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ABSTRACT

Data-free Meta-learning (DFML) aims to enable efficient learning of new unseen
tasks by meta-learning from a collection of pre-trained models without access to
their training data. Existing DFML methods construct pseudo tasks from a learnable
dataset, which is iteratively inversed from a collection of pre-trained models.
However, such distribution of pseudo tasks is not stationary and can be easily
corrupted by specific attack, which causes (i) Task-Distribution Shift (TDS): the
distribution of tasks will change as the learnable dataset gets updated, making the
meta-learner biased and susceptible to overfitting on new tasks, ultimately harming
its long-term generalization performance. (ii) Task-Distribution Corruption (TDC):
the task distribution can be easily corrupted by deliberately injecting deceptive
out-of-distribution models, termed as model poisoning attack. To address these
issues, for the first time, we call for and develop robust DFML. Specifically, (i) for
handling TDS, we propose a new memory-based DFML baseline (TEAPOT) via
meta-learning from a pseudo task distribution. TEAPOT maintains the memory of
old tasks to prevent over-reliance on new tasks, with an interpolation mechanism
combining classes from different tasks to diversify the pseudo task distribution; (ii)
for further defending against TDC, we propose a defense strategy, Robust Model
Selection Policy (ROSY), which is compatible with existing DFML methods (e.g.,
ROSY + TEAPOT). ROSY adaptively ranks and then selects reliable models
according to a learnable reliability score, which is optimized by policy gradient due
to the non-differentiable property of model selection. Extensive experiments show
the superiority of TEAPOT over existing baselines for handling TDS and verify the
effectiveness of ROSY + DFML for further improving robustness against TDC.

1 INTRODUCTION

Data-free Meta-learning (DFML) (Wang et al., 2022; Hu et al., 2023), a newly proposed paradigm
of meta-learning (ML), has attracted attention recently thanks to its appealing capability of reusing
multiple pre-trained models to obtain a single meta-learner with superior generalization ability in a
data-free manner. In contrast, traditional ML methods solve few-shot tasks by meta-learning from a
collection of related tasks with available training and testing data. However, in many real scenarios,
each task may only have a pre-trained model and the task-specific data is not available after pre-
training due to privacy issues. For example, some repositories like GitHub, HuggingFace and Model
Zoo provide numerous pre-trained models without training data released. Thus, DFML provides an
effective solution to such scenarios, by reusing those pre-trained models in a data-free manner to
obtain a meta-learner with superior generalization ability. However, existing DFML methods face
vulnerabilities in two critical aspects: (i) Task-Distribution Shift (TDS) and (ii) Task-Distribution
Corruption (TDC), which have not yet been explored and make it hard to apply in practice.

TDS arises from the non-stationary distribution of synthetic tasks. PURER (Hu et al., 2023),
the state-of-the-art DFML method, constructs a batch of pseudo tasks at each iteration from a
learnable dataset. The learnable dataset is iteratively inversed from a collection of pre-trained
models and adversarially optimized with the meta-learner to synthesize pseudo tasks in an increasing
difficulty order. However, as the learnable dataset gets updated, the distribution of synthetic tasks will
change. Such distribution shift could be large if the learnable dataset and the meta-learner get trained
adversarially. This can cause the meta-learner to become biased and prone to overfitting when faced
with new tasks, ultimately harming its generalization ability over time. Fig. 1 (a) depicts the dramatic
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Figure 1: Vulnerabilities for TDS and TDC.
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Figure 2: Illustration of model poisoning attack (MPA).

degradation in meta-testing accuracy during the meta-training phase of PURER under the CIFAR-
FS 5-way 5-shot setting. Such accuracy degradation is highly undesirable in practical scenarios,
making it impractical to snapshot the best meta-learner, particularly when lacking monitoring from the
validation set. This highlights the necessity for a robust DFML method that can keep consistently high
accuracy over time so that the meta-training phase can be safely terminated after a pre-determined
sufficient number of iterations.

TDC arises when users collect pre-trained models from untrusted sources. Fig. 2 illustrates this
scenario. When employing DFML algorithms to solve rare bird species classification tasks, a user
would actively choose relevant models (e.g., bird or animal classifiers) as meta-training resources,
according to the domain information attached with the models. PURER(Hu et al., 2023) assume
all pre-trained models and their information are reliable. However, this is not always satisfactory.
In Fig. 2, an attacker can intentionally release out-of-distribution (OOD) models (e.g., medical
image classifiers) while deceptively claiming them as bird classifiers, inducing users to collect them.
Attackers can passively release those deceptive models, awaiting collection, or actively send them
directly to model collectors with higher privileges. We term this attack model poisoning attack (MPA),
injecting malicious models attached with deceptive domain information into the training model pool.
We analyze why MPA leads to TDC in Sec. 3.2. Fig. 1 (b) shows the severe accuracy drop of PURER
caused by MPA under CIFAR-FS 5-way 5-shot setting. In this case, attackers release malicious
models from five OOD datasets, including EuroSAT, ISIC, chestX, Omniglot and MNIST, while
claiming them from CIFAR-FS. The severe performance degradation calls for an effective defense
strategy, automatically identifying and filtering out those malicious models. It seems straightforward
to first evaluate models on some data before leveraging them for meta-training. However, this involves
manually collecting model-specific data and then evaluating each model one by one, which may
be impractical due to data privacy and the additional cost of data collection and model evaluation.
Therefore, we aim to design an elegant strategy that achieves automatic model identification and
selection during the training phase with no need for model-specific data and additional cost.

