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ABSTRACT

Single-step adversarial training (SSAT) is shown to be able to defend against
iterative-step adversarial attacks to achieve both efficiency and robustness. How-
ever, SSAT suffers from catastrophic overfitting (CO) with strong adversaries,
showing that the classifier decision boundaries are highly distorted and robust
accuracy against iterative-step adversarial attacks suddenly drops from peak to
nearly 0% in a few epochs. In this work, we find that some adversarial examples
generated on the network trained by SSAT exhibit anomalous behaviour, that is,
although the training data is generated by the inner maximization process, the loss
of some adversarial examples decreases instead, which we called abnormal ad-
versarial examples. Furthermore, network optimization on these abnormal adver-
sarial examples will further accelerate the model decision boundaries distortion,
and correspondingly, the number of abnormal adversarial examples will sharply
increase with CO. These observations motivate us to eliminate CO by hinder-
ing the generation of abnormal adversarial examples. Specifically, we design a
novel method, Abnormal Adversarial Examples Regularization (AAER), which
explicitly regularizes the number and outputs variation of abnormal adversarial
examples to hinder the model from generating abnormal adversarial examples.
Extensive experiments demonstrate that our method can eliminate CO and further
boost adversarial robustness with strong adversaries.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have performed impressively in various fields, such
as autonomous driving (Litman, 2017), face recognition (Sharif et al., 2016) and medical imaging
diagnosis (Buch et al., 2018). However, DNNs were found to be vulnerable to adversarial examples
(Szegedy et al., 2013). Although these adversarial examples are imperceptible to the human eyes,
they can lead to a completely different prediction in DNNs. To this end, many adversarial defense
methods have been proposed, such as verification and provable defense (Katz et al., 2017), pre-
processing techniques (Guo et al., 2017), detection algorithms (Metzen et al., 2017) and adversarial
training (AT) (Goodfellow et al., 2014). Among them, AT is considered to be one of the most
effective methods against adversarial attacks (Athalye et al., 2018). However, standard iterative-
step AT significantly increases computational overhead due to multiple steps forward and backward
propagation.

Therefore, some works attempt to improve the vanilla single-step adversarial training (SSAT) to
defend against iterative-step adversarial attacks while maintaining efficiency and robustness. Unfor-
tunately, a serious problem - catastrophic overfitting (CO) - occurs with stronger adversaries (Wong
et al., 2020). This strange phenomenon means that the robust accuracy of the model against the
iterative-step adversarial attack suddenly from peak drops to nearly zero during a few epochs, as
shown in Figure 1. This intriguing phenomenon has been widely investigated and led to many
works to resolve CO. Recently, Kim et al. (2021) points out that networks in which CO occurs are
generally accompanied by highly distorted decision boundaries. However, the interaction between
distorted decision boundaries and CO remains unclear. In this work, we delve into the dynamic
effects between CO and decision boundaries distortion. Specifically, we find some adversarial ex-
amples generated on the network with distorted decision boundaries exhibit anomalous behavior,
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Figure 1: Model robust test accuracy with different noise magnitudes. The red and green lines are
defence against FGSM and PGD-7-1 adversarial attack, respectively. The dashed line and solid
line noise magnitude are 8/255 and 16/255, respectively. Dashed black lines correspond to the 10th
epoch, which is the point that model occurs CO.

that is, although all training samples are generated by the inner maximization process, the loss of
some adversarial examples decreases instead. We refer to these training samples as abnormal adver-
sarial examples. To make matters worse, the decision boundaries distortion will further exacerbate
by optimising the classifier directly on these abnormal adversarial examples, and the number of
abnormal adversarial examples will sharply increase as a result, which leads to a vicious circle be-
tween the number of abnormal adversarial example and the decision boundaries distortion. All these
atypical findings raise a question:

Can CO be prevented by hindering the generation of abnormal adversarial examples?

To answer the above question, we design a novel method, Abnormal Adversarial Examples Reg-
ularization (AAER), which incorporates a regularizer that prevents CO by suppressing generated
abnormal adversarial examples. Specifically, AAER consists of two key components: (i) the num-
ber and (ii) outputs variation of abnormal adversarial examples. The first part (i) counts the sample
number by dividing the training samples into groups of normal and abnormal adversarial examples
through anomalous loss decrease behavior. The second part (ii) contains prediction confidence and
logits variation, and calculates these two variations differences between the two groups of samples
by cross-entropy and Euclidean distance, respectively. Then, AAER explicitly regularizes the num-
ber and outputs variation of abnormal adversarial examples by these two parts to hinder the model
from generating abnormal adversarial examples. Extensive experiments show that our method can
well eliminate CO and further improve the adversarial robustness. It is worth noting that our method
does not involve the extra generation and backward propagation process, which brings us unparal-
leled convenience in computational overhead. Our major contributions are summarized as follows:

• We found some training samples exhibit anomalous loss variation during the inner maximization
process. Besides, the number of abnormal adversarial examples will sharply increase with CO,
and the model will further exacerbate by optimising the classifier directly on these abnormal
adversarial examples.

• Based on the observed effect, we propose a novel method - Abnormal Adversarial Examples Reg-
ularization (AAER), which explicitly regularizes the number of abnormal adversarial examples
and their anomalous outputs variation to hinder the generation of abnormal adversarial examples.
Extensive experiments demonstrate that our method can prevent CO and automatically adapt to
different noise magnitudes without hyperparameter tuning.

• We evaluate the effectiveness of our method across different adversarial budgets, adversarial
attacks, datasets and network architectures, showing that our proposed method consistently
achieves state-of-the-art robust accuracy in SSAT and can obtain comparable robustness to stan-
dard iterative-step AT with only negligible computational overhead.
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2 RELATED WORK

2.1 ADVERSARIAL TRAINING

Adversarial training has been demonstrated to be the most effective method for defending against
adversarial attacks (Athalye et al., 2018). AT is generally formulated as a min-max optimization
problem (Madry et al., 2017), the inner maximization problem tries to generate the strongest ad-
versarial examples to maximise the loss, and the outer minimization problem tries to optimize the
network to minimize the loss on adversarial examples. However, the inner maximization problem
is a NP-hard problem. Therefore, AT uses a simple gradient ascent to generate perturbations to find
local approximate solution, and can be formalized as a min-max optimization problem as follows:

min
θ

E(x,y)∼D

[
max
δ∈∆

ℓ(x+ δ, y; θ)

]
, (1)

where (x, y) is the training dataset from the distribution D, ℓ(x, y; θ) is the loss function parameter-
ized by θ, δ is the perturbation confined within the boundary ϵ with Lp- norm distance, shown as:
∆ = {δ : ∥δ∥p ≤ ϵ}. The common threat models are L1, L2 and L∞, in this work we chose L∞ for
our threat model.

Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014) is a single-step adversarial attack
method, which uses the sign of the gradient to find the perturbation, as shown in Eq. (2):

δFGSM = ϵ · sign (∇xℓ(x, y; θ)) . (2)

Fast Training (RS-FGSM) (Wong et al., 2020) adds uniform random initialization η before gener-
ating the perturbation, and uses the over-perturbation step size α = 1.25 · ϵ:

η = Uniform(−ϵ, ϵ),

δRS−FGSM = α · sign (∇x+ηℓ(x+ η, y; θ)) .
(3)

Iterative Fast Gradient Sign Method (I-FGSM) (Kurakin et al., 2018) is an iterative-step version
of FGSM that uses multiple gradients to find stronger perturbations. With a smaller step size α =
ϵ/N and the number of iterations T , I-FGSM can be formulated as follows:

δTI−FGSM = α · sign
(
∇x+δT−1ℓ(x+ δT−1, y; θ)

)
. (4)

Projected Gradient Descent (PGD) (Madry et al., 2017) adds uniform random initialization on the
basis of I-FGSM.

2.2 CATASTROPHIC OVERFITTING

Since Wong et al. (2020) found the CO phenomenon, there has been a line of work trying to explore
and mitigate this problem. Vivek & Babu (2020b) empirically showed that adding a dropout layer
after all non-linear layers can avoid early overfitting to FGSM. de Jorge et al. (2022) found that
augmenting the perturbations by increasing the noise initialization magnitude and removing the
perturbation boundaries can eliminate CO. Li et al. (2022) successfully prevents CO by constraining
training samples in a carefully extracted subspace to avoid the abrupt growth of gradient.

Other works attempt to prevent CO by strengthening the inner maximization processes. Kim et al.
(2021) assumed that CO is caused by fixed FGSM perturbation magnitude and reduces the perturbed
step size for misclassified adversarial examples. Golgooni et al. (2021) argued that small gradients
play a key role in CO and ignore small gradient information to avoid huge weight updates. Huang
et al. (2022) discovered that fitting instances with a larger gradient norm are more likely to cause
CO and learning an instance-adaptive step size is inversely proportional to its gradient norm. Park
& Lee (2021) leverages the gradients of latent representation as the latent adversarial perturbation
to compensate for local linearity.

Similar to our work, some works add a regularization term on the loss value to explicitly prevent
CO. Andriushchenko & Flammarion (2020) found that PGD and FGSM perturbations are orthogo-
nal when CO occurs, hence they proposed a regularization term to encourage the gradient alignment.
Vivek & Babu (2020a) proposed a regularization term to mitigate the CO by harnessing properties
that differentiate a robust model from that of a pseudo-robust model. Sriramanan et al. (2021) intro-
duced a relaxation term to find more suitable gradient directions for the attack by smoothing the loss

3



Under review as a conference paper at ICLR 2023

Figure 2: Visualization of classifier decision boundary and training samples. The left panel shows
that the training samples generated on the normal decision boundary are all belong to the normal
adversarial example (blue) which can mislead the classifier. The middle panel shows that some
training samples generate on the distorted decision boundary that cannot mislead the classifier, which
we called abnormal adversarial example (red).

surface. Chen et al. (2021) demonstrated that the negative high-order terms lead to a perturbation
loss distortion phenomenon that will cause CO, and they proposed a regularization term to make the
loss surface flat.

3 PROPOSED APPROACH

In this section, we first define abnormal adversarial example and show how their number change dur-
ing CO (Section 3.1). We further analyse the outputs variation of normal and abnormal adversarial
examples and find that they exhibit significantly different magnitudes of outputs variation after CO
(Section 3.2). Based on our observations, we propose a novel regularization term, AAER, using the
number and outputs variation of abnormal adversarial examples to explicitly suppress the generation
of these anomalous training samples to eliminate CO (Section 3.3).

3.1 DEFINITION AND COUNTING THE ABNORMAL ADVERSARIAL EXAMPLE

Adversarial training employs the most adversarial data to reduce the sensitivity of the network’s out-
put w.r.t. adversarial perturbation of the natural data. Therefore, we expect the inner maximization
process can generate effective adversarial examples that can maximize the classification loss. How-
ever, Kim et al. (2021) shows that the decision boundaries of the classifier will be highly distorted
accompanied by the occurrence of CO. After adding the adversarial perturbation which is generated
on this distorted classifier, the classification loss of some training samples is atypically reduced. As
shown in Figure 2, it can be seen that, for some samples (blue), they will misclassify the model or
be closer to the decision boundary after the inner maximization process, and for some other sam-
ples (red), they are farther to the decision boundary after adding the perturbation generated by the
distorted classifier, which we called abnormal adversarial example. These abnormal adversarial ex-
amples generally fail to mislead the classifier. Thus, we can define abnormal adversarial examples
using the following formula:

δ = α · sign (∇x+ηℓ(x+ η, y; θ)) ,

δAbnormal def
= ℓ (x+ η, y; θ) > ℓ (x+ η + δ, y; θ) .

(5)

We further observe the changes in the number of abnormal adversarial examples during model train-
ing, and the statistical results are shown in Figure 3 (left). It can be observed that before CO occurs,
the number of abnormal adversarial examples is very small, almost close to 0. During the occurrence
of CO, their number increases sharply. For example, the number of abnormal adversarial examples
surged 39 times (red line) at the 10th epoch. Note that the rapid increase in the number of abnormal
adversarial examples also implies that the classifier boundaries are continuously deteriorating, which
also leads to a further rise in the number of abnormal adversarial examples and peaks at the 13th
epoch, which is approximately 55 times the number of abnormal adversarial examples before CO
occurred. After the occurrence of CO, the abnormal adversarial examples are basically maintained
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Figure 3: The number, prediction confidence and logits variation of normal/abnormal adversarial
examples and training samples. The left, middle and right panel shows the number, prediction con-
fidence and logits variation, respectively. The green/red and blue lines represent normal/abnormal
adversarial examples and training samples, respectively. Dashed black lines correspond to the 10th
epoch, which is the point that model occurs CO. The yellow line represents the number, prediction
confidence and the logits variation of abnormal adversarial examples under the AAER method.

at a very large number. Given this observation, we can infer that there is a close correlation be-
tween the number of abnormal adversarial examples and the CO phenomenon, which also prompts
us to wonder (Q1): whether CO can be mitigated by reducing the number of abnormal adversarial
examples.

