room images (Zhang et al., 2018; Ritchie
et al., 2019), spatial prior graph neural networks trained on labeled 3D spatial relationships (Wang
et al., 2019; Yao et al., 2024), and Variational Autoencoder (VAE) models trained on top-down func-
tional furniture group images (Min et al., 2024). Additionally, floor plan synthesis approaches have
been proposed using graph neural networks (Hu et al., 2020). With the development of transformer
models (Vaswani et al., 2017), transformer-based approaches have become increasingly popular.
These include floor plan-conditioned furniture synthesis and text-conditioned furniture synthesis
using transformer autoregressive models (Wang et al., 2020; Paschalidou et al., 2021), as well as
methods integrating expert knowledge in the form of differentiable scalar functions to guide the
generation of more ergonomic layouts (Leimer et al., 2022). Recently, diffusion models (Ho et al.,
2020) have demonstrated impressive visual quality in generative tasks, including indoor furniture
synthesis (Tang et al., 2024; Lin & Mu, 2024). However, these methods primarily synthesize layouts

1The dataset will be publicly released upon acceptance.
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Scene layout

{ "household_item":
    [ {"type": "sofa",
          "pos": [411.66, 169.45, 0],
          "length": 185.3,
          "width": 120.1,
          "height": 99,
          "rotate": 0.0}],
    ... 
}

Object detection

JSON Scene Graphs

Final Rendering

Floor plan

Inference only

Training only

Input

Text

Inference only

Training only

“This is a house with 40 
square meters, featuring 0 
living room, 1 bedrooms, 0 
kitchen, and 1 bathrooms.”

Input

CLIP

Floor plan conditioned diffusion

Text conditioned diffusion

Figure 1: Overview of CF-GISS. First, we generate the scene layout using a conditional diffusion
model, conditioned either on a floor plan image or a text description. Next, we apply object detection
to identify individual household items and use a structured scene graph to hierarchically organize
the spatial relationships between rooms and objects, along with their attributes. Finally, the scene is
rendered into photorealistic images.

for individual rooms rather than house-wide scenes that consider the overall floor plan structure. Ad-
ditionally, unlike recent works such as Tang et al. (2024), Lin & Mu (2024), and Yang et al. (2024),
which directly synthesize the scene graph using a 1D-Unet, our approach employs a 2D-Unet. This
enables a better understanding of the spatial relationships between doors, windows, and furniture,
thereby more effectively preventing collisions, doorway blockages, and other artifacts. Such arti-
facts are also present in widely-used indoor scene datasets, such as 3D-FRONT (Fu et al., 2021a;b),
which requires substantial effort for data cleaning.

3 METHOD

We propose a novel pipeline for 3D-aware indoor scene synthesis, as depicted in Figure 1. The
pipeline starts with a floor plan description—provided either as an image or text—and use a con-
ditional diffusion model to generate a corresponding 2D scene layout. The use of this 2D repre-
sentation enables us to leverage efficient image encoders for layout generation while effectively
preventing object overlaps. Next, we employ automatic object detectors and segmentation maps to
identify individual household items and extract a structured scene graph that hierarchically organizes
spatial relationships and object attributes. Finally, the 3D scene objects are retrieved accordingly and
rendered to produce photorealistic 3D-consistent images.

3.1 DIFFUSION-BASED SCENE LAYOUT GENERATION

Image-conditioned floor plans We leverage the recent success of image-based diffusion mod-
els (Saharia et al., 2022a; Rombach et al., 2022; Amit et al., 2021) and frame the problem of gen-
erating diverse, realistic indoor scene layouts as a conditional image-to-image translation task, as
illustrated in Figure 1 (top-left). Unlike complex scene graphs or tabular formats, natural RGB im-
ages serve as a convenient intermediate representation for the layout, easily processed by existing
vision tools. Crucially, since RGB images are easy-to-interpret by an appropriate encoder, we can
construct a highly effective conditional generative model that accurately captures the data distri-
bution. In RGB images, collisions between objects are immediately visible and flagged as OOD
samples, allowing the model to generate coherent, physically realistic layouts.
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Item Color Item Color Item Color
Bed FF0000 Cabinet FFFF00 Bed Background FF3333
Bedside Table F08080 Table A52A2A Leisure Sofa 666600
Sofa FF9933 TV Cabinet FFCC99 Sofa Background 99004C
Coffea Table CCFF99 Dining Cabinet FF9999 Shoe Cabinet 006633
Single Sofa CC6600 Dining Table FF6666 Side Coffea Table 99FFCC
Single Door Floor Cabinet 9999FF Double Door Floor Cabinet 6666FF Cooker Cabinet 000099
Sink Cabinet 0000CC Electrical FLoor Cabinet 3333FF Refrigerator 006666
Shower 33FF99 Toilet 660033 Washbasin CC0066
Washing Machine FFCCE5 Washing Set FF66B2
Wall 000000 Door 139C5A Window 0000FF