To address these vulnerabilities, for the first time, we call for and develop robust DFML. (i) For
handling TDS, we propose a new memory-based DFML baseline (TEAPOT) by meta-learning from
a pseudo task distribution. TEAPOT preserves the memory of old tasks to prevent over-reliance
on specific new tasks, with an interpolation mechanism combining classes from different tasks
to further diversify the pseudo task distribution. We emphasize the underlying task distribution
should be diversified enough so that the meta-learner can generalize well to unseen tasks. (ii) For
handling TDC, we propose Robust Model Selection Policy (ROSY), leading to a general defense
framework ROSY + DFML. We parameterize ROSY as a learnable weight vector characterizing
each model’s reliability and thereby enabling the automatic selection of reliable models. Given the
non-differentiable nature of model selection, we resort to policy gradient (Williams, 1992) originating
from reinforcement learning (RL). The policy is optimized based on the meta-learner’s generalization
ability on unseen tasks, serving as rewards in the RL framework.

We empirically demonstrate the superiority of our proposed TEAPOT for handling TDS on four
datasets (CIFAR-FS, MiniImageNet, VGG-Flower and CUB), outperforming existing baselines by a
large margin w.r.t. PEAK accuracy (+ 2.15% ∼ 5.85%) and LAST accuracy (+ 6.09% ∼ 14.45%).
We further verify the effectiveness of ROSY + TEAPOT for handling TDC, achieving up to + 2.95%
robustness gains across various settings of MPA. We summarize our contributions as four-fold:

• For the first time, we reveal the vulnerabilities of existing DFML methods to the Task-
Distribution Shift (TDS) and Task-Distribution Corruption (TDC), highlighting the critical
need to develop robust DFML in practice.
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• We introduce model poisoning attack (MPA) as a new training-time attack causing TDC, by
injecting malicious OOD models with deceptive domain information into the training model
pool, which has not been studied yet.

• For handling TDS, we propose a memory-based DFML baseline (TEAPOT) by meta-learning
from a pseudo task distribution. For further handling TDC, We propose a defense strategy
(ROSY + DFML) to improve the robustness against MPA.

• Experiments on various benchmarks demonstrate the superiority of the proposed TEAPOT
for handling TDS and verify the effectiveness and generality of the defense framework
ROSY + DFML for further handling TDC.

2 RELATED WORK

Data-free meta-learning (DFML). DFML aims to enable efficient learning of unseen tasks by
meta-learning from a collection of pre-trained models without access to training data. In contrast
to traditional data-based meta-learning methods (Yao et al., 2021; Li et al., 2020; Yang et al., 2021;
Simon et al., 2022; Ye et al., 2022; Yu et al., 2023a; Jang et al., 2023; Pavasovic et al., 2023; Genewein
et al., 2023; Flennerhag et al., 2022; Yao et al., 2022) that rely on large amounts of data, DFML
offers a solution to obtain a meta-learner with superior generalization ability from a collection of task-
specific pre-trained models with weaker generalization ability. Wang et al. (2022) first introduce the
concept of DFML and propose to meta-learn a hyper-network directly outputting meta-initialization
in parameter space. More recently, Hu et al. (2023) achieve significant performance improvements by
leveraging the underlying data knowledge within each pre-trained model. Their approach, known as
PURER, constructs pseudo tasks from an iteratively trained dataset using a collection of pre-trained
models, and assumes all those models are reliable. This makes it vulnerable to TDS and TDC
discussed in Sec. 1, which poses challenges when applying it in practice. Other works also share
a similar spirit of DFML. Kwon et al. (2021) adapt a pre-trained meta-learner to out-of-domain
meta-testing tasks in a data-free manner, while we focus on reusing a collection of pre-trained
task-specific models. Nava et al. (2023) model the distribution of pre-trained models and directly
generate a model for each meta-testing task using additional natural language task description.

Data-free learning (DFL) enables the learning process without access to any actual data. This
approach is particularly relevant in practical scenarios where data availability is limited due to data
privacy, safety, or ethical considerations. Recently, the development of data-free learning has been
propelled by techniques such as model inversion (Chen et al., 2019; Mordvintsev et al., 2015; Fang
et al., 2022; Zhu et al., 2021; Liu et al., 2021; Truong et al., 2021; Kariyappa et al., 2021; Binici et al.,
2022; Liu et al., 2023; Zhang et al., 2021; Wang, 2021; Do et al., 2022; Yu et al., 2023b; Binici et al.,
2022), which aims to uncover the underlying data knowledge within pre-trained models. However,
existing approaches overlook the non-stationary distribution caused by continuously synthesized data
and assume all pre-trained models are reliable, making them susceptible to TDS and TDC.

Robust meta-learning (RML). The field of RML has introduced some methods to address the
sequential task-distribution shift in meta-learning (Genewein et al., 2023; Setlur et al., 2021). Other
methods (Vuorio et al., 2019; Killamsetty et al., 2020; Triantafillou et al., 2020; Yao et al., 2020;
Lee et al., 2020; Jeong & Kim, 2020; Jiang et al., 2023) aim to enable effective meta-learning in
scenarios with heterogeneous task distributions. However, all these issues and solutions are tailored
to data-based meta-learning, while the vulnerabilities associated with data-free meta-learning have
not yet been investigated or addressed.

Table 1: Comparisons among different settings.

Settings Data-free TDS TDC (MPA) Few-shot Unseen tasks

ML % % % ! !

RML % ! % ! !

DFL ! % % % %

DFML ! % % ! !

RDFML (ours) ! ! ! ! !

We summarize and compare differ-
ent settings in Tab. 1, including meta-
learning (ML), robust meta-learning
(RML), data-free learning (DFL),
data-free meta-learning (DFML) and
our robust data-free meta-learning
(RDFML) in terms of whether they
are data-free, consider TDS and TDC
(which arises from MPA), and generalize to few-shot unseen tasks. In summary, our RDFML setting
is more comprehensive and practical than existing DFML baslines.
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3 PROBLEM SETUP

This section begins by introducing the problem of data-free meta-learning (DFML), followed by a
description of our proposed attack called model poisoning attack causing TDC.

3.1 DATA-FREE META-LEARNING (DFML)

Meta-training. We are given a collection of pre-trained modelsMpool = {Mi}, each designed to
solve different tasks. The objective of DFML is to meta-learn the meta-learnerA.[·;θA] usingMpool,
so that A[·;θA] can be fast adapted to new unseen tasks {T test

t }. t is the task index.

