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Abstract

Biomedical entity linking (BioEL) aims at map-001
ping biomedical mentions to pre-defined en-002
tities. While extensive research efforts have003
been devoted to BioEL, applying large lan-004
guage models (LLMs) for BioEL has not been005
fully explored. Previous attempts have revealed006
difficulties when directly applying LLMs to the007
task of BioEL. Possible errors include gener-008
ating non-entity sentences, invalid entities, or009
incorrect answers. To this end, we introduce010
LLM4BioEL, a concise yet effective frame-011
work that enables LLMs to adapt well to the012
BioEL task. LLM4BioEL employs restrictive013
decoding to ensure the generation of valid enti-014
ties and utilizes entropy-based contrastive de-015
coding to incorporate additional biomedical016
knowledge without requiring further tuning.017
Besides, we implement few-shot prompting018
to maximize the in-context learning capabil-019
ities of LLM. Extensive experiments demon-020
strate the effectiveness and applicability of021
LLM4BioEL across different BioEL tasks and022
with different LLM backbones, and the best-023
performing LLM4BioEL variant outperforms024
the traditional and LLM-based BioEL base-025
lines.026

1 Introduction027

Biomedical entity linking (BioEL) serves as the028

foundation for tasks like biomedical KG construc-029

tion (Zhang et al., 2020; Yu et al., 2022), KG-based030

answering (Shi et al., 2023; Yang et al., 2024b),031

and automatic diagnosis (Qiao et al., 2020; Shi032

et al., 2022; Zhao et al., 2024). BioEL aims at033

recognizing the biomedical mentions and linking034

them to standard entities with valid concept unique035

IDs (CUIs) in the given medical knowledge graphs036

(KGs), such as UMLS (Bodenreider, 2004). In con-037

trast to the general-domain entity linking, BioEL is038

characterized by a wide range of diverse and fine-039

grained biomedical concepts. A single biomedical040

entity can exhibit multiple morphological varia-041

[START zirconia END is metal so if you go this route please don ' t do it just to avoid metal
because you are getting it either way .]
In the biomedical text given above, what does the entity between the START and END token
refer to (answer without any explanation)?

Input

Output

(a) (b) (c)

Not an entity.

KG CUI

Not found in KG. 17678002 712723002

(d)

Llama-2-13b-chat

Sure! Based on the text
you provided, the entity
between the START and
END tokens refers to
""zirconia"".

Claude-2 / GPT-3.5

Zirconia

PaLM-2

Zirconium

LLM4BioEL

Zirconium dioxide

LLM

Figure 1: An example BioEL input and different LLMs’
output, where (a) represents the non-entity output that
is not an entity as required, (b) represents the invalid
output that is not found in the given medical KG, (c)
represents the incorrect output, and (d) represents the
correct output.

tions, such as “autosomal recessive disorder” and 042

“diseases inborn genetic”, while different biomed- 043

ical entities may share similar surface forms, like 044

“neoplasm of autonomic nerve disorder” and “neo- 045

plasm of vagus nerve disorder”. These complexi- 046

ties present greater challenges for BioEL methods, 047

requiring the ability to understand and capture their 048

nuanced relationships and distinctions. 049

Most current BioEL methods are either discrimi- 050

native or generative methods. The discriminative 051

methods employ BERT-based models to encode 052

the biomedical mentions and entities and retrieve 053

the most similar entities using embedding similari- 054

ties. Some discriminative methods further utilize 055

cross-encoders to rerank the retrieved entities via 056

modeling the fine-grained mention-entity interac- 057

tions. The generative methods directly generate the 058

linked entities based on the task-specific language 059

models, such as pre-training BART on BioEL 060

datasets. A recent benchmarking study (Jahan et al., 061

2023) investigated and evaluated LLMs’ perfor- 062
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mance on various biomedical tasks in an end-to-end063