Table 1: Scene layout items and corresponding colors, with the opacity level set to 0.3.

Specifically, given an image of an empty floor plan y, we train a diffusion model ϵθ(x; yi, t) to
model the conditional distribution of the corresponding layouts p(x | yi)

2, where ϵθ is structured
as a 2D U-Net, following (Ho et al., 2020), with 3 input channels (random noise) and 3 output
channels (the predicted layout image). To incorporate floor plan image conditioning, we expand
the U-Net input from 3 to 6 channels. During training, a predetermined noise schedule realizes a
Markov chain, yielding the diffused sample xt(x,yi, t, ϵ), where ϵ ∼ N (0, I) and t ∼ U(0, 1).
The loss function is given by the denoising score matching objective (Ho et al., 2020):

E(x,yi)∼pdata,ϵ∼N (0,I),t∼U(0,1)

[
∥ϵθ(x; yi, t)− ϵ∥2

]
. (1)

Text-conditioned floor plans Another convenient method to specify the floor plan is through
natural language, particularly in practical scenarios where floor plan images are unavailable or in-
compatible with the format accepted by our model. Given the success of text-to-image diffusion
models (Ramesh et al., 2022; Saharia et al., 2022b) and our use of RGB images to represent filled
layouts, text descriptions are a viable alternative within our framework. In this case, we generate a
fixed-size conditioning vector yc by passing the text input through a CLIP encoder (Radford et al.,
2021). Semi-structured text is particularly effective for such a task, for example, “This is a flat with
40 square meters, featuring 0 living rooms, 1 bedroom, 0 kitchens, and 1 bathroom”. The resulting
CLIP embedding serves as the conditional variable for the diffusion model, guiding the generation
of furniture layouts based on high-level semantic information encoded in the text description. This
allows for more intuitive control over the layout generation by leveraging natural language as an
additional input modality.

The text-based model is trained with the same procedure, using Equation 1 but the conditioning
variable is the CLIP embedding yc instead of the empty floor plan yi. Another minor difference is
that conditioning is introduced through a cross-attention layer (Vaswani, 2017) near the UNet bottle-
neck, as illustrated in Figure 1 (bottom-left). Although the CLIP was designed to handle both image
and text conditioning, we opt for operating directly in pixel space for image conditioning to ensure
higher-resolution image generation and preserve finer details, mitigating the compression artifacts
found in latent diffusion, albeit at a higher computational cost. Nevertheless, with separate encoders
CF-GISS seamlessly handles both image and text inputs, catering to different user preferences.

3.2 HIERARCHICAL SCENE GRAPH EXTRACTION AND OBJECT RETRIEVAL

To generate a scene graph from the candidate layout x ∼ p(x | y), we follow the automatic frame-
work proposed by (Lv et al., 2021). As depicted in Figure 2, we start by fine-tuning YOLOv8 (Jocher
et al., 2023) to detect the locations and attributes of all objects present in x. The color of each object
uniquely identifies its category from a set of 28 household item categories and 3 floor plan item
categories, as listed in Table 1. The other relevant attributes are then populated according to pre-
determined rules to produce an object list O = (o1,o2, . . . ,on). This facilitates the automated
extraction of object properties such as position, orientation, and size based on predefined standards.
We employ YOLOv8 to simultaneously obtain the segmentation maps for each category of rooms,
including living rooms, bedrooms, kitchens, bathrooms, and balconies.

