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ABSTRACT

Labeling objects with pixel-wise segmentation requires a huge amount of human
labor compared to bounding boxes. Most existing methods for weakly supervised
instance segmentation focus on designing heuristic losses with priors from bound-
ing boxes. While, we find that box-supervised methods can produce some fine
segmentation masks and we wonder whether the detectors could learn from these
fine masks while ignoring low-quality masks. To answer this question, we present
BoxTeacher, an efficient and end-to-end training framework for high-performance
weakly supervised instance segmentation, which leverages a sophisticated teacher
to generate high-quality masks as pseudo labels. Considering the massive noisy
masks hurt the training, we present a mask-aware confidence score to estimate
the quality of pseudo masks, and propose the noise-aware pixel loss and noise-
reduced affinity loss to adaptively optimize the student with pseudo masks. Ex-
tensive experiments can demonstrate effectiveness of the proposed BoxTeacher.
Without bells and whistles, BoxTeacher remarkably achieves 34.4 mask AP and
35.4 mask AP with ResNet-50 and ResNet-101 respectively on the challenging
MS-COCO dataset, which outperforms the previous state-of-the-art methods by a
significant margin. The code and models will be available later.

1 INTRODUCTION

Instance segmentation, aiming at recognizing and segmenting objects in images, is a fairly challeng-
ing task in computer vision. Fortunately, the rapid development of object detection methods (Ren
et al., 2017; Tian et al., 2019; Carion et al., 2020) has greatly advanced the emergence of numbers
of successful methods (He et al., 2017; Cai & Vasconcelos, 2021; Wang et al., 2020a;b; Tian et al.,
2020; Bolya et al., 2019) for effective and efficient instance segmentation. With the fine-grained
human annotations, recent instance segmentation methods can achieve impressive results on chal-
lenging the MS-COCO dataset (Lin et al., 2014). Nevertheless, labeling instance-level segmentation
is much complicated and time-consuming, e.g., labeling an object with polygon-based masks re-
quires 10.3× more time than that with a 4-point bounding box (Cheng et al., 2022a).

Recently, a few works (Hsu et al., 2019; Lee et al., 2021; Tian et al., 2021; Wang et al., 2021; Li
et al., 2022; Lan et al., 2021) explore weakly-supervised instance segmentation with bounding box
annotations. These methods tend to adopt the multiple instance learning (MIL) to transform box
annotations to segmentation annotations. In addition, (Tian et al., 2021; Li et al., 2022; Lan et al.,
2021) further explore the affinity relations among pixels from low-level colors or features to design
relation-based losses. These weakly supervised methods can effectively train instance segmentation
methods (He et al., 2017; Tian et al., 2020; Wang et al., 2020b) without pixel-wise or polygon-based
annotations and obtain fine segmentation masks. As shown in Fig. 1, BoxInst (Tian et al., 2021) can
output a few high-quality segmentation masks and segment well on the object boundary, e.g., the
person, even performs better than the ground-truth mask in details though other objects may be badly
segmented. Naturally, we wonder if the generated masks of box-supervised methods, especially
the high-quality masks, could be qualified as pseudo segmentation labels to further improve the
performance of weakly supervised instance segmentation.
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Figure 1: Segmentation Masks from BoxInst.
BoxInst (ResNet-50 (He et al., 2016)) can pro-
duce some fine segmentation masks with weak
supervisions from bounding boxes and images.

Method AP AP50 AP75

BoxInst (Tian et al., 2021) 30.7 52.5 31.2
Self-Training, 1× 31.0 53.1 31.6
Self-Training, 3× 31.3 53.8 31.7

BoxTeacher, 3× 34.2 56.0 35.4

Table 1: Self-Training with Pseudo Labels
on MS-COCO val. We explore multi-stage
self-training to train a CondInst (Tian et al.,
2020) with the pseudo labels generated by Box-
Inst. However, the performance improvements
are limited.

To answer this question, we first employ the naive self-training to evaluate the performance of using
box-supervised pseudo masks. Given the generated instance masks from BoxInst, we propose a
simple yet effective box-based mask assignment to assign pseudo masks to ground-truth boxes. And
then we train the CondInst (Tian et al., 2020) with the pseudo masks and ground-truth boxes, which
has the same architecture with BoxInst and consists of a fully convolutional detector (Tian et al.,
2019) and a dynamic mask head. Tab. 1 shows that using self-training brings minor improvements
and fails to unleash the power of high-quality pseudo masks, which can be attributed to two obsta-
cles, i.e., (1) the naive self-training fails to filter low-quality masks, and (2) the noisy pseudo masks
hurt the training using fully-supervised pixel-wise loss.

