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Abstract
Modern neural networks are usually highly over-parameterized. Behind the wide usage of over-
parameterized networks is the belief that, if the data are simple, then the trained network will be
automatically equivalent to a simple predictor. Following this intuition, many existing works have
studied different notions of “ranks” of neural networks and their relation to the rank of data. In
this work, we study the rank of convolutional neural networks (CNNs) trained by gradient descent,
with a specific focus on the robustness of the rank to noises in data. Specifically, we point out that,
when adding noises to data inputs, the rank of the CNN trained with gradient descent is affected far
less compared with the rank of the data, and even when a significant amount of noises have been
added, the CNN filters can still effectively recover the intrinsic dimension of the clean data. We back
up our claim with a theoretical case study, where we consider data points consisting of “signals”
and “noises” and we rigorously prove that CNNs trained by gradient descent can learn the intrinsic
dimension of the data signals.

1. Introduction

Neural networks have become a cornerstone in modern machine learning, demonstrating remarkable
performance across various domains. A common characteristic of modern networks is their tendency
to be highly over-parameterized. Interestingly, it has been demonstrated that over-parameterized
models trained by standard optimization algorithms exhibit a preference for simplicity [3, 11, 15, 16,
21, 26, 33–36]: if the training data can be fitted well by a simple predictor, then after training, an
over-parameterized model may effectively reduce to this simple predictor.

A notable line of recent works have considered notions of “ranks” to characterize how simple the
over-parameterized neural network after training is [3, 11, 15, 18, 26, 41]. Specifically for nonlinear
networks, [11] showed that the effective hidden layer neurons in a two-layer neural network is sparse.
[41] empirically demonstrated that the hidden neural weight vectors condense on isolated orientations
when learning easy tasks, and provided explanations of this phenomenon with theoretical case studies.
[18] further formulated the Jacobian and Bottleneck ranks for vector-valued neural networks, and
demonstrated that over-parameterized networks tend to achieve small ranks.
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In this work, we aim to study the “ranks” of two-layer convolutional neural networks (CNN)
when learning from low-rank data sets from a new perspective: we examine the robustness of the
neural network rank when noises of increasing levels are added to the low-rank data. Interestingly,
we can draw the following conclusion:

The rank of the CNN is much more robust to noises, compared with the rank of the data.

(a) MNIST (b) CIFAR-10

Figure 1: Ranks of data and filters under different noise levels. In (a), we perform a principal
component analysis (PCA) to a subset of MNIST images to reduce the intrinsic dimension
of each image to 20. We then add noises around the obtained low-rank image, and train a
two-layer CMM until convergence. We then calculate the ranks of the noisy images and
the matrix consisting of all the convolutional filters of the CNN. When calculating ranks,
eigenvalues smaller than 1/100 of the largest eigenvalue are ignored. The curves of filter
rank and data rank with respect to the noise level are plotted. In (b), we conduct a similar
set of experiments on the CIFAR-10 data set.

An illustration of this claim is given in Figure 1 (A more comprehensive set of experiments
are presented in Appendix B). While the empirical observation is clear, the explanation of this
phenomenon requires more careful analysis. In order to theoretically understand this phenomenon,
we consider a specific type of learning problems which have been considered in recent studies of
the “benign overiftting” phenomenon [7, 23], where the data inputs consist of “signal patches” and
“noise patches”. Notably, this type of data model is particularly suitable for our study of the rank of
neural network and its robustness with respect to noises – the signal patches can represent the clean
(low-rank) data, while the noise patches naturally motivates the study of robustness. By studying
this type of data, we are able to theoretically demonstrate our claim that the rank of CNN filters are
robust to noises.

The major contributions of this paper are as follows:
• We reveal the “rank robustness” phenomenon in training convolutional neural networks. In

particular, we add different levels of noises to low-rank data and then use CNNs to fit these noisy
data. We observe that, even if a significant amount of noises have been added which causes the
rank of the data to explode, the rank of the CNN filters can still remain around the rank of the clean
data. This suggests that the rank of CNN is more robust to the noise compared to the rank of data.

• We theoretically prove that the observed phenomenon happens when training a two-layer CNN
on a data model with multiple signals and noise. More specifically, we show that under a wide
range of noise levels, the CNN model will learn the intrinsic dimension of the training data, i.e.,
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the number of signal vectors. In comparison, we also show that under the same noise levels, the
data rank can provably explode.

• Our theoretical analysis is inspired by [7] where the authors proposed a data model for the study
the “benign overfitting” phenomenon. Compared to [7] where only one signal patch and one
noise patch is considered, our analysis handles the more general model with arbitrarily many
patches. More importantly, as the purpose of [7] is only to study the test loss, their analysis on the
optimization process is not the most accurate. In comparison, this work establishes a more refined
analysis that accurately characterizes the behaviour of all the CNN filters throughout training,
which enables the study of the rank of the trained CNN. The conclusions of [7] can also be directly
implied based on our theoretical results. Therefore, we believe that the theoretical tools developed
in this paper may be of independent interest.

2. Problem Setup

In this section we introduce the theoretical setting considered in this paper. We first give the following
definition on the distribution of data.

Definition 2.1 Let U = {µ1,µ2, · · · ,µK} ⊆ Rd be a set of K fixed vectors representing different
signals. Based on these signal vectors, each data point (x, y) with x = [x⊤

1 ,x
⊤
2 , . . . ,x

⊤
P ]

⊤ ∈ RPd

denoting the P patches and y ∈ {−1, 1} is generated from the following distribution D:
1. The label y is generated as a Rademacher random variable.
2. An integer s is drawn from a distribution π over {1, 2, . . . ,K}. This distribution π takes value 1

with a positive probability π1.
3. A set of s vectors ν1, . . . ,νs are randomly and uniformly drawn from U without replacement. s

patches among x(1), . . . ,x(P ) are then randomly chosen and are assigned as y · νi, i ∈ [s].
4. The rest P−s patches among x(1), . . . ,x(P ) are assigned as Gaussian random vectors ξ1, . . . , ξP−s

that are independently drawn from N(0, σ2
noise · (Id −

∑K
k=1µkµ

⊤
k · ∥µk∥−2

2 )).

We consider the training of CNNs based on a trained dataset S = {(x1, y1), . . . , (xn, yn)} for binary
classification, where the training data points (xi, yi) are generated independently from the distribution
given in Definition 2.1. For these training data points, we adopt the notations in Definition 2.1 and
denote by si the number of signal vectors in xi. Similarly, we also denote by νi,1, . . . ,νi,si the signal
vectors contained in xi, and by ξi,1, . . . , ξi,P−si the noise vectors contained in xi. Similar training
samples have been considered for a variety of different topics [2, 7, 19, 23, 29, 42].
Two-layer CNNs. We consider a two-layer convolutional neural network whose filters are applied
to the P patches x(1),x(2), . . . ,x(P ) separately, and the second layer parameters of the network
are fixed as +1/m and −1/m respectively. Then the network can be written as f(W,x) =
F+1(W+1,x)− F−1(W−1,x), where F+1(W+1,x), F−1(W−1,x) are defined as:

Fj(Wj ,x) =
1

m

m∑
r=1

P∑
p=1

σ(⟨wj,r,xp⟩) =
1

m

m∑
r=1

[
s∑

k=1

σ(⟨wj,r, y · νk⟩) +
P−s∑
k′=1

σ(⟨wj,r, ξk′⟩)

]
,

for j ∈ {+1,−1}, m is the number of convolutional filters in F+1 and F−1. We consider using
Huberized ReLU activation function σ(·) defined as σ(z) = q−1κ1−qzq ·1{z∈[0,κ]}+(z−κ−κ/q) ·
1{z>κ}, where κ is a small constant and q ≥ 3. We use wj,r ∈ Rd to denote the weight for the r-th
filter (i.e., neuron), and Wj is the collection of model weights associated with Fj . We also use W to
denote the collection of all model weights.

3



GRADIENT DESCENT ROBUSTLY LEARNS THE INTRINSIC DIMENSION OF DATA IN TRAINING CNNS

Training Algorithm. We train the above CNN model by minimizing the empirical cross-entropy
loss function LS(W) = 1

n

∑n
i=1ℓ[yi · f(W,xi)], where ℓ(z) = log(1 + exp(−z)), and S =

{(xi, yi)}ni=1 is the training data set. We consider gradient descent starting from Gaussian initializa-
tion, where each entry of W+1 and W−1 is sampled from a Gaussian distribution N(0, σ2

0), and σ2
0

is the variance. The gradient descent update of the filters in the CNN can be written as

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,rLS(W

(t)) (2.1)

for j ∈ {±1} and r ∈ [m], where we introduce a shorthand notation ℓ
′(t)
i = ℓ′[yi · f(W(t),xi)].

3. Main Results

Before we demonstrate our results, we first present conditions on the dimension d, sample size n,
neural network width m (number of filters), learning rate η, initialization scale σ0, signal level ∥µk∥2,
and noise level σnoise.

Condition 3.1 Suppose that
1. Dimension d is sufficiently large: d = Ω̃(m4 ∨ n4)
2. Training sample size n and neural network width m satisfy n,m = Ω(polylog(d)).
3. Signals are perpendicular to each other and at the same level, i.e. ⟨µk,µk′⟩ = 0 and ∥µk∥2

∥µk′∥2
=

Θ(1) for all k ̸= k′. W.L.O.G, we assume ∥µ1∥2 ≥ ∥µ2∥2 ≥ · · · ∥µK∥2.
4. The level of signals is larger or equal to the noises: n∥µK∥q2

σq
noised

q/2 ≥ Ω̃(1)

5. The learning rate η satisfies η ≤ Õ(min{∥µ1∥−2
2 , σ−2

noised
−1}).

6. The standard deviation of Gaussian initialization σ0 is sufficiently small: σ0 ≤ Õ(d−1/2) ·
min{(σnoise

√
d)−1, ∥µ1∥−1

2 }.