2The subscript on y differentiates image conditioning yi from natural language conditioning via CLIP yc
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Layout generation Object detection Object retrieval & Rendering
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Figure 2: Scene graph extraction and object retrieval.

Given the dimensions and category of each object, we deterministically retrieve an example from a
category-specific textured mesh database D such that it has the smallest size difference:

ei = argmin
e∈D

(∥oxi − exi ∥
2
+ ∥oyi − ey∥2) : oci = ec, ∀oi ∈ O. (2)

The set of retrieved examples {e1, e2, . . . , en} constitutes the leaf nodes of the scene graph; see
third row in Figure 2 (right). To position the objects in each room and construct the hierarchal scene
graph, we utilize the semantic detection and segmentation outputs of household items and rooms
from YOLOv8. We straighten the edges of the room polygons, similar to (Lv et al., 2021), to reduce
uneven lines, and attach doors and windows to these edges, ensuring corrected wall positions that
enclose the room.

3.3 RENDERING

Finally, we convert the structured scene graph into a 3D mesh. The wall and floor materials for
each ei are procedurally sampled, while being aware of the rooms to which they belong. To main-
tain uniform lighting and shadow consistency across the scene, an appropriately sized area light is
placed at the center of each room. The UE engine (Epic Games) is subsequently utilized to generate
photorealistic renderings.

The key advantage of the multi-stage pipeline of CF-GISS (see Figure 1), which first generates a 2D
layout rather than directly synthesizing an object scene graph (Tang et al., 2024; Lin & Mu, 2024),
lies in its inherent ability to prevent object intersections. By leveraging the 2D RGB images as an
intermediate representation, our approach ensures that the spatial relationships between household
items are preserved, avoiding common issues such as object overlap and collision, which we validate
in Section 5.1.

4 DATASET

We collected a large-scale dataset, which we refer to as CF-dataset, of indoor scenes with floor
plans and scene layouts, comprising a total of 9,706 different design schemes, approximately 1.4
times larger than the 3D-FRONT dataset (Fu et al., 2021a). This dataset was meticulously cre-
ated by professional interior designers, consisting of vectorized data stored in the JSON format, as
exampled in Appendix List 1, including wall lines, doors, windows, and household items such as
furniture, fixtures, and appliances. While this dataset primarily focuses on optimal layouts and is
currently linked to a limited pool of CAD models, users are free to retrieve assets from any public
dataset (3D66, 2013; Fu et al., 2021b). The data description is as follows:

• Rooms: Represented as enclosed loops of interior wall lines, defined by 2D coordinates.
• Doors, Windows, and Household Items: Represented as 2D bounding boxes, defined by

category, 3D coordinates, orientation, and dimensions (length, width, height).

Our CF-dataset offers several clear advantages over the 3D-FRONT dataset:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Empty rooms

Object exceeding room boundaries

Object overlaps

Sink Cabinet

Washing

Machine

Shoe Cabinet

Toilet Shower

Electrical 

Cabinet

Washing Set

Double Door 

Cabinet
Cooker Cabinet

Bed Background

Expanded household item 

categories in CF-dataset

Refrigerator

Washbasin

Figure 3: Left - Erroneous scenes in 3D-FRONT. Right - Expanded categories in CF-dataset.

Expanded Coverage of Household Items and Room Categories While 3D-FRONT provides
instance semantic labels for 34 categories and 10 super-categories of household items, its dataset
primarily includes items placed in living rooms, bedrooms, and dining rooms, with no items for
kitchens, bathrooms, or balconies. Consequently, the layouts in 3D-FRONT are consistently devoid
of furnishings in these areas. Furthermore, there are instances in 3D-FRONT where living rooms
or bedrooms are unnaturally left unfurnished. Our CF-dataset fills this gap by offering 26 super-
categories of household items, including furniture, fixtures, and appliances, that comprehensively
cover living rooms, bedrooms, dining rooms, kitchens, bathrooms, and balconies. As illustrated
in Figure 3, our CF-dataset not only contains more valid living rooms and bedrooms (each with
at least one household item in place), but also includes outfitted kitchens and bathrooms. A com-
prehensive statistic of our CF-dataset in comparison with 3D-FRONT in terms of household item
super-categories and their occurrences in layouts is detailed in Figure 4 and Appendix Table 3.