3.2 OUTPUTS VARIATION OF NORMAL AND ABNORMAL ADVERSARIAL EXAMPLE

The above observations indicate that CO and the number of abnormal adversarial examples are
closely related. In this part, we further analyze the outputs variation of normal and abnormal ad-
versarial examples during CO. Specifically, we analyze the outputs into two categories: prediction
confidence and logits, and use the cross-entropy to calculate the prediction confidence variation
during the inner maximization process, which is formulated as follows:

ℓ (x+ η + δ, y; θ)− ℓ (x+ η, y; θ) . (6)

From Figure 3 (middle), we can observe that the change in the prediction confidence of normal
adversarial samples is greater than 0, indicating that the perturbation leads to worse predictions.
However, the variation of abnormal adversarial examples is atypical negative, meaning that the per-
turbation has the opposite effect as we expected. Furthermore, we analyze the prediction confidence
variation of abnormal adversarial examples during training. Before the occurrence of CO, we can
observe that the prediction confidence variation of abnormal adversarial examples is slightly less
than zero, and the negative impact on all training samples (blue line) is not significant. During the
occurrence of CO, their prediction confidence variation decreases rapidly slumped 27 times at the
10th epoch, and deterministically effect the prediction confidence of all training samples.

Furthermore, we compare the magnitude of the outputs change between normal and abnormal adver-
sarial examples, and use the Euclidean distance (L2 distance) to calculate the sample logits variation
during the inner maximization process, which is formulated as follows:

∥fθ (x+ η + δ)− fθ (x+ η) ∥22, (7)

where fθ is the DNN classifier parameterized by θ and ∥ · ∥22 is the L2 distance.

The magnitude of the logits variation of normal and abnormal adversarial examples is shown in Fig-
ure 3 (right). We can observe that the logits variation magnitude of abnormal adversarial examples
increases dramatically during CO, which is 16 times larger than that before CO. A single-step gradi-
ent ascent can bring an earth-shaking change in the output logits, which generally happens on highly
distorted decision boundaries. Additionally, we observed that the logits variation magnitude of the
normal adversarial examples (green line) increases one epoch later than the abnormal ones, which
indicates that the model boundary distortion mainly lies in the abnormal adversarial examples, in
other words, directly optimizing the network with these abnormal adversarial examples will further
exacerbate the model boundary distortion. Moreover, we further compare the magnitude of logits
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variation for normal and abnormal adversarial examples. From Figure 3 (right), we can observe that
the logits variation magnitude on normal and abnormal adversarial examples is similar before CO.
However, there is a significant difference in the logits variation magnitude between these two types
of examples after CO. It is observed that the logits variation magnitude in abnormal adversarial
examples is 4 times that in normal ones at the 10th epoch. There are significant differences in the
magnitude of both prediction confidence and logits variation between normal and abnormal adver-
sarial examples, which inspires us to wonder (Q2): whether CO can be mitigated by constraining
the outputs variation of abnormal adversarial examples.

3.3 ABNORMAL ADVERSARIAL EXAMPLES REGULARIZATION TERM

We answer these two questions through three optimization objectives. To answer the Q1, the first part
(i) uses the Eq. 5 to divide the training samples into normal and abnormal adversarial examples, and
then penalize the number of abnormal adversarial examples. To answer the Q2, the second part (ii)
and the third part (iii) constrain the outputs variation of abnormal adversarial examples. Specifically,
the second part (ii) calculates the prediction confidence variation of abnormal adversarial examples,
and then penalizes this variation that should not decrease during the inner maximization process,
which is formalized as follows:

1

n

n∑
j=1

(
ℓ
(
xAbnormal
j + η, yj ; θ

)
− ℓ

(
xAbnormal
j + η + δ, yj ; θ

))
, (8)

where n is the number of abnormal adversarial examples.

The third part (iii) calculates the logits variation of normal and abnormal adversarial examples.
Since the logits variation is a representation of the change magnitude, which is not related to the
label, there is no clear target value for the optimization standard. Therefore, we use the logits
variation of normal adversarial examples as the standard and explicitly make them logits variation
closer. In order to avoid the network only focusing on increasing the logits variation of abnormal
adversarial examples instead of reducing the abnormal ones, we use the max function to limit the
minimum value to 0, which is formalized as follows:

max

 1

n

n∑
j=1

(
∥fθ

(
xAbnormal
j + η + δ

)
− fθ

(
xAbnormal
j + η

)
∥22
)

− 1

m− n

m−n∑
k=1

(
∥fθ

(
xNormal
k + η + δ

)
− fθ

(
xNormal
k + η

)
∥22
)
, 0

)
,

(9)

where m is the number of training samples and max(, ) is the max function.

Based on the above analysis, we design a novel regularization term, AAER, which aims to suppress
the abnormal adversarial examples by (i) the number, (ii) the prediction confidence variation and
(iii) the logits variation, ultimately achieving the purpose of preventing CO, which is shown in the
following formula:

AAER =
n

m
· (Eq. 8 · λ1 + Eq. 9 · λ2) , (10)

where λ1 and λ2 is the hyperparameter to control the strength of the regularization term.

AAER can effectively hinder the generation of abnormal adversarial examples which are highly cor-
related with distorted classifier, thereby encouraging training of smoother classifiers that can better
defend against adversarial attacks. Furthermore, the strength of AAER depends on the product of
the number and outputs variation of abnormal adversarial examples, which can more comprehen-
sively and flexibly reflect the degree of classifier distortion. The algorithm realization is summarized
in Algorithm 1. Note that we employ increasing α to stabilize the optimization objective and avoid
model training to crash in the early stages.

4 EXPERIMENT

In this section, we conduct extensive experiments to verify the effectiveness of AAER including ex-
periment settings (Section 4.1), performance evaluations (Section 4.2), ablation studies (Section 4.3)
and time complexity study (Section 4.4).
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Algorithm 1 Abnormal Adversarial Examples Regularization (AAER)

Input: network fθ, epochs T, mini-batch M, perturbation radius ϵ, step size α, initialization term η.