manner. Considering the sensitivity to prompts, Ja-064

han et al. (2023) studied how to construct prompts065

for LLMs to simulate common biomedical tasks066

effectively. For BioEL, the prompt is designed as067

the “Input” in Figure 1, where LLMs are probed to068

directly generate the correct entities. We present069

the outputs of four different LLMs and our method,070

LLM4BioEL, with the same input in Figure 1.1071

We observe three scenarios when LLM’s output is072

incorrect. (a) LLM does not fully follow the in-073

struction and the output is not an entity as required,074

such as Llama-2-13b-Chat; (b) LLM follows the075

instruction but outputs an invalid entity that is not076

in the given biomedical KG, such as Claude-22 and077

GPT-3.5;3 (c) LLM outputs an entity with a valid078

CUI that is incorrect answer, such as PaLM-2 (Anil079

et al., 2023). The ideal and correct output is shown080

in Figure 1 (d), where the output entity corresponds081

to the correct CUI.082

In summary, adapting LLMs to BioEL presents083

two main challenges. First, LLMs are unfamiliar084

with pre-defined biomedical entities, and different085

BioEL tasks often utilize different medical KGs,086

necessitating rapid adaptation to various entity sets.087

The long-tailed distribution in BioEL datasets can088

hinder LLMs’ generalization (Lin et al., 2024b),089

and the techniques like fine-tuning and in-context090

learning may not be suitable for BioEL. Second,091

the large scale and ambiguity of biomedical entities092

make it challenging for LLMs to accurately link093

to the accurate entities without injecting domain-094

specific knowledge (Xie et al., 2024).095

To address these challenges, we propose a con-096

cise yet effective framework, LLM4BioEL, de-097

signed to guide LLMs for BioEL through two dis-098

tinct decoding strategies. The first strategy, restric-099

tive decoding, constrains the logit distribution to100

relevant tokens associated with the predefined en-101

tities. This approach effectively prevents LLMs102

from generating non-entity tokens and thus ensures103

valid responses in the context of BioEL. The sec-104

ond strategy, contrastive decoding, leverages the105

inherent knowledge embedded within LLMs and106

the external knowledge obtained from a trained re-107

triever, which captures the semantic relationships108

between mentions and entities. Contrastive decod-109

1The outputs of the four LLMs are taken from the released
results of Jahan et al. (2023).

2https://www.anthropic.com/index/claude-2
3https://platform.openai.com/docs/models/