Improved Data Quality As reported by Zhang et al. (2018); Ritchie et al. (2019); Paschalidou
et al. (2021); Tang et al. (2024); Lin & Mu (2024), the 3D-FRONT dataset contains erroneous
layouts with unnatural object sizes, misclassified items, and unrealistic object placements (e.g., fur-
niture outside room boundaries, lamps on the floor, blockage of doorways, and overlapping objects).
Consequently, previous work (Zhang et al., 2018; Ritchie et al., 2019; Paschalidou et al., 2021; Tang
et al., 2024; Lin & Mu, 2024) using 3D-FRONT for training and evaluation invested considerable
effort in data cleaning, removing numerous layouts with artifacts, which greatly reduced the amount
of valid data. For example, after performing a similar filtering process ourselves for 3D-FRONT,
only 4,847 valid houses remained out of 6,813 layouts. In contrast, our dataset eliminates these
artifacts, as illustrated in Figure 3 and Table 4, as well as Appendix Table 4 and Table 5.

5 EXPERIMENTS

We conducted three experiments to assess the performance of CF-GISS and the CF-dataset. First,
we trained CF-GISS with floor plan image conditioning on the 3D-FRONT dataset and compared its
performance with prior work evaluated also on 3D-FRONT. We particularly evaluate the effective-
ness of CF-GISS in preventing collision artifacts by assessing its ability to identify these scenarios
as out-of-distribution samples. Next, we trained CF-GISS using both floor plan image conditioning
and text conditioning on our CF-dataset to demonstrate its versatility across various use cases.

5.1 EVALUATION ON 3D-FRONT

Dataset and Implementation We trained CF-GISS with floor plan image conditioning on the 3D-
FRONT dataset, consisting of 6,813 scenes, of which 4,847 were retained after a cleaning process.
This process excluded layouts lacking furniture, containing furniture exceeding room boundaries,

6
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Figure 4: Statistics of CF-dataset (ours) in comparison with 3D-FRONT.

or exhibiting collisions. We used 80% of the dataset for training and 20% for testing. Training was
conducted on four RTX8000 GPUs with a batch size of 4 for 400 epochs. The initial learning rate
is set to 1e-4, with a decay factor of 0.1 applied every 100 epochs. For the diffusion process, we
adhere to the default configuration of DDPM, where noise intensity gradually increases from 0 to 1
across 1000 time steps.

Competitors We compare CF-GISS with the latest work DiffuScene (Tang et al., 2024), In-
structScene (Lin & Mu, 2024), and PhyScene (Yang et al., 2024), which also aim to optimize indoor
scene layouts. We used the checkpoint from the DiffuScene unconditional model to generate top-
down views of furniture arrangements in bedrooms and living rooms, with a resolution of 256×256.
For InstructScene, we similarly used the checkpoint from the unconditional model to generate bed-
room views at the same resolution. However, InstructScene did not release unconditional model
checkpoints for living rooms. For PhyScene, we used the checkpoint from the floorplan-conditioned
model to generate living room layouts at the same resolution. PhyScene did not release model
checkpoints for bedrooms. To ensure fairness in the comparison, the furniture categories generated
by DiffuScene, InstructScene, and PhyScene were mapped to our categories as detailed in Appendix
List 2. Note that DiffuScene, InstructScene, and PhyScene are unable to synthesize house-wide
layouts but individual categories of rooms.

Dataset Bedroom Living Room Entire House
FID↓ KID↓ POR↓ PIoU↓ FID↓ KID↓ POR↓ PIoU↓ FID↓ KID↓ POR↓ PIoU↓

DiffuScene 3D-FRONT 15.91 0.04 0.1632 0.0152 45.89 0.034 0.05 0.012 - - - -
InstructScene 3D-FRONT 22.35 0.02 0.2039 0.0088 - - - - - - - -
PhyScene 3D-FRONT - - - - 117.29 0.119 0.389 0.0134 - - - -
CF-GISS (ours) 3D-FRONT 14.78 0.008 0.0766 0.0013 24.15 0.018 0.0207 0.0015 11.51 0.01 0.0130 0.0005
CF-GISS (ours) CF-dataset 21.86 0.0157 0.1049 0.0025 48.24 0.04 0.0179 0.0029 29.97 0.039 0.0125 0.0007

Table 2: Quantitative evaluation of CF-GISS, demonstrating superior performance across all metrics
compared to prior approaches.

