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Abstract
We introduce marginalization models, a new fam-
ily of generative model for high-dimensional dis-
crete data. They offer scalable and flexible gener-
ative modeling with tractable likelihoods through
explicit modeling of all induced marginal distri-
butions. Marginalization models enable fast eval-
uation of arbitrary marginal probabilities with a
single forward pass of the neural network, which
overcomes a major limitation of methods with
exact marginal inference such as autoregressive
models (ARMs). They also support scalable train-
ing for any-order generative modeling that previ-
ous methods fail to achieve under the setting of
distribution matching to a given desired proba-
bility (specified by an unnormalized probability
function such as energy function or reward func-
tion). We demonstrate the effectiveness of the
proposed model on a variety of discrete data distri-
butions, including binary images, language, phys-
ical systems, and molecules, on both likelihood
maximization and distribution matching tasks.
Marginalization models achieve orders of magni-
tude speedup in evaluation of the probability mass
function. For distribution matching, marginaliza-
tion models enable scalable training of any-order
generative models that previous methods fail to
achieve.

1 Introduction

Deep generative models have seen remarkable progress
in multiple fields, encompassing image generation, audio
syntheis, natural language modeling and science discovery.
Most existing models do not support efficient probabilistic
inference for key questions such as marginal probability
p(xs) and conditional probability p(xu|xv), where s, u and
v are disjoint subsets of the variables. The ability to answer
such questions is important for many applications such as
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outlier detection (Ren et al., 2019; Mitchell et al., 2023),
masked language modeling (Devlin et al., 2018; Yang et al.,
2019), image inpainting (Yeh et al., 2017), and constrained
protein/molecule design (Wang et al., 2022; Schneuing et al.,
2022). Furthermore, the capacity to conduct such inference
for arbitrary subsets of variables empowers users with con-
trol and flexibility in leveraging the model according to
their specific needs and preferences. For instance, in protein
design domain scientists may want to manually guide the
generation of a protein from a user-defined secondary (local)
structure under a particular path over the relevant variables,
which is only feasible if the generative model can perform
arbitrary marginal inference.

Towards this end, neural autoregressive models
(ARMs) (Bengio & Bengio, 2000; Larochelle & Murray,
2011) are developed to facilitate conditional/marginal
inference based on the idea of modeling a high-dimensional
joint distribution as a factorization of univariate conditionals.
Many efforts have been made to scale up ARMs and
enable any-order generative modeling under the setting
of maximum likelihood estimation (MLE) (Larochelle &
Murray, 2011; Uria et al., 2014; Hoogeboom et al., 2021a),
and great progress has been made in applications such
as masked language modeling (Yang et al., 2019) and
image inpainting (Hoogeboom et al., 2021a). However,
marginal likelihood evaluation in most widely-used modern
neural network architectures (e.g., Transformers (Vaswani
et al., 2017) and U-nets (Ronneberger et al., 2015)) is
limited by O(D) neural network passes, where D is the
length of the sequence. This scaling makes it difficult to
evaluate likelihoods on long sequences arising in data
such as natural language and proteins. Additionally, in the
setting of distribution matching (DM)—where a function
such as a reward or energy can be evaluated pointwise
and interpreted as an unnormalized (log) probability for
the generative model to match—ARMs are limited to
fixed-order generative modeling and lack scalability in
training. The subsampling techniques developed for MLE
to scale the training of conditionals are no longer applicable
when matching log-probabilities. We provide an overview
of generative modeling settings and ARMs in Appendix A
and discuss the limitations of ARMs in Section 4.

To enable more scalability and flexibility in generative mod-
eling of discrete data, we propose a new family of genera-



Generative Marginalization Models

[?][C][=C][C][=C][C][=C][Ring1][=Branch1]⋯ [Cl][C][=C][C][=C][C][=C][Ring1][=Branch1]    ⋯ [F][C][=C][C][=C][C][=C][Ring1][=Branch1]⋯

pθ( ) pθ( ) pθ( )+=

= +<latexit sha1_base64="/rTDNkyNWkSNWIqEkIavK2JjEME="></latexit>

p✓(0010??)
<latexit sha1_base64="+UQ4L6yXIuH0TxdcXgQOPwYzOXY="></latexit>

p✓(1010??)
<latexit sha1_base64="q9ac3CGeb9WXXBuUAoVJus4H6FU="></latexit>

p✓(?010??)

variable  is marginalized outx1

[?]

Figure 1. Marginalization models enable estimation of any marginal probability with a neural network θ that learns to “marginalize out”
variables. The figure illustrates marginalization of a single variable on bit strings (representing molecules) with only two alternatives
(versus K) for clarity. The bars represent probability masses.

tive models, marginalization models (MaMs), that directly
model the marginal distribution p(xs) for any subset of
variables xs in x. Direct access to marginals not only 1)
scales up inference for any marginal, but also 2) enables
any-order generative modeling and scalable training under
both generative modeling settings.

The unique structure of the model allows it to simultane-
ously represent the coupled collection of all marginal distri-
butions of a given discrete joint probability mass function.
For the model to be valid, it must be consistent with the sum
rule of probability, a condition we refer to as marginaliza-
tion self-consistency (see Figure 1); enforcing this constraint
is one of the key contributions of this work.

We show that marginalization models can be trained under
both maximum likelihood and distribution matching set-
tings. We demonstrate the effectiveness of the proposed
model in both settings on a variety of discrete data distribu-
tions, including binary images, text, physical systems, and
molecules. We empirically demonstrate that marginalization
models achieve orders of magnitude speedup in likelihood
evaluation. For distribution matching, marginalization mod-
els enable scalable training of any-order generative models
that previous methods fail to achieve.

2 Marginalization Models

We propose marginalization models (MaMs), a new type
of generative model that enables both scalable any-order
generative modeling and efficient marginal evaluation for
both maximum likelihood and distribution matching. The
flexibility and scalability of marginalization models are en-
abled by the explicit modeling of the marginal distribution
and enforcing marginalization self-consistency.

We focus on generative modeling of discrete structures using
vectors of discrete variables. The vector representation en-
compasses various real-world problems with discrete struc-
tures, including language sequence modeling, protein de-

sign, and molecules with string-based representations (e.g.,
SMILES (Weininger et al., 1989) and SELFIES (Krenn
et al., 2020)). Moreover, vector representations are inher-
ently applicable to any discrete problem, since it is feasible
to encode any discrete object with a discrete random vector.

Definition We are interested in the discrete probability dis-
tribution p(x), where x = (x1, . . . , xD) is a D-dimensional
vector and each xd takes K possible discrete values.

Marginalization Given a distribution p(x), and x =
[x1, . . . , xD], where xd ∈ {1, . . . ,K}. Let xs be a subset
of variables of x, xs ⊆ {x1, . . . , xD}. Denote the com-
plement set of variables as xsc = {x1, . . . , xD} \ xs. The
marginal of xs is given by summing over all values of xsc :

p(xs) =
∑

xsc
p(xs,xsc) (1)

We refer to (1) as the marginalization self-consistency that
any valid distribution should follow. The goal of a marginal-
ization model θ is to estimate the marginals p(xs) for any
subset of variables xs as closely as possible. To achieve this,
we train a deep neural network pθ that minimizes the dis-
tance of pθ(x) and p(x) on the full joint distribution while
enforcing the marginalization self-consistency.