gpt-3-5

ing has been validated to enhance LLMs’ truthful- 110

ness and factuality (Chuang et al., 2024), and in 111

this work, we employ entropy to derive the con- 112

trasted predictions. When LLM token distribution 113

is relatively uniform (high entropy), the retriever’s 114

knowledge is prioritized; when it is less uniform 115

(low entropy), LLM4BioEL utilizes the inherent 116

knowledge of LLMs. This dynamic dual approach 117

facilitates adaptive knowledge injection during the 118

decoding process, allowing for external knowledge- 119

aware outputs. To enhance performance, we uti- 120

lize LLMs’ in-context learning (ICL) capabilities 121

by organizing few-shot prompts with relevant ex- 122

amples retrieved by the same retriever, improving 123

adaptability and ensuring access to pertinent infor- 124

mation. It is worth noting that LLM4BioEL is a 125

decoding-enhanced framework that can be applied 126

to any open-source LLM as it requires no extra 127

fine-tuning or modification to the architecture. 128

Our contributions are three-fold: 129

• We present the first attempt to directly adapt 130

large language models (LLMs) for the biomed- 131

ical entity linking (BioEL) task. The code 132

is available at https://anonymous.4open. 133

science/r/LLM4BioEL-6D46/. 134

• LLM4BioEL introduces a novel combination 135

of restrictive decoding and entropy-based con- 136

trastive decoding, ensuring the generation of 137

valid outputs while dynamically incorporat- 138

ing biomedical knowledge. Additionally, we 139

leverage in-context learning (ICL) to enhance 140

the efficacy of LLM4BioEL. 141

• Our comprehensive experiments reveal the ef- 142

fectiveness and applicability of LLM4BioEL. 143

The top-performing variant of LLM4BioEL 144

surpasses the performance of training-based 145

discriminative and generative BioEL methods, 146

as well as other LLM-based methods, under- 147

scoring its competitiveness. 148

2 LLM4BioEL 149

2.1 Preliminary 150

Given a pre-identified mention m and a biomedical 151

knowledge graph with entity set E , the target of 152

biomedical entity linking (BioEL) is to link m to 153

the correct entity e ∈ E . To adapt to the question- 154

answering format of LLMs, Jahan et al. (2023) 155

constructed the BioEL datasets that are organized 156

as B = {(xi, yi)}Ni=1, where N denotes the number 157
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Biomedical KG

Contrastive Decoding
(§ 2.4)

diabetes mellitus type 2

LLM Output

restricted logit distribution (Eq. 5)

final logit distribution (Eq. 9)

LLM

similarity distribution (Eq. 7)

Retrieved Entities
   

Restrictive Decoding
(§ 2.3)

Retriever (§ 2.2)

Training Samples

Retrieved Samples
(§ 2.5)

LLM Input
[prediabetes can be reversed , type START ii diabetes END can be managed .]
In the biomedical text given above, what does the entity between the START
and END token refer to (answer without any explanation)?

logit distribution (Eq. 1)

Figure 2: Overall architecture of LLM4BioEL.

of samples in dataset, and x contains the mention158

m and y refers to the entity e. For simplicity, we159

will use (x, y) to denote (xi, yi) throughout the160

paper. An example of (x, y) is provided below.161

LLM input x: [START zirconia END is metal so if you
go this route please don’t do it just to avoid metal be-
cause you are getting it either way.] \n \n In the biomed-
ical text given above, what does the entity between the
START and END token refer to (answer without any
explanation)?

LLM output y: Zirconium dioxide.

162

We denote an LLM as Pθ(y
1, y2, .., yt|x) where163

θ denotes the LLM’s parameters and yt denotes the164

tth token to be generated. For input x, the greedy165

decoding process can be denoted as follows:166

y∗ = argmaxPθ(y | x). (1)167

The overall architecture of LLM4BioEL is168

shown as Figure 2 and the following subsections169

will detail each component.170

2.2 Retriever171

LLM4BioEL introduces a semantic retriever to172

obtain an entity subset Em given mention m to173

enable restrictive decoding and also calculate se-174

mantic similarities sim(m, e) given m and e to175

enable contrastive decoding. Following the previ-176

ous work (Xu et al., 2023; Lin et al., 2024a), we177

employ a bi-encoder based on SapBERT (Liu et al.,178

2021) to generate dense vectors for both mentions179

and entities. The mention embedding f(m) of m180

is denoted as:181

f(m) = SapBERT(m)[CLS], (2)182

where [CLS] denotes the special token used to de-183

rive a fixed-size vector. The entity embedding f(e)184

of e is computed similarly. The score of a mention-185

entity pair (m, e) is denoted as follows:186

sim(m, e) = g(f(m), f(e)), (3)187

where g is the cosine similarity and is utilized for 188

external knowledge injection during contrastive 189

decoding (see § 2.4). During inference, we 190

pre-calculate f(e) for each e ∈ E , select top- 191

k entities for each mention, k = |Em|, and 192

use FAISS (Johnson et al., 2019) for fast re- 193

trieval. Similarly, we use the same retriever to 194

calculate similarities of mention-mention pairs, 195

sim(mi,mj) = g(f(mi), f(mj)), for construct- 196

ing in-context prompts (see § 2.5). 197

We leverage contrastive learning to train the re- 198

triever, which aims at optimizing the agreement 199

between true mention-entity pairs and the disagree- 200

ment between false ones. The loss for each true 201

pair (m, e) is computed as: 202

L(m, e) = − log

 δ(m, e)

δ(m, e) +
∑

e′∈H(e)

δ(m, e′)