To address these problems, we present BoxTeacher, an end-to-end training framework for weakly
supervised instance segmentation, which takes advantage of high-quality pseudo masks produced
by box supervision. BoxTeacher is composed of a sophisticated Teacher and a Student, in which
the teacher generates high-quality pseudo instance masks along with the mask-aware confidence
scores to estimate the quality of masks. Then the proposed box-based mask assignment will assign
the pseudo masks to the ground-truth boxes. The student is normally optimized with the ground-
truth boxes and pseudo masks through box-based loss and noise-aware pseudo mask loss, and then
progressively updates the teacher via Exponential Moving Average (EMA). In contrast to the naive
multi-stage self-training, BoxTeacher is more simple and efficient. The proposed mask-aware confi-
dence score effectively reduces the impact of low-quality masks. More importantly, pseudo labeling
can mutually improve the student and further enforce the teacher to generate higher-quality masks,
therefore pushing the limits of the box supervision. BoxTeacher can serve as a general training
paradigm and is agnostic to the methods for instance segmentation.

To benchmark the proposed BoxTeacher, we adopt CondInst (Tian et al., 2020) as the basic seg-
mentation method, which is a single-stage instance segmentation method and yields high-resolution
masks. On the challenging MS-COCO dataset (Lin et al., 2014), BoxTeacher surprisingly achieves
34.4 mask AP and 35.4 mask AP based on ResNet-50 (He et al., 2016) and ResNet-101 respec-
tively, which remarkably outperforms the counterparts. Furthermore, BoxTeacher with Swin Trans-
former (Liu et al., 2021b) obtains 40.0 mask AP as a weakly approach for instance segmentation.

2 BOX-SUPERVISED INSTANCE SEGMENTATION VIA NAIVE SELF-TRAINING

Revisiting Box-supervised Methods. Note that box-only annotations is sufficient to train an ob-
ject detector, which can accurately localize and recognize objects. Box-supervised methods (Tian
et al., 2021; Li et al., 2022; Lan et al., 2021) based on object detectors mainly exploit two exquisite
losses to supervise mask predictions, i.e., the multiple instance learning (MIL) loss and the pairwise
relation loss. Concretely, according to the bounding boxes, the MIL loss can determine the positive
and negative bags of pixels of the predicted masks. Pairwise relation loss concentrates on the local
relations of pixels from low-level colors or features, in which neighboring pixels have the similar
color will be regarded as a positive pair and should output similar probabilities. The MIL loss and
pairwise relation loss enables the box-supervised methods to produce the complete segmentation
masks, and even some high-quality masks with fine details.

Naive Self-Training with Box-supervised Methods. Recently, self-training (Fralick, 1967) has
been widely used in semi-supervised (Yuan et al., 2021; Sohn et al., 2020a;b; Xu et al., 2021; Liu
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et al., 2021a; Chen et al., 2021; Tarvainen & Valpola, 2017), which aims to train new models on
large-scale unlabeled datasets via multi-stage pseudo labeling and training. In the pseudo labeling
stage, an existed model f , trained on the labeled dataset Xl, can be applied to generate predictions
on the unlabeled dataset Xu as the pseudo labels. And then a new model g can be trained with the
pseudo-labeled Xu and pre-labeled Xl.

Considering that the box-supervised methods can produce some high-quality segmentation masks
without mask annotations, we propose to adopt self-training to utilize the high-quality masks as
pseudo annotations to train an instance segmentation method with full supervision. Specifically,
we adopt the successful BoxInst (Tian et al., 2021) to generate pseudo instance masks on the
given dataset X = {X ,Bg}, which only contains the box annotations. For each input image X ,
let {Bp, Cp,Mp} denote the predicted bounding boxes, confidence scores, and predicted instance
masks, respectively. We propose a simple yet effective box-based assignment algorithm in Alg. 1 to
assign the predicted instance masks to the box annotations via the confidence scores and intersection-
over-union (IoU) between ground-truth boxes Bg and predicted boxes Bp. The hyper-parameters τiou
and τc are set to 0.5 and 0.05, respectively. The assigned instance masks will be rectified by remov-
ing the parts beyond the bounding boxes. Then, we adopt the dataset X̂ = {X ,Bg,Mg} with
pseudo instance masks to train an approach, e.g., CondInst (Tian et al., 2020).

Naive Self-Training is Limited. Tab. 1 and Tab. 6 provide the experimental results of using naive
self-training pseudo masks. Compared to the pseudo labeler, using self-training brings minor im-
provements and even fails to surpass the pseudo labeler. We attribute the limited performance to two
issues, i.e., the naive self-training fails to exclude low-quality masks and the fully-supervised loss is
sensitive to the noisy pseudo masks.