Results We present the qualitative evaluation in Figure 5. CF-GISS effectively synthesizes diverse
and plausible collision-free household layouts, while both DiffuScene and InstructScene produce a
significant portion of layouts with implausible collisions, making them less suitable for practical
applications. We present the quantitative evaluation in Table 2. Following previous work, we em-
ploy Frechet Inception Distance (FID) (Heusel et al., 2017) and Kernel Inception Distance (KID)
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Bedroom

Living Room

DiffuScene

Bedroom

InstructScene

Living Room

PhyScene

Bedroom

Living Room

CF-GISS (ours)

Figure 5: Visualization of synthesized layouts by CF-GISS, DiffuScene (Tang et al., 2024), In-
structScene (Lin & Mu, 2024), and PhyScene (Yang et al., 2024), all trained on 3D-FRONT, using
the color scheme described in Table 1. All results were randomly selected from an arbitrary batch
without any cherry-picking. It is evident that only CF-GISS produces clean, collision-free layouts,
whereas other methods exhibit a significant number of implausible overlapping items.

(Bińkowski et al., 2018) to evaluate the quality and diversity of the synthesized layouts images. We
additionally compute two metrics to evaluate the collisions of 2D bounding boxes in synthesized
layouts: the Pairwise Overlap Ratio (POR), which represents the ratio of intersecting furniture pairs
to the total number of furniture pairs, and the Pairwise Intersection over Union (PIoU), which mea-
sures the ratio of the intersecting area between two furniture items to the union of their areas. The
average values for these metrics are calculated by first determining the value for each scene and then
computing their arithmetic mean.

Collision as OOD Samples In diffusion models, the training loss is computed as the reconstruc-
tion error of the data given the noise, serving as an approximation of the negative log-likelihood
(NLL). Assuming the model has been adequately trained on the data distribution, a sample with a
high training loss indicates a high NLL, pointing to a potential out-of-distribution (OOD) scenario
within the learned distribution that is improbable to be generated during sampling. To demonstrate
the effectiveness of CF-GISS in preventing collision artifacts as OOD samples, we computed the
training loss for clean 3D-FRONT layout samples devoid of collisions and for a set of 400 3D-
FRONT samples exhibiting the largest PIoU values. The loss was calculated by adding noise to
the samples at timesteps ranging from 900 to 1000, measuring the mean squared error between the
true and predicted noise, and averaging the results over 100 iterations. The results indicate an av-
erage loss of 5.37× 10−5 for the clean samples and 7.10× 10−5 for the samples with collisions, a
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CF-GISS on 3D-FRONT CF-GISS on CF-dataset

Figure 6: Performance of CF-GISS on 3D-FRONT and CF-dataset (ours), where results obtained
from training on 3D-FRONT exhibit implausible unfurnished rooms due to artifacts in the original
database. Complete results are provided in the Supplementary Materials.

significant 32.22% difference proving the efficacy of CF-GISS in identifying and preventing object
collisions as OODs.

5.2 EVALUATION ON CF-DATASET

We trained CF-GISS separately with floor plan image and text conditioning on our CF-dataset.

Dataset and Implementation The CF-dataset comprises 9,706 scenes and is ready for use without
the need for data cleaning or preprocessing. For both experiments, we use 80% of the dataset
for training and the remaining 20% for testing. The GPU infrastructure, model hyperparameters,
and training strategies are similar to those detailed in Section 5.1. For image conditioning, we
generate the floor plan image for each scene using the color scheme as described in Table 1. For
text conditioning, we parse the JSON file of each scene to extract the total area, room count, and
categories, which are used to generate the corresponding textual description.