Parameterization To approximate arbitrary marginals
over xs with a single neural network forward pass, we
additionally include the “marginalized out” variables xsc

in the input by introducing a special symbol “?” to
denote the missing values. By doing this, we cre-
ate an augmented D-dimensional vector representation
xaug
s ∈ X aug ≜ {1, . . . ,K, ?}D and feed it to the NN. For

example, for a binary vector of length 4, if xs = {x1, x3}
where x1 = 0 and x3 = 1, then xaug

s = [0, ?, 1, ?] where
“?” denotes x2 and x4 being marginalized out. From here
onwards we will use xaug

s and xs interchangeably.

A marginalization model parameterized by a neural net-
work θ takes in the augmented vector representation xaug

s ∈
{1, . . . ,K, ?}D, and outputs the marginal log probability
fθ(xs) = log pθ(xs) that must satisfy the marginalization
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self-consistency constraints1:∑
xsc

pθ([xs,xsc ]) = pθ(xs) ∀xs ∈ {1, . . . ,K, ?}D

where [xs,xsc ] denotes the concatenation of xs and xsc .
Given a random ordering of the variables σ ∈ SD where
SD defines the set of all permutations of 1, 2, · · · , D, the
marginalization can be imposed over one variable at a time,
which leads to the one-step marginalization constraints:

pθ(xσ(<d)) =
∑

xσ(d)
pθ(xσ(≤d)), (2)

∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] .

Sampling Given the learned marginalization model, one
can sample from the learned distribution by picking an ar-
bitrary order σ and sampling one variable at a time. To
evaluate the conditionals at each step of the generation, we
can divide the marginal after the generation by the marginal
before the generation. However, this can lead to invalid con-
ditional if the marginalization self-consistency is not strictly
enforced. Hence we use following normalized conditional:

pθ(xσ(d)|xσ(<d)) =
pθ([xσ(<d), xσ(d)])∑

xσ(d)
pθ([xσ(<d), xσ(d)])

. (3)

In this paper, we focus on the sampling procedure that gen-
erates one variable at a time, but marginalization models
can also facilitate sampling multiple variables at a time in a
similar fashion.

Learning marginals together with conditionals In train-
ing, we impose the marginalization self-consistency by min-
imizing the squared error of the constraints in (2). When
the number of discrete values each xd can take becomes
large, each marginalization constraint in (2) requires K NN
forward passes, which makes training challenging to scale
when K is large. To address this issue, we augment the
marginalization models with conditionals parameterized by
ϕ. The marginalization constraints in (2) can be broken into
K parallel marginalization constraints based on condition-
als and marginals that allows subsampling the constraints
during training:

pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), (4)

∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D]. (5)

And we denote the squared error penalty associated with a
given marginalization self-consistency constraint to be:

LMar
θ,ϕ(x, d, σ) =

(
log pθ(xσ(<d)) + log pϕ(xσ(d)|xσ(<d))

− log pθ(xσ(≤d))
)2

.

1To make sure pθ is normalized, we can either additionally
enforce pθ([?? · · ·?]) = 1 or let Zθ = pθ([?? · · ·?]) be the nor-
malization constant.

During training, we need to specify a distribution q(x) for
subsampling the marginalization constraints to optimize
on. In practice, it can be set to the distribution we are
interested to perform marginal inference on, such as pdata or
the distribution of the generative model pθ,ϕ.

3 Training the Marginalization Models

Maximum likelihood In this setting, we train MaM with
the maximum likelihood objective in (9) while additionally
enforcing the marginalization constraints in (2):

max
θ,ϕ

Ex∼pdata log pθ(x) (6)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), (7)

∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

TWO-STAGE TRAINING A typical way to solve the above
optimization problem is to convert the constraints into a
penalty term and optimize the penalized objective, but we
empirically found the learning to be slow and unstable. In-
stead, we identify an alternative two-stage optimization
formulation that is theoretically equivalent to (6), but leads
to more efficient training:

Theorem 3.1. Solving the optimization problem in (6) is
equivalent to the following two-stage optimization proce-
dure, under mild assumption about the neural networks used
being universal approximators:
Stage 1: maxϕ ExEσ

∑D
d=1 log pϕ

(
xσ(d) | xσ(<d)

)
,

where x ∼ pdata and σ ∼ U(SD).
Stage 2: minθ ExEσEd LM

θ,ϕ(x, d, σ), where x ∼ q(x),
σ ∼ U(SD) and d ∼ U(1, · · · , D).

The intuition is that the chain rule of probability im-
plies that there is a one-to-one correspondence be-
tween optimal conditionals and marginals: log pθ(x) =∑D

d=1 log pϕ
(
xσ(d)|xσ(<d)

)
for any σ and x. By assuming

neural networks are universal approximators, we can first
optimize for the optimal conditionals, and then optimize
for the corresponding optimal marginals. This is equivalent
to first fitting an order-agnostic autoregressive model (Uria
et al., 2014; Hoogeboom et al., 2021a) and then distilling
that model into the marginalization network.

Distribution matching In this setting, we train MaM us-
ing the distribution matching objective in (10) with a penalty
term to enforce the marginalization constraints in (2):

min
θ,ϕ

DKL (pθ (x) ||p (x)) + λExEσ Ed LMar
θ,ϕ(x, d, σ),

where x ∼ q(x), σ ∼ U(SD), d ∼ U(1, · · · , D) and q(x)
is the distribution of interest for evaluating marginals.

SCALABLE TRAINING We use REINFORCE to estimate
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the gradient of the KL divergence term:

∇θDKL(pθ(x)||p(x)) (8)

≈ 1

N

∑N
i=1∇θ log pθ(x

(i))
(
log pθ(x

(i))− log f(x(i))
)

For the penalty term, we subsample the ordering σ and step
d for each data x.

PERSISTENT MCMC SAMPLING We need cheap and ef-
fective samples from pθ in order to perform REINFORCE,
so a persistent set of Markov chains are maintained by ran-
domly picking an ordering and taking block Gibbs sampling
steps using the conditional distribution pϕ(xσ(d)|xσ(<d))
(algorithm in Appendix C), in similar fashion to persistent
contrastive divergence used in training RBMs (Tieleman,
2008). The samples from the conditional distribution pϕ
serve as approximate samples from pθ when they are close
to each other. Otherwise, we can additionally use impor-
tance sampling for adjustment.

4 Addressing Limitations of ARMs

We discuss in more detail about how MaMs address some
limitations of ARMs. The first one is general to both set-
tings, while the latter two are specific to distribution match-
ing.

Non-scalable evaluation of likelihoods: Due to sequential
conditional modeling, evaluation of any arbitrary marginal
p(xo) with ARMs requires applying the NN up to D
times, which is inefficient in time and memory for high-
dimensional data. In comparison, MaMs are able to estimate
any arbitrary marginal with one NN forward pass.