These assumptions are widely made in a series of recent works on the benign overfitting phenomena
of gradient descent in learning over-parameterized CNN models [7, 10, 23]. We remark that, although
the condition on the ratio between signal vectors is established for a clear presentation, it can certainly
be relaxed to include other quantities beyond a constant order. The condition on the levels of signal
and noise, firstly proposed in [7], is to ensure that the signal learning will not be overridden by the
noise. The condition on the learning rate is to ensure the convergence of gradient descent. The
condition on the initialization scaling is to guarantee that gradient descent is performing feature
learning rather than learning random kernels.

Now we are ready to deliver our main theorem, which characterizes the critical properties of the
learned convolutional filters.

Theorem 3.2 Under Condition 3.1, for our signal sets {µ1,µ2, · · · ,µK}, there exist K distinct fil-
ters {w1,r1,1 ,w1,r1,2 , · · · ,w1,r1,K} in W+1 and K distinct filters {w−1,r−1,1 ,w−1,r−1,2 , · · · ,w1,r−1,K}
in W−1 such that at any iteration T = η−1poly(∥µ1∥−1

2 , · · · , ∥µK∥−1
2 , d−1σ−2

noise, σ
−1
0 , n,m, d) ≥

Ω̃
(

m

ησq−2
0 ∥µK∥q2

)
, with probability at least 1−O(m−1), it holds that∥∥∥∥w(T )

1,r1,k
−
(
m log T

)
· µk

∥µk∥22

∥∥∥∥
2

≤ O
( m

∥µk∥2

)
;
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∥∥∥∥w(T )
−1,r−1,k

+
(
m log T

)
· µk

∥µk∥22

∥∥∥∥
2

≤ O
( m

∥µk∥2

)
,

∥∥w(T )
j,r

∥∥
2
≤ O

( K∑
k=1

1

m∥µk∥2

)
+O(σ0d

1/2),

with r ̸= r1,k, r−1,k for all k ∈ [K]. Moreover, denote PU⊥ the projection matrix of the compliment
space span(U)⊥, then ∥PU⊥ · (w(T )

j,r −w
(0)
j,r )∥2 ≤ O(σ0n

1/2) for all j ∈ {−1,+1} and r ∈ [m].

The results of Theorem 3.2 demonstrate that for each signal µk, only the two filters w1,r1,k

and w−1,r−1,k
can significantly learn µk and −µk. The projections of filters into the complement

subspace of signal sets are small values by our Condition 3.1, implying that the noise data are rarely
learned in any filter when the magnitude of signals is large compared to noise. As demonstrated in
the previous work of benign over-fitting in two-layer neural networks [7, 23], the neural network
can achieve both lower empirical training loss and test population loss if it rarely learns noises.
However, their result is not sufficient to conjecture the potential structure of the neural networks. In
comparison, we propose a more refined analysis as we carefully check the optimization trajectory
of each filter during the whole training. Our results implies that we can approximately regard
w

(T )
j,rj,k

≈ m log(T ) µk

∥µk∥22
and w

(T )
j,r ≈ w

(0)
j,r if r ̸= rj,k. The significant distinctions among the filters

intuitively show that the neural network can exhibit an inherent prioritizing towards a low-rank
structure that aligns with the intrinsic complexity of the data set.

Corollary 3.3 Let X = [x
(1)
1 , · · · ,xP

1 ,x
(1)
2 , · · · ,xP

2 , . . . ,x
(1)
n , · · · ,xP

n ] be the matrix consisting
of all the training input patches, and denote by ω1, . . . , ωnP and λ1, . . . , λ2m the singular values (in
descending order) of X and W respectively. Then under the same conditions as Theorem 3.2, with
probability at least 1−O(m−1), it holds that

ω1

ωnP
≤ 2∥µ1∥2

σnoise
√
d
, and

λK

λK+1
≥ Ω

(
m log(T )∥µ1∥−1

2

σ0
√
d

)
.

Corollary 3.3 clearly demonstrates the different patterns of data ranks and learned filters under
varying noise levels. Specifically, as the noise becomes stronger (i.e., σnoise increases), the condition
number of the data matrix (i.e., ω1/ωnP ) decreases and gradually approaches 1, indicating that the
rank of the training data matrix increases and approaches nP . In contrast, the ratio between the K-th
largest and K+1-th largest eigenvalues of the learned filters is independent of the noise strength, and
thus remains largely unchanged as the noise increases. Furthermore, when using a small initialization
scaling σ0, we observe that the gap between λK and λK+1 becomes significantly large, suggesting
that the rank of the learned filters is approximately K. This clearly explains the “rank robustness”
phenomenon of the CNN model trained by gradient descent.

4. Conclusions and Future Work

In this paper, we point out an interesting phenomenon on the robustness of CNNs trained by gradient
descent in learning the intrinsic dimension of data. For a specific type of data, we theoretically show
that the two-layer CNN will converge to a low-rank structure when learning from noisy data, and
even if the ranks of the data have exploded due to the added noises, the CNN rank still remains robust.
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Experiments on MNIST, CIFAR10 data sets also support our findings. Exploring more accurate
definitions of “ranks” and extending our results to more complicated data and networks are some
interesting future work directions.
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Appendix A. Additional Related Works

Implicit bias. There emerges a line of works studying the concept of ’implicit bias’, the inherent
property of learning algorithms prioritizing a solution with some specific structures, especially
some ’simple’ structures. For the implicit bias study on neural networks, [22, 30] demonstrated that
q-homogeneous neural networks trained by gradient descent converge in direction to a KKT point of
the maximum ℓ2-margin problem. [31] proposed a stronger result base on symmetric data assumption
and [39] extend the results to adaptive methods. [20, 22] showed the each layer of deep linear neural
networks converges to a rank 1 matrix. [27] establish the equivalence between the gradient flow of
depth-2 matrix factorization and a heuristic rank minimization algorithm. [13] showed that on nearly
orthogonal data, gradient flow in leaky ReLU networks will achieve a linear boundary, and the stable
rank of the neural networks is always bounded by a constant. [24] extends this result to gradient
descent on similar data structures. [37] study the rank minimization on non-linear networks and
provide several counter-examples. Besides, [38] provides a literature review of the existing works of
implicit bias on deep neural networks.
Benign over-fitting. [5, 6] demonstrated the “double descent” population risk curve for many
models, containing decision tree and Gaussian and random Fourier feature model. [4] showed that
the benign overfitting in linear regression is correlated with the effective rank of the data covariance,
and provided a theoretical bound for over-parameterized minimum norm interpolator. [9] study
the benign overfitting in linear classification for a sub-Gaussian mixture model with noise flipping.
[17, 40] study the implicit bias under the regime that dimension and sample increase at a fixed ratio.
[1, 28, 32] explored the multiple descent under different settings. Besides, [7, 14, 23] study the
benign overfitting on two-layer neural networks.

Appendix B. Experiments

In this section, we present our experimental results to backup our theoretical results and show a
two-layer CNN is robust to noise in data.

We generate training data from the MNIST [12] and CIFAR10 [25] datasets according to
Definition 2.1. We use images from two selected classes as the source of signal patches for the
y = −1 class and the y = 1 class, respectively. To control the rank of the training data, we reshape
each image into one vector and stack them into a matrix, then use PCA to reduce its rank. After that,
we generate P patches with noise as one data point x from each column of the matrix. For noise
generation, we use entry-wise Gaussian noise N(0, σ2

noise), where we set σnoise to different values to
verify how our model behaves under varying levels of noise. We consider a CNN model as defined in
Section 2. To ensure the rank of the initialized parameters of the model does not affect the observed
rank after training, we multiply the initialized weights by a small coefficient. For different data, we
use different setups to generate the noise data and run the full batch gradient decent to train the CNN:
MNIST. The MNIST images firstly undergo dimensionality reduction to three levels of rank: 10, 20,
and 30. Then each column of the matrix, corresponding to an image, is reshaped to its original size
and padded with a 14-pixel wide circle of noise (An example is shown in Figure 2). Finally, each
noise-padded image is reshaped into P patches. The padded pixels are entry-wise Gaussian noise
N(0, σ2

noise), where σnoise is set to 0, 0.01, 0.1, 0.12, 0.15, 0.18, and 0.2. For the model, the model
width m is set to 128. For each rank level, the initialization coefficients are set to 1e-3, 1e-3, and
1e-2, respectively.

10
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(a) σnoise = 0.01 (b) σnoise = 0.1 (c) σnoise = 0.2

Figure 2: Illustration of a training image from the MNIST dataset, reduced to rank 10 and padded
with a circle of noise.

CIFAR10. To reduce the complexity of CIFAR10 data and more easily reveal the phenomenon,
we transform the original CIFAR10 iamge into embeddings using ResNet-18. All embeddings are
stacked into a matrix, which is then subjected to dimensionality reduction to ranks 15, 20, 25. After
reducing the dimension of the embedding matrix, each embedding is concatenated with a noise vector
and reshaped into P patches. Here, the standard deviation of the noise σnoise is set to 0, 0.1, 0.5,
0.62, 0.65, 0.7 and 0.8. The model width m is set to 256, 512, 128 and the initialization coefficients
are set to 1e-6, 3e-7, 3e-7 for each rank.
Synthetic Data. In addition to using two real-world datasets, we also conduct experiments on
synthetic data. We strictly follow Definition 2.1 to generate the synthetic data. For the signal patches,
we set K = 10, 20, and 30, and choose one-hot vectors as signals. Then, we set π1 = 1 and P = 3,
which means each data instance contains one signal patch and two Gaussian noise patches. And
σnoise is set to 0, 0.001, 0.0065, 0.009, 0.01, 0.012, 0.015. For the CNN model, The initialization
coefficients are set to 1× 10−4, and the model width m is set to 128 for each K.
Result. According to Theorem 3.2, the rank of the filter is approximately equal to the number
of signals. In this experiment, we report three different ranks: the dimension of PCA, i.e. the
rank of pure signals wihtout noise, the rank of model weights, and the rank of the data with noise.
Here, we verify whether the dimension of PCA is roughly equal to the rank of the filter after
training. To evaluate the rank of the model weights and the noise data, we denote the number of
their singular values larger than λmax/100 as the rank, where λmax is the maximal singular value of
the corresponding matrix. In all experiments, the rank results are presented when models have been
trained to achieve a very small training error, in the range of 1e-1 to 1e-2. As shown in Figure 3, it is
evident that as the noise and rank of data increase, the rank of the CNN filter remains approximately
the same as the PCA dimension. This indicates that CNNs tend to learn the signals even when the
data is exposed to significant noise.