Algorithm 1: Labeling pseudo instance masks with ground-truth bounding boxes

Input: ground-truth boxes Bg∈RK×4, predicted boxes Bp∈RN×4, predicted instance masks
Mp∈RN×H×W , confidence score Cp∈RN×1.

Parameter: IoU threshold τiou, confidence threshold τc.
Output: assigned instance masksMg∈RK×H×W .
Initialize output masksMg with empty (0), assignment index A∈RK with −1;
Filter the predictions by the confidence threshold τc;
Sort the confidence score Cp in descending order with output indices S ∈ NN ;
foreach prediction i in S do

Initialize matched IoU: u← −1, matched index: v ← −1;
for j = 1 to K do

iouij = ComputeIoU(Bpi ,B
g
j );

if Aj > 0 then
continue;

end
if iouij ≥ τiou and iouij ≥ u then

u← iouij , v ← i;
end
if v > 0 then

Assign predicted maskMp
i to output maskMg

v ;
Aj ← i;

end
end

end

3 BOXTEACHER

In this section, we present BoxTeacher, an end-to-end training framework, which aims to unleash
the power of high-quality of pseudo masks. In contrast to multi-stage self-training, BoxTeacher,
consisting of a teacher and a student, simultaneously facilitates the training of the student and pseudo
labeling of the teacher. The mutual optimization is beneficial to both the teacher and the student,
thus leading to higher performance for box-supervised instance segmentation.
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Figure 2: The Architecture of BoxTeacher. Images are firstly fed into the Teacher to obtain
the pseudo masks and estimate the quality of masks. Then the box-based mask assignment filters
and assigns pseudo masks to box annotations. The Student adopt the scale-augmented images (i.e.,
multi-scale training) and pseudo masks to update the parameters by gradient descent and then update
the Teacher with exponential moving average (EMA).

3.1 ARCHITECTURE

The overall architecture of BoxTeacher is depicted in Fig. 2. BoxTeacher is composed of a teacher
and a student, which shares the same model. Given the input image, the teacher fθ straightforwardly
generate the predictions, including the bounding boxes, segmentation masks, and mask-aware con-
fidence scores. Similarly, we apply the Alg. 1 to assign the predicted masks to the ground-truth
annotations and the confidence score in Alg. 1 is substituted with the mask-aware confidence score.
The augmented images (i.e., scale augmentation) are fed into the student fξ and the student is opti-
mized under the box supervision and the mask supervision. To acquire high-quality pseudo masks,
we adopt the exponential moving average to gradually update the teacher from student (Tarvainen
& Valpola, 2017), i.e., fθ ← α · fθ + (1− α) · fξ (α is empirically set 0.999).

Mask-aware Confidence Score. Considering that the generated pseudo masks are noisy and un-
reliable, which may hurt the performance, we define the mask-aware confidence score to estimate
the quality of the pseudo masks. Inspired by (Wang et al., 2020a), we denote mb

i ∈ RH×W and
mi ∈ RH×W as the box-based binary masks and sigmoid probabilities of the i-th pseudo mask with
the detection confidence ci, the mask-aware confidence score si is defined as follows:

si =

√√√√ci ·
∑H,W

x,y 1(mi,x,y > τm) ·mi,x,y ·mb
i,x,y∑H,W

x,y 1(mi,x,y > τm) ·mb
i,x,y

, (1)

where 1(·) is the indicator function, τm is the threshold for binary masks and set to 0.5. The mask-
aware score calculates the average probability score of the positive masks inside the ground-truth
boxes, and the higher average probability means more confident pixels in the mask. In addition, we
explore several kinds of quality scores and compare with the mask-aware score in experiments.

Training Loss. BoxTeacher can be end-to-end optimized with box annotations and the generated
pseudo masks. The overall loss is defined as: L = Ldet + Lbox-sup + Lmask-sup, which consists
of the standard detection loss Ldet, the box-supervised loss Lbox-sup, and the mask-supervised loss
Lmask-sup. We inherit the detection loss defined in FCOS (Tian et al., 2020). For box-supervised
mask loss Lbox-sup, we follow previous works (Tian et al., 2021; Hsu et al., 2019; Lan et al., 2021)
and adopt the max-projection loss and the color-based pairwise relation loss (Tian et al., 2021).