Meta-testing. We evaluate the meta-learner on 600 unseen N -way K-shot tasks {T test
t =

{Dtest,s
t ,Dtest,q

t }}. The classes encountered during the meta-testing phase have never been seen
during the meta-training phase or in the validation tasks. Each task consists of a support set
Dtest,s = (Xtest,s,Ytest,s) with N classes and K instances per class. We utilize the support
set Dtest,s to adapt the meta learner A[·;θA] to obtain the task-specific solver A[Dtest,s;θA] and
make predictions on its query set Dtest,q. The overall accuracy is measured by averaging the
accuracies across all the meta-testing tasks.

3.2 MODEL POISONING ATTACK (MPA)

Mpool denotes the user-collected pre-trained models to train the meta-learner. Generally, each model
M ∈Mpool released on public repositories is attached with some basic domain information (e.g., the
model is an animal classifier). Attackers can execute MPA by injecting OOD models MOOD attached
with deceptive domain information (e.g., claiming a Mars-Jupiter classifier as a dog-cat classifier)
intoMpool. The deceptive domain information can induce users to select those deceptive models.

Why does MPA lead to TDC? We can suppose a user wants to collect animal-relevant models as
DFML training resources. An attacker releases an OOD model, claiming a Mars-Jupiter classifier as
a dog-cat classifier. If the OOD model is wrongly collected, (i) the true “Mars” images inversed from
it will be falsely labelled as “dog”, contradicting with the true “dog” and other false “dog” images,
which thus confuses the meta-learner; (ii) even there is no contradiction, the false “dog” images still
cause a huge distribution gap (i.e., the original distribution gap between “Mars” and animal images).

To quantify MPA, we introduce the poisoning rate (PR), which represents the ratio of malicious
models present in the training model pool relative to the total number of models.

PR = |MOOD|
/
|Mpool|. (1)

4 TASK-DISTRIBUTIONALLY ROBUST DATA-FREE META-LEARNING

In Sec. 4.1, we describe our proposed DFML baseline TEAPOT for handling TDS, followed by two
key techniques: pseudo task recovery and interpolated task-memory replay. Moving on to Sec. 4.2,
we introduce ROSY + DFML for further handling TDC which arises from MPA.

4.1 DATA-FREE META-LEARNING FROM PSEUDO TASK-DISTRIBUTION (TEAPOT)

Overall objective. The DFML objective is formulated to meta-train the meta-learner parameterized
by θA by minimizing the expected loss with respect to a pseudo task distribution p̂T :

min
θA

ET̂ ∈p̂T
Ltask

(
D̂q;A[D̂s;θA]

)
, (2)

where T̂ = {D̂s = (X̂s,Ys), D̂q = (X̂q,Yq)} is the pseudo task sampled from the unknown
pseudo task distribution p̂T . A[D̂s;θA] denotes the task-specific adaptation process, i.e., the meta-
learner takes the support set D̂s as input and outputs the task-specific solver. This can be achieved
in several ways, such as in-context (black-box) learning (Brown et al., 2020), gradient optimization
(Finn et al., 2017) and non-parametric (metric) learning (Snell et al., 2017). In other words, the
original meta-learner is not designed to solve any specific task, while it is shared across p̂T and can
be adapted fast to each specific task drawn from p̂T via the adaptation process. Ltask(·) denotes the
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task-level loss function over the query set D̂q , indicating the effectiveness of the adapted solver. By
optimizing this objective, our goal is to train the meta-learnerA[·;θA] to adapt effectively to different
tasks drawn from p̂T , resulting in improved generalization and performance on unseen tasks.

Pseudo task distribution modelling via pseudo task recovery. Instead of seeking the intractable
formula of p̂T , we approximate the task-sampling operation by the pseudo task recovery technique.
For each pre-trained model M , we aim to recover a pseudo task T̂ = {D̂s = (X̂s,Ys), D̂q =

(X̂q,Yq)} from M via a randomly initialized generator G(·;θG). The generator G(·;θG) takes
the standard Gaussian noise Z and pre-defined target label Y as inputs and outputs the recovered
data X̂ = G(Z,Y;θG). We only need to set Y as a hard label (e.g., [1, 0, 0]) or a soft label (e.g.,
[0.7, 0.1, 0.2]), with no need for true class names. To ensure label-conditional generation, we optimize
θG by minimizing the classification loss (e.g., cross-entropy (CE)) measuring the classification errors:

min
θG

LCE(X̂,Y;θG) = min
θG

CE(M(X̂),Y). (3)

We further incorporate a regularization term (Yin et al., 2020) to align the high-level feature map
statistics. This term enforces the recovered data X̂ to have similar batch-wise feature-map statistics
as those of original training data stored in each BatchNormalization(BN) layer of pre-trained models.

LBN (X̂;θG) =
∑
l

∥µl(X̂)− BNl(running mean)∥+ ∥σ2
l (X̂)− BNl(running variance)∥, (4)

where X̂ = G(Z,Y;θG). µl and σ2
l denote the mean and variance of the feature maps from X̂ in

the lth convolutional layer. BNl(running mean) and BNl(running variance) denote the mean and
variance of the feature maps from original training data, which are stored in the lth BN layer.

Integrating above loss functions, we formulate the generation process as the following minimization:

min
θG

LG(Z,Y;θG), where LG(Z,Y;θG) = LCE + LBN . (5)

As to recover the pseudo task T̂ , we select the recovered data X̂ with the minimum loss value of
LG during the optimization process of θG. Then we randomly split (X̂,Y) into D̂s = (Xs,Ys)

and D̂q = (Xq,Yq) as the support set and query set, respectively. The task recovery algorithm is
summarized in Alg. 3 in App. B.