Appendix C. Overview of Proof Technique

In this section, we explain how we establish our main theoretical results. Similar to the definition of
U , we define the linear subspace spanned by the noise vectors as

N = span{ξ1,1, · · · , ξ1,P−s1 , · · · , ξn,1, · · · , ξn,P−sn} ⊂ U⊥.

11
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(a) Rank visualization of data and CNN filters on MNIST dataset.

(b) Rank visualization of data and CNN filters on CIFAR10 dataset.

(c) Rank visualization of data and CNN filters on Synthetic Data.

Figure 3: Rank of the data and learned filters under different noise levels. Here x-axis represents the
value of the standard deviation of noise σnoise, and y-axis is the rank. From the figures, it
can be clearly observed that the data rank increases rapidly as the noise becomes stronger,
while the rank of the CNN filters remains robust against the noise, while keeps being the
same as the intrinsic dimension of the data features.
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According to the gradient iterative rule for filter (2.1), we could observe that at each iteration,
the update of filter is always in the subspace spanned by the signal vectors and noise vectors i.e.,
w

(t+1)
j,r −w

(t)
j,r ∈ U ∪ N . Since the signal vectors are pairly orthogonal and also orthogonal to the

noise vectors, we propose a decomposition of w(t)
j,r as

w
(t)
j,r = w

(0)
j,r +

K∑
k=1

⟨w(t)
j,r −w

(0)
j,r ,µk⟩

∥µk∥22
µk +Ξ

(t)
j,r (C.1)

where Ξ
(t)
j,r is the linear projection of w(t)

j,r −w
(0)
j,r into N . By this decomposition, we can split the

projection PU⊥ ·w(t)
j,r = PU⊥ ·w(0)

j,r +Ξ
(t)
j,r. Since the initialization of neural networks is sufficiently

small under our setting, we can treat ⟨w(t)
j,r −w

(0)
j,r ,µk⟩ ≈ ⟨w(t)

j,r,µk⟩. This inner product efficiently

characterizes the level of different signals learned by each filter. On the other hand, Ξ(t)
j,r reflects

the noise from different data points learned by each filter. In the following, we use a two-stage
decoupling technique to characterize the increase of these values.

C.1. Training Phase I

Our training filters wj,r’s are initialized at a sufficiently small level, therefore we could treat
−ℓ′i ≈ 1/2 at the beginning. Until the output of neural networks surpasses a constant level, we
can always treat −ℓ′i as a constant and there is no significant difference among all training data.
Therefore, the dominating factor in the iterative rules of our filters is the output of the activation
function. Since the Huberized Relu activation function exhibits a power increase with order q ≥ 3 at
the beginning stage. This power increase significantly distinguishes the signal level among wj,r’s by
the end of Phase I.

Lemma C.1 Under the Condition 3.1, we can find a time T1 = Θ̃
(

m

ησq−2
0 ∥µK∥q2

)
, then for our signal

sets {µ1,µ2, · · · ,µK}, there exist K distinct filters {w1,r1,1 ,w1,r1,2 , · · · ,w1,r1,K} in W+1 and
K distinct filters {w−1,r−1,1 ,w−1,r−1,2 , · · · ,w1,r−1,K} in W−1 such that for all j ∈ {−1,+1},

k ∈ [K], it holds that ⟨w(T1)
j,rj,k

, jµk⟩ ≥ κ and ⟨w(T1)
j,r , jµk⟩ ≤ 1

4Km with all r ̸= rj,k. Moreover, it

holds that ∥Ξ(t)
j,r∥22 ≤ σ2

0nP/2 for all j ∈ {±1}, r ∈ [m] and 0 ≤ t ≤ T1.

Lemma C.1 show that at a time T1 = Θ̃
(

m

ησq−2
0 ∥µK∥q2

)
, for each signal µk, only one filter w1,r1,k

can learn +µk and only one filter w−1,r−1,k
can learn −µk, and the level of ⟨w(T1)

1,r1,k
,µk⟩ and

⟨w(T1)
−1,r−1,k

,−µk⟩ will attain κ, the critical point of the Huberized Relu activation function. By
definition of the Huberized Relu activation function, we can easily obtain that the power term will
vanish when the input of the activation function, i.e., ⟨wj,rj,k , jµk⟩ attains κ. Moreover, we can not
treat −ℓ′i = Θ(1) like Phase I, since some input terms of the loss function also attain constant level.
To better illustrate our results, we denote by Jk the set of data points containing only one signal
vector µk in their signal patches, i.e., Jk =

{
i|si = 1, νi,1 = µk, and i ∈ [n]

}
. One good property

for i ∈ Jk is that we have −ℓ′i = Θ(exp (−⟨wyi,ryi,k
, yiµk⟩/m)) if the noise always remains at a

small level. As we will show in the next lemma, this property guarantees that after the power term
vanishes, ⟨wj,rj,k , jµk⟩ will increase logarithmically.
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C.2. Training Phase II

Lemma C.2 Under the Condition 3.1, for our signal sets {µ1,µ2, · · · ,µK}, there exist K distinct
filters {w1,r1,1 ,w1,r1,2 , · · · ,w1,r1,K} in W+1 and K distinct filters {w−1,r−1,1 ,w−1,r−1,2 , · · · ,w1,r−1,K}
in W−1 such that at any time T ∗ = T1 + η−1poly(∥µ1∥−1

2 , · · · , ∥µK∥−1
2 , d−1σ−2

noise, σ
−1
0 , n,m, d)

and for all j ∈ {−1,+1}, k ∈ [K], then

m log(T ∗ − T1)−O(m) ≤ ⟨w(T ∗)
j,rj,k

, jµk⟩ ≤ m log(T ∗ − T1) +O(m)

and ⟨w(T ∗)
j,r , jµk⟩ ≤ 1

2Km for all r ̸= rj,k. Moreover, it holds that ∥Ξ(t)
j,r∥22 ≤ 2σ2

0nP for all
j ∈ {±1}, r ∈ [m] and 0 ≤ t ≤ T ∗.

In the Phase II training, we don’t specify a particular time T ∗, T ∗ could be any polynomials of our
parameters and the only requirement for T ∗ is that T ∗ is larger than the T1, then we can approximately
claim that w(T ∗)

j,rj,k
≈ log(T ∗ − T1)

jµk

∥µk∥22
, and w

(T ∗)
j,r ≈ w

(0)
j,r if r ̸= rj,k. These intuitive results

clearly illustrate after a long time of training, the neural network will prioritize a ’low-rank’ structure
that aligns with the intrinsic data complexity.

Now, we are ready to prove our main Theorem 3.2.
Proof [Proof of Theorem 3.2] Let T = η−1poly(∥µ1∥−1

2 , · · · , ∥µK∥−1
2 , d−1σ−2

noise, σ
−1
0 , n,m, d)

and T ≥ Ω
(

m

ησq−2
0 ∥µ1∥q2

). We calculate the filter norm by (C.1)∥∥∥∥w(T )
j,rj,k

−
(
m log T

)
· jµk

∥µk∥22

∥∥∥∥
2

=

∥∥∥∥w(0)
j,rj,k

+
(
⟨w(T )

j,rj,k
−w

(0)
j,rj,k

,µk⟩ − jm log T
) µk

∥µk∥22
+
∑
k′ ̸=k

⟨w(T )
j,rj,k

−w
(0)
j,rj,k

,µk′⟩
µk′

∥µk′∥22
+Ξ

(T )
j,rj,k

∥∥∥∥
2

≤∥w(0)
j,rj,k

∥2 +

∣∣⟨w(T )
j,rj,k

−w
(0)
j,rj,k

, jµk⟩ −m log T
∣∣

∥µk∥2
+
∑
k′ ̸=k

∣∣⟨w(T )
j,rj,k

−w
(0)
j,rj,k

,µk′⟩
∣∣

∥µk′∥2
+ ∥Ξ(T )

j,rj,k
∥2

≤O(σ0d
1/2) +O

( m

∥µk∥2

)
+O

(∑
k′ ̸=k

1

m∥µk′∥2

)
+O(σ0n

1/2) ≤ O
( m

∥µk∥2

)
.

The first inequality is from triangle inequality, the second inequality is from Lemma C.2 and
concentration results in Appendix E.1 guaranteeing that ∥w(0)

j,rj,k
∥2 ≤ O(σ0d

1/2) and |⟨w(0)
j,r ,µk⟩| ≤

O(σ0∥µk∥2) ≤ O(d−1/2), and the last inequality is by Condition 3.1. For wj,r with r ̸= rj,k for all
j ∈ {−1,+1} and k ∈ [K], we have

∥∥w(T )
j,r

∥∥
2
≤
∥∥w(0)

j,r

∥∥
2
+

K∑
k=1

∣∣⟨w(T )
j,r −w

(0)
j,r ,µk⟩

∣∣
∥µk∥2

+ ∥Ξ(T )
j,r ∥2

≤ O(σ0d
1/2) +O

( K∑
k=1

1

m∥µk∥2

)
+O(σ0n

1/2)

≤ O(σ0d
1/2) +O

( K∑
k=1

1

m∥µk∥2

)
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Similarly, the first inequality is from triangle inequality, the second inequality is from Lemma C.2
and some concentration results in Appendix E.1, and the last inequality is by Condition 3.1. By
definition of PU⊥ , we can directly have PU⊥ ·

(
w

(T )
j,r −w

(0)
j,r

)
= Ξ

(t)
j,r, which proves the last result in

Theorem 3.2.