3.2 NOISE-AWARE PSEUDO MASK LOSS

The goal of BoxTeacher is to take advantage of high-quality pseudo masks in a fully supervised
manner while reduce the impact of the noisy or low-quality instance masks. To this end, we present
the noise-aware pseudo mask loss in Eq. 2. Ideally, BoxTeacher can leverage the pseudo masks to
calculate the fully-supervised pixel-wise segmentation loss, e.g., dice loss (Milletari et al., 2016).
Besides, we also propose a novel noise-reduced mask affinity loss Laffinity to enhance the pixel-wise
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segmentation with neighboring pixels. Further, we employ the proposed mask-aware confidence
scores {si} as weights for the pseudo mask loss, which adaptively scales the weights for pseudo
masks of different qualities. The total pseudo mask loss is defined as follows:

Lmask-sup =
1

Np

Np∑
i=1

si · (λpixelLpixel(m
p
i ,m

g
i ) + λaffinityLaffinity(m

p
i ,m

g
i )), (2)

where mp
i and mg

i denotes the i-th predicted masks and pseudo masks, Np denotes the number of
valid pseudo masks, λpixel and λaffinity are set to 0.5 and 0.1 respectively.

Noise-reduced Mask Affinity Loss. Considering that pixels tend to have similar labels with
neighboring pixels, we exploit the label affinities among pixels within local regions to lower the
impact of noisy pixels. Given the i-th pixel sigmoid probability gi of the pseudo segmentation, we
first calculate the refined pixel probability g̃i with its neighboring pixels, which is defined as follows:

g̃i =
1

2
(gi +

1

|P|
∑
j∈P

gj), (3)

where P denotes the set of neighboring pixels, e.g., a 3 × 3 region. This simple refinement can
reduce the outliers and enhance the pixels with local context. Inspired by recent works (Ahn &
Kwak, 2018; Ru et al., 2022) which explore pixel-wise affinity for weakly semantic segmentation
for noisy labels, we present a simple noise-reduced mask affinity loss and define the affinity µij

between i-th and j-th pixels as follows:
µij = g̃i · g̃j + (1− g̃i) · (1− g̃j), (4)

where g̃i and g̃j are refined pixels which encode the local context. Then the noise-reduced mask
affinity loss for i-th pixel is defined as follows:

Laffinity = −
∑

j∈P 1(µij > τa)(log(pi · pj) + log((1− pi) · (1− pj)))∑
j∈P 1(µij > τa)

, (5)

where j ∈ P are the neighboring pixels of the i-th pixel and τa is set to 0.5 as default.

4 EXPERIMENTS

In this section, we mainly evaluate the proposed BoxTeacher on the challenging MS-COCO
dataset (Lin et al., 2014) and the Cityscapes dataset (Cordts et al., 2016), and provide extensive
ablations to analyze the proposed BoxTeacher. We also refer the readers to the Appendix for addi-
tional ablations and visualizations.

Datasets. The COCO dataset contains 80 categories and 110k images for training, 5k images for
validation, and 20k images for testing. The Cityscapes dataset, aiming for perception in driving
scenes, consists of 5000 street-view high-resolution images, in which 2975, 500, and 1525 images
are used for training, validation, and testing, respectively. Foreground objects in Cityscapes are cat-
egorized into 8 classes and fine-annotated with pixel-wise segmentation labels instead of polygons
adopted in COCO, thus making the labeling process much costly. For weakly supervised instance
segmentation, we only keep the bounding boxes and ignore the segmentation masks during training.

Implementation Details The proposed BoxTeacher is implemented based on PyTorch (Paszke
et al., 2019) and the Detectron2 toolbox (Wu et al., 2019). We mainly adopt CondInst (Tian et al.,
2020) as the meta method for instance segmentation. All backbone networks are initialized with the
ImageNet-pretrained weights and the BatchNorm layers are frozen.

4.1 EXPERIMENTS ON MS-COCO INSTANCE SEGMENTATION

Experimental Setup. Following the training recipes (Tian et al., 2019; 2020; 2021), BoxTeacher
is trained over 8 GPUs with 16 images per batch. Unless specified, we adopt the standard 1×
schedule (90k iterations) (He et al., 2017; Wu et al., 2019) with the SGD and the initial learning rate
0.01. For comparisons with the state-of-art methods, we scale up the learning schedule to 3× (270k
iterations). For images input to the student, we adopt the multi-scale augmentation which randomly
resizes images from 640 to 800. While the images fed into the teacher are fixed to 800× 1333.
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Table 2: COCO Instance Segmentation. Comparisons with state-of-the-art methods on COCO
test-dev. With the same backbone or learning schedule, BoxTeacher surprisingly surpasses the
counterparts by a large margin (more than 2.0 mask AP).