Lack of support for any-order training The training
objectives in distribution matching measures the distance
in terms of log pϕ(x) and log p(x). However, unless the
model is perfectly self-consistent, it will not be the case that
log pϕ(x) = Eσ log pϕ(x|σ). In particular, we would not
expect it to work to have an objective that takes an expecta-
tion over orderings σ and uses log pϕ(x|σ) to match the tar-
get log p(x), i.e., EσEpϕ(·|σ)d(pϕ(·|σ), p) ̸= Epϕ

d(pϕ, p).
The MaM self-consistency constraint addresses this issue,
while ARMs need to be trained with a preset order to mini-
mize the distance between log pϕ(x|σ) and the target den-
sity log p(x). MaMs are not limited to fixed ordering be-
cause marginals are order-agnostic and we can optimize
over expectation of orderings for the marginalization self-
consistency constraints.

Non-scalable training When minimizing the difference
between log pϕ(x|σ) and the target log p(x), ARMs need to
sum conditionals to evaluate log pϕ(x|σ). One might con-
sider subsampling one-step conditionals pϕ(xσ(d)|xσ(<d)
to estimate pϕ(x), but this leads to high variance of the
REINFORCE gradient in (8) due to the product of the score
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Figure 2. Approximating log pϕ(x) with one-step conditional
(ARM-MC) results in extremely high gradient variance during
DM training.

function and distance terms, which are both high variance
(We validate this in experiments, see Figure 2). Conse-
quently, training ARMs for distribution matching necessi-
tates a sequence of D conditional evaluations to compute
the gradient of the objective function. This constraint leads
to an effective batch size of B×D, significantly limiting the
scalability of ARMs to high-dimensional problems. Further-
more, obtaining Monte Carlo samples from ARMs for the
REINFORCE gradient estimator is slow when the dimen-
sion is high. Due to the fixed input ordering, this process
requires D sequential sampling steps, making more cost-
effective sampling approaches like persistent MCMC infea-
sible. Marginalization models circumvent this challenge
by directly estimating the log-likelihood with the marginal
neural network. Additionally, the support for any-order mod-
eling enables an efficient sampling strategy during training
through the utilization of persistent MCMC methods.

5 Experiments

We conduct experiments with marginalization models
(MaM) on both MLE and DM settings for discrete problems
including binary images, text, molecules and phyiscal sys-
tems. We consider the following baselines: Any-order ARM
(AO-ARM) (Hoogeboom et al., 2021a), ARM (Larochelle
& Murray, 2011), GFlowNet (Bengio et al., 2021a; Zhang
et al., 2022), and Discrete Flow (Tran et al., 2019)2. Only
MaM and (AO-)ARM support marginal inference, so ARM
will be the major focus of comparison. Discrete flow al-
lows exact likelihood evaluation while GFlowNet needs to
approximate the likelihood with sum using importance sam-
ples. For evaluating AO-ARM, we can either use it as an
ensemble model (AO-ARM-E) by averaging the likelihood
estimate from several random orderings or as a single model
(AO-ARM-S) that picks a single random ordering.

Maximum likelihood estimation We report the nega-
tive test likelihood (bits/digit), likelihood estimate quality

2Results are only reported on text8 for discrete flow since there
is no public code implementation.
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Figure 3. An example of the data generated (with 100/400/700 pixels masked) for comparing the quality of likelihood estimate. Numbers
below the images are LL estimates from MaM’s marginal network (left) and AO-ARM-E’s ensemble estimate (right).

and likelihood inference time per minibatch for BINARY-
MNIST, and additionally on MOLECULAR SET and
TEXT8 in Appendix D. For MaM, we use the conditional
network to evaluate the likelihood on test data, as marginals
are not strictly valid and thus cannot be directly compared
in terms of numerical values.

BINARY-MNIST In order to evaluate the quality of
marginal likelihood estimates, we employ a controlled ex-
periment where we randomly mask out portions of a test
image and generate multiple samples with varying levels
of masking (see Figure 3 for a visualization). This process
allows us to obtain a set of distinct yet comparable samples,
each associated with a different likelihood value. The like-
lihood evaluation results are shown in Table 1. For each
model, we evaluate the likelihood of the generated samples
and compare that with AO-ARM-Ensemble’s estimate since
it achieves the best likelihood on test data. We report the
Pearson correlation and inference time of the likelihood
estimates from the given model against that from AO-ARM-
Ensemble. MaM achieves close to 4 order of magnitude
speed-up while only at slightly worse or comparable quality.

Model NLL (bpd) ↓ Pearson ↑ LL inf. time (s) ↓
AO-ARM-E-UNet 0.148 1.0 661.98 ± 0.49
AO-ARM-S-UNet 0.149 0.993 132.40 ± 0.03
MaM-UNet 0.149 0.993 0.018 ± 0.00
GflowNet-MLP 0.189 – –

Table 1. Performance Comparison on Binary-MNIST

Distribution matching training We compare with ARM
that uses sum of fixed-ordering conditionals to evaluate the
log likelihood for matching. We additionally demonstrate
the failure of ARM-MC (in Appendix E), which uses a
one-step conditional to estimate the log-likelihood. ARM
can be regarded as the golden standard of learning autore-
gressive conditionals, since its gradient is the most infor-
mative. MaM uses marginal network to evaluate log pθ(x)
and subsamples a one-step marginalization constraint to
minimize for each x in the batch. The effective batch size
for ARM and GFlowNet is B ×O(D) for batch of size B,
and B ×O(1) for ARM-MC and MaM . MaM and ARM
optimizes KL divergence using REINFORCE with baseline.
GFlowNet minimizes squared distance (Zhang et al., 2022).
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ISING MODEL Ising models (Ising, 1925) model interact-
ing spins and are widely studied in mathematics and physics
(see MacKay (2003)). The spins of the D sites are repre-
sented a D-dimensional binary vector and its distribution
is p∗(x) ∝ exp (−EJ(x)) where EJ(x) ≜ −x⊤Jx− θ⊤x,
with J the binary adjacency matrix.

Figure 4 plots the negative energies of generated samples.
As described in Section 4, the ARM-MC gradient suffers
from high variance and fails to converge. MaM is able to
match the distribution fairly well and works for much larger
dimension (30× 30) while ARM fails to scale.

MOLECULAR GENERATION WITH TARGET PROPERTY
In this task, we are interested in training generative mod-
els towards a specific target property of interest g(x),
such as lipophilicity (logP), synthetic accessibility (SA),
etc. We define the distribution of molecules to follow
p∗(x) ∝ exp(−(g(x)− g∗)2/τ), where g∗ is the target
value of the property and τ is a temperature parameter. We
train ARM and MaM for lipophilicity of target values 4.0
and −4.0, both with τ = 1.0 and τ = 0.1. Both models
are trained for 4000 iterations with batch size 512. Results
are shown in Figure 5 (Table 8 and additional figures in Ap-
pendix E.4). MaM is able to match the distribution fairly
well as compared to ARM but with a small gap. However,
MaMs support flexible any-order modeling (see Figure 18)
and works for much larger dimension (D = 500 in this
example) that ARMs/GFlowNets fail to scale to.
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A Background

We first review two prevalent generative modeling settings. Then we introduce autoregressive models and how they can be
trained for any-order modeling in maximum likelihood estimation.