 ,

(4) 203

where δ(m, e) = exp(sim(m, e)/τ), τ is a tem- 204

perature hyper-parameter, and H(e) ⊂ E\{e} is a 205

set of negatives that excludes e. We obtain H(e) 206

by combining in-batch negative sampling and hard 207

negative sampling (i.e., highest-scoring incorrect 208

entities), which has been shown beneficial for en- 209

tity retrieval (Wu et al., 2020; Gao et al., 2021). 210

2.3 Restrictive Decoding 211

Restrictive decoding aims at guiding LLMs to out- 212

put valid entities with the given biomedical KG, 213

as shown in Fig 2. Typically, restrictive decod- 214

ing, also named constrained decoding, modifies the 215

original decoding process to ensure the output ad- 216

heres to specific constraints (De Cao et al., 2022; 217

Beurer-Kellner et al., 2024; Park et al., 2024). In 218

the context of BioEL, LLMs are required to directly 219

generate pre-defined biomedical entities, which is 220

consistent with the concept of restrictive decoding. 221

Given full set E and mention m, we leverage 222

the retriever (see § 2.2) to obtain an entity subset 223

Em = {e1, e2, . . . , ek} where k is the number of 224

retrieved entities k = |Em|. We define the tokeniza- 225

tion process as Ω(·). For an entity ei, we obtain 226

its token list as Ω(ei) = [s1i , s
2
i , . . . , s

qi
i ], where qi 227

denotes the number of tokens. The token list is then 228

padded with l − qi “end-of-text” tokens to reach a 229

fixed dimension of l. We process all the retrieved 230

entities to obtain the matrix of tokens Ym ∈ Rl×k 231

where each column refers to an entity and each 232

element Y ij
m refers to sij . As restrictive decoding 233

becomes effective starting from t = 1, each row of 234
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Ym represents the candidate tokens for restrictive235

decoding when generating the tth token, denoted236

as Y t
m ∈ R1×k. Note that each token may corre-237

spond to multiple entities; for instance, “diabetes”238

is the 1st token for entities “diabetes mellitus type239

1” and “diabetes mellitus type 2”. For timestep240

t in the decoding process, we constrain the logit241

distribution with the tokens Y t
m obtained from the242

retrieved entities, and we rewrite Eq 1 as follows:243

y∗t = argmax(Pθ(y | y<t, x) · δt), (5)244

where y<t represents the generated tokens before245

t, i.e., y<t = (y1, y2, . . . , yt−1) and δt determines246

whether to filter the token logit:247

δt =

{
1.0 if y ∈ Y t

m;

0.0 otherwise.
(6)248

With restrictive decoding, LLMs are guided to249

output a limited set of tokens for each decoding250

step, increasing the likelihood of valid responses251

and mitigating the issue of invalid entity outputs.252

2.4 Contrastive Decoding253

Based on the restricted logit distributions,254

LLM4BioEL introduces contrastive decoding to255

contrast the inherent knowledge within LLMs and256

external knowledge brought by the retriever (see257

§ 2.2), thereby enhancing entity disambiguation258

abilities. At timpstep t, we denote the logit dis-259

tribution produced by LLMs as Pθ(y | y<t, x).260

the logit distribution obtained by the retriever as261

P (y|m, Em), which represents the distribution of262

semantic similarities among entity token y given263

mention m. For simplicity, we take the entity-264

level semantic similarity as the token-level simi-265

larity, and for an entity e and its token y ∈ Ω(e),266

P (y|m, Em) is computed as follows:267

P (y|m, Em) ∝ sim(m, e)∑
e′∈Em sim(m, e′)