Method Backbone Schedule AP AP50 AP75 APs APm APl

Mask-supervised methods.
Mask R-CNN (He et al., 2017) R-50-FPN 1× 35.5 57.0 37.8 19.5 37.6 46.0
CondInst (Tian et al., 2020) R-50-FPN 1× 35.9 57.0 38.2 19.0 38.6 46.7
CondInst (Tian et al., 2020) R-101-FPN 3× 39.1 60.9 42.0 21.5 41.7 50.9
SOLO (Wang et al., 2020a) R-101-FPN 6× 37.8 59.5 40.4 16.4 40.6 54.2
SOLOv2 (Wang et al., 2020a) R-101-FPN 6× 39.7 60.7 42.9 17.3 42.9 57.4
Box-supervised methods.
BBTP (Hsu et al., 2019) R-101-FPN 1× 21.1 45.5 17.2 11.2 22.0 29.8
BBAM (Lee et al., 2021) R-101-FPN 1× 25.7 50.0 23.3 - - -
BoxCaseg Wang et al. (2021) R-101-FPN 1× 30.9 54.3 30.8 12.1 32.8 46.3
BoxInst (Tian et al., 2021) R-50-FPN 3× 32.1 55.1 32.4 15.6 34.3 43.5
BoxInst (Tian et al., 2021) R-101-FPN 3× 33.2 56.5 33.6 16.2 35.3 45.1
BoxLevelSet (Li et al., 2022) R-101-FPN 3× 33.4 56.8 34.1 15.2 36.8 46.8
BoxLevelSet (Li et al., 2022) R-101-DCN-FPN 3× 35.4 59.1 36.7 16.8 38.5 51.3
DiscoBox (Lan et al., 2021) R-50-FPN 3× 32.0 53.6 32.6 11.7 33.7 48.4
DiscoBox (Lan et al., 2021) R-101-DCN-FPN 3× 35.8 59.8 36.4 16.9 38.7 52.1
DiscoBox (Lan et al., 2021) X-101-DCN-FPN 3× 37.9 61.4 40.0 18.0 41.1 53.9

BoxTeacher R-50-FPN 1× 32.9 54.1 34.2 17.4 36.3 43.7
BoxTeacher R-50-FPN 3× 34.4 56.5 35.9 18.8 37.5 45.0
BoxTeacher R-101-FPN 3× 35.4 57.8 37.2 19.5 39.1 46.3
BoxTeacher Swin-Base-FPN 3× 40.0 64.3 41.9 23.1 43.8 53.4

Main Results. Tab. 2 shows the main results on MS-COCO test-dev. In comparison with other
state-of-the art methods, we evaluate the proposed BoxTeacher with different backbone networks,
i.e., ResNet (He et al., 2016) and Swin Transformer (Liu et al., 2021b), and under different training
schedules, i.e., 1× and 3×. It’s clear that BoxTeacher with ResNet-50 achieves 32.9 mask AP, which
outperforms other box-supervised methods even with longer schedules. Compared to recent box-
supervised methods (Tian et al., 2021; Li et al., 2022; Lan et al., 2021), BoxTeacher brings about
significant 2.0 mask AP improvements on different backbones under the same setting. With the
stronger backbones, e.g., Swin Transformer (Liu et al., 2021b), BoxTeacher can surprisingly obtain
40.0 mask AP on the challenging MS-COCO, which is highly competitive as a weakly supervised
method for instance segmentation.

4.2 ABLATION EXPERIMENTS

Effects of Pseudo Mask Loss. In Tab. 3, we explore the different pseudo mask loss for Box-
Teacher. Firstly, we apply the box-supervised loss proposed in (Tian et al., 2021) achieves 30.7
mask AP (the gray row). As shown in Tab. 3, directly applying binary cross entropy (bce) loss
with pseudo masks leads to severe performance degradation, which can be attributed to the fore-
ground/background imbalance and noise in pseudo masks. Using dice loss to supervise the training
with pseudo masks can bring significant improvements in comparison to the baseline. In addi-
tion, we adopt the weakly average projection loss proposed in (Wang et al., 2022), which aims
for coarse pseudo instance masks. Tab. 3 shows that average projection loss Lavg is inferior to the
fully-supervised dice loss. Adding mask affinity loss Laffinity provides 0.4 mask AP gain based on
the dice loss. Moreover, we ablate the loss weights in pseudo mask loss in Tab. 4.

Effects of Mask-aware Confidence Score. Tab. 5 explores several different scores to estimate the
quality of pseudo masks in an unsupervised manner, i.e., (1) classification scores (cls), (2) matched
IoU between predicted boxes and ground-truth boxes (iou), (3) mean entropy of the pixel probabil-
ities of pseudo masks (mean-entropy: s=1+ 1

HW

∑H,W
i,j (pij log pij+(1−pij) log(1−pi,j))), (4)

the proposed mask-aware score (mask-aware). As Tab. 5 shows, using the proposed mask-aware
confidence score leads to better performance for BoxTeacher. Notably, measuring the quality of
predicted masks is critical but challenging for leverage pseudo masks. Fig. 3 shows the mask scores
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Table 3: Pseudo Mask Loss. We evaluate the effects
of different loss for BoxTeacher. Lavg is average pro-
jection loss proposed in (Wang et al., 2022).