Results i) Image Conditioning - As seen in Figure 7, CF-GISS is capable of synthesizing diverse
and plausible scene layouts and is robust to irregular or slanted room shapes. Similar to the ap-
proach in the previous subsection, we also computed metrics including FID, KID, POR, and PIoU.
Compared to the metrics obtained on the 3D-FRONT dataset, our CF-dataset yielded relatively
higher FID and KID values. This discrepancy could be attributed to the greater variety of object
placements and the reduced number of empty rooms in CF-dataset, as illustrated in Figure 6. The
collision-related metrics (POR and PIoU) are comparable between the two datasets, likely due to
YOLO detection errors (since the original layout images are collision-free) resulting in bounding
box collisions. ii) Text Conditioning - As seen in Figure 8, CF-GISS is capable of synthesizing di-
verse and plausible scene layouts and floor plans, with approximate areas and specified numbers of
living rooms, bedrooms, kitchens, and bathrooms, adhering to the text descriptions. The functional
distribution of rooms is coherent, with logical circulation and appropriate furniture arrangement.

6 LIMITATIONS, DISCUSSIONS, AND CONCLUSIONS

i) CF-dataset - While the CF-dataset includes extensive floor plans and scene layout data, the as-
sociated 3D models follow a uniform artistic style, lacking diversity in designs and corresponding
attributes, which are essential for training text-guided stylistic indoor scene synthesis. The inherent
subjective nature of design styles presents a challenge in gathering comprehensive dataset samples,
which we leave to future work. ii) CF-GISS - While the text conditioning of CF-GISS can theoret-
ically extend to various controls, such as spatial layouts (e.g., placing the sofa along the east wall)
and stylistic features (e.g., a Bohemian sofa), without significantly altering the pipeline or model ar-
chitectures, this requires obtaining additional annotated data for such attributes, yet not introducing
substantial further novelty in methodology design. Hence, we focus on collision-free scene layout
generation, which addresses a prevalent practical limitation in existing approaches, and leave the
incorporation of stylistic and spatial controls with texts to future work. Meanwhile, CF-GISS cur-
rently does not accommodate natural object overlaps, such as placing a lamp on a table. However,
this can be addressed by applying multiple layers of scene layouts, which also effectively prevents
vertical collisions, a feature we leave for future work. Another limitation of CF-GISS is its reliance
on YOLO (Jocher et al., 2023) for high-accuracy object detection, which struggles to detect the an-
gles of square targets (Ultralytics, 2024). This can lead to bounding box collisions despite the layout
images being collision-free. We discuss additional failure cases in Appendix Figure 10.
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Living room

Bathroom

Kitchen

Bedroom

Balcony

Figure 7: Left - Visualization of synthesized layouts by CF-GISS conditioned on three floor plans.
We present three diverse layouts synthesized by CF-GISS for each floor plan. Note that CF-GISS is
robust to irregular and slanted room shapes. Additional results are provided in Appendix Figure 11,
with complete results available in the Supplementary Materials. Right - Photorealistic rendering of
synthesized scenes by CF-GISS. We present the living rooms and bedrooms with identical camera
viewpoints and floor plan structures to demonstrate the diversity of CF-GISS. The correspondence
between the layout on the left and the rendering on the right is indicated by matching colored frames.

The area of the house is 75
square meters. The house has
1 living room 3 bedroom 1
kitchen 1 bathroom.

The area of the house is 105
square meters. The house has
1 living room 3 bedroom 1
kitchen 1 bathroom.

The area of the house is 160
square meters. The house has
1 living room 3 bedroom 1
kitchen 2 bathroom.

The area of the house is 160
square meters. The house has
1 living room 4 bedroom 1
kitchen 2 bathroom.

Figure 8: Visualization of text-to-layout generation by CF-GISS trained on our CF-dataset. Floor
plans of different room sizes all fill the entire canvas, with the wall thickness set to 24 cm for all
scenes. Hence, the room size can be inferred from the thickness of the gray walls, which is consistent
with the raw training data.
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7 ETHICS STATEMENT

In this work, we adhere to responsible research practices, ensuring that the datasets and methods used
comply with legal and ethical standards. The dataset created and utilized in this study was sourced
and generated without infringing on the rights of individuals or organizations. We have ensured that
the data is free of personally identifiable information, and that no harm has been inflicted on any
subjects during the research process. Furthermore, the research addresses technical challenges in
generative indoor scene synthesis, with no direct societal or environmental risks.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have provided the source code in the supplementary
materials, along with detailed descriptions of our methodology and experimental setup in the main
paper. The CF-GISS model, including hyperparameters, training procedures, and evaluation met-
rics, has been thoroughly documented. Upon acceptance, we will publicly release the source code,
pretrained models, and our novel CF-dataset to facilitate verification and further research in this
field.
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A APPENDIX