Interpolated task-memory replay. To avoid over-reliance on new tasks, we intuitively introduce a
task-memory bank B to store old recovered tasks and periodically use them to meta-train the meta-
learner. However, a fixed number of models with their recovered pseudo tasks are not sufficient to
represent the underlying task distribution p̂T , especially under the setting with limited model budgets.
We emphasize that the pseudo task distribution should be diverse enough so that the meta-learner can
generalize well to unseen tasks. Therefore, we adopt a simple but effective class-wise interpolated
task-memory replay technique, randomly selecting N classes along with their corresponding pseudo
data from memory tasks, to construct an interpolated N -way task representing a mixture of old tasks.
It allows the meta-learner to generalize across different tasks and avoid over-reliance on specific tasks.
Also, the mechanism for task interpolation can be further explored and improved in future works.

The choice of Ltask. For the proposed TEAPOT, we leverage two forms of the task-level loss function
to effectively utilize the supervision from both soft and hard labels. Without loss of generalization,
at meta-iteration k, the meta learner A[·;θA] can either learn from the selected models or learn
from interpolated tasks from B. For the former, given a batch of B select modelsMselect = {Mi}
fromMpool, we can obtain a batch of pseudo tasks {T̂i} fromMselect via the pseudo task recovery
technique mentioned above. Since T̂i and Mi have the same label space, we can leverage the
meaningful information contained in the pre-trained models’ soft-label predictions. In this case,
we realize Ltask in Eq. (2) with the KL divergence measuring the difference between the meta-
learner’s predictions and the soft-label predictions of the pre-trained models. For the latter, we
alternatively sample a batch of interpolated tasks {T̃i} from B, using the hard labels as the meta-
learning supervision. In this case, we realize Ltask in Eq. (2) with the cross-entropy loss, comparing
the meta-learner’s predictions with the hard labels of the interpolated tasks.

θ
(k+1)
A ←

θ
(k)
A −∇

θ
(k)
A

∑B
i=1 KL

(
A[D̂s

i ;θA](X̂q
i ),Mi(X̂

q
i )
)

teacher-guided meta-learning

θ
(k)
A −∇

θ
(k)
A

∑B
i=1 CE

(
A[D̃s

i ;θA](X̃q
i ),Y

q
i

)
interpolated task-memory replay.

(6)
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Algorithm 1: TEAPOT

1 Input: Max meta-iterations N ; the pre-trained model poolMpool = {Mi} and corresponding generators
G = {Gi(·;θGi)}; the meta-learner A[·;θ(1)A ]; the memory bank B.

2 Output: Meta-learner A[·;θ(N)
A ].

3 Randomly initialize the meta-learner A(·;θ(1)A ), the generators {θGi}
4 Clear the memory bank B ← [ ]
5 for each meta-iteration k ← 1 to N do
6 if not task-memory replay then
7 Randomly select B model(s)Mselect

8 for each teacher Mi ∈Mselect do
// Pseudo task recovery

9 Generate a pseudo task Ti ← RECOVER-TASK-FROM-MODEL(Mi, Gi) (Alg. 3 in App. B)
10 B ← B + Ti

// Teacher-guided meta-learning

11 Update meta-learner as θ(k+1)
A = θ

(k)
A −∇

θ
(k)
A

∑B
i=1 KL

(
A[D̂s

i ;θA](X̂q
i ),Mi(X̂

q
i )
)

(Eq. (6))

12 else
// Interpolated task-memory replay

13 Construct a batch of B interpolated pseudo tasks {T̃j} from memory bank B
14 Update meta-learner as θ(k+1)

A = θ
(k)
A −∇

θ
(k)
A

∑B
j=1 CE

(
A[D̃s

j ;θA](X̃q
j),Y

q
j

)
(Eq. (6))

Flexible choice of the meta-learner A. Our proposed DFML objective Eq. (2) can extend to
optimization-based (e.g., MAML (Finn et al., 2017) or ANIL (Raghu et al., 2019)), as well as metric-
based meta-learning methods (e.g., ProtoNet (Snell et al., 2017)). For MAML, the meta-learner
AMAML perform one or few step(s) gradient descent over θA on the support set Xs to obtain a
task-specific solver F (·) parameterized by ϕ:

AMAML[X
s;θA] (Xq) = F (Xq;ψ) , s.t. ψ = θA −∇θACE (F (Xs;θA),Ys) (7)

For ProtoNet, the meta learner AProtoNet outputs a non-parametric classifier (i.e., nearest centroid
classification) via meta-learning a feature extractor f(·;θA), modelling the probability of an input
Xq being classified as class c as:

[AProtoNet[X
s;θA] (Xq)]c =

exp (−∥f(Xq;θA)−Cc∥)∑
c′ exp (−∥f(Xq;θA)−Cc′∥)

, (8)

where Cc is the average feature embedding calculated with all features in Xs of class c. We
summarize the overall algorithm of our proposed DFML baseline TEAPOT in Alg. 1.

4.2 ROBUST MODEL SELECTION POLICY (ROSY)

Policy Modeling. We parameterize the selection policy as a learnable weight vector W ∈ R|Mpool|,
where wi characterizes the reliability of Mi. At each meta-iteration, we take an action selecting
a batch of modelsMselect fromMpool according to W . Here, we use π(Mselect|Mpool;W ) to
denote the probability of taking this action selectingMselect fromMpool:

π(Mselect|Mpool;W ) =
∏

i∈INDEX(Mselect)

(
ewi∑|Mpool|

i′=1 ewi′

)
, (9)

where INDEX(Mselect) returns the entry indexes ofMselect inMpool. An alternative way to model
the selection policy is to adopt a neural network, which can be viewed as further works.