Lpixel Laffinity Lavg AP AP50 AP75

✗ - - 30.7 52.5 31.2
bce - - 28.9 49.2 29.5
dice - - 31.8 53.1 32.8

✗ - ✓ 31.4 52.9 32.2
dice ✓ - 32.2 53.5 33.2

Table 4: Effect of the Weights of Pseudo
Mask Loss. We adopt λpixel = 0.5 and
λaffinity=0.1 as the default setting.

λpixel λaffinity AP AP50 AP75

0.1 - 31.4 53.0 32.4
0.5 - 31.8 53.1 32.8
1.0 - 31.5 52.8 32.3

0.5 0.1 32.2 53.5 33.2
0.5 0.5 31.7 52.8 32.8

Table 5: The Effects of Mask-aware Confidence
Score. We evaluate different mask scores for Box-
Teacher, and it shows that the proposed mask-
aware confidence performs better.

Mask Score AP AP50 AP75

✗ 32.2 53.5 33.2
cls 32.0 53.5 33.1
iou 32.2 53.5 33.4
mean-entropy 31.8 53.3 32.6
mask-aware 32.6 53.5 33.8

Figure 3: Visualizations of the Mask Scores
v.s. Mask IoU. We adopt the COCO val im-
ages to compare the mask score with the IoU
between pseudo masks and GT masks.

pearson=34.4% pearson=38.8%

compared to the IoU between pseudo masks and ground-truth masks, mask-aware confidence score
has a higher correlation with the practical mask quality. Accurate quality estimation can effectively
reduce the impact of noisy masks and stabilize the training.

Comparisons with Self-Training Paradigm. We adopt the box-supervised approach, i.e., Box-
Inst (Tian et al., 2021), to generate pseudo masks, which is pre-trained on COCO with box-only an-
notations. And then we assign the pseudo masks to the ground-truth boxes through the assignment
Alg. 1. As shown in Tab. 6, the improvements provided by self-training are much limited and the
naive self-training even performs worse than the training with box-only annotations, e.g., CondInst
with R-50 and 3× schedule obtains 31.3 AP with pseudo masks, but inferior to the box-supervised
version (31.8 AP). Though the self-training scheme enables the supervised training with pseudo
masks and achieves comparable performance, we believe the high-quality pseudo masks are not
well exploited. Significantly, BoxTeacher achieves higher mask AP compared to both self-training,
in an end-to-end manner without complicated steps or procedures for label generation.

Table 6: Comparison with Naive Self-Training. As discussed in Sec. 2, we leverage the pre-trained
BoxInst to generate pseudo mask labels and assign the pseudo masks to the ground-truth boxes. Then
we adopt the pseudo masks and train the CondInst with different schedules and backbones. †: the
mask AP achieved by the pseudo labeler, i.e., BoxInst, with box-only annotations. ‡: the ideal mask
AP could be achieved by CondInst if trained with box annotations following BoxInst.

Method Backbone Schedule Pseudo Label AP† AP‡ AP AP50 AP75

CondInst R-50 1× BoxInst, R-50 30.7 30.7 31.0 53.1 31.6
CondInst R-50 3× BoxInst, R-50 30.7 31.8 31.3 53.8 31.7
CondInst R-50 3× BoxInst, R-101 33.0 31.8 32.5 54.9 33.2
CondInst R-101 3× BoxInst, R-101 33.0 33.0 32.9 55.4 33.7

BoxTeacher R-50 1× End-to-End - - 32.6 53.5 33.8
BoxTeacher R-50 3× End-to-End - - 34.2 56.0 35.4
BoxTeacher R-101 3× End-to-End - - 35.2 57.1 36.8

Effects of Exponential Moving Average. To see whether EMA could partially bring some perfor-
mance improvements, we re-train BoxInst with EMA to obtain the averaged model to evaluate the
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Table 7: Ablations on Exponential Moving Average. We evaluate the performance of BoxInst w/
or w/o EMA to make it clear whether the improvements are brought by EMA in BoxTeacher.

Method w/ EMA APbbox AP AP50 AP75

BoxInst ✗ 39.3 30.6 52.2 31.0
BoxInst ✓ 39.4 30.7 52.5 31.2
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Figure 4: Qualitative Comparisons. We compare the qualitative results with BoxInst on the COCO
val. Compared with BoxInst, BoxTeacher outputs segmentation masks with better boundaries and
less false-positive background regions.

performance. Tab. 7 shows that applying EMA has little impact to the final performance, proving
that the improvements of BoxTeacher are mainly brought by the effects of pseudo masks.