Appendix D. Proof in Section C

D.1. Decomposition

We introduce a more refined decomposition of w(t)
j,r compared to (C.1), the most significant difference

is that we define an exact agent to describe the learning of each noise ξi,k′ on each filter wj,r.

Definition D.1 Let w(t)
j,r for j ∈ {±1}, r ∈ [m] be the convolution filters of the CNN at the t-th

iteration of gradient descent. Then there exist unique coefficients γ(t)j,k,r ≥ 0 and ρ
(t)
j,r,i,k′ such that

w
(t)
j,r = w

(0)
j,r +

K∑
k=1

j · γ(t)j,k,r · ∥µk∥−2
2 · µk +

n∑
i=1

P−si∑
k′=1

ρ
(t)
j,r,i,k′ · ∥ξi,k′∥

−2
2 · ξi,k′

We further denote ρ̄
(t)
j,r,i,k′ := ρ

(t)
j,r,i,k′ 1(ρ

(t)
j,r,i,k′ ≥ 0), ρ(t)j,r,i,k′ := ρ

(t)
j,r,i,k′ 1(ρ

(t)
j,r,i,k′ ≤ 0). Then we

have,

w
(t)
j,r =w

(0)
j,r +

K∑
k=1

j · γ(t)j,k,r · ∥µk∥−2
2 · µk +

n∑
i=1

P−si∑
k′=1

ρ̄
(t)
j,r,i,k′ · ∥ξi,k′∥

−2
2 · ξi,k′

+
n∑

i=1

P−si∑
k′=1

ρ
(t)
j,r,i,k′ · ∥ξi,k′∥

−2
2 · ξi,k′

Then, instead of directly analyzing Ξ
(t)
j,k, we prove some result for ρj,r,i,k′ and extend the results

of ρj,r,i,k′ to Ξ
(t)
j,k. Besides, we define two set notations: Ik is the set of data points containing signal

vector µk in their signal patches, Jk is the set of data points containing only one signal vector µk in
their signal patches, i.e., Ik =

{
i|µk ∈ {νi,1, · · · , νi,si}, and i ∈ [n]

}
, and Jk =

{
i|si = 1, µk =

νi,1, and i ∈ [n]
}

D.2. Preliminary Lemmas

Before we prove the Lemma C.1, we first present and prove several lemmas that will be used for the
proof of Lemma C.1. We define rj,k,t = argmaxr∈[m]⟨w

(t)
j,r, j · µk⟩. Then we have the following

lemma demonstrating that the filter with the largest inner product with some signal at initialization
will always have the largest inner product with this signal during the whole training process.

Lemma D.2 Under Condition 3.1, we have rj,k,t = rj,k,0 for all j ∈ {+1,−1}, k ∈ [K] and t > 0.
Moreover, if {j, k} ≠ {j′, k′}, then rj,k,0 ̸= rj′,k′,0 holds with probability at least 1−O(1/m).
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Since the filter with the largest inner product with any specific signal is consistent during the whole
training process, in the following paragraphs, we can denote rj,k,t by rj,k for simplicity and rj,k’s
are distinct for different pair of {j, k}. To prove Lemma D.2, we consider two cases with positive
initialization and negative initialization respectively. Instead of directly proving Lemma D.2, we
introduce and prove the following Lemma D.3 and Lemma D.4, then Lemma D.2 is a direct corollary
of Lemma D.3 and Lemma D.4.

Lemma D.3 For all r, r′ ∈ [m], if ⟨w(0)
j,r , jµk⟩ ≥ ⟨w(0)

j,r′ , jµk⟩ ≥ 0, then it holds that ⟨w(t)
j,r, jµk⟩ ≥

⟨w(t)
j,r′ , jµk⟩ for all t.

Proof [Proof of Lemma D.3] By multiple by jµk on both sides of (2.1) and the orthogonality between
signals and noises, we obtain that

⟨w(t+1)
j,r , jµk⟩ = ⟨w(t)

j,r, jµk⟩ −
η||µk||22
nm

∑
i∈Ik

ℓ′[yi · f(W(t),xi)]σ
′(⟨w(t)

j,r, yiµk⟩
)

= ⟨w(t)
j,r, jµk⟩ −

η||µk||22
nm

σ′(⟨w(t)
j,r, jµk⟩

) ∑
i∈Ik,yi=j

ℓ
′(t)
i

− η||µk||22
nm

σ′(⟨w(t)
j,r,−jµk⟩

) ∑
i∈Ik,yi=−j

ℓ
′(t)
i . (D.1)

It is clear that ⟨w(t)
j,r, jµk⟩ is always non-decreasing, therefore if ⟨w(0)

j,r , jµk⟩ ≥ 0, we have

⟨w(t)
j,r,−jµk⟩ ≤ 0 for all t, then (D.1) could be simplified as

⟨w(t+1)
j,r , jµk⟩ = ⟨w(t)

j,r, jµk⟩ −
η||µk||22
nm

σ′(⟨w(t)
j,r, jµk⟩

) ∑
i∈Ik,yi=j

ℓ
′(t)
i (D.2)

And we could notice that the only item specific to filter r in formula (D.2) is the inner product
⟨w(t)

j,r, jµk⟩. In another word, if we let x(t)r = ⟨w(t)
j,r, jµk⟩, then the recursion (D.2) of the positive

sequences {x(t)r }∞t=0 could be simplified as,

x(t+1)
r = x(t)r + ηCtσ

′(x(t)r

)
where Ct =

||µk||22
nm

∑
i∈Ik,yi=j ℓ

′(t)
i is independent of filter index r, and σ′(·) is a non-decreasing

function. Therefore we conclude that a filter with a larger initialization will always have a larger
increment in each iteration, which completes the proof.

To compare with the filters with a negative initialization, we define an idealized filter w̃j,k

satisfying that
(
1 + Θ( δ

m2 )
)
⟨w̃(0)

j,k , jµk⟩ = ⟨w(0)
j,rj,k,0

, jµk⟩, and also following the iterative rule in

(D.2). The reason for such a definition is that if r ̸= rj,k,0, we have ⟨w(0)
j,r ,µk⟩ ≤ ⟨w̃(0)

j,k ,µk⟩ by
Lemma E.5. Next, we introduce our Lemma D.4.

Lemma D.4 Suppose that Condition 3.1 holds and define an idealized filter w̃j,k satisfying that(
1 + Θ( δ

m2 )
)
⟨w̃(0)

j,k , jµk⟩ = ⟨w(0)
j,rj,k,0

, jµk⟩, and also following the iterative rule in (D.2). Then it

holds that ⟨w(t)
j,r, jµk⟩ < ⟨w̃(t)

j,k, jµk⟩ for all r ∈ [m] and t if ⟨w(0)
j,r , jµk⟩ < 0.
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Proof [Proof of Lemma D.4]
Obviously, if ⟨w(0)

j,r , jµk⟩ < 0, then ⟨w(t)
j,r, jµk⟩ < ⟨w̃(t)

j,k, jµk⟩ since ⟨w̃(t)
j,k, jµk⟩ is always

positive. We assume that t∗ is the first time such that ⟨w(t)
j,r, jµk⟩ > 0, which means ⟨w(t)

j,r, jµk⟩ <
⟨w̃(t)

j,k, jµk⟩ for t < t∗. And similarly, we could re-write the iterative formula for ⟨w(t)
j,r, jµk⟩ at t∗ is

⟨w(t∗)
j,r , jµk⟩ = ⟨w(t∗−1)

j,r , jµk⟩ −
η||µk||22
nm

σ′(⟨w(t∗)
j,r , jµk⟩

) ∑
i∈Ik,yi=−j

ℓ
′(t∗−1)
i

≤ −η||µk||22
nm

σ′(⟨w(t∗)
j,r , jµk⟩

) ∑
i∈Ik,yi=−j

ℓ
′(t∗−1)
i ≤ η||µk||22

κq−1m
Õ(σ0∥µk∥2)q−1

≤ σ0||µk||2
m

≤ ⟨w̃(0)
j,k , jµk⟩ ≤ ⟨w̃(t∗)

j,k , jµk⟩

The first inequality holds since ⟨w(t∗−1)
j,r , jµk⟩ < 0. The second inequality is from −

∑
i∈Ik,yi=−j ℓ

′(t)
i ≤

n and ⟨w(t∗−1)
j,r ,−jµk⟩ ≤ ⟨w(0)

j,r ,−jµk⟩ = Õ(σ0∥µk∥2) by Lemma E.5. The third inequality is

from our Condition 3.1 and the fourth inequality is from Lemma E.5. Since ⟨w(t∗)
j,r , jµk⟩, ⟨w̃

(t∗)
j,k , jµk⟩ >

0, by Lemma D.3, we have ⟨w̃(t)
j,k, jµk⟩ > ⟨w(t)

j,r, jµk⟩ for all t ≥ t∗, which completes the proof.

Now, we are ready to prove Lemma D.2
Proof [Proof of Lemma D.2] By Lemma D.3, Lemma E.5 and Lemma D.4, we can conclude that
if r ̸= rj,k,0, then ⟨w(t)

j,r, jµk⟩ ≤ ⟨w̃(t)
j,k, jµk⟩ ≤ ⟨w(t)

j,rj,k,0
, jµk⟩ for all t. Since the initialization of

w
(0)
j,r is i.i.d. Gaussian random vectors, we conclude that P (rj,k,0 = rj′,k′,0) =

1
m for different pair

of {j, k}.

Next, we introduce and prove the following Lemma D.5 and Lemma D.6 which will be helpful.
Lemma D.5 characterize the relationship between −ℓ′i and the output of Fyi when |ρ(t)j,r,i,k′ | is small.

Lemma D.6 show that when |ρ(t)j,r,i,k′ | is small ∥Ξ(t)
j,r∥2 is also small.