1: for t = 1 . . . T to do
2: for i = 1 . . .M to do
3: α = t/T · α
4: δ = α · sign (∇x+ηℓ(xi + η, yi; θ))
5: CEloss = 1

m

∑m
i=1 ℓ (xi + η + δ, yi; θ)

6: AAERloss = Eq. (10)
7: θ = θ −∇θ (CEloss+ t/T ·AAERloss, )
8: end for
9: end for

4.1 EXPERIMENT SETTING

Baselines. We compare our method with other SSAT methods including RS-FGSM (Wong et al.,
2020), ATTA (Zheng et al., 2020), FreeAT (Shafahi et al., 2019), N-FGSM (de Jorge et al., 2022),
Grad Align (Andriushchenko & Flammarion, 2020), ZeroGrad and MultiGrad (Golgooni et al.,
2021). We also compare our method with iterative-step AT PGD-2 and PGD-10 (Madry et al., 2017)
providing a reference for the ideal performance. To accommodate different adversarial budgets, we
use PGD-10 with two step size of 2/255 and ϵ/10. We will show natural and robust accuracy results
using the hyperparameters reported in their official repository (except for FreeAT, we do not divide
the number of epochs by m to keep the same training epochs). It is worth noting that we do not use
early stopping (Wong et al., 2020) as this technique can restore the robustness of all methods.

Datasets and Model Architectures. We will show the results on the benchmark datasets Cifar-
10/100 (Krizhevsky et al., 2009) and use random cropping and horizontal flipping for data argumen-
tation. We use the PreactResNet-18 (He et al., 2016) and WideResNet-34 (Zagoruyko & Komodakis,
2016) architectures on these datasets to evaluate results. The training results of WideResNet-34
are also available in the Appendix B. We also report the settings and results of our method on
SVHN (Netzer et al., 2011) and Tiny-imagenet (Netzer et al., 2011) in the Appendix E.

Attack Methods and Learning Rate Schedule. To report the robust accuracy of models, we attack
these methods using the standard PGD adversarial attack with α = ϵ/4, 10 restarts and 50 attack
steps. We also evaluate our methods based on Auto Attack in the Appendix C. We use the cyclical
learning rate schedule (Smith, 2017) with 30 epochs that reaches its maximum learning rate (0.2 in
our experiments) when half of the epochs (15) are passed on Cifar-10/100.

Setup for Our Proposed Method. In this work, we use the SGD optimizer with momentum of 0.9
and weight decay of 5 × 10−4. We chose L∞ as the threat model and set gradient ascent step size
α = 1.5 · ϵ. We set η = Uniform(−ϵ, ϵ) for random initialization, and the η setting for previous
initialization can be found in the Appendix A. We will show the best λ settings in the Appendix D.
It is worth noting that our method can also achieve robustness without tuning hyperparameters with
different adversarial budgets, the results on universal λ in the Appendix D.

4.2 PERFORMANCE EVALUATION

In this part, we report the experimental results of our method under four different settings AAERRC:
AAER with random initialization and clipped perturbations and AAERRUC: AAER with random
initialization and unclipped perturbations. The unclipped technique was proposed by de Jorge et al.
(2022), who claimed that clipping is performed after taking a gradient ascent step, which may make
adversarial samples no longer effective. The AAER based on the previous initialization is available
in the Appendix A.

CIFAR10 Results. In Table 1, we present an evaluation of the proposed methods with the compet-
ing baselines on the CIFAR-10 dataset. First, we can observe that RS-FGSM, ATTA and FreeAT
suffer from CO with strong adversaries. We can also observe an interesting phenomenon that some
weakly robust methods will recover partial robustness with large noise magnitude 32/255. Table 1
shows that our proposed methods can significantly improve the robust accuracy, achieve superior
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Table 1: CIFAR10/100: Accuracy of different methods and different noise magnitudes using
PreActResNet-18 under L∞ threat model. The left and right panel are the CIFAR10 and CIFAR100
results, respectively. The top number is the natural accuracy while the bottom number is the PGD-
50-10 accuracy. The results are averaged over 3 random seeds and reported with the standard devi-
ation.

dataset CIFAR10 CIFAR100

noise magnitude 8/255 12/255 16/255 32/255 8/255 12/255 16/255 32/255

RS-FGSM
83.91 ± 0.21 66.46 ± 22.80 66.54 ± 12.25 36.43 ± 7.86 60.29 ± 1.51 18.19 ± 8.51 11.03 ± 5.24 11.40 ± 8.60
46.01 ± 0.18 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 10.58 ± 13.10 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

ATTA
86.41 ± 0.39 81.15 ± 0.94 82.75 ± 0.71 39.27 ± 4.48 61.25 ± 0.25 37.40 ± 16.34 47.14 ± 11.12 27.71 ± 6.93
42.15 ± 0.42 19.55 ± 15.20 0.00 ± 0.00 7.84 ± 6.80 22.78 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

FreeAT
76.20 ± 1.09 68.07 ± 0.38 45.84 ± 19.07 61.11 ± 8.41 47.41 ± 0.30 39.84 ± 0.40 3.32 ± 2.48 26.23 ± 15.54
43.74 ± 0.41 33.14 ± 0.62 0.00 ± 0.00 0.00 ± 0.00 22.27 ± 0.33 16.57 ± 0.20 0.00 ± 0.00 0.00 ± 0.00

ZeroGrad
81.60 ± 0.16 77.52 ± 0.21 79.65 ± 0.17 65.48 ± 6.26 53.83 ± 0.22 49.07 ± 0.14 50.76 ± 0.02 47.75 ± 2.99
47.56 ± 0.16 27.34 ± 0.09 6.37 ± 0.23 0.00 ± 0.00 25.02 ± 0.24 14.76 ± 0.26 5.23 ± 0.09 0.01 ± 0.02

MultiGrad
81.65 ± 0.16 81.09 ± 4.67 82.98 ± 3.30 41.90 ± 30.53 53.11 ± 0.34 46.81 ± 0.51 46.05 ± 8.68 16.25 ± 10.48
47.93 ± 0.18 9.95 ± 16.97 0.00 ± 0.00 5.69 ± 5.14 25.68 ± 0.21 16.56 ± 0.56 0.00 ± 0.00 0.53 ± 0.91

N-FGSM
80.48 ± 0.21 71.30 ± 0.12 62.96 ± 0.74 32.44 ± 2.79 54.87 ± 0.28 46.16 ± 0.13 37.76 ± 0.16 15.56 ± 4.55
47.91 ± 0.29 36.23 ± 0.10 27.14 ± 1.44 10.58 ± 0.89 26.51 ± 0.38 18.75 ± 0.19 14.14 ± 0.05 1.61 ± 2.77

Grad Align
82.10 ± 0.78 74.17 ± 0.55 60.37 ± 0.95 25.23 ± 3.41 54.00 ± 0.44 45.83 ± 0.72 36.80 ± 0.10 15.05 ± 0.07
47.77 ± 0.58 34.87 ± 1.00 27.90 ± 1.01 11.53 ± 3.23 25.27 ± 0.68 18.13 ± 0.71 13.77 ± 0.76 2.85 ± 1.34