Qualitative Comparisons. We compare the qualitative results between BoxTeacher and BoxInst
in Fig. 4. BoxInst relies on the color-based pairwise relation loss to separate the objects apart from
other objects or the background. However, it might lead to some mistakes, e.g., the foreground
object has similar color with the background and hollow areas are neglected due to the large stride
when pairwise relations are built. Fig. 4 shows that BoxTeacher can alleviate those problems based
on the refined pixel affinity.

4.3 EXPERIMENTS ON CITYSCAPES INSTANCE SEGMENTATION

Experimental Setup. Following previous methods (He et al., 2017; Tian et al., 2020), we train
all models for 24k iterations with 8 images per batch. The initial learning rate is 0.005. Cityscapes
contains high-resolution images (2048×1024), and we randomly resize images from 800 to 1024
for the student and keep the original size for the teacher during training. In addition, we also adopt
the COCO pre-trained models (1× schedule) to initialize the weights for higher performance.

Main Results. Tab. 8 shows the evaluation results on Cityscapes val. The proposed Box-
Teacher outperforms the box-supervised methods significantly, especially with the COCO pre-
trained weights. Though performance gap between fully supervised methods and weakly supervised
methods become larger than that in MS-COCO, the human labour of labeling pixel-wise segmenta-
tion for a high-resolution Cityscapes image is much costly (90 minutes per image). And we hope
future research can bridge the gap between box-supervised methods and mask-supervised methods
for high-resolution images.

5 RELATED WORK

Instance Segmentation. Methods for fully supervised instance segmentation can be roughly di-
vided into two groups, i.e., single-stage methods and two-stage methods. Single-stage meth-
ods (Bolya et al., 2019; Tian et al., 2020; Xie et al., 2020; Zhang et al., 2020) tend to adopt single-
stage object detectors, e.g., FCOS (Tian et al., 2019), to localize and recognize objects, and then
generate segmentation masks through object enmbeddings or dynamic convolution (Chen et al.,
2020). Wang et al. present box-free SOLO (Wang et al., 2020a) and SOLOv2 (Wang et al., 2020b),

8
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Table 8: Cityscapes Instance Segmentation. Comparisons with state-of-the-art methods for mask
AP on Cityscapes val. †: our re-produced results on Cityscapes.‘fine’ denotes the Cityscapes
train with fine annotations while ‘fine+COCO’ denotes using COCO pre-trained weights. For
box-supervised methods, we remove the fine-grained mask annotations in Cityscapes.

Method Backbone Data AP AP50

Mask-supervised methods.
Mask R-CNN (He et al., 2017) R-50-FPN fine 31.5 -
CondInst (Tian et al., 2020) R-50-FPN fine 33.0 59.3
CondInst (Tian et al., 2020) R-50-FPN fine + COCO 37.8 63.4

Box-supervised methods.
BoxInst† (Tian et al., 2021) R-50-FPN fine 19.0 41.8
BoxInst† (Tian et al., 2021) R-50-FPN fine + COCO 24.0 51.0
BoxLevelSet† (Li et al., 2022) R-50-FPN fine 20.7 43.3
BoxLevelSet† (Li et al., 2022) R-50-FPN fine + COCO 22.7 46.6

BoxTeacher R-50-FPN fine 21.7 47.5
BoxTeacher R-50-FPN fine + COCO 26.8 54.2

which are independent of object detectors. SparseInst (Cheng et al., 2022b) and YOLACT (Bolya
et al., 2019), aiming for real-time inference, achieve great trade-off between speed and accuracy.
Two-stage methods (He et al., 2017; Huang et al., 2019; Kirillov et al., 2020; Cheng et al., 2020)
adopt bounding boxes from object detectors and RoIAlign (He et al., 2017) to extract the RoI
(region-of-interest) features for object segmentation, e.g., Mask R-CNN (He et al., 2017). Sev-
eral methods (Huang et al., 2019; Cheng et al., 2020; Kirillov et al., 2020) based on Mask R-CNN
are proposed to refine the segmentation masks for high-quality instance segmentation. Recently,
many approaches (Carion et al., 2020; Fang et al., 2021; Cheng et al., 2021b;a; Dong et al., 2021;
Zhang et al., 2021) based on transformers (Vaswani et al., 2017; Dosovitskiy et al., 2021) or the
Hungarian algorithm (Stewart et al., 2016) have made great progress in instance segmentation.