Lemma D.5 Suppose that Condition 3.1 holds and |ρ(t)j,r,i,k′ | ≤ O(σ0σnoise
√
d) for all j ∈ {±1}, r ∈

[m], i ∈ [n] and k′ ∈ [P − si], then we have

⟨w(t)
j,r, ξi,k′⟩ ≤ Õ(σ0σnoise

√
d);

F−yi(W
(t)
−yi

,xi) ≤ 1;

|ℓ′(t)i | = Θ
(
e−Fyi (W

(t)
yi

,xi)
)
.

Proof [Proof of Lemma D.5] The iterative rule for ⟨w(t)
j,r, ξi,k′⟩ can be derived by multiple by ξi,k′ on

both sides of (2.1), then we obtain that

⟨w(t)
j,r, ξi,k′⟩ = ⟨w(0)

j,r , ξi,k′⟩+ ρ
(t)
j,r,i,k′ +

∑
i′ ̸=i

P−si∑
k′′=1

ρ
(t)
j,r,i′,k′′

⟨ξi,k′ , ξi′,k′′⟩
∥ξi′,k′′∥22

+
∑
k′′ ̸=k′

ρ
(t)
j,r,i,k′′

⟨ξi,k′ , ξi,k′′⟩
∥ξi,k′′∥22

≤ Õ(σ0σnoise
√
d).

17
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The last inequality holds because the first term ⟨w(0)
−yi,r

, ξi,k′⟩ = Õ(σ0σnoise
√
d) by applying

Lemma E.5, the second term ρ
(t)
j,r,i,k′ ≤ 0. For the third term and the forth term, ρ(t)j,r,i′,k′′ , ρ

(t)
j,r,i,k′′ =

Õ(σ0σnoise
√
d) by our assumption and

⟨ξi,k′ ,ξi′,k′′ ⟩
∥ξi′,k′′∥22

,
⟨ξi,k′ ,ξi,k′′ ⟩
∥ξi,k′′∥22

≤ Õ(1/
√
d) by Lemma E.4. Then

based on our Condition 3.1 about n and d, the last two terms are also Õ(σ0σnoise
√
d). Now for

F−yi(W
(t)
−yi

,xi), its value is determined by ⟨w(t)
−yi,r

, yiµk⟩ and ⟨w(t)
−yi,r

, ξi,k′⟩, and we can easily get

⟨w(t)
−yi,r

, yiµk⟩ = ⟨w(0)
−yi,r

, yiµk⟩ − γ−yi,k,r ≤ ⟨w(0)
−yi,r

, yiµk⟩ ≤ Õ(σ0∥µk∥2),

Combining with the previous result about ⟨w(t)
j,r, ξi,k′⟩, we can present a bound of F−yi(W

(t)
−yi

,xi)
as

F−yi(W
(t)
−yi

,xi) ≤
1

m

m∑
r=1

K∑
k=1

σ(⟨w(t)
−yi,r

, yiµk⟩) +
1

m

m∑
r=1

si∑
k=1′

σ(⟨w(t)
−yi,r

, ξi,k′⟩)

≤ 2P

qκq−1
·max{Õ(σ0∥µk∥2), Õ(σ0σnoise

√
d)}q ≤ 1.

The last inequality is from our Condition 3.1 about σ0. Finally by the definition of ℓ′(·), it is clear
that,

|ℓ′(t)i | = 1

1 + eyi[F+1(W
(t)
+1,xi)−F−1(W

(t)
−1,xi)]

=
1

1 + e
Fyi (W

(t)
yi

,xi)−F−yi (W
(t)
−yi

,xi)
.

By the fact F+1(·), F−1(·) ≥ 0, the lower bound is straightforward that

|ℓ′(t)i | = 1

1 + e
Fyi (W

(t)
yi

,xi)−F−yi (W
(t)
−yi

,xi)
≥ 1

2eFyi (W
(t)
yi

,xi)

On the other side, since F−yi(W
(t)
−yi

,xi) ≤ 1, we obtain that

|ℓ′(t)i | = 1

1 + e
Fyi (W

(t)
yi

,xi)−F−yi (W
(t)
−yi

,xi)
≤ e · e−Fyi (W

(t)
yi

,xi)

The upper and lower bound of |ℓ′(t)i | indicates that |ℓ′(t)i | = Θ
(
e−Fyi (W

(t)
yi

,xi)
)

.

Lemma D.6 Suppose that Condition 3.1 holds. Then we have ∥Ξ(t)
j,r∥22 ≤ 2nPa2σ−2

noised
−1 for all

j ∈ {−1,+1}, r ∈ [m], i ∈ [n] and k′ ∈ [P − si], if |ρ(t)j,r,i,k′ | ≤ a. Here a could be any positive
number.

Proof [Proof of Lemma D.6] By deposition defined in Definition D.1, we have

∥Ξ(t)
j,r∥

2
2 =

n∑
i=1

P−si∑
k′=1

[ρ
(t)
j,r,i,k′ ]

2∥ξi,k′∥−2
2 +

∑
{i,k}≠{i′,k′}

ρ
(t)
j,r,i,kρ

(t)
j,r,i′,k′

⟨ξi,k, ξi′,k′⟩
∥ξi,k∥22∥ξi′,k′∥22

≤ 2n(P − 1)a2σ−2
noised

−1 + a2σ−2
noised

−1 ≤ 2nPa2σ−2
noised

−1

where the first inequality is from Lemma E.4 and our Condition 3.1.
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D.3. Proof of Lemma C.1

Now, we are ready to prove Lemma C.1
Proof [Proof of Lemma C.1] By Lemma D.6, to show ∥Ξ(t)

j,r∥22 ≤ σ2
0nP/2, it suffices to show that

maxj,r,i,k′ |ρ
(t)
j,r,i,k′ | ≤ σ0σnoise

√
d/2. We will show it by induction, and we assume it holds when

we prove the first result. For each j ∈ {−1,+1} and k ∈ [K], we consider the filter wj,rj,k and the

idealized filter w̃j,k defined in Lemma D.4, then ⟨w(t)
j,rj,k

, jµk⟩ and ⟨w̃(t)
j,k, jµk⟩ follows the same

iterative rule:

⟨w(t+1)
j,r , jµk⟩ = ⟨w(t)

j,r, jµk⟩ −
η||µk||22
nm

σ′(⟨w(t)
j,r, jµk⟩

) ∑
i∈Ik,yi=j

ℓ
′(t)
i

= ⟨w(t)
j,r, jµk⟩+ ηCtσ

′(⟨w(t)
j,r, jµk⟩

)
,

where Ct =
||µk||22
nm

∑
i∈Ik,yi=j ℓ

′(t)
i ≤ ||µk||22

m . Define T1,j,k be the first time such that ⟨w(t)
j,rj,k

, jµk⟩ ≥

κ and T ′ be the first time such that ⟨w̃(t)
j,k, jµk⟩ ≥ 1

4Km . Since we have
⟨w(0)

j,rj,k
,jµk⟩

⟨w̃(0)
j,k ,jµk⟩

= 1 + Θ( δ
m2 )

by definition of the idealized filter w̃j,k. By checking the conditions in Lemma E.7, we can con-

clude T1,j,k < T ′, which implies that ⟨w̃(T1,j,k)
j,k , jµk⟩ < 1

4Km . Since for all r ̸= rj,k, we have

⟨w(t)
j,r, jµk⟩ ≤ ⟨w̃(t)

j,k, jµk⟩ for all t by Lemma E.5, Lemma D.3 and Lemma D.4, we can finally

obtain that ⟨w(T1,j,k)
j,r , jµk⟩ ≤ 1

4Km for all r ̸= rj,k. Next, we try to derive the bound for T1,j,k. As
we assume |ρj,r,i,k′ | ≤ σ0σnoise

√
d/2, then for all t ≤ T1,j,k and i ∈ Jk, we apply Lemma D.5 and

derive that

−ℓ
(t)
i ≥ 1

2e
exp

(
− Fyi(W

(t)
yi ,xi)

)
≥ 1

2e
exp

(
− 1

m

m∑
r=1

[
σ
(
⟨w(t)

yi,r, yiµk⟩
)
+

P−1∑
k′=1

σ
(
⟨w(t)

yi,r, ξi,k′⟩
)])

≥ 1

2e2
.

This is because

1

m

m∑
r=1

[
σ
(
⟨w(t)

yi,r, yiµk⟩
)
+

P−1∑
k′=1

σ
(
⟨w(t)

yi,r, ξi,k′⟩
)]

≤ 1

by ⟨w(t)
yi,ryi,k

, yiµk⟩ ≤ κ, ⟨w(t)
yi,r, yiµk⟩ ≤ 1

4Km and ⟨w(t)
j,r, ξi,k′⟩ ≤ Õ(σ0σnoise

√
d). Therefore, we

get a lower bound for Ct as

Ct =
||µk||22
nm

∑
i∈Ik,yi=j

ℓ
′(t)
i ≥ ||µk||22

2e2nm
|{i ∈ Jk, yi = j}| ≥ π1||µk||22

8e2Km
.