AAERRC
84.33 ± 0.08 76.07 ± 0.78 65.88 ± 0.60 26.14 ± 1.05 58.94 ± 0.53 49.09 ± 0.16 39.44 ± 0.88 20.03 ± 1.08
46.42 ± 0.19 32.94 ± 0.31 24.67 ± 0.52 14.70 ± 0.39 25.34 ± 0.21 16.94 ± 0.24 12.33 ± 0.14 5.20 ± 0.17

AAERRUC
77.41 ± 0.13 66.24 ± 0.60 55.32 ± 0.55 20.57 ± 2.61 53.60 ± 0.19 40.56 ± 0.33 29.27 ± 0.51 12.47 ± 1.26
51.51 ± 0.22 38.66 ± 0.38 30.31 ± 0.15 12.72 ± 0.52 28.50 ± 0.15 19.69 ± 0.23 13.96 ± 0.07 4.61 ± 0.09

PGD-2
85.07 ± 0.12 78.97 ± 0.23 72.31 ± 0.40 48.45 ± 0.71 60.09 ± 0.20 53.46 ± 0.27 47.50 ± 0.28 31.89 ± 0.69
45.27 ± 0.07 32.99 ± 0.46 24.32 ± 0.64 11.24 ± 0.40 24.58 ± 0.12 17.16 ± 0.21 12.69 ± 0.06 4.51 ± 0.21

PGD-10 (2/255)
80.55 ± 0.37 72.37 ± 0.31 67.20 ± 0.69 59.35 ± 0.84 55.05 ± 0.25 47.42 ± 0.29 42.39 ± 0.17 34.68 ± 0.23
50.67 ± 0.40 38.60 ± 0.39 29.34 ± 0.18 5.80 ± 0.23 27.87 ± 0.12 20.29 ± 0.18 15.01 ± 0.21 3.81 ± 0.12

PGD-10 (ϵ/10)
84.74 ± 0.11 78.31 ± 0.57 71.19 ± 0.46 40.51 ± 0.78 59.41 ± 0.37 52.74 ± 0.14 46.36 ± 0.32 26.07 ± 0.01
46.06 ± 0.32 34.13 ± 0.62 26.07 ± 0.69 15.16 ± 0.34 24.71 ± 0.11 17.62 ± 0.13 13.39 ± 0.10 6.46 ± 0.22

robustness to other SSAT methods and even have comparable robustness to PGD AT. Interestingly,
our unclipped perturbations methods always have better performance, except for 32/255 noise mag-
nitude, where we conjecture that the unclipped perturbations are too large to disturb the original
features of the inputs.

CIFAR100 Results. We also conduct experiments on the CIFAR100 dataset. Note that CIFAR100
is more challenging than CIFAR10 as the number of classes/training images per class is ten times
larger/smaller than that of CIFAR10. As shown by the results in Table 1, the proposed methods are
still able to prevent CO and improve robust accuracy. It verifies that the AAER can reliably prevent
CO and is general across different datasets.

4.3 ABLATION STUDY

In this part, we investigate the impacts of AAERRC with 16/255 noise magnitude using
PreactResNet-18 on CIFAR10 dataset under L∞ threat model.

Optimization Objectives. To verify the effectiveness of our proposed method, we show the change
in the three optimization objectives during training in Figure 3. We can observe that the number,
prediction confidence and logits variation of abnormal adversarial examples are well constrained
by AAER throughout the training. We also try to simply ignore abnormal adversarial examples
and train only on normal ones. Unfortunately, this method does not work due to the abnormal

8
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Figure 4: Ablation Study. The red and green line are the natural and robust test accuracy, respec-
tively. Left panel: Effect of different sizes λ1, and we fix λ2 as 5.0 at this experiment. Right panel:
Effect of different sizes λ2, and we fix λ1 as 8.0 at this experiment.

adversarial example is not the cause of decision boundary distortion but rather co-occurs. Thus,
ignoring abnormal adversarial examples cannot repair existing decision boundary distortion.

λ Selection. To verify the effectiveness of our proposed method, we investigate the effect of dif-
ferent sizes λ1 and λ2 on natural and robustness performance. From the figure 4 (left), we can
observe that the effect of λ1 does not seem to be significant. However, it acts as a buffer to prevent
the AAER from changing too drastically, and we chose λ1 of 8.0 for optimal preference. From
the Figure 4 (right), we can observe that the model can successfully prevent CO when λ2 is not 0,
which proves that our method can effectively eliminate CO. Under the same experimental setting
mentioned before, with the value of λ varying from 0 to 10.0, we can observe that choosing λ2 of
5.0 can achieve the best robustness.

4.4 TIME COMPLEXITY STUDY

We show the time complexity of different AT methods in Table 2, we can observe that the running
time for one epoch of AAER is almost equal to the RS-FGSM method. In contrast, Grad Align and
PGD-10 are 2.3 and 4.6 times slower than our method, respectively.

Table 2: CIFAR10 training time on a single NVIDIA Tesla V100 GPU using PreactResNet-18. The
results are averaged over 30 epochs.

Method RS-FGSM ATTA FreeAT ZeroGrad MultiGrad

Second / Epoch 26.1S 41.5S 106.6S 28.7S 52.1S

Method N-FGSM Grad Align AAER (Our) PGD-2 PGD-10

Second / Epoch 25.9S 69.4S 30.5S 39.1S 140.7S

5 CONCLUSION

In this paper, we find that the abnormal adversarial examples exhibit anomalous behaviour, i.e.
they are further to the decision boundaries after adding perturbations generated by the inner max-
imization process. We empirically show that the catastrophic overfitting is closely related to the
abnormal adversarial examples by analyzing their number and outputs variation during model train-
ing. Motivated by this, we propose a novel and effective method, Abnormal Adversarial Examples
Regularization (AAER), through a regularizer to eliminate catastrophic overfitting by suppressing
generated abnormal adversarial examples. Our approach can successfully resolve the catastrophic
overfitting with different noise magnitudes and achieve state-of-the-art preference with computa-
tional convenience in various settings.

9
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A EXPERIMENT WITH PREVIOUS INITIALIZATION

Most works build perturbations based on zero or random initialization, but Zheng et al. (2020) and
Liu et al. (2021) found that perturbations are highly transferable between models from adjacent
epochs, so they used perturbations from adjacent epochs to intensify the effect of perturbations,
which is formalized as follows:

ηt = (ηt−1 + δt−1) · β, (11)

where t is the epoch, ηt−1 and δt−1 saved from the adjacent epoch and β is the hyperparameter to
control the strength of the initialization.