Defense objective. We first propose a defense objective to illustrate our goal from a high level: we
aim to search the optimal model selection policy (parameterized by W ) so that the meta-learner
(parameterized by θ∗

A) meta-trained with the selected modelsMselect can generalize well to a handful
of disparate validation tasks {T val

v = {Dval,s
v ,Dval,q

v }}. We formulate the defense objective as:

min
W

1

Nv

Nv∑
v=1

Ltask

(
Dval,q

v ;A[Dval,s
v ;θ∗A(W )]

)
,where θ∗A = DFML(Mselect;W ), (10)
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where DFML(Mselect) return the meta-learner trained withMselect via certain DFML algorithm.

Algorithm 2: ROSY + DFML
1 Input: Max meta-iterations N ; the pre-trained model pool

Mpool; DFML(·) algorithm; the validation tasks {T val
v }.

2 Initialize the learnable weightsW (1)

3 for each meta-iteration k ← 1 to N do
4 Calculate the probability P (k) ← SOFTMAX(W (k))

5 Select B models asM(k)
select via the probability P (k)

6 Obtain the updated meta-learner θ(k+1)
A via one-iteration

DFML algorithm with selectedM(k)
select

7 Calculate the reward 1
Nv

∑Nv
v=1 R

(k)
v

8 Optimize the policy toW (k+1) via Eq. (11)

Bi-level Optimization via RL. The
sampling operation (i.e.,Mselect ←
Mpool) is non-differentiable, making
the optimization Eq. (10) intractable.
Therefore, we adopt a policy gradi-
ent method REINFORCE (Williams,
1992) to reformulate Eq. (10) to an dif-
ferentiable form Eq. (11). Specifically,
at meta-iteration k, we regard the av-
erage accuracy on Nv validation tasks
as the reward

∑Nv

v=1 R
(k)
v . Intuitively,

if the actionM(k)
select ←Mpool leads

to an increasing reward, we will opti-
mize the policy so that the probability
of taking this action π(M(k)

select|Mpool) will increase, and vice versa. To reduce the gradient variance,
we introduce the baseline function b as the moving average of all past rewards.

W (k+1) ←W (k) +∇W (k)

[
log π(M(k)

select|Mpool;W
(k))×

(
1

Nv

Nv∑
v=1

R(k)
v − b

)]
. (11)

We summarize the overall algorithm of ROSY + DFML in Alg. 2.

5 EXPERIMENTS

In Sec. 5.1, we empirically demonstrate the superiority of TEAPOT over existing baselines for
handling TDS and verify the effectiveness of ROSY + DFML for further handling TDC under MPA.

Experimental setup. We adopt CIFAR-FS, MiniImageNet, VGG-Flower and CUB datasets, com-
monly used in recent meta-learning works (Yao et al., 2021; Tack et al., 2022). Following standard
splits (Triantafillou et al., 2020), we split each dataset into the meta-training, meta-validating and
meta-testing subsets with disjoint label spaces. Following Wang et al. (2022); Hu et al. (2023), we
collect 100 models pre-trained on 100 N -way tasks sampled from the meta-training subset and those
models are used as the meta-training resources. For model architecture, we adopt Conv4 as the
architecture of the meta-learner and the pre-trained models for a fair comparison with existing works.
We provide the detailed structure for the generator in App. C. For hyperparameters, we implement
TEAPOT-ANIL with an inner learning rate of 0.01 and an outer learning rate of 0.001. We implement
TEAPOT-ProtoNet with a learning rate of 0.001. We set the budget of the memory bank as 20 tasks.
We report the average accuracy over 600 meta-testing tasks. We leave the other setup in App. A.

5.1 DATA-FREE META-LEARNING W/O ATTACK

Baselines. (i) RANDOM. Learn a classifier using the support set from scratch for each meta-testing
task. (ii) AVERAGE. Average all pre-trained models and then finetune it using the support set. (iii)
DRO (Wang et al., 2022). Meta-learn a hyper-network to fuse all pre-trained models into one single
model, which serves as the meta-initialization and can be adapted to each meta-testing task using the
support set. (iv) PURER-[·] (Hu et al., 2023). Adversarially train the meta-learner with a learnable
dataset, where a batch of pseudo tasks is sampled for meta-training at each iteration. [·] indicates the
meta-learning algorithm, such as ANIL and ProtoNet.

Metrics. (i) PEAK denotes the peak meta-testing accuracy obtained by the checkpoints with the
highest meta-validating accuracy. (ii) LAST denotes the meta-testing accuracy obtained by the
checkpoints in the last iteration. (iii) VARIATION denotes the value of “LAST - PEAK”, indicating
the variation of meta-testing accuracy through the whole meta-training phase.

Main results. Tab. 2 shows the results for 5-way classification compared with existing baselines.
We list our main findings as follows: (i) TEAPOT achieve significantly higher PEAK accuracy on
all four datasets. Compared with the best baseline, TEAPOT achieves 2.15% ∼ 5.85% performance
gains for 1-shot learning and 2.63% ∼ 4.44% performance gains for 5-shot learning w.r.t. the PEAK
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Table 2: Compare to existing baselines w/o model poisoning attack. † denotes our proposed method.

Method
CIFAR-FS (Bertinetto et al., 2018) MiniImageNet (Vinyals et al., 2016)

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

PEAK LAST PEAK LAST PEAK LAST PEAK LAST

RANDOM 28.59 ± 0.56 28.59 ± 0.56 34.77 ± 0.62 34.77 ± 0.62 25.06 ± 0.50 25.06 ± 0.50 28.10 ± 0.52 28.10 ± 0.52
AVERAGE 23.96 ± 0.53 23.96 ± 0.53 27.04 ± 0.51 27.04 ± 0.51 23.79 ± 0.48 23.79 ± 0.48 27.49 ± 0.50 27.49 ± 0.50
DRO 30.43 ± 0.43 29.35 ± 0.41 36.21 ± 0.51 35.28 ± 0.49 27.56 ± 0.48 25.22 ± 0.42 30.19 ± 0.43 28.43 ± 0.44
PURER-ANIL 35.31 ± 0.70 26.40 ± 0.43 51.63 ± 0.78 41.24 ± 0.68 30.20 ± 0.61 23.05 ± 0.36 40.78 ± 0.62 29.60 ± 0.53
PURER-ProtoNet 36.26 ± 0.62 27.01 ± 0.58 52.67 ± 0.68 40.53 ± 0.67 30.46 ± 0.64 24.00 ± 0.52 41.00 ± 0.58 31.32 ± 0.52