Maximum likelihood (MLE) Given a dataset D = {x(i)}Ni=1 drawn from a data distribution p = pdata, we aim to learn
the distribution pθ(x) that maximizes the probability of the data under our model. Mathematically, we aim to learn the
parameters θ⋆ that maximize the log-likelihood:

θ⋆ = argmaxθ Ex∼pdata [log pθ(x)] ≈ argmaxθ
1
N

∑N
i=1 log pθ(x

(i)) (9)

which is also equivalent to minimizing the Kullback-Leibler divergence under the empirical distribution, i.e., minimizing
DKL(pdata(x)||pθ(x)). This is the setting that is most commonly used in generation of images (e.g., diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019)) and language (e.g., BERT (Devlin et al., 2018), GPT (Radford
et al., 2019)) where we can empirically draw observed data from the distribution.

Distribution matching (DM) In this setting, we do not have data from the distribution of interest. Instead, we have
access to the unnormalized (log) probability mass function f , usually in the form of reward function or energy function,
that are defined by us or by physical systems to specify how likely a sample is. For example, we can define the target
PMF to be f(x) = exp(r(x)/τ) where r(x) is the reward function and τ > 0 is a temperature parameter. This expresses
the intuitive idea that we would like the model to assign higher probability to data with larger reward. For example, in
conversation systems such as ChatGPT (Ouyang et al., 2022; OpenAI, 2023), r(x) can express how well a response fits the
user’s preference. In molecular design applications, scientists can specify the reward according to how close a particular
sample’s measured or calculated properties are to some functional desiderata.

Mathematically, we aim to learn the parameters θ such that pθ(x) ≈ f(x)/Z, where Z is the normalization constant of f .
Two common training criteria are to minimize the KL divergence (Noé et al., 2019; Wu et al., 2019; Damewood et al., 2022):

min
θ

DKL
(
pθ (x)

∥∥f(x)/Z) = Ex∼pθ(x) [log pθ (x)− log f(x)/Z] (10)

or the squared distance between the two log probabilities over a distribution of interest q(x) (Bengio et al., 2021a; Zhang
et al., 2022):

min
θ

Ex∼q(x) [log pθ (x)− log f(x)/Z]
2
. (11)

Autoregressive models Autoregressive models (ARMs) model the distribution by factorizing the complex high-
dimensional distribution p(x) into univariate conditionals using the chain rule:

log p(x) =
∑D

d=1 log p (xd | x<d) , (12)

where x<d = {x1, . . . , xd−1}. Recently there has been great success in applying autoregressive models to discrete data,
such as natural language, proteins (Shin et al., 2021; Lin et al., 2023; Madani et al., 2023), and molecules (Segler et al.,
2018; Flam-Shepherd et al., 2022). Due to their sequential nature, evaluation of (joint/marginal) likelihood requires up to D
neural network evaluations, which is costly for long sequences.

Any-order ARMs (AO-ARMs) Under the MLE setting, Uria et al. (2014) propose to learn the conditionals of ARMs for
arbitrary orderings σ ∈ SD, where SD denotes the set of all permutations of {1, . . . , D}. The model ϕ can be trained by
maximizing a lower-bound objective (Uria et al., 2014; Hoogeboom et al., 2021a) that takes an expectation under a uniform
distribution on orderings. This objective allows scalable training of AO-ARMs, leveraging efficient parallel evaluation of
multiple one-step conditionals in one forward pass with architectures such as the U-Net (Ronneberger et al., 2015) and
Transformers (Vaswani et al., 2017). However, training of AO-ARMs remains a challenge under the DM setting, which we
will discuss in details in Section 4.

B Related Work

Autoregressive models Autoregressive models (ARMs) decompose a joint probability distribution into a sequence of
conditional probabilities (Bengio & Bengio, 2000; Larochelle & Murray, 2011). Recent developments in deep learning
have greatly advanced the performance of ARMs across different modalities, including images, audio, and text. Any-order
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(Order-agnostic) ARMs were first introduced in (Uria et al., 2014) by training with the any-order lower-bound objective for
the maximum likelihood setting and recently seen in ARDM (Hoogeboom et al., 2021a) with state-of-the-art performance
for any-order discrete modeling of image/text/audio.

Discrete diffusion models Discrete diffusion models learn to denoise from a latent base distribution into the data
distribution. Sohl-Dickstein et al. (2015) first proposed diffusion for binary data and was extended in Hoogeboom et al.
(2021b) for categorical data and both works adds uniform noise in the diffusion process. A wider range of transition
distributions was proposed in Austin et al. (2021) and insert-and-delete diffusion processes have been explored in Johnson
et al. (2021). Hoogeboom et al. (2021a) explored the connection between ARMs and diffusion model with absorbing
diffusion and showed that OA-ARDMs are equivalent to absorbing diffusion models in infinite time limit, but achieves better
performance with a smaller number of steps.

Discrete normalizing flow Normalizing flows transform a latent base distribution into the data distribution by applying a
sequence of invertible transformations (Rippel & Adams, 2013; Tabak & Turner, 2013; Dinh et al., 2014; Sohl-Dickstein
et al., 2015; Rezende & Mohamed, 2015; Dinh et al., 2016; Kingma et al., 2016; Papamakarios et al., 2017). They have
been extended to discrete data (Tran et al., 2019; Hoogeboom et al., 2019) with carefully designed discrete variable
transformations. Their performance is competitive on character-level text modeling, but they do not allow any-order
modeling and could be limited to discrete data with small number of categories due to the use of a straight-through gradient
estimators.

GFlowNets GFlowNets (Bengio et al., 2021a;b) formulate the problem of generation as matching the probability flow
at terminal states to the target normalized density. Zhang et al. (2022) proposes to apply GFlowNets to discrete data and
additionally train an energy function from data. GFlowNets assume certain generation paths through a DAG, which limits its
flexibility in sampling/generation. Compared to autoregressive models, this approach does not scale as well during training
and its exact likelihood evaluation is intractable. We note that GFlowNet training also enforces a local detailed balance
condition that is similar in spirit to the marginalization self-consistency presented here.

Probabilistic circuits Probabilistic circuits were recently proposed as a framework for tractable probabilistic models
that unify tractable probabilistic models, including Chow-Liu trees (Chow & Liu, 1968), arithmetic circuits (Darwiche,
2003), sum-product networks (Poon & Domingos, 2011), etc. This type of model uses circuits that follow smoothness and
decomposibilty structural properties such that probability densities/masses are tractable. The expressiveness of the model is
limited by the allowed circuit structures.
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C Additional Technical Details

C.1 Proof of Theorem 3.1

Proof. From the single-step marginalization self-consistency in (5), we have

log pθ(x) =

D∑
d=1

log pϕ
(
xσ(d)|xσ(<d)

)
, ∀x, σ.

Therefore we can rewrite the optimization in (6) as:

max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
(13)

s.t. pθ(xσ(<d))pϕ(xσ(d)|xσ(<d)) = pθ(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D].