In this part, we will show the effect of our method by using previous initialization by AAERPC:
AAER with previous initialization and clipped perturbations and AAERPUC: AAER with previous
initialization and unclipped perturbations. We set β = 0.5 for the previous initialization experi-
ments, and report the results on Cifar10/100 in Table 3 and Table 4.

Table 3: CIFAR10: Accuracy of different methods and different noise magnitudes using
PreActResNet-18 under L∞ threat model. The top number is the natural accuracy while the bottom
number is the PGD-50-10 accuracy. The results are averaged over 3 random seeds and reported with
the standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

AAERPC 83.68 ± 0.14 73.03 ± 1.90 62.67 ± 1.32 28.39 ± 1.55
with ATTA 47.01 ± 0.29 33.56 ± 0.67 25.01 ± 0.50 13.93 ± 0.60

AAERPC
83.52 ± 0.21 74.29 ± 0.63 63.52 ± 1.41 26.90 ± 1.64
47.14 ± 0.31 33.38 ± 0.71 24.83 ± 0.75 14.21 ± 0.38

AAERPUC 77.25 ± 0.12 63.54 ± 0.63 45.93 ± 3.66 19.28 ± 1.08
with ATTA 51.25 ± 0.10 38.39 ± 0.70 27.34 ± 1.91 9.96 ± 0.96

AAERPUC
77.23 ± 0.55 63.68 ± 0.52 49.45 ± 1.14 23.20 ± 1.21
50.66 ± 0.45 38.51 ± 0.29 28.85 ± 0.31 13.11 ± 0.68

Table 4: CIFAR100: Accuracy of different methods and different noise magnitudes using
PreActResNet-18 under L∞ threat model. The top number is the natural accuracy while the bottom
number is the PGD-50-10 accuracy. The results are averaged over 3 random seeds and reported with
the standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

AAERPC 57.66 ± 0.28 47.44 ± 0.48 37.10 ± 0.43 20.00 ± 0.22
with ATTA 25.47 ± 0.13 16.97 ± 0.04 12.00 ± 0.14 4.68 ± 0.46

AAERPC
57.66 ± 0.82 45.59 ± 0.57 35.30 ± 0.23 17.41 ± 0.53
25.59 ± 0.41 16.53 ± 0.16 12.03 ± 0.29 5.05 ± 0.03

AAERPUC 50.91 ± 1.08 37.93 ± 0.75 25.98 ± 1.40 9.62 ± 0.51
with ATTA 27.43 ± 1.00 18.86 ± 0.48 12.81 ± 0.56 4.14 ± 0.15

AAERPUC
52.52 ± 0.86 36.97 ± 0.87 24.90 ± 0.70 11.08 ± 0.48
27.94 ± 0.34 19.19 ± 0.62 13.32 ± 0.36 4.43 ± 0.21

From Table 3 and Table 4, we can observe that our method with previous initialization can still
successfully achieve high robustness, even achieving better robustness in some settings compared
to random initialization. However, using previous initialization has some negative effects on natural
accuracy.

β Selection. The hyperparameter β determines the strength of the previous initialization perturba-
tions, and the effect of different β on test accuracy is shown in Figure 5. When β is 0 which is
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Figure 5: Effect of different size β. The red and green line are the natural and robust test accuracy,
respectively. We do this experiment based on AAERPC with 16/255 noise magnitude.

equivalent to using zero initialization, increasing β leads to higher natural accuracy. When β is
greater than 0.5, it is observed increasing β makes model robustness decrease. Therefore, we set β
to 0.5 to achieve the best trade-off between natural and robust test accuracy.

Data Argumentation Technique. We notice that Zheng et al. (2020) proposed a data argumenta-
tion technique ATTA, which adds different arguments at each epoch. We add this data argumentation
technique on AAERPC as shown in Table 3 and Table 4. We can observe that the ATTA does not or
slightly improves our method accuracy, but the training time will significantly increase from 30.5S
to 43.1S. Therefore, our method AAER do not use the data argumentation technique ATTA.

B EXPERIMENT WITH WIDERESNET ARCHITECTURE

We also compare the performance of our method using WideResNet, which is more complex than
PreActResNet. The settings are the same as PreActResNet-18, and we report the results on Ci-
far10/100 in Table 5 and Table 6.

Table 5: CIFAR10: Accuracy of different methods with 8/255 noise magnitude using WideResNet-
34 under L∞ threat model. The results are averaged over 3 random seeds and reported with the
standard deviation.

method AAERRC AAERRUC AAERPC AAERPUC PGD-2 PGD-10 (2/255) PGD-10 (ϵ/10)

natural accuracy 87.83 ± 0.14 82.34 ± 0.23 86.72 ± 0.44 80.82 ± 0.29 88.68 ± 0.14 85.53 ± 0.22 88.51 ± 0.30

robust accuracy 47.54 ± 0.42 52.40 ± 0.53 48.89 ± 0.51 52.89 ± 0.47 47.32 ± 0.50 53.70 ± 0.53 47.72 ± 0.84

training time 227.5S 281.6S 1031.5S

From Table 5 and Table 6, we can observe that our method can still successfully achieve high
robustness in other architectures. Although, the PGD-10 AT seems to better utilize the complex
network to achieve higher natural and robust accuracy. However, it is worth noting that complex
networks can better reflect the efficiency of our method in terms of training time, while our method
can achieve comparable robustness.
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Table 6: CIFAR100: Accuracy of different methods with 8/255 noise magnitude using WideResNet-
34 under L∞ threat model. The results are averaged over 3 random seeds and reported with the
standard deviation.

method AAERRC AAERRUC AAERPC AAERPUC PGD-2 PGD-10 (2/255) PGD-10 (ϵ/10)

natural accuracy 61.75 ± 0.38 56.73 ± 0.36 61.23 ± 0.24 56.18 ± 0.89 64.64 ± 0.27 60.34 ± 0.34 64.26 ± 0.06

robust accuracy 26.79 ± 0.30 29.89 ± 0.66 27.13 ± 0.10 30.11 ± 0.28 26.47 ± 0.10 30.02 ± 0.09 26.45 ± 0.30

training time 228.5S 285.7S 1036.7S

C EVALUATION BASED ON AUTO ATTACK

Auto Attack Croce & Hein (2020) is regarded as the most reliable robustness evaluation to date,
which is an ensemble of complementary attacks, consisting of three white-box attacks APGD-CE,
APGD-DLR, and FAB and a black-box attack Square Attack. We report the results on Cifar10/100
in Table 7 and Table 8.