A.1 CF-GISS INFERENCE EFFICIENCY

On a single RTX 8000 GPU, the diffusion model inference takes approximately 18 seconds; YOLO
object detection takes around 40 milliseconds; 3D model matching and scene construction take
about 100 milliseconds; and rendering, performed using the UE engine, takes approximately 30
seconds for a 2K image and around 120 seconds for a 4K image. While rendering is the most time-
consuming module, it is an independent component that can be flexibly replaced with any real-time
rasterization-based renderer when efficiency is a priority. We chose a ray-tracing-based renderer for
photorealistic quality.

A.2 ABLATION STUDIES

We additionally conducted an ablation experiment where the diffusion model generated 2D layouts
as segmentation maps, i.e., quantized grayscale images with precision consistent with the number of
household item categories, instead of RGB images. The diffusion model shares the same architecture
as described in Section 3.1. We present qualitative results in Figure 9, which indicate that the
diffusion model fails to capture meaningful 2D layouts when directly generating segmentation maps.
In Figure 9, for better visualization and comparison, we additionally converted each segmentation
map into an RGB-based image, consistent with the color scheme used in the main experiments.
Meanwhile, we conducted a quantitative evaluation, which yielded an FID of 13.34 and a KID
of 0.014 between the generated segmentation maps and the ground truth, as well as an FID of
328.20 and a KID of 0.52 between the RGB layouts converted from the generated segmentation
maps and the ground truth. All the metrics are consistently worse compared to CF-GISS as reported
in Table 2 (Entire House). We believe this is due to the insufficient precision of the segmentation
maps, which seriously compromises the robustness of the diffusion model. Compared to full-range
RGB images, minor inaccuracies in generated segmentation maps can lead to significant errors. This
further validates our current choice of the CF-GISS pipeline, where the use of RGB-based layouts
with 255 precision, combined with a YOLO detection step, improves the robustness of our approach.

Listing 1: Example JSON data format
{

"rooms": [
{

"roomId": "D5F19A0446724E5EBE4AF38251000000",
"roomName": "living", # inner room
"roomType": 1,
# 2d coords x, y in cm, at least 3 points, polygon
"wallPoints": [[171.65, 241.5], [651.66, 241.5], ...]

},
{

"roomId": "D5F19A0446724E5EBE4AF38251000114",
"roomName": "out_room", # outter room
"roomType": 0,
"wallPoints": [[171.65, 241.5], [651.66, 241.5], ...] # 2d

coords
},

],
"windowsDoors": [ # 3d bounding box data

{
"type": "door",
# box center position x,y; height to floor z
"pos": [717.32, 737.0, 0],
"length": 95,
"width": 12,
"height": 210,
"rotate": 100 # roate angle in degree

},
{
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Figure 9: Visualization of ablation study results. Grayscale images represent segmentation maps
directly generated by the diffusion model. Each segmentation map is converted into an RGB-based
layout image, consistent with the color scheme used in the main experiments. While inaccuracies
in the grayscale images are not directly observed due to insufficient precision, the converted color
images clearly reveal that the generated segmentation maps contain significantly more artifacts com-
pared to the layouts generated by CF-GISS.

"type": "window",
"pos": [657.66, 945.12, 90],
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"length": 153.75,
"width": 12,
"height": 110,
"rotate": 90.0

}
],
"furniture": [ # 3d bounding box data, same with windows and doors

{
"type": "coffee_table",
"pos": [569.91, 1844.75, 0],
"length": 76.0,
"width": 94.0,
"height": 99,
"rotate": 180.0

},
{

"type": "sofa",
"pos": [411.66, 169.45, 0],
"length": 185.3,
"width": 120.1,
"height": 99,
"rotate": 0.0

}
]