Let p∗ be the optimal probability distribution that maximizes the likelihood on training data, and from the chain rule we
have:

p∗ = argmax
p

Ex∼pdata log p(x) = Ex∼pdataEσ∼U(SD)

D∑
d=1

log p
(
xσ(d)|xσ(<d)

)
Then p∗ is also the optimal solution to (13) the marginalization constraints are automatically satisfied by p∗ since it is a
valid distribution. From the universal approximation theorem (Hornik et al., 1989; Hornik, 1991; Cybenko, 1989), we can
use separate neural networks to model pθ (marginals) and pϕ (conditionals), and obtain optimal solution to (13) with θ∗ and
ϕ∗ that approximates p∗ arbitrarily well.

Specifically, if θ∗ and ϕ∗ satisfy the following three conditions below, they are the optimal solution to (13):

pϕ∗
(
xσ(d) | xσ(<d)

)
= p∗

(
xσ(d) | xσ(<d)

)
, ∀ x, σ (14)

pθ∗(xs) = p∗(xs)Zθ∗ , ∀ x, s ⊆ {1, · · · , D} (15)

pθ∗(xσ(<d))pϕ∗(xσ(d)|xσ(<d)) = pθ∗(xσ(≤d)), ∀σ ∈ SD,x ∈ {1, · · · ,K}D, d ∈ [1 : D] (16)

where Zθ∗ is the normalization constant of pθ∗ and is equal to pθ∗([?? · · ·?]). It is easy to see from the definition of
conditional probabilities that satisfying any two of the optimal conditions leads to the third one.

To obtain the optimal ϕ∗, it suffices to solve the following optimization problem:

Stage 1: max
ϕ

Ex∼pdataEσ∼U(SD)

∑D

d=1
log pϕ

(
xσ(d) | xσ(<d)

)
because p∗ = argmaxp Ex∼pdataEσ∼U(SD)

∑D
d=1 log p

∗ (xσ(d)|xσ(<d)

)
due to chain rule. Solving Stage 1 is equivalent to

finding ϕ∗ that satisfies condition (14). Then we can obtain the optimal θ∗ by solving for condition (16) given the optimal
conditionals ϕ∗:

Stage 2: min
θ

Ex∼q(x)Eσ∼U(SD)Ed∼U(1,··· ,D)

(
log[pθ(xσ(<d))pϕ∗(xσ(d)|xσ(<d))]− log pθ(xσ(≤d))

)2

C.2 Algorithms

We present the algorithms for training MaM for maximum likelihood and distribution matching settings in Algorithm 1 and
Algorithm 2.

D Experiment Details for Maximum Likelihood Estimation

D.1 Dataset details

Binary MNIST Binary MNIST is a dataset introduced in (Salakhutdinov & Murray, 2008) that stochastically set each
pixel to 1 or 0 in proportion to its pixel intensity. We use the training and test split of Salakhutdinov & Murray (2008)
provided in https://github.com/yburda/iwae/tree/master. (Burda et al., 2015).

https://github.com/yburda/iwae/tree/master


Generative Marginalization Models

Algorithm 1 MaM MLE training

Input: Data Dtrain, q(x), network θ and ϕ
Stage 1: Train ϕ with the lower bound objective used
in AO-ARM (Uria et al., 2014; Hoogeboom et al.,
2021a)
for minibatch x ∼ Dtrain do

Sample σ ∼ U(SD), d ∼ U(1, · · · , D)

L ←
∑

j∈σ(≥d) log pϕ

(
xj |xσ(<d)

)
L ← D

D−d+1L
Update ϕ with gradient of L

end for
Stage 2: Train θ to distill the marginals from optimized
conditionals ϕ
for minibatch x ∼ q(x) do

Sample σ ∼ U(SD), d ∼ U(1, · · · , D)
L ← squared error of (5)
Update θ with gradient of L

end for

Algorithm 2 MaM DM training

Input: q(x), network θ and ϕ, Gibbs sampling block size
M
Joint training of ϕ and θ:
for j in {1, · · · , N} do

Sample σ ∼ U(SD)
Sample x′ ∼ pϕ(xσ(≤M)|xσ(>M))
{Persistent block Gibbs sampling}
Sample x̃ ∼ q(x)
Sample d̃ ∼ U(1, · · · , D), σ̃ ∼ U(SD)
Lpenalty ← squared error of (5), for d̃ and σ̃ with x̃
∇θ,ϕDKL ← REINFORCE est. with x′

∇θ,ϕ ← ∇θ,ϕDKL + λ∇θ,ϕLpenalty
Update θ and ϕ with gradient
x← x′

end for

To evaluate the quality of the likelihood estimates, we employ a controlled experiment where we randomly mask out portions
(100, 400, and 700 pixels) of a test image and generate multiple samples with varying levels of masking (refer to Figure 3).
We repeat this for 160 (randomly subsampled) test images and created a dataset of 640 sets of comparable images. To
further test the quality of the marginal likelihood estimates on partially observed images, we curate a dataset of 160 sets of
partial test images (7 ∼ 9 images in each set) by randomly subsampling from the test set and masking the upper half of the
images. To make sure the partial images are comparable but different in their log-likelihood, in each set, we remove samples
that have a log-likelihood close to another sample within the threshold of 5.0.

Molecular Sets The molecules in MOSES are represented either in SMILES (Weininger et al., 1989) or SELFIES (Krenn
et al., 2020) strings. We construct a vocabulary (including a stop token) from all molecules and use discrete valued strings to
represent molecules. It is worth noting that MaM can also be applied for modeling molecules at a coarse-grained level with
predefined blocks, which we leave for future work.

The test set used for evaluating likelihood estimate quality is constructed in a similar manner to Binary MNIST, by drawing
sets of random samples from the test dataset.

text8 In this dataset, we use a vocabulary of size 27 to represent the letter alphabet with an extra value to represent spaces.
The test set of datasets used for evaluating likelihood estimate quality is constructed in a similar manner to Binary MNIST,
each set is generated by randomly masking out portions of a test text sequence (by 50, 100, 150, 200 tokens) and generating
samples.

D.2 Training details

Binary MNIST

• 0, 1 and “?” are represented by a scalar value (“?” takes the value 0) and additionally a mask indicating if it is a “?”.

• U-Net with 4 ResNet Blocks interleaved with attention layers for both AO-ARM and MaM. MaM uses two separate
neural networks for learning marginals ϕ and conditionals θ. Input resolution is 28× 28 with 256 channels used.

• The mask is concatenated to the input. 3/4 of the channels are used to encode input. The remaining 1/4 channels
encode the mask cardinality (see Hoogeboom et al. (2021a) for details).

• MaM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the downsampling blocks and
an additional MLP with 2 hidden layers of dimension 4096. We observe it is necessary to finetune not only on the
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additional MLP but also on the downsampling blocks to get a good estimate of the marginal probability, which shows
marginal network and conditional network rely on different features to make the final prediction.

• Batch size is 128, Adam is used with learning rate 0.0001. Gradient clipping is set to 100. Both AO-ARM and MaM
conditionals are trained for 600 epochs. The MaM marginals are finetuned from the trained conditionals for 100 epochs.