TEAPOT-ANIL† 40.39 ± 0.79 39.69 ± 0.79 55.31 ± 0.75 52.92 ± 0.75 32.58 ± 0.68 29.76 ± 0.61 43.63 ± 0.72 42.45 ± 0.67
TEAPOT-ProtoNet† 40.80 ± 0.78 40.28 ± 0.79 57.11 ± 0.78 55.69 ± 0.76 32.61 ± 0.64 31.97 ± 0.61 42.93 ± 0.65 41.28 ± 0.64

Method
VGG-Flower (Nilsback & Zisserman, 2008) CUB (Wah et al., 2011)

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

PEAK LAST PEAK LAST PEAK LAST PEAK LAST

RANDOM 38.39 ± 0.71 38.39 ± 0.71 48.18 ± 0.65 48.18 ± 0.65 26.26 ± 0.48 26.26 ± 0.48 29.89 ± 0.55 29.89 ± 0.55
AVERAGE 24.52 ± 0.46 24.52 ± 0.46 32.78 ± 0.53 32.78 ± 0.53 24.53 ± 0.46 24.53 ± 0.46 28.00 ± 0.47 28.00 ± 0.47
DRO 40.02 ± 0.72 38.98 ± 0.74 50.22 ± 0.68 49.13 ± 0.70 28.33 ± 0.69 26.01 ± 0.68 31.24 ± 0.76 29.39 ± 0.70
PURER-ANIL 51.34 ± 0.80 45.02 ± 0.68 67.26 ± 0.75 62.54 ± 0.72 31.29 ± 0.64 25.05 ± 0.62 43.34 ± 0.59 32.08 ± 0.60
PURER-ProtoNet 53.90 ± 0.76 47.12 ± 0.71 68.01 ± 0.68 64.51 ± 0.67 31.62 ± 0.63 27.23 ± 0.61 45.36 ± 0.71 35.32 ± 0.66

TEAPOT-ANIL† 55.28 ± 0.79 54.86 ± 0.76 69.03 ± 0.78 68.52 ± 0.75 35.65 ± 0.72 34.32 ± 0.69 47.24 ± 0.72 46.28 ± 0.65
TEAPOT-ProtoNet† 57.31 ± 0.85 56.79 ± 0.80 71.12 ± 0.71 70.60 ± 0.69 37.47 ± 0.73 36.67 ± 0.71 48.68 ± 0.71 47.64 ± 0.68

PURER-ANIL

TeaPot-ANIL (Ours)

PURER-ProtoNet

TeaPot-ProtoNet (Ours)
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Figure 3: Performance stability of TEAPOT compared with PURER during the whole meta-training phase (60k
meta-iterations). Our TEAPOT can achieve significantly higher and more stable meta-testing accuracy.

accuracy. (ii) TEAPOT achieve significantly higher LAST accuracy and less VARIATION on all
four datasets. Compared with the best baseline, TEAPOT achieves 6.75% ∼ 10.93% performance
gains for 1-shot learning and 6.09% ∼ 14.45% performance gains for 5-shot learning w.r.t. the LAST
accuracy. More generally, as we can see in Fig. 3, TEAPOT can maintain stable and high meta-testing
accuracy during the whole meta-training phase (60k meta-iterations), while PURER suffers from
dramatic performance degradation. The significant performance drop of PURER results from over-
reliance on new tasks, making it biased and prone to overfitting, thus harming its generalization ability
over time. (iii) Simply AVERAGE all models, surprisingly, even performs worse than RANDOM.
This is because each model is trained to solve different tasks, thus lacking precise correspondence in
parameter space. In Tab. 9 of App. D, we dig into this phenomenon and reveal that AVERAGE is
very sensitive to the number of pre-trained models. Table 3: Ablation studies.

Method 5-way 1-shot 5-way 5-shot

PEAK LAST PEAK LAST

V 35.34 ± 0.68 26.76 ± 0.64 50.31 ± 0.72 39.22 ± 0.74
V + M 36.02 ± 0.70 28.33 ± 0.68 51.23 ± 0.72 41.54 ± 0.70
V + M + I 38.76 ± 0.74 38.42 ± 0.72 54.91 ± 0.74 53.52 ± 0.74
V + M +I + T 40.80 ± 0.78 40.28 ± 0.79 57.11 ± 0.78 55.69 ± 0.76

Ablation studies. Tab. 3 analyzes the effectiveness
of each component on CIFAR-FS. We first introduce
the V (Vanilla) meta-learning from pseudo tasks syn-
thesized from models without the memory bank. V
suffers from TDS, leading to a dramatic performance
drop. Simply adding a Memory bank (M) does not work. This is because the task distribution is not
diversified enough to enable the meta-learner to generalize to unseen tasks. By adding I (Interpolated
task-memory replay), it achieves much high PEAK and less VARIATION, indicating the interpolation
mechanism does help improve robustness against TDS and enhance generalization ability. We also
observe an improvement by leveraging the soft-label supervision from pre-trained Teacher models
(i.e., T). With all components, we achieve the best with a boosting improvement of PEAK and much
less VARIATION, demonstrating the effectiveness of the joint schema. Tab. 6 of App. D shows
increasing the memory bank size can result in improved meta-learning performance.

5.2 DATA-FREE META-LEARNING W/ ATTACK

MPA setup. To simulate MPA, we randomly inject a certain number of OOD models per-trained
from EuroSAT (Helber et al., 2019), ISIC (Tschandl et al., 2018; Codella et al., 2019), chestX (Wang
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Figure 4: (Top) Performance gains brought by ROSY on CIFAR-FS. (Bottom) Trend of RSR.

et al., 2017), Omniglot (Lake et al., 2015) and MNIST (LeCun et al., 2010) into the training model
pool. The other 100 benign models are pre-trained on CIFAR-FS. Injecting those OOD models can
lead to severe TDC, and the reasons are fully illustrated in Sec. 3.2.