The last inequality is because Lemma E.1 and Lemma E.2. Therefore we have Ct = Θ
(∥µk∥22

m

)
, then

by Lemma E.8 and Lemma E.5, we can obtain that

T1,j,k = Θ

(
m

η∥µk∥22(⟨wj,rj,k , jµk⟩)q−2

)
= Θ̃

(
m

ησq−2
0 ∥µk∥q2

)
.
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Since for all k ∈ [K], ∥µ1∥2/∥µk∥2 = Θ(1), we conclude we can find a time T1 = Θ
(

m

ησq−2
0 ∥µ1∥q2

)
such that the preceding results hold at T1 for all j ∈ {−1,+1} and k ∈ [K]. Finally we use
induction to prove that maxj,r,i,k′ |ρ

(t)
j,r,i,k′ | ≤ σ0σnoise

√
d/2. For simplicity we denote ϕ(t) =

maxj,r,i,k′ |ρ
(t)
j,r,i,k′ |. Obviously ϕ(0) = 0, and we suppose that exists T̃ ≤ T1 such that ϕ(t) ≤

σ0σnoise
√
d/2 holds for all 0 < t < T̃ − 1. Then by the iterative rule for ρ(t)j,r,i,k′ , we have

ϕ(t+1) ≤ ϕ(t) + max
j,r,i,k′

η∥ξi,k′∥22
κq−1nm

∣∣∣∣∣⟨w(0)
j,r , ξi,k′⟩+ ϕ(t)

(
1 +

∑
i′ ̸=i

P−si∑
k′′=1

⟨ξi,k′ , ξi′,k′′⟩
∥ξi′,k′′∥22

+
∑
k′′ ̸=k′

⟨ξi,k′ , ξi,k′′⟩
∥ξi,k′′∥22

)∣∣∣∣∣
q−1

≤ ϕ(t) + Õ
(ησq−1

0 σq+1
noised

(q+1)/2

nm

)
By taking the telescoping sum, we have ϕ(T̃ ) ≤ T1 · Õ

(
ησq−1

0 σq+1
noised

(q+1)/2

nm

)
≤ σ0σnoise

√
d/2 by the

formula for T1 = Θ̃( m

ησq−2
0 ∥µ1∥q2

) and our SNR conditions. Since then, we have finished all the proof

for Lemma C.1.

D.4. Proof of Lemma C.2

During the phase I, we always threat −ℓ′i = Θ(1), while in this phase, as the increasing of
⟨w(t)

j,rj,k
, jµk⟩, we can not regard −ℓ′i = Θ(1) since the training loss will eventually converge.

Proof [Proof of Lemma C.1] By Lemma D.6, to show ∥Ξ(t)
j,r∥22 ≤ 2σ2

0nP , it suffices to show that

maxj,r,i,k′ |ρ
(t)
j,r,i,k′ | ≤ σ0σnoise

√
d. Similar to the proof of Phase I, we first prove the result for

⟨w(t)
j,rj,k

, jµk⟩ and then use induction to prove the result for maxj,r,i,k′ |ρ
(t)
j,r,i,k′ | and ⟨w(t)

j,r, jµk⟩ with

r ̸= rj,k. We assume the results for maxj,r,i,k′ |ρ
(t)
j,r,i,k′ | and ⟨w(t)

j,r, jµk⟩ with r ̸= rj,k hold when we
prove the first result. From Lemma D.5, we can obtain that for all i ∈ Ik and t > T1, it holds

−ℓ
′(t)
i ≤ e · exp

(
− Fyi(W

(t)
yi ,xi)

)
≤ e · e−

1
m
⟨w(t)

yi,ryi,k
,yiµk⟩, (D.3)

since the activation function σ(·) is always positive. Additionally, we can also obtain that for all
i ∈ Jk and t > T1, it holds

−ℓ
(t)
i ≥ 1

2e
exp

(
− Fyi(W

(t)
yi ,xi)

)
≥ 1

2e
exp

(
− 1

m

m∑
r=1

[
σ
(
⟨w(t)

yi,r, yiµk⟩
)
+

P−1∑
k′=1

σ
(
⟨w(t)

yi,r, ξi,k′⟩
)])

=
1

2e
exp

(
− 1

m
⟨w(t)

yi,ryi,k
, yiµk⟩ −

1

m

P−1∑
k′=1

σ
(
⟨w(t)

yi,ryi,k
, ξi,k′⟩

))

· exp
(
− 1

m

∑
r ̸=ryi,k

[
σ
(
⟨w(t)

yi,r, yiµk⟩
)
+

P−1∑
k′=1

σ
(
⟨w(t)

yi,r, ξi,k′⟩
)])

≥ 1

2e2
e
− 1

m
⟨w(t)

yi,ryi,k
,yiµk⟩
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The last inequality is because

1

m

P−1∑
k′=1

σ
(
⟨w(t)

yi,ryi,k
, ξi,k′⟩

)
+

1

m

∑
r ̸=ryi,k

[
σ
(
⟨w(t)

yi,r, yiµk⟩
)
+

P−1∑
k′=1

σ
(
⟨w(t)

yi,r, ξi,k′⟩
)]

≤ 1

by our assumption ⟨w(t)
yi,r, yiµk⟩ ≤ 1

2Km and ⟨w(t)
j,r, ξi,k′⟩ ≤ Õ(σ0σnoise

√
d). With such upper and

lower bounds for ℓ′(t)i in hands, we can provide an upper and lower bound for the iterations of
⟨w(t)

j,rj,k
, jµk⟩ as

⟨w(t+1)
j,r , jµk⟩ = ⟨w(t)

j,r, jµk⟩ −
η||µk||22
nm

σ′(⟨w(t)
j,r, jµk⟩

) ∑
i∈Ik,yi=j

ℓ
′(t)
i

≤ ⟨w(t)
j,r, jµk⟩+

eη||µk||22
nm

e
− 1

m
⟨w(t)

j,rj,k
,jµk⟩ ·

∣∣{i ∈ Ik, yi = j}
∣∣

≤ ⟨w(t)
j,r, jµk⟩+

eη||µk||22
m

e
− 1

m
⟨w(t)

j,rj,k
,jµk⟩

,

since σ′(⟨w(t)
j,r, jµk⟩

)
= 1 and

∣∣{i ∈ Ik, yi = j}
∣∣ ≤ n, and

⟨w(t+1)
j,r , jµk⟩ ≥ ⟨w(t)

j,r, jµk⟩ −
η||µk||22
nm

σ′(⟨w(t)
j,r, jµk⟩

) ∑
i∈Jk,yi=j

ℓ
′(t)
i

≥ ⟨w(t)
j,r, jµk⟩+

η||µk||22
2e2nm

e
− 1

m
⟨w(t)

j,rj,k
,jµk⟩ ·

∣∣{i ∈ Jk, yi = j}
∣∣

≥ ⟨w(t)
j,r, jµk⟩+

π1η||µk||22
8e2Km

e
− 1

m
⟨w(t)

j,rj,k
,jµk⟩

.

since σ′(⟨w(t)
j,r, jµk⟩

)
= 1 and

∣∣{i ∈ Jk, yi = j}
∣∣ ≥ π1

4K by Lemma E.1 and Lemma E.2. Applying
these upper and lower bound on Lemma E.9, for all t > T1 we obtain that

⟨w(t)
j,rj,k

,µj,k⟩ ≥ m log
( η||µk||22
8e2Km2

(t− T1) + e
κ
m

)
≥ m log(t− T1)−O(m), (D.4)

and

⟨w(t)
j,rj,k

,µj,k⟩ ≤
eη||µk||22

m
e−

κ
m +m log

(eη||µk||22
m2

(t− T1) + e
κ
m

)
≤ m log(t− T1) +O(m).

(D.5)

This finishes the proof of the conclusion for ⟨w(T ∗)
j,rj,k

, jµk⟩. Now, we use induction to prove that

⟨w(T ∗)
j,r , jµk⟩ ≤ 1

2Km when r ̸= rj,k. We first derive a result that will be used for the following
induction proof. Plugging (D.4) into (D.3), for all i ∈ Ik, yi = j and t > T1, we have

−ℓ
′(t)
i ≤ 8e3Km2

η||µk||22(t− T1 + 1)
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Taking the sum from t = T1 to T ∗, we have

−
T ∗∑

t=T1

ℓ
′(t)
i ≤ 8e3Km2

η||µk||22
log(T ∗ − T1) ≤ Θ̃

( m2

η||µk||22

)
(D.6)

Since at T1, we have ⟨w(T1)
j,r , jµk⟩ ≤ 1

4Km if r ̸= rj,k. Suppose that exists T1 < T̃ ≤ T ∗ such that

⟨w(T̃−1)
j,r , jµk⟩ ≤ 1

2Km . Then by the iterative rule for ⟨w(t)
j,r, jµk⟩ and applying (D.6), we have

⟨w(T̃ )
j,r , jµk⟩ ≤ ⟨w(T̃−1)

j,r , jµk⟩ −
η||µk||22
κq−1nm

( 1

2Km

)q−1 ∑
i∈Ik,yi=j

ℓ
′(T̃−1)
i

≤ ⟨w(T1)
j,r , jµk⟩ −

η||µk||22
κq−1nm

( 1

2Km

)q−1
T ∗∑

t=T1

∑
i∈Ik,yi=j

ℓ
′(T̃−1)
i

≤ 1

4Km
+Θ

(η||µk||22
nmq−1

)
· Θ̃
( nm2

η||µk||22

)
· 1

4Km
≤ 1

2Km
.

This finishes the induction proof that ⟨w(T ∗)
j,r , jµk⟩ ≤ 1

2Km for all r ̸= rj,k and t < T ∗. Next,

we proof that maxj,r,i,k′ |ρ
(t)
j,r,i,k′ | ≤ σ0σnoise

√
d holds for all t < T ∗. For simplicity we denote

ϕ(t) = maxj,r,i,k′ |ρ
(t)
j,r,i,k′ |. Obviously we have ϕ(T1) ≤ σ0σnoise

√
d/2, and we suppose that exists

T1 ≤ T̃ ≤ T2 such that ϕ(t) ≤ σ0σnoise
√
d holds for all T1 < t < T̃ − 1. Then by the iterative rule

for ρ(t)j,r,i,k′ and plugging (D.6), we have

ϕ(T̃ ) ≤ ϕ(T1) + Õ
(ησq−2

0 σq
noised

q/2

nm

)
· Θ̃
( m2

η||µk||22

)
· σ0σnoise

√
d

2
≤ σ0σnoise

√
d,

where the last inequality holds by our SNR condition and Condition 3.1 that m = O(σ2−q
0 σ2−q

noised
(2−q)/2).

Appendix E. Technical Lemmas

E.1. Concentration Results

Lemma E.1 Suppose that δ > 0, then for any I ⊆ [n], with probability at least 1−O(δ),

|{i ∈ I : yi = 1}|, |{i ∈ I : yi = −1}| = |I|
2

+O
(√

|I| log(1/δ)
)
.