Table 7: CIFAR10: Accuracy of different methods and different noise magnitudes using
PreactResNet-18 under L∞ threat model. The number is the Auto Attack accuracy while the natural
accuracy is same as Table 1. The results are averaged over 3 random seeds and reported with the
standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

RS-FGSM 43.17 ± 0.34 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

ATTA 40.09 ± 0.39 16.18 ± 14.03 0.00 ± 0.00 4.90 ± 4.24

FreeAT 40.23 ± 0.33 28.04 ± 0.73 0.00 ± 0.00 0.00 ± 0.00

ZeroGrad 43.48 - - -

MulitGrad 44.39 - - -

N-FGSM 44.43 ± 0.24 30.32 ± 0.08 19.06 ± 1.81 6.78 ± 0.75

Grad Align 44.82 ± 0.09 30.05 ± 0.17 19.60 ± 0.47 7.89 ± 2.62

AAERRC 43.22 ± 0.24 27.20 ± 0.35 16.91 ± 0.41 10.54 ± 0.67

AAERRUC 46.29 ± 0.23 31.00 ± 0.17 21.16 ± 0.15 10.72 ± 1.74

AAERPC 43.58 ± 0.28 27.22 ± 0.45 16.87 ± 0.38 9.76 ± 0.46

AAERPUC 45.44 ± 0.44 31.01 ± 0.35 21.33 ± 0.22 9.50 ± 0.79

PGD-2 42.97 ± 0.65 28.63 ± 0.38 18.52 ± 0.55 3.77 ± 0.02

PGD-10 (2/255) 46.95 ± 0.54 33.30 ± 0.20 22.29 ± 0.27 2.29 ± 0.10

PGD-10 (ϵ/10) 43.44 ± 0.45 29.82 ± 0.43 19.92 ± 0.63 9.61 ± 0.41

In Table 7 and Table 8, we can observe that our method can still achieve boost adversarial robustness
in different adversarial attacks. Surprisingly, the unclipped AAER achieves higher robustness with
32/255 noise magnitude under Auto Attack, which is slightly different from the result under PGD-
50-10 attack.

D EXPERIMENT WITH UNIVERSAL λ

It is worth noting that unlike other SSAT methods (such as Grad Align (Andriushchenko & Flam-
marion, 2020) and ZeroGrad (Golgooni et al., 2021)), our method can achieve robustness without
tuning hyperparameters with different adversarial budgets, the universal λ settings are shown in Ta-
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Table 8: CIFAR100: Accuracy of different methods and different noise magnitudes using
PreactResNet-18 under L∞ threat model. The number is the Auto Attack accuracy while the natural
accuracy is same as Table 1. The results are averaged over 3 random seeds and reported with the
standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

RS-FGSM 7.98 ± 11.91 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

ATTA 20.09 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

FreeAT 18.28 ± 0.20 12.37 ± 0.14 0.00 ± 0.00 0.00 ± 0.00

ZeroGrad 21.15 - - -

MulitGrad 21.62 - - -

N-FGSM 22.68 ± 0.25 14.57 ± 0.09 10.30 ± 0.14 0.78 ± 1.36

Grad Align 21.87 ± 0.13 13.78 ± 0.11 9.64 ± 0.12 1.76 ± 0.70

AAERRC 21.79 ± 0.11 12.92 ± 0.20 8.81 ± 0.07 2.66 ± 0.10

AAERRUC 23.77 ± 0.10 14.62 ± 0.24 9.86 ± 0.11 2.94 ± 0.14

AAERPC 21.79 ± 0.64 12.48 ± 0.25 8.38 ± 0.18 2.54 ± 0.13

AAERPUC 23.38 ± 0.27 14.23 ± 0.27 9.16 ± 0.22 2.59 ± 0.30

PGD-2 21.52 ± 0.14 13.69 ± 0.02 9.56 ± 0.07 1.76 ± 0.22

PGD-10 (2/255) 23.78 ± 0.08 15.61 ± 0.09 10.93 ± 0.05 2.18 ± 0.09

PGD-10 (ϵ/10) 21.60 ± 0.03 13.95 ± 0.10 10.18 ± 0.08 3.76 ± 0.10

ble 9 and Table 10. For CIFAR-10, we set λ1 = 8.0 λ2 = 5.0 for AAER with clipped perturbations,
and λ1 = 6.5 λ2 = 5.0 for AAER with unclipped perturbations. For CIFAR-100, we set λ1 = 7.5
λ2 = 3.0, and λ1 = 6.5 λ2 = 2.5 for AAER with clipped and unclipped perturbations, respectively.

Table 9: CIFAR10: The best and universal setting for different noise magnitudes. Last panel is
universal λ setting, other panels are best λ setting. The top number is λ1 while the bottom number
is λ2.

Dataset / Method 8/255 12/255 16/255 32/355 Universal

clipped perturbations
6.5 7.0 8.0 9.0 8.0
3.0 4.5 5.0 7.5 5.0

unclipped perturbations
4.0 4.5 6.5 7.0 6.5
1.5 3.0 5.0 10.0 5.0

Table 10: CIFAR100: The best and universal setting for different noise magnitudes. Last panel is
universal λ setting, other panels are best λ setting. The top number is λ1 while the bottom number
is λ2.

Dataset / Method 8/255 12/255 16/255 32/355 Universal

clipped perturbations
6.5 7.0 7.5 9.0 7.5
2.0 2.5 3.0 1.5 3.0

unclipped perturbations
4.0 5.0 6.5 7.5 6.5
1.0 2.0 2.5 1.5 2.5

15



Under review as a conference paper at ICLR 2023

We report the universal λ results on Cifar10/100 in Table 11 and Table 12. We can observe that
the results using universal λ can still achieve high robustness on both datasets. The absence of
hyperparameter tuning provides our method with unparalleled generality and adaptability.