Table 4: ROSY against MPA of different poisoning rates.

Poisoning Rate Method 5-way 1-shot 5-way 5-shot

10% TEAPOT 34.37 ± 0.71 47.51 ± 0.72
TEAPOT + ROSY 35.57 ± 0.67+1.20% 49.34 ± 0.72+1.83%

20% TEAPOT 33.12 ± 0.69 46.79 ± 0.72
TEAPOT + ROSY 34.24 ± 0.69+1.12% 48.72 ± 0.74+1.93%

40% TEAPOT 33.03 ± 0.71 45.25 ± 0.74
TEAPOT + ROSY 35.22 ± 0.75+2.19% 46.81 ± 0.74+1.56%

60% TEAPOT 31.20 ± 0.68 42.65 ± 0.72
TEAPOT + ROSY 33.17 ± 0.66+1.97% 45.60 ± 0.69+2.95%

80% TEAPOT 30.47 ± 0.64 40.96 ± 0.70
TEAPOT + ROSY 33.06 ± 0.68+2.59% 43.58 ± 0.65+2.62%

Results. Tab. 4 shows the effectiveness of
ROSY on CIFAR-FS under different poison-
ing rates. We summarize the main find-
ings: (i) ROSY can obtain consistent defense
gains (1.12%∼ 2.59% for 1-shot learning and
1.56%∼ 2.95% for 5-shot learning) under poi-
soning rates ranging from 10% to 80%, indi-
cating the effectiveness of ROSY for handling
TDC that arises from model poisoning attack.
(ii) With the increase of the noise ratio, ROSY
achieves more significant improvements, sug-
gesting that involving the automatic model selection does improve the robustness of DFML. In Tab. 7
of App. D, we also verify the effectiveness of ROSY on other DFML algorithms like PURER, which
means ROSY + DFML is a general framework for existing DFML algorithms.

Analysis of learnable weights. To figure out how ROSY works, we take a deep look at the trend
of those learnable weights W (see Eq. (11)) during the meta-training phase. We first introduce

an indicator named RSR (Robust Sampling Rate): RSR =
∑

i∈INDEX(Mbenign)

(
ewi∑|Mpool|

i′=1
ewi′

)
,

where INDEX(Mbenign) returns the entry indexes of all benign modelsMbenign inMpool. RSR
indicates the probability of selecting benign models instead of those OOD models with deceptive
model information. The increasing value of RSR in Fig. 4 (Bottom) shows that ROSY gradually learns
how to identify OOD models and tends to select the benign models with an increasing probability.

6 CONCLUSION

In this work, for the first time, we reveal the vulnerabilities of DFML to Task-Distribution Shift
(TDS) and Task-Distribution Corruption (TDC) that arises from model poisoning attack (MPA). For
handling TDS, we propose a memory-based baseline TEAPOT by meta-learning from a pseudo task
distribution. For further handling TDC, we propose a general defense framework ROSY + DFML to
automatically filter out deceptive models via reinforcement learning. Our experiments demonstrate
the superiority of TEAPOT for handling TDS and verify the effectiveness of ROSY + DFML for
further alleviating TDC. Future work includes extending the proposed methods to more complex
cases where pre-trained models are black-box.
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Appendix

A ADDITIONAL EXPERIMENTAL SETUP

Following Wang et al. (2022); Hu et al. (2023), we adopt Conv4 as the architecture of the meta-learner
and the pre-trained models for a fair comparison, which is commonly used in recent meta-learning
works. Conv4 consists of four convolutional blocks. Each block consists of 32 3 × 3 filters, a
BatchNorm, a ReLU and a 2 × 2 max-pooling. We implement TEAPOT-ANIL (Raghu et al., 2019)
with an inner learning rate of 0.01 and an outer learning rate of 0.001. We implement TEAPOT-
ProtoNet (Snell et al., 2017) with a learning rate of 0.001. We set the budget of the memory bank as
20 tasks. Following Wang et al. (2022); Hu et al. (2023), we collect 100 models pre-trained on 100
N -way tasks sampled from the meta-training subset. Those pre-trained models are trained using an
Adam optimizer with a learning rate of 0.01 for 60 epochs. For generator training, we adopt Adam
optimizer with a learning rate of 0.001 for 200 epochs. We provide the architecture of the generator in
App. C. We switch from task-memory replay to generating new tasks if the meta-validating accuracy
has not increased for 10 meta-iterations. All experiments are conducted on the NVIDIA GeForce
RTX 3090 GPU.

B ADDITIONAL ALGORITHM

Algorithm 3: Recover-Task-From-Model Subroutine
1 Input: Max generation-iterations NG; the pre-trained model M and the corresponding generator G(·;θG).
2 Function Recover-Task-From-Model(M , G):
3 Initialize minLoss← +∞, bestTask ← None
4 Randomly initialize θG
5 Pre-define the labels Y
6 for each iteration ng ← 1 to NG do
7 Randomly sample a batch of noise Z from the standard Gaussian distribution

8 X(ng) ← G(Z,Y;θ
(ng)

G )

9 Calculate the loss value L
(ng)

G ← LG(Z,Y;θ
(ng)

G )

10 θ
(ng+1)

G ← θ
(ng)

G −∇θGL
(ng)

G (Eq. (5))

11 if L(ng)

G < minLoss then
12 minLoss← L(ng)

G

13 bestTask ← X(ng)

14 Randomly split bestTask into the support set D̂s and the query set D̂q

15 return bestTask with D̂s and D̂q

C ARCHITECTURE OF CONDITIONAL GENERATOR

Tab. 5 lists the structure of the conditional generator in our proposed TEAPOT. The generator takes
the standard Gaussian noise and the one-hot label embedding as inputs and outputs the recovered
data. Here, dz is the dimension of Gaussian noise data z, which is set as 256 in practice. The
negative slope of LeakyReLU is 0.2. We set img size as 32. We set the number of channels nc as
3 for color image recovery and the number of convolutional filters nf as 64.