MOSES and text8

• Transformer with 12 layers, 768 dimensions, 12 heads, 3072 MLP hidden layer dimensions for both AO-ARM and
MaM. Two separate networks are used for MaM.

• SMILES or SELFIES string representation and “?” are first converted into one-hot encodings as input to the Transformer.

• MaM first learns the conditionals ϕ and then learns the marginals θ by finetuning on the MLP of the Transformer.

• Batch size is 512 for MOSES and 256 for text8.

• AdamW is used with learning rate 0.0005, betas 0.9/0.99, weight decay 0.001. Gradient clipping is set to 0.25.
Both AO-ARM and MaM conditionals are trained for 1000 epochs for text8 and 200 epochs for MOSES. The MaM
marginals are finetuned from the trained conditionals for 200 epochs.

Compute

• All models are trained on a single NVIDIA A100. The evaluation time is tested on an NVIDIA GTX 1080Ti.

D.3 Binary MNIST

We report the negative test likelihood (bits/digit), likelihood estimate quality and likelihood inference time per minibatch (of
size 16) in Table 2. To keep GPU memory usage the same, we sequentially evaluate the likelihood for ARMs. Both MaM
and AO-ARM use a U-Net architecture with 4 ResNet Blocks interleaved with attention layers. GFlowNets fail to scale to
large architectures as U-Net, hence we report GFlowNet results using an MLP from Zhang et al. (2022). For MaM, we use
the conditional network to evaluate the likelihood on test data, since marginals are not strictly valid but only approximations.
The marginal network is used for evaluating likelihood quality and inference time.

Original Censored-100 Censored-400 Censored-700

-54.48, -57.47

Generated-100

-60.48, -63.37

Generated-400

-106.45, -108.58

Generated-700

Figure 7. An example of the data generated (with 100/400/700 pixels masked) for comparing the quality of likelihood estimate. Numbers
below the images are LL estimates from MaM’s marginal network (left) and AO-ARM-E’s ensemble estimate (right).

Evaluating marginal likelihood estimate quality

In order to evaluate the quality of marginal likelihood estimates, we employ a controlled experiment where we randomly
mask out portions of a test image and generate multiple samples with varying levels of masking (in Figure 7). This process
allows us to obtain a set of distinct yet comparable samples, each associated with a different likelihood value. For each
model, we evaluate the likelihood of the generated samples and compare that with AO-ARM-Ensemble’s estimate since it
achieves the best likelihood on test data. We report the Spearman’s correlation and Pearson correlation of the likelihood
estimates from the given model against that from AO-ARM-Ensemble. MaM achieves close to 4 order of magnitude
speed-up while only at slightly worse quality.
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Table 2. Performance Comparison on Binary-MNIST

Model NLL (bpd) ↓ Spearman’s ↑ Pearson ↑ LL inference time (s) ↓
AO-ARM-E-U-Net 0.148 1.0 1.0 661.98 ± 0.49
AO-ARM-S-U-Net 0.149 0.996 0.993 132.40 ± 0.03
MaM-U-Net 0.149 0.992 0.993 0.018 ± 0.00
GflowNet-MLP 0.189 – – –

-28.81, -26.70

Partial-0

-34.45, -32.28

Partial-1

-40.56, -36.14

Partial-2

-46.81, -43.85

Partial-3

-53.93, -48.44

Partial-4

-59.03, -55.58

Partial-5

Figure 8. An example set of partial images for evaluating marginal likelihood estimate quality. The numbers in the captions show the
log-likelihood calculated using learned marginals (left) v.s. learned conditionals (right)

Table 3. Performance Comparison on Binary-MNIST partial images

Model Spearman’s ↑ Pearson ↑ LL inference time (s) ↓
AO-ARM-E-U-Net 1.0 1.0 248.96 ± 0.14
AO-ARM-S-U-Net 1.0 0.997 49.75 ± 0.03
MaM-U-Net 0.998 0.995 0.02 ± 0.00

We addtionally evaluate the m arginal Likelihood estimate on partial Binary MNIST images. Figure 8 illustrates an example
set of partial images that we evaluate and compare likelihood estimate from MaM against ARM. Table 3 contains the
comparison of the marginal likelihood estimate quality and inference time.

Generated image samples

0.1111, 0.0000 -14.2229, -16.1155 -26.9883, -28.8949 -39.1542, -42.2621 -51.3186, -53.8418 -61.0715, -63.9271 -67.4851, -71.1942 -79.8951, -84.4266

Figure 9. An example of the trajectory every 112 step when generating an MNIST digit following a random order. The future pixels are
generated by conditioning on the existent filled-in pixels. The numbers in the captions show the log-likelihood calculated using learned
marginals (left) v.s. learned conditionals (right)

Figure 9 shows how a digit is generated pixel-by-pixel following a random order. We show generated samples from MaM
using the learned conditionals ϕ in Figure 10.

D.4 Molecular Sets

We test generative modeling of MaM on a benchmarking molecular dataset (Polykovskiy et al., 2020) refined from the ZINC
database (Sterling & Irwin, 2015). Same metrics are reported as Binary-MNIST. Likelihood quality is measured similarly
but on random groups of test molecules instead of generated ones. The generated molecules from MaM and AO-ARM are
comparable to standard state-of-the-art molecular generative models, such as CharRNN (Segler et al., 2018), JTN-VAE (Jin
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Figure 10. Generated samples: Binary MNIST
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et al., 2018), and LatentGAN (Prykhodko et al., 2019) (in Table 5 and Figure 11), with additional controllability and
flexibility in any-order generation. MaM supports much faster marginal inference, which is useful for domain scientists to
reason about likelihood of substructures.

Table 4. Performance Comparison on Molecular Sets

Model NLL (bpd) ↓ Spearman’s ↑ Pearson ↑ LL inf. time (s) ↓
AO-ARM-E-Transfomer 0.652 1.0 1.0 96.87± 0.04
AO-ARM-S-Transfomer 0.655 0.996 0.994 19.32± 0.01
MaM-Transfomer 0.655 0.998 0.995 0.006±0.00

Comparing MaM with SOTA on MOSES molecule generation

We compare the quality of molecules generated by MaM with standard baselines and state-of-the-art methods in Table 5 and
Figure 11. Details of the baseline methods are provided in Polykovskiy et al. (2020). MaM-SMILES/SELFIES represents
MaM trained on SMILES/SELFIES string representations of molecules. MaM performs either better or comparable to
SOTA molecule generative modeling methods. The major advantage of MaM and AO-ARM is that their order-agnostic
modeling enables generation in any desired order of the SMILES/SELFIES string (or molecule sub-blocks).