Table 11: CIFAR10: Accuracy of universal AAER with different noise magnitudes using
PreactResNet-18 under L∞ threat model. The top number is the natural accuracy while the bot-
tom number is the PGD-50-10 accuracy. The results are averaged over 3 random seeds and reported
with the standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

AAERRC (λ1 = 8.0, λ2 = 5.0)
84.11 ± 0.43 74.73 ± 1.19 65.88 ± 0.60 25.86 ± 0.57
46.04 ± 0.46 32.66 ± 0.33 24.67 ± 0.52 14.64 ± 0.27

AAERRUC (λ1 = 6.5, λ2 = 5.0)
76.06 ± 0.59 64.26 ± 0.52 55.32 ± 0.55 24.56 ± 0.71
50.50 ± 0.19 38.03 ± 0.12 30.31 ± 0.15 11.29 ± 1.79

AAERPC (λ1 = 8.0, λ2 = 5.0)
83.39 ± 0.20 72.15 ± 0.55 63.52 ± 1.41 27.71 ± 1.65
46.99 ± 0.31 33.20 ± 0.47 24.83 ± 0.75 13.70 ± 0.27

AAERPUC (λ1 = 6.5, λ2 = 5.0)
76.03 ± 0.27 60.57 ± 1.24 49.45 ± 1.14 21.21 ± 1.29
50.60 ± 0.08 37.01 ± 0.28 28.85 ± 0.31 12.14 ± 0.72

Table 12: CIFAR100: Accuracy of universal AAER with different noise magnitudes using
PreactResNet-18 under L∞ threat model. The top number is the natural accuracy while the bot-
tom number is the PGD-50-10 accuracy. The results are averaged over 3 random seeds and reported
with the standard deviation.

noise magnitude 8/255 12/255 16/255 32/255

AAERRC (λ1 = 7.5, λ2 = 3.0)
56.32 ± 0.40 47.37 ± 0.63 39.44 ± 0.88 16.94 ± 0.94
24.86 ± 0.32 16.41 ± 0.06 12.33 ± 0.14 5.12 ± 0.09

AAERRUC (λ1 = 6.5, λ2 = 2.5)
49.80 ± 0.47 38.56 ± 0.70 29.27 ± 0.51 10.88 ± 1.22
27.47 ± 0.23 18.40 ± 0.68 13.96 ± 0.07 4.14 ± 0.23

AAERPC (λ1 = 7.5, λ2 = 3.0)
55.53 ± 1.05 45.20 ± 0.67 35.30 ± 0.23 13.84 ± 1.05
25.14 ± 0.41 16.17 ± 0.44 12.03 ± 0.29 4.85 ± 0.21

AAERPUC (λ1 = 6.5, λ2 = 2.5)
49.04 ± 0.64 36.82 ± 1.00 24.90 ± 0.70 7.16 ± 0.54
27.09 ± 0.17 18.53 ± 0.57 13.32 ± 0.36 3.78 ± 0.09

E SETTINGS AND RESULTS ON SVHN AND TINY-IMAGENET

SVHN Settings and Results. For experiments on SVHN, we follow the settings of de Jorge et al.
(2022), which use the cyclical learning rate schedule with 15 epochs that reaches its maximum
learning rate (0.05) when 40% (6) epochs are passed. We show the best λ settings on SVHN in the
Table 13. In Table 14, we show the AAER performance on the SVHN dataset, and the competing
baselines result from de Jorge et al. (2022). We can observe that our method can effectively improve
the robust accuracy and prevent CO with different noise magnitudes.

Tiny-imagenet Settings and Results. For experiments on Tiny-imagenet, we use the cyclical learn-
ing rate schedule with 30 epochs that reaches its maximum learning rate (0.2) when half of the
epochs (15) are passed. We set λ1 = 3.0 λ2 = 1.0 for AAER with clipped perturbations, and
λ1 = 4.0 λ2 = 0.5 for AAER with unclipped perturbations. In Table 15, we show the AAER
performance on the Tiny-imagenet dataset. We can observe that our method can effectively improve
the robust accuracy and prevent CO.
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Table 13: SVHN: The best setting for different noise magnitudes. The top number is λ1 while the
bottom number is λ2.

Dataset / Method 4/255 8/255 12/255

clipped perturbations
3.0 3.5 5.0
5.0 6.0 8.5

unclipped perturbations
1.0 5.0 6.5
2.5 4.5 5.0

Table 14: SVHN: Accuracy of different methods and different noise magnitudes using
PreActResNet-18 under L∞ threat model. The top number is the natural accuracy while the bottom
number is the PGD-50-10 accuracy. The results are averaged over 3 random seeds and reported with
the standard deviation.

noise magnitude 4/255 8/255 12/255

RS-FGSM
95.09 ± 0.09 94.46 ± 0.16 92.74 ± 0.5
71.28 ± 0.4 0.0 ± 0.0 0.0 ± 0.0

FreeAT
93.66 ± 0.12 91.29 ± 4.07 92.36 ± 1.0
71.61 ± 0.75 0.01 ± 0.0 0.0 ± 0.0

ZeroGrad
94.81 ± 0.16 92.42 ± 1.29 88.09 ± 0.4
71.59 ± 0.22 35.93 ± 2.73 14.14 ± 0.32

MultiGrad
94.71 ± 0.17 94.86 ± 0.97 94.48 ± 0.19
71.98 ± 0.26 11.49 ± 16.19 0.0 ± 0.0

N-FGSM
94.54 ± 0.15 89.56 ± 0.49 81.48 ± 1.64
72.53 ± 0.19 45.63 ± 0.11 26.13 ± 0.81

Grad Align
94.56 ± 0.21 90.1 ± 0.34 84.01 ± 0.46
72.12 ± 0.19 43.85 ± 0.14 23.62 ± 0.41

AAERRC
94.75 ± 0.70 91.40 ± 0.85 82.18 ± 4.13
72.00 ± 0.88 42.55 ± 0.55 22.95 ± 0.51

AAERRUC
93.81 ± 0.26 87.11 ± 0.57 78.91 ± 0.84
73.41 ± 0.23 46.03 ± 0.25 27.44 ± 1.51

PGD-2
94.66 ± 0.1 94.63 ± 1.29 94.16 ± 0.54

73.29 ± 0.29 20.68 ± 18.56 0.02 ± 0.03

PGD-10
94.37 ± 0.13 89.67 ± 0.34 80.08 ± 0.93
74.76 ± 0.19 53.95 ± 0.55 37.65 ± 0.53

Table 15: Tiny-imagenet: Accuracy of different methods with 8/255 noise magnitude using
PreActResNet-18 under L∞ threat model. The results are averaged over 3 random seeds and re-
ported with the standard deviation.

method AAERRC AAERRUC RS-FGSM N-FGSM PGD-2

natural accuracy 47.92 ± 0.39 44.38 ± 0.27 52.28 ±2.64 48.16 ± 0.61 46.43 ± 0.35

robust accuracy 19.38 ± 0.14 21.85 ± 0.01 0.00 ± 0.00 20.82 ± 0.40 20.72 ± 0.32
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