}

Listing 2: Furniture map from 3D-FRONT to Ours
{

"Nightstand": "bedside table",
"Wardrobe": "cabinet",
"Three-Seat / Multi-seat Sofa": "sofa",
"Dining Table": "dining table",
"Coffee Table": "coffee table",
"Loveseat Sofa": "sofa",
"Children Cabinet": "cabinet",
"Drawer Chest / Corner cabinet": "cabinet",
"King-size Bed": "bed",
"TV Stand": "tv cabinet",
"Sideboard / Side Cabinet / Console": "dining cabinet",
"Lazy Sofa": "leisure_sofa",
"Dressing Table": "table",
"Wine Cabinet": "dining cabinet",
"L-shaped Sofa": "sofa",
"Corner/Side Table": "side coffee table",
"Bookcase / jewelry Armoire": "cabinet",
"Kids Bed": "bed",
"Sideboard / Side Cabinet / Console Table": "table",
"Bed Frame": "bed",
"Shoe Cabinet": "shoe cabinet",
"Three-Seat / Multi-person sofa": "sofa",
"Double Bed": "bed",
"Bunk Bed": "bed",
"Desk": "table",
"Two-seat Sofa": "sofa",
"Tea Table": "coffee table",
"Couch Bed": "bed",
"Single bed": "bed",
"Chaise Longue Sofa": "sofa",
"U-shaped Sofa": "sofa"

}
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Room Furniture 3D-FRONT CF-dataset (ours)

Bedroom Bed 10620 24354
Cabinet 17649 19365
Bed Background 0 16619
Bedside Table 14333 10439
Table 8318 9359

Living Room Leisure Sofa 237 8953
Sofa 6564 8430
TV Cabinet 6821 7935
Sofa Background 0 7019
Coffee Table 6565 7005
Dining Cabinet 1169 5368
Shoe Cabinet 0 4817
Single Sofa 0 3939
Dining Table 5822 3444
Side Coffee Table 6300 4195

Kitchen Single Door Cabinet 0 15889
Double Door Cabinet 0 14156
Cooker Cabinet 0 6904
Sink Cabinet 0 6773
Electrical Cabinet 0 2081
Refrigerator 0 1307

Bathroom Shower 0 15174
Toilet 0 15026
Washbasin 0 12517
Washing Machine 0 970

Balcony Washing Machine Cabinet 0 4153

Table 3: Comparison of furniture occurrences between 3D-FRONT and CF-dataset.

Empty Room Rate POR PIoU

3D-FRONT 0.5906 0.0361 0.2547
CF-dataset (ours) 0.2902 0.0044 0.0018

Table 4: Comparison of data quality statistics between 3D-FRONT and CF-dataset.

Living Bedroom Kitchen Bathroom Balcony Empty Room Rate

3D-FRONT 1813 4041 0 0 0 0.5906
CF-dataset (ours) 15115 40983 8262 16351 8262 0.2902

Table 5: Comparison of non-empty room statistics between 3D-FRONT and CF-dataset.
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Bed is not beside
wall

Bed size is unrea-
sonable Bed not found Sofa not found Sofa not found Exceeding room

boundaries

3D-FRONT

Living and bed-
room mixed

Large room with
redundant bed

Redundant bed-
room

Redundant din-
ing table

Redundant
kitchen room

Redundant
kitchen room

CF-dataset

Unet output Kitchen cabinet
detection errors Unet output Kitchen cabinet

detection errors Unet output Bed and table de-
tection errors

YOLO detection errors

Figure 10: Failure cases of CF-GISS. Top - Failure cases of CF-GISS on the 3D-FRONT dataset
such as missing or unreasonably placed furniture are due to the inherent erroneous data samples
found in 3D-FRONT. Middle - CF-GISS occasionally misidentifies incorrect room categories, and
thus misplacing household items. We anticipate this issue to be mitigated by providing a larger
amount of training data. However, note that this is a limitation unique to our method that is capable
of floor-plan-conditioned layout generation. Training CF-GISS solely on a single category of room
similar to Tang et al. (2024), Lin & Mu (2024), and Yang et al. (2024) will not encounter this issue.
Bottom - CF-GISS heavily relies on the accuracy of YOLO detection, which also occasionally fails,
as discussed in Section 6.
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Figure 11: Additional photorealistic rendering of diverse synthesized layouts by CF-GISS condi-
tioned on floor plans.
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