Table 5. Performance Comparison on MOSES

Model Valid↑ Unique
10k↑

Frag
Test↓

Scaf
TestSF↑

Int Div1↑ Int Div2↑ Filters↑ Novelty↑

Train 1.0 1.0 1.0 0.9907 0.8567 0.8508 1.0 1.0
HMM 0.076 0.5671 0.5754 0.049 0.8466 0.8104 0.9024 0.9994
NGram 0.2376 0.9217 0.9846 0.0977 0.8738 0.8644 0.9582 0.9694
CharRNN 0.9748 0.9994 0.9998 0.1101 0.8562 0.8503 0.9943 0.8419
JTN-VAE 1.0 0.9996 0.9965 0.1009 0.8551 0.8493 0.976 0.9143
MaM-SMILES 0.7192 0.9999 0.9978 0.1264 0.8557 0.8499 0.9763 0.9485
MaM-SELFIES 1.0 0.9999 0.997 0.0943 0.8684 0.8625 0.894 0.9155

Generated molecule samples

Figure 12 and 13 plot the generated molecules from MaM-SMILES and MaM-SELFIES.
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Figure 11. KDE plots of lipophilicity (logP), Synthetic Accessibility (SA), Quantitative Estimation of Drug-likeness (QED), and molecular
weight for generated molecules. 30, 000 molecules are generated for each method.
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Figure 12. Generated samples from MaM-SMILES: MOSES
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Figure 13. Generated samples from MaM-SELFIES: MOSES
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D.5 text8

Table 6. Performance Comparison on text8

Model NLL (bpc) ↓ Spearman’s ↑ Pearson ↑ LL inf. time (s) ↓
Discrete Flow (8 flows) 1.23 – – –
AO-ARM-E-Transfomer 1.494 1.0 1.0 207.60 ± 0.33
AO-ARM-S-Transfomer 1.529 0.982 0.987 41.40 ± 0.01
MaM-Transfomer 1.529 0.937 0.945 0.005 ± 0.000

Text8 (Mahoney, 2011) is a character level language modeling task with 100M characters split into chunks of 250 character.
We follow the same procedure as Binary-MNIST and report the same metrics in Table 6. The results of discrete flow is
from Tran et al. (2019) (for which unfortunately no open-source implementations exist to measure other metrics).

Samples used for evaluating likelihood estimate quality

We show an example of a set of generated samples from masking different portions of the same text, which is then used for
evaluating and comparing the likelihood estimate quality. Their log-likelihood calculated using the conditionals with the
AO-ARM are in decreasing order. We use MaM marginal network to evaluate the log-likelihood and compare its quality
with that of the AO-ARM conditionals.

Original text:
the subject of a book by lawrence weschler in one nine nine five entitled mr wilson s
cabinet of wonder and the museum s founder david wilson received a macarthur foundation
genius award in two zero zero three the museum claims to attract around six

Text generated from masking out 50 tokens:
the_su_je_t of a b_ok_by_la_r_nce _es_h___ _n o___nine n_ne five entitled mr_wilson
s_cabinet of wonder and the museum s founder __vid w_l_o_ r__eive_ a macarthur
fou__a__on _e___s_awa_d in two _ero z_r_ _hree _he museum c_aims _o attr_ct ar_u_d
s__
the subject of a book by lawrence heschell in one nine nine five entitled mr wilson s
cabinet of wonder and the museum s founder david wilson received a macarthur foundation
dennis award in two zero zero three the museum claims to attract around sev

Text generated from masking out 100 tokens:
_the_su_je_t _f __b__k__y_l__r_nc_ _es_h_____n o___nine n_ne five_
enti_l_d mr_wil_o_ __c_b__et of wond_r an_ _h_ mu_eu_ s f_u_der___vid
_w_l_______eive_ a_maca_thur f_u__a___n _e_____a_a_d __ two _er_ z_r_ _h_ee____ museum
c_a_ms__o __tr_ct ar_u__ ___
the subject of a book by lawrence bessheim in one nine nine five entitled mr wilson s
cabinet of wonder and the museum s founder david wilson received a macarthur foundation
leaven award in two zero zero three the museum claims to detract around the
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Text generated from masking out 150 tokens:
_the__u____t__f __________l__r_nc_ _es_h_____n o___n__e n_ne__ive_
e_ti_l__m__wil______c____et of won___ an____________ s___u_der___vid_
w_________eiv__ a__a_a_th________a___n _e_____a_______ two__e__ z_r_ ___e_____ _use_m
c_a_ms___ __tr_ct_a_____ ___
the tudepot of europe de laurence desthefs in one nine nine five entitled mr wild the
cabinet of wonder anne cedallica s founder david wright received arnasa the culmination
team sparked in two zero zero three the museum claims to retract athlet c a

Text generated from masking out 200 tokens:
_t____________f __________l__r____ _______ _____o______e__n___iv__
e__i_l__ ____wil______c_____t___ w______a____________________der_____d_
w_____ ____e________a_a___________a___n_e_____a_______t_____________
___e_____ _u_e___c_a__s___ ___r_c__a_____ ___
the builder of the pro walter a a e sec press one nine nine five esciele the wild men
convert of wark flax notes the world undergroand whirl spiken america ascent and martin
decree a letter to the antler s default museum chafes in america ascent vis

E Experiment Details for Distribution Matching Training

E.1 Dataset details

Ising model The Ising model is defined on a 2D cyclic lattice. The J matrix is defined to be σAN , where σ is a scalar and
AN is the adjacency matrix of a N ×N grid. Positive σ encourages neighboring sites to have the same spins and negative σ
encourages them to have opposite spins. The bias term θ places a bias towards positive or negative spins. In our experiments,
we set σ to 0.1 and θ to 1 scaled by 0.2. Since we only have access to the unnormalized probability, we generate 2000
samples following Grathwohl et al. (2021) using Gibbs sampling with 1, 000, 000 steps for 10× 10 and 30× 30 lattice sizes.
Those data serve as ground-truth samples from the Ising model for evaluating the test log-likelihood.

Molecular generation with target property During training, we need to optimize on the loss objective on samples
generated from the neural network model. However, if the model generates SMILES strings, not all strings correspond to a
valid molecule, which makes training at the start challenging when most generated SMILES strings are invalid molecules.
Therefore, we use SELFIES string representation as it is a 100% robust in that every SELFIES string corresponds to a valid
molecule and every molecule can be represented by SELFIES.

E.2 Training details

Ising model and molecule generation with target property

• Ising model input are of {0, 1, ?} values and are one-encoded as input to the neural network. The same is done for
molecule SELFIES strings.

• MLP with residual layers, 3 hidden layers, feature dimension is 2048 for Ising model. 6 hidden layers, feature
dimension 4096 for molecule target generation.

• Adam is used with learning rate of 0.0001. Batch size is 512 and 4096 for molecule target generation. ARM, GFlowNet
and MaM are trained with 19, 800 steps for the Ising model. ARM and MaM are trained with 3, 000 steps for molecule
target generation.

• Separate networks are used for conditionals and marginals of MaM. They are trained jointly with penalty parameter λ
set to 4.

Compute



Generative Marginalization Models

• All models are trained on a single NVIDIA A100. The evaluation time is tested on an NVIDIA GTX 1080Ti.

We compare with ARM that uses sum of conditionals to evaluate log pϕ with fixed forward ordering and ARM-MC that
uses a one-step conditional to estimate log pϕ. ARM can be regarded as the golden standard of learning autoregressive
conditionals, since its gradient is the most informative. MaM uses marginal network to evaluate log pθ and subsamples a
one-step marginalization constraint for each data point in the batch. The effective batch size for ARM and GFlowNet is
B ×O(D) for batch of size B, and B ×O(1) for ARM-MC and MaM . MaM and ARM optimizes KL divergence using
REINFORCE gradient estimator with baseline. GFlowNet minimizes squared distance following Zhang et al. (2022).