Weakly Supervised Instance Segmentation. Considering the huge cost of labeling instance seg-
mentation, weakly supervised instance segmentation using image-level labels or bounding boxes
gets lots of attention. Several methods (Zhou et al., 2018; Zhu et al., 2019; Ahn et al., 2019; Arun
et al., 2020) exploit image-level labels to generate pseudo masks from activation maps. Khoreva
et.al. (Khoreva et al., 2017) propose to generate pseudo masks with GrabCut (Rother et al., 2004)
from given bounding boxes. BoxCaseg (Wang et al., 2021) leverages a saliency model to generate
pseudo object masks for training Mask R-CNN along with the multiple instance learning (MIL)
loss. Recently, many box-supervised methods (Hsu et al., 2019; Tian et al., 2021; Lan et al., 2021;
Li et al., 2022) combines the MIL loss or pairwise relation loss from low-level features obtain im-
pressing results with box annotations.

6 CONCLUSIONS

In this paper, we explore the naive self-training with pseudo labeling for box-supervised instance
segmentation, which is much limited by the noisy pseudo masks. To address this issue, we present
an effective training framework, namely BoxTeacher, which contains a collaborative teacher and
student for mutually generating high-quality masks and training with pseudo masks. We adopt mask-
aware confidence scores to measure the quality of pseudo masks and noise-aware mask loss to train
the student with pseudo masks. In the experiments, BoxTeacher achieves promising improvements
on both COCO and Cityscapes datasets, indicating that the proposed training framework is effective
and can achieve higher level of weakly supervised instance segmentation.
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A APPENDIX

A.1 ABLATION STUDIES

Does data augmentation help? Consistency regularization has successfully boosted semi-
supervised methods (Xu et al., 2021; Sohn et al., 2020b; Chen et al., 2021; Yuan et al., 2021) and act
as an indispensable component in recent semi-supervised tasks. In consistency-based self-training,
the teacher generates pseudo labels with weak/no perturbation while the student adopts strong per-
turbation. And the consistency regularization enforces the outputs of the student to be consistent
with the those of the teacher, thus facilitating the student to be more robust and invariant to the
augmentations and enhance the feature representation learning.

In this study, we explore the effect of data augmentation on the proposed BoxTeacher, and apply
augmentation to the input images of the student. Specifically, we defined two levels of simple data
augmentation in Tab. 9. Tab. 10 provides the evaluation results of using strong/weak data augmen-
tation. As Tab. 10 shows, both strong and weak augmentation hurt the performance of CondInst and
BoxTeacher under the 1× schedule. Differently, BoxTeacher is more robust to the augmentations as
the AP drops 0.4 compared to CondInst. However, BoxTeacher remarkably benefits more from the
strong data augmentation when increasing the schedule from 1× to 3×. In comparison to CondInst,
BoxTeacher with strong augmentation will enforce the consistency between the student and teacher.
Interestingly, Tab. 10 indicates that using strong augmentation is merely beneficial to the weakly
supervised instance segmentation (+0.6 AP), but has no effect to the fully supervised object detec-
tion (+0.1AP), suggesting that consistency regularization might facilitate the learning from noisy
pseudo masks.

Table 9: Specifications of Data Augmentation.

Type Probability Parameters

Weak Augmentation
Color Jittering 0.2 (brightness, contrast, saturation, hue) = (0.2, 0.2, 0.2, 0.1)

Strong Augmentation
Color Jittering 0.8 (brightness, contrast, saturation, hue) = (0.4, 0.4, 0.4, 0.1)

Grayscale 0.2 -

Table 10: The Effects of Data Augmentation. We explore whether strong data augmentation will
be beneficial to BoxTeacher, which has been widely exploited in semi-supervised methods. We
apply weak and strong augmentation to both CondInst and the proposed BoxTeacher.

Method Schedule weak aug. strong aug. APbbox AP AP50 AP75

CondInst 1× 39.6 36.2 56.0 38.8
CondInst 1× ✓ 39.6 35.6 56.3 38.0
CondInst 1× ✓ 39.4 35.1 55.8 37.3

CondInst 3× 41.9 37.5 58.5 40.1
CondInst 3× ✓ 42.0 37.6 58.7 40.0

BoxTeacher 1× 39.4 32.6 53.5 33.8
BoxTeacher 1× ✓ 39.1 32.4 53.0 33.7
BoxTeacher 1× ✓ 38.6 32.2 52.7 33.7

BoxTeacher 3× 41.7 34.2 56.0 35.4
BoxTeacher 3× ✓ 41.8 34.8 56.2 36.3

A.2 QUALITATIVE RESULTS

Fig. 5 provides visualization results of the proposed BoxTeacher on the COCO test-dev. Even with
box-only annotations, BoxTeacher can output high-quality segmentation masks with fine boundaries.
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Figure 5: Visualization Results. We provide the visualization results of BoxTeacher with ResNet-
101 on the COCO test-dev. The proposed BoxTeacher can produce the high-quality segmenta-
tion results, even in some complicated scenes.
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