Proof [Proof of Lemma E.1] By Hoeffding’s inequality, with probability at least 1−O(δ), we have∣∣∣∣∣ 1|I|∑
i∈I

1{yi = 1} − 1

2

∣∣∣∣∣ ≤ O

(√
log(1/δ)

|I|

)
.

Therefore,

|{i ∈ I : yi = 1}| =
∑
i∈I

1{yi = 1} =
|I|
2

+O
(√

|I| log(1/δ)
)
.
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This proves the result for |{i ∈ I : yi = 1}|. The proof for |{i ∈ I : yi = −1}| is exactly the same,
and we can conclude the proof by applying a union bound.

Lemma E.2 Suppose that δ > 0, then for Jk defined in Section D, with probability at least 1−O(δ),
it holds that

|Jk| =
π1
K

n+O
(√

n log(1/δ)
)
.

Proof [Proof of Lemma E.1] By Hoeffding’s inequality, with probability at least 1−O(δ), we have∣∣∣∣∣ 1n ∑
i∈[n]

1{i ∈ Jk} −
π1
K

∣∣∣∣∣ ≤ O

(√
log(1/δ)

n

)
.

Therefore,

|Jk| =
∑
i∈[n]

1{i ∈ Jk} =
π1
K

n+O
(√

n log(1/δ)
)
,

which finishes the proof.

Lemma E.3 Suppose that z ∼ N (0, 1), then P(|z| ≤ t) = O (t).

Proof [Proof of Lemma E.3] We use ϕ(x) to denote the density function of the standard Gaussian
random variable, and then we know that maxϕ(x) = ϕ(0). By this fact,

P(|z| ≤ t) = 2

∫ t

0
ϕ(x)dx ≤ 2ϕ(0)t = O (t)

Lemma E.4 Suppose that δ > 0 and d = Ω
(
log(nm/δ)

)
. Then with probability at least 1−O(δ),

it holds that

∥ξi,k∥22 = Θ(σ2
noised);

∥w(0)
j,r ∥

2
2 = Θ(σ2

0d);∣∣⟨ξi,k, ξi′,k′⟩∣∣ ≤ O
(
σ2
noise ·

√
d log(n2/δ)

)
for all j ∈ {+1,−1}, r ∈ [m], and all i, i′ ∈ [n], k ∈ [P − si], k

′ ∈ [P − si′ ] such that
{i, k} ≠ {i′, k′}.

Proof [Proof of Lemma E.4] By Bernstein’s inequality, with probability at least 1−O(δ/n) we have∣∣∥ξi,k∥22 − σ2
noised

∣∣ = O
(
σ2
noise ·

√
d log(n/δ)

)
.
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Therefore, as long as d = Ω
(
log(n/δ)

)
, we have

∥ξi,k∥22 = Θ(σ2
noised).

Similarly, by Bernstein’s inequality, with probability at least 1−O(δ/m) we have∣∣w(0)
j,r ∥

2
2 − σ2

0d
∣∣ = O

(
σ2
noise ·

√
d log(m/δ)

)
.

Therefore, as long as d = Ω
(
log(m/δ)

)
, we have

∥w(0)
j,r ∥

2
2 = Θ(σ2

0d).

Moreover, for any i, i′, k, k′ with {i, k} ̸= {i′, k′}, clearly ⟨ξi,k, ξi′,k′⟩ has mean zero and by
Bernstein’s inequality, with probability at least 1−O(δ/n2) we have

|⟨ξi,k, ξi′,k′⟩| ≤ O
(
σ2
noise ·

√
d log(n2/δ)

)
.

Applying a union bound completes the proof.

Lemma E.5 Suppose that d ≥ Ω
(
log(mn/δ)

)
, m = Ω

(
log(1/δ)

)
. Then with probability at least

1−O(δ), it holds that ∣∣⟨w(0)
j,r ,µk⟩

∣∣ = O
(√

log(m/δ) · σ0∥µk∥2
)
,∣∣⟨w(0)

j,r , ξi,k′⟩
∣∣ = O

(√
log(mn/δ) · σ0σnoise

√
d
)

for all r ∈ [m], j ∈ {±1}, i ∈ [n], k ∈ [K] and k′ ∈ [P − si]. Besides,

max
r∈[m]

j · ⟨w(0)
j,r ,µk⟩ = Ω(σ0∥µk∥2) ,

max
r∈[m]

j · ⟨w(0)
j,r , ξi,k′⟩ = Ω

(
σ0σnoise

√
d
)

for all j ∈ {±1}, i ∈ [n], k ∈ [K] and k′ ∈ [P − si]. Moreover,

j · ⟨w(0)
j,r ,µk⟩

(
1 + Θ

(
δ

m2

))
≤ max

r∈[m]
j · ⟨w(0)

j,r ,µk⟩

for all r ̸= argmaxr∈[m] j · ⟨w
(0)
j,r ,µk⟩, j ∈ {±1} and k ∈ [K].

Proof [Proof of Lemma E.5] It is clear that for each r ∈ [m], j · ⟨w(0)
j,r ,µk⟩ is a Gaussian random

variable with mean zero and variance σ2
0∥µk∥22. Therefore, by Gaussian tail bound and union bound,

with probability at least 1−O(δ),

j · ⟨w(0)
j,r ,µk⟩ ≤ |⟨w(0)

j,r ,µk⟩| ≤ O
(√

log(m/δ) · σ0∥µk∥2
)
.
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Moreover, P
(
σ0∥µk∥2/2 > j · ⟨w(0)

j,r ,µk⟩
)

is an absolute constant, and therefore by the condition
on m, we have

P
(
σ0∥µk∥2/2 ≤ max

r∈[m]
j · ⟨w(0)

j,r ,µk⟩
)
= 1− P(σ0∥µk∥2/2 > max

r∈[m]
j · ⟨w(0)

j,r ,µk⟩
)

= 1− P
(
σ0∥µk∥2/2 > j · ⟨w(0)

j,r ,µk⟩
)2m

≥ 1−O(δ).

By Lemma E.4, with probability at least 1 − O(δ), ∥ξi,k′∥2 = Θ
(
σnoise

√
d
)

for all i ∈ [n] and

k′ ∈ [P − si]. Therefore, the result for ⟨w(0)
j,r , ξi,k′⟩ follows the same proof as j · ⟨w(0)

j,r ,µk⟩.
Lastly, for different r, r′ and ∀t > 0,

P

∣∣⟨w(0)
j,r ,µk⟩

∣∣ ∨ ∣∣⟨w(0)
j,r′ ,µk⟩

∣∣∣∣⟨w(0)
j,r ,µk⟩

∣∣ ∧ ∣∣⟨w(0)
j,r′ ,µk⟩

∣∣ ≤ 1 + t

 ≤ P

1− t ≤
∣∣⟨w(0)

j,r ,µk⟩
∣∣∣∣⟨w(0)

j,r′ ,µk⟩
∣∣ ≤ 1 + t


≤ P

(∣∣⟨w(0)
j,r ,µk⟩

∣∣ ≤ 2t
∣∣⟨w(0)

j,r′ ,µk⟩
∣∣) = O(t)

where the last equality holds from Lemma E.3 and the fact that ⟨w(0)
j,r ,µk⟩ and ⟨w(0)

j,r′ ,µk⟩ are
independent Gaussian random variables with mean 0 and same variance. By this result, let t = Θ( δ

m2 )
and use union bound, we could deduce that with probability at least 1−O(δ),

j · ⟨w(0)
j,r ,µk⟩

(
1 + Θ

(
δ

m2

))
≤ max

r∈[m]
j · ⟨w(0)

j,r ,µk⟩

for all r ̸= argmaxr∈[m] j · ⟨w
(0)
j,r ,µk⟩.

E.2. Tensor Power Methods

The following lemmas are inspired by [2, 8, 19]

Lemma E.6 If a positive sequence {xt}∞t=0 satisfies the updating rules xt+1 = xt + η · Ct · xq−1
t ,

then ∀k ∈ N, ζ ∈ (0, 1), we have

∑
t>0,xt≤(1+ζ)kx0

ηCt ≤
ζ

xq−2
0

1− 1
(1+ζ)(q−2)k

1− 1
(1+ζ)(q−2)

+ η ·

(1 + ζ)q−1
k−1∑
g=0

CTg+1−1 + CTk

 , (E.1)

and

∑
t>0,xt≤(1+ζ)kx0

ηCt ≥
ζ

xq−2
0 (1 + ζ)q−1

1− 1
(1+ζ)(q−2)k

1− 1
(1+ζ)(q−2)

− η

(1 + ζ)q−1

k−1∑
g=1

CTg−1, (E.2)

where Tg be the first iteration such that xt ≥ (1 + ζ)gx0
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Proof [Proof of Lemma E.6] By the definition of Tg, we have

xTg+1 − xTg =
∑

t∈[Tg ,Tg+1)

ηCtx
q−1
t ≥

∑
t∈[Tg ,Tg+1)

η · Ct ·
[
x0(1 + ζ)g

]q−1
, (E.3)

and

xTg+1 − xTg = xTg+1−1 − xTg + η · CTg+1−1 · xq−1
Tg+1−1

≤ ζ(1 + ζ)gx0 + η · CTg+1−1 ·
[
x0(1 + ζ)g+1

]q−1
. (E.4)

By combining (E.3) and (E.4) in order and rearranging some items, we could deduce,∑
t∈[Tg ,Tg+1)

ηCt ≤
ζ

xq−2
0 [(1 + ζ)q−2]g

+ η(1 + ζ)q−1CTg+1−1.

Take a telescoping sum of this result, and then we finish the proof of (E.1). For (E.2), considering
the opposite direction of the inequalities (E.3) and (E.4), repeating the previous process will get the
result.