E.3 Ising model

Ising models (Ising, 1925) model interacting spins and are widely studied in mathematics and physics (see MacKay (2003)).
We study Ising model on a square lattice. The spins of the D sites are represented a D-dimensional binary vector and its
distribution is p∗(x) ∝ f∗(x) = exp (−EJ(x)) where EJ(x) ≜ −x⊤Jx− θ⊤x, with J the binary adjacency matrix. These
models, although simplistic, bear analogies to the complex behavior of high-entropy alloys (Damewood et al., 2022).

We compare MaM with ARM, ARM-MC, and GFlowNet on a 10×10 (D=100) and a larger 30×30 (D=900) Ising model
where ARMs and GFlowNets fail to scale. 2000 ground truth samples are generated following Grathwohl et al. (2021) and
we measure test negative log-likelihood on those samples. We also measure DKL(pθ(x)||p∗) by sampling from the learned
model and evaluating

∑M
i=1(log pθ(xi)−log f∗(xi)). Figure 4 contains KDE plots of −EJ(x) for the generated samples.

As described in Section 4, the ARM-MC gradient suffers from high variance and fails to converge. Under a larger learning
rate, it also tends to collapse and converge to a single sample. MaM-DM has significant speedup in inference time and is the
only model that supports any-order generative modeling. The performance in terms of KL divergence and likelihood are
slightly worse than models with fixed/learned order, which is expected since any-order modeling is harder than fixed-order
modeling, and MaM-DM is solving a more complicated task of jointly learning conditionals and marginals. On a 30× 30
(D = 900) Ising model, MaM-DM achieves a bpd of 0.835 on ground-truth samples while ARM and GFlowNet fails to
scale. Distribution of generated samples is shown in Fig 4.

Table 7. Performance Comparison on Ising model (10× 10)

Model NLL (bpd) ↓ KL divergence ↓ Inference time (s) ↓
ARM-Forward-Order-MLP 0.79 -78.63 5.29±0.07e-01
ARM-MC-Forward-Order-MLP 24.84 -18.01 5.30±0.07e-01
MaM-Any-Order-MLP 0.80 -77.77 3.75±0.08e-04
GFlowNet-Learned-Order-MLP 0.78 -78.17 –

Generated samples

We compare ground truth samples and MaM samples in Figure 14 and 15.

E.4 Molecular generation with target property

In this task, we are interested in training generative models towards a specific target property of interest g(x),
such as lipophilicity (logP), synthetic accessibility (SA) etc. We define the distribution of molecules to follow
p∗(x) ∝ exp(−(g(x)− g∗)2/τ), where g∗ is the target value of the property and τ is a temperature parameter.

Table 8. Performance Comparison on Target Lipophilicity

Model KL divergence ↓
Distribution logP = 4, τ = 1.0 logP = −4, τ = 1.0 logP = 4, τ = 0.1 logP = 4, τ = 0.1

ARM-FO-MLP -174.25 -168.62 -167.83 -160.2
MaM-AO-MLP -173.07 -166.43 -165.75 -157.59

Target property distribution matching on lipophilicity (logP)
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Figure 14. Samples: 10× 10 Ising model. Ground truth (left) v.s. MaM (right).

Figure 15. Samples: 30× 30 Ising model. Ground truth (left) v.s. MaM (right).
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We train ARM and MaM for lipophilicity of target values 4.0 and −4.0, both with τ = 1.0 and τ = 0.1 for molecule length
D = 55. Both models are trained for 3000 iterations with batch size 512. Results in KL divergence is shown in Table 8.
Findings are consistent with the Ising model experiments. There is a small gap in the performance of MaM against ARM,
but MaM supports any-order modeling and scales to problems with much larger dimension.

Figure 16 shows the logP of generated samples of length D = 55 towards target values 4.0 and −4.0 under distribution
temperature τ = 1.0 and τ = 0.1. For τ = 1.0, the peak of the probability density (mass) appears around 2.0 (or −2.0)
because there are more valid molecules in total with that logP than molecules with 4.0 (or −4.0), although a single molecule
with 4.0 (or −4.0) has a higher probability than 2.0 (or −2.0). When the temperature is set to much lower (τ = 0.1),
the peaks concentrate around 4.0 (or −4.0) because the probability of logP value being away from 4.0 (or −4.0) quickly
diminishes to zero. We additionally show results on molecules of length D = 500 in Figure 17. ARM fails to scale to
D = 500 so only results from MaM are reported. In this case, logP values are shifted towards the target but their peaks are
closer to 0 than when D = 55, due to the enlarged molecule space containing more molecules with logP around 0. Also,
this is validated by the result when τ = 0.1 and τ = 0.01 for D = 500, where the peaks are more and more centered around
the target values when we lower the temperature.
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Figure 16. Target property matching with different temperatures. 2000 samples are generated for each method.
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Figure 17. Target property matching with different temperatures. 2000 samples are generated for each method.
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Conditionally generated samples

We illustrate how MaM enables flexible and controllable generation via any-order modeling in Figure 18. With MaM, we
can pick an arbitrary molecular substructure and conditionally generate a molecule in a user-specified order.

More samples from conditionally generating towards low lipophilicity (target = −4.0, τ = 1.0) from user-defined
substructures of Benzene are shown in Figure 19 and Figure 20. We are able to generate from any partial substructures
with any-order generative modeling of MaM. Figure 19 shows conditional generation from masking out the left 4 SELFIES
characters. Figure 20 shows conditional generation from masking the right 4 ∼ 20 characters.

[C][=C][C][=C][C][=C][Ring1][=Branch1]

[?][?][?][?][C][=C][Ring1][=Branch1]

[C][=C][C][=C][?][?][?][?][?][?][?][?][?]⋯

Figure 18. Conditionally generate towards low lipophilicity from user-defined substructures of Benzene. Left: Masking out the left 4
SELFIES characters. Right: masking the right 4-20 characters.

Figure 19. Generated samples from masking out the left 4 SELFIES characters of a Benzene.
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Figure 20. Generated samples from masking out the right 4-20 SELFIES characters of a Benzene.

F Limitations and Broader Impacts

The marginalization self-consistency in MaM is only softly enforced by minimizing the squared error on subsampled
marginalization constraints. Therefore the marginal likelihood estimate is not guaranteed to be always (approximately) valid.
In particular, as a deep learning model, it has the risk of overfitting and low robustness on unseen data manifold. In practice,
it means one should not blindly apply it to data that is not seen by the training and expect the marginal likelihood estimate
can be trusted.

MaM enables training of a new type of generative model. Access to fast marginal likelihood is helpful for many downstream
tasks such as outlier detection, protein/molecule design or screening. By allowing the training of order-agnostic discrete gen-
erative models scalable for distribution matching, it enhances the flexibility and controllability of generation towards a target
distribution. This also poses the potential risk of deliberate misuse, leading to the generation of content/designs/materials
that could cause harm to individuals.