D ADDITIONAL EXPERIMENTS

Effect of the memory budgets. Tab. 6 shows the effect of the memory-bank size. We conduct
experiments on CIFAR-FS for 5-way 1-shot and 5-shot learning. We measure the size with one
N -way K-shot task. Within a specific range, increasing the memory-bank size resulted in improved
generalization ability. Intuitively, a larger memory bank has the capacity to store a greater number
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Table 5: Detailed structure of conditional generator. We highlight the dimension change in red.

Notion Description
img size × img size resolution of recovered image

bs batch size
nc number of channels of recovered image
nf number of convolutional filters

FC(·) fully connected layer;
BN(·) batch normalization layer

Conv2D(input, output,filter size, stride, padding) convolutional layer

Structure Dimension
Before After

z ∈ Rdz ∼ N (0,1) — [ bs, dz ]
y ∈ Rdy — [ bs, dy ]
FC1(z) [ bs, dz ] [ bs, nf × (img size//4)× (img size//4) ]
FC2(y) [ bs, dy ] [ bs, nf × (img size//4)× (img size//4) ]

Concatenate(FC1(z),FC2(y)) — [ bs, 2× nf × (img size//4)× (img size//4) ]
Reshape [ bs, 2× nf × (img size//4)× (img size//4) ] [ bs, 2× nf, (img size//4), (img size//4) ]

BN [ bs, 2× nf, (img size//4), (img size//4) ] [ bs, 2× nf, (img size//4), (img size//4) ]
Upsampling [ bs, 2× nf, (img size//4), (img size//4)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]

Conv2D(2× nf, 2× nf, 3, 1, 1) [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]
BN, LeakyReLU [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, (img size//2), (img size//2)) ]

Upsampling [ bs, 2× nf, (img size//2), (img size//2)) ] [ bs, 2× nf, img size, img size ]

Conv2D(2× nf, nf, 3, 1, 1) [ bs, 2× nf, img size, img size ] [ bs, nf, img size, img size ]
BN, LeakyReLU [ bs, nf, img size, img size ] [ bs, nf, img size, img size ]

Conv2D(nf, nc, 3, 1, 1) [ bs, nf, img size, img size ] [ bs, nc, img size, img size ]
Sigmoid [ bs, nc, img size, img size ] [ bs, nc, img size, img size ]

of old synthetic tasks, thereby preventing the meta-learner from over-reliance on specific tasks and
leading to enhanced generalization ability.

Table 6: Effect of memory-bank size.

Size 5-way 1-shot 5-way 5-shot

1 34.06 ± 0.66 48.13 ± 0.76
10 39.26 ± 0.73 53.99 ± 0.76
20 40.80 ± 0.78 57.11 ± 0.78

Table 7: Effect of ROSY + PURER for handling TDC.

Poisoning Rate Method 5-way 1-shot 5-way 5-shot

20% PURER 35.52 ± 0.55 50.16 ± 0.64
PURER + ROSY 37.00 ± 0.62+1.48% 52.18 ± 0.65+2.02%

40% PURER 35.37 ± 0.64 48.39 ± 0.63
PURER + ROSY 36.92 ± 0.55+1.55% 50.25 ± 0.66+1.86%

Table 8: Effect of number of pre-trained models on
TEAPOT.

Number 5-way 1-shot 5-way 5-shot

10 38.32 ± 0.75 49.83 ± 0.74
50 39.15 ± 0.75 52.41 ± 0.76
100 40.80 ± 0.78 57.11 ± 0.78

Table 9: Effect of number of pre-trained models on
AVERAGE.

Number 5-way 1-shot 5-way 5-shot

0 (RANDOM) 28.59 ± 0.56 34.77 ± 0.62
AVERAGE 10 27.99 ± 0.59 36.92 ± 0.67
AVERAGE 50 24.05 ± 0.51 28.16 ± 050

AVERAGE 100 23.96 ± 0.53 27.04 ± 0.51

Effect of ROSY on other DFML algorithms. To verify the great generality of SORY, we apply
it to PURER (Hu et al., 2023) on CIFAR-FS for 5-way 1-shot and 5-shot learning. The results are
shown in Tab. 7. ROSY brings consistent defense gains (1.48% ∼ 1.55% for 1-shot learning and
1.86% ∼ 2.02% for 5-shot learning) under poisoning rates of 20% and 40%, indicating its general
effectiveness for existing DFML algorithms.

Effect of the number of pre-trained models on TEAPOT and AVERAGE. Tab. 8 and Tab. 9 show
the effect of the number of pre-trained models on TEAPOT and AVERAGE, respectively. We conduct
experiments on CIFAR-FS for 5-way 1-shot and 5-shot learning, respectively. Within a specific
range, more pre-trained models can benefit TEAPOT but damage AVERAGE. Specifically, as shown
in Tab. 8, increasing the number of models from 10 to 100 can benefit TEAPOT with ↑ 2.48% and
↑ 27.28% performance gains for 1-shot and 5-shot learning, respectively. However, in the case of
AVERAGE, this results in ↓ 4.03% and ↓ 9.88% performance degradation for 1-shot and 5-shot
learning, respectively. The reason why AVERAGE even performs worse than RANDOM is that each
pre-trained model trains on different tasks, thus lacking precise correspondence among different
pre-trained models in parameter space. The poor performance of AVERAGE also highlights the
challenge of utilizing numerous available pre-trained models from sources like GitHub to enable
efficient learning on unseen downstream tasks. In contrast, our proposed TEAPOT effectively solves
this challenging problem and achieves significant performance improvements.
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