Lemma E.7 Suppose there are two positive sequence {xt}∞t=0 and {yt}∞t=0 satisfying the following
updating rules:

xt+1 = xt + η · Ct · xtq−1;

yt+1 = yt + η · Ct · ytq−1,

with q ≥ 3 and x0
y0

≥ 1 + c, where c is a small positive number. For any two positive number Ax and
Ay, let Tx, Ty are the first time s.t. xTx ≥ Ax and yTy ≥ Ay respectively. If we have 0 < Ct < C̄

and η and y0 are both sufficiently small such that η = Õ

(
c

C̄yq−3
0 Ay

)
and y0

Ay
≤ O(c), then it holds

that Tx ≤ Ty.

Proof [Proof of Lemma E.7] For a positive ζ > 0, let k1, k2 be the smallest integer s.t. x0(1+ζ)k1 ≥
Ax and y0(1 + ζ)k2 ≥ Ay. From these definitions, we have

log(Ax
x0

)

log(1 + ζ)
≤ k1 <

log(Ax
x0

)

log(1 + ζ)
+ 1,

and

log(
Ay

y0
)

log(1 + ζ)
≤ k2 <

log(
Ay

y0
)

log(1 + ζ)
+ 1.

By Lemma E.6, we further derive that

Tx∑
t=0

ηCt ≤
ζ

xq−2
0

1− 1
(1+ζ)(q−2)k1

1− 1
(1+ζ)(q−2)

+ η ·

(1 + ζ)q−1
k1−1∑
g=0

CTg+1−1 + CTk1


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≤ ζ

xq−2
0

1

1− 1
(1+ζ)(q−2)

+ η · (1 + ζ)q−1(k1 + 1)C̄, (E.5)

and

Ty∑
t=0

ηCt ≥
ζ

yq−2
0 (1 + ζ)q−1

1− 1
(1+ζ)(q−2)k2

1− 1
(1+ζ)(q−2)

− η

(1 + ζ)q−1

k2−1∑
g=1

CTg−1

≥ ζ

yq−2
0 (1 + ζ)q−1

1−
(

y0
Ay

)q−2

1− 1
(1+ζ)(q−2)

− η

(1 + ζ)q−1
(k2 − 1)C̄. (E.6)

We use (E.6) minus (E.5) and get

Ty∑
t=0

ηCt −
Tx∑
t=0

ηCt ≥
ζ

1− 1
(1+ζ)(q−2)


1−

(
y0
Ay

)q−2

yq−2
0 (1 + ζ)q−1

− 1

xq−2
0

︸ ︷︷ ︸
I1

− ηC̄

{
k2 − 1

(1 + ζ)q−1
+ (1 + ζ)q−1(k1 + 1)

}
︸ ︷︷ ︸

I2

.

We consider the value of I1 and I2 separately and carefully choose ζ such that

(1 + ζ)q−1 =

(
1− y0

Ay

)2

(1 + c)q−2 = 1 +Θ(c) .

The last equality is from our assumption y0
Ay

= O (c), and we could also conclude ζ = Θ(c). Then
for I1, we have,

I1 ≥
ζ

yq−2
0 (1− 1

(1+ζ)(q−2) ) (1 + c)q−2


1− y0

Ay(
1− y0

Ay

)2 − 1

 = Ω

(
1

yq−3
0 Ay

)
. (E.7)

Because 1
1− 1

(1+ζ)(q−2)

= Θ(ζ). For I2, we have,

I2 ≤ ηC̄Θ(k1 ∨ k2) = ηC̄Θ̃

(
1

c

)
. (E.8)

Now by combining (E.7) and (E.8), we could conclude that
∑Ty

t=0 ηCt −
∑Tx

t=0 ηCt ≥ 0, which
completes the proof.

Lemma E.8 Suppose a positive sequence {xt}∞t=0 satisfies the following iterative rules:

xt+1 ≥ xt + η · C1 · xtq−1;
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xt+1 ≤ xt + η · C2 · xtq−1,

with C2 ≥ C1 > 0. For any v > x0, let Tv be the first time such that xt ≥ v, then for any constant
ζ > 0, we have

Tv ≤ 1 + ζ

ηC1x
q−2
0

+
(1 + ζ)q−1C2 log(

v
x0
)

C1
, (E.9)

and

Tv ≥ 1

(1 + ζ)q−1ηC2x
q−2
0

−
log( v

x0
)

(1 + ζ)q−2
. (E.10)

Proof [Proof of Lemma E.8] Similar to the definition in Lemma E.6, let Tg be the first iteration such
that xt ≥ (1 + ζ)gx0. Moreover, let g∗ be the smallest integer such that (1 + ζ)g

∗
x0 ≥ v, resulting

log( v
x0
)

log(1 + ζ)
≤ g∗ <

log( v
x0
)

log(1 + ζ)
+ 1.

For t = T1,

xT1 ≥ x0 +

T1−1∑
t=0

ηC1x
q−1
t ≥ x0 + T1ηC1x

q−1
0 ,

and we could obtain that

T1 ≤
xT1 − x0

ηC1x
q−1
0

. (E.11)

Consider the upper-bound iteration of xT1 and the fact that xT1−1 ≤ x0(1 + ζ), we could get

xT1 ≤ xT1−1 + ηC2x
q−1
T1−1 ≤ x0(1 + ζ) + ηC2x

q−1
0 (1 + ζ)q−1. (E.12)

Combining the results from (E.11) and (E.12), we obtain that,

T1 ≤
ζ

ηC1x
q−2
0

+
(1 + ζ)q−1C2

C1
.

Similarly for g > 1,

xTg ≥ xTg−1 +

Tg−1∑
t=Tg−1

ηC1x
q−1
t ≥ xTg−1 + ηC1(Tg − Tg−1)x

q−1
0 (1 + ζ)(g−1)(q−1), (E.13)

and we could bound the difference xTg − xTg−1 by the following formula,

xTg − xTg−1 ≤ xTg−1 + ηC2x
q−1
Tg − xTg−1 ≤ ζ(1 + ζ)g−1x0 + ηC2x

q−1
0 (1 + ζ)g(q−1). (E.14)
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Combining the results from (E.13) and (E.14), we obtain that,

Tg ≤ Tg−1 +
ζ

ηC1x
q−2
0 (1 + ζ)(g−1)(q−2)

+
(1 + ζ)q−1C2

C1
. (E.15)

Taking a telescoping sum of the results of (E.15) from g = 1 to g = g∗ and by the fact that Tv ≤ Tg∗ ,
we finally get (E.9). Now consider another side, similarly for t = T1, we have

xT1 ≤ x0 +

T1−1∑
t=0

ηC2x
q−1
t ≤ x0 + T1ηC2x

q−1
0 (1 + ζ)q−1.

Substitute that xT1 − x0 ≥ ζx0, we get

T1 ≥
ζ

ηC2x
q−2
0 (1 + ζ)q−1

. (E.16)

For g > 1, similarly we could derive,

xTg ≤ xTg−1 +

Tg−1∑
t=Tg−1

ηC2x
q−1
t ≤ xTg−1 + ηC2(Tg − Tg−1)x

q−1
0 (1 + ζ)g(q−1) (E.17)

and we could also lower bound the difference xTg − xTg−1 by

xTg − xTg−1 ≥ xTg − xTg−1−1 − ηC2x
q−1
Tg−1−1 ≥ ζ(1 + ζ)g−1x0 − ηC2x

q−1
0 (1 + ζ)(g−1)(q−1).

(E.18)

Combining the results from (E.17) and (E.18), we obtain that,

Tg ≥ Tg−1 +
ζ

ηC2x
q−2
0 (1 + ζ)g(q−2)+1

− 1

(1 + ζ)q−1
. (E.19)

Taking a telescoping sum of the results of (E.19) from g = 1 to g = g∗ − 1 and by the fact that
Tv ≥ Tg∗−1, we finally get (E.10).

Lemma E.9 Suppose that a positive sequence xt, t ≥ 0 follows the iterative formula

xt+1 = xt + c1e
−c2xt

for some c1, c2 > 0. Then it holds that

1

c2
log(c1c2t+ ec2x0) ≤ xt ≤ c1e

−c2x0 +
1

c2
log(c1c2t+ ec2x0)

for all t ≥ 0.
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Proof [Proof of Lemma E.9] We first show the lower bound of xt. Consider a continuous-time
sequence xt, t ≥ 0 defined by the integral equation with the same initialization.

xt = x0 + c1 ·
∫ t

0
e−c2xτdτ, x0 = x0. (E.20)

Note that xt is obviously an increasing function of t. Therefore we have

xt+1 = xt + c1 ·
∫ t+1

t
e−c2xτdτ

≤ xt + c1 ·
∫ t+1

t
e−c2xtdτ

= xt + c1 exp(−c2xt)

for all t ∈ N. Comparing the above inequality with the iterative formula of {xt}, we conclude by the
comparison theorem that xt ≥ xt for all t ∈ N. Note that (E.20) has an exact solution

xt =
1

c2
log(c1c2t+ ec2x0)

Therefore we have

xt ≥
1

c2
log(c1c2t+ ec2x0)

for all t ∈ N, which completes the first part of the proof. Now for the upper bound of xt, we have

xt = x0 + c1 ·
t−1∑
τ=0

e−c2xτ

≤ x0 + c1 ·
t∑

τ=0

e− log(c1c2τ+ec2x0 )

= x0 + c1 ·
t∑

τ=0

1

c1c2τ + ec2x0

= x0 +
c1

ec2x0
+ c1 ·

t∑
τ=1

1

c1c2τ + ec2x0

≤ x0 +
c1

ec2x0
+ c1 ·

∫ t

0

1

c1c2τ + ec2x0
dτ,

where the second inequality follows by the lower bound of xt as the first part of the result of this
lemma. Therefore we have

xt ≤ x0 +
c1

ec2x0
+

1

c2
log(c1c2t+ ec2x0)− 1

c2
log(ec2x0)

= c1e
−c2x0 +

1

c2
log(c1c2t+ ec2x0)

This finishes the proof.
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