, (7)268

where sim(m, e) denotes the similarity computa-269

tion between mention m and entity e (taken from270

Eq 3). Token y may correspond to multiple entities271

and the maximized similarity value among these272

entities is taken. Higher similarity values suggest273

increased probabilities of the correct entities, which274

can be regarded as external knowledge brought by275

the retriever to guide the LLMs’ decoding process.276

However, LLMs may exhibit inherent knowl-277

edge regarding some biomedical concepts, which278

can be correctly linked without the use of external 279

knowledge. We thus utilize the entropy of the logit 280

distribution H(Pθ(y | y<t, x)) to express LLMs’ 281

uncertainty under the given question (Kuhn et al., 282

2023; Kim et al., 2024b). Intuitively, when LLMs 283

are uncertain about some biomedical concepts, the 284

entropy H(Pθ(y | y<t, x)) tends to be higher, in- 285

dicating that external knowledge should be priori- 286

tized to assist LLMs rather than relying on internal 287

knowledge. Conversely, a lower entropy suggests 288

LLMs are more confident in the predictions, al- 289

lowing LLMs to utilize their inherent knowledge 290

to answer the questions. Therefore, we design an 291

entropy-based parameter to balance the logit distri- 292

butions of LLMs and the retriever. Since the ranges 293

of logit distributions differ greatly, the distributions 294

are normalized before calculating the entropies: 295

αt =
H(Pθ(y | y<t, x))

H(Pθ(y | y<t, x)) +H(P (y|m, Em))
.

(8) 296

Guided by αt, LLM4BioEL enables an adaptive 297

adjustment in the extent to which LLMs leverage 298

external knowledge for prediction. Thus, we can re- 299

formulate Eq 5 to derive the contrastive prediction 300

as follows: 301

y∗t = argmax
(
(1− αt) · Pθ(y | y<t, x) · δt

+ αt · P (y | m, Em)
)
.

(9) 302

Through contrastive decoding, LLM4BioEL 303

adaptively guides the answer generation by con- 304

trasting and injecting external knowledge brought 305

by the retriever. 306

2.5 In-context Learning (ICL) 307

Semantically similar samples can serve as informa- 308

tive inputs to LLMs and some previous studies pro- 309

posed to retrieve similar samples to construct better 310

few-shot prompts (Rubin et al., 2022; Liu et al., 311

2022). Inspired by these findings, we leverage ICL 312

capabilities to improve LLM4BioEL further. For- 313

mally, some training samples are taken from B and 314

linearized to incorporate into the input x, which 315

formulates the output y∗ as follows: 316

y∗ = argmaxPθ(y | x1, y1, . . . , xn, yn︸ ︷︷ ︸
context

, x),

(10) 317

where each pair (xj , yj) is selected from B and 318

n denotes the number of samples. The selec- 319
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tion requires retrieving top-n similar mentions us-320

ing sim(mi,mj) where mention mi is within in-321

put x and mj is within input xj . We use the322

same retriever (see § 2.2) to create a datastore323

with key-value pairs (f(mi), ei) for the ith in-324

stance (mi, ei), where f(mi) is the mention em-325

bedding from Eq 2. Consequently, we replace x326

in Eq 9 with (x1, y1, . . . , xn, yn, x) to incorporate327

ICL. Notably, if retrieved samples provide infor-328

mative clues, LLM4BioEL will prioritize inherent329

knowledge, leading to a lower value of α in Eq 9.330

3 Experiments331

3.1 Experimental Setup332

Datasets. We adopt 3 BioEL datasets for333

evaluation, including NCBI (Doğan et al.,334

2014), BC5CDR (Li et al., 2016), and335

COMETA (Basaldella et al., 2020). Please336

refer to Appendix § A for more details.337

Metrics. We report Hits@1 along with the newly338

designed Hits@KG for evaluation. The metric339

Hits@KG aims to compute the ratio of valid gen-340

erated entities in the biomedical KG, and higher341

Hits@KG indicates that LLM’s output is more in342

line with the biomedical KG. Different from Jahan343

et al. (2023), we report metrics of directly retriev-344

ing CUIs of the LLM’s output as LLM has been345

required to “answer without any explanation”. The346

metrics are thus re-calculated for the LLMs taken347

from Jahan et al. (2023). For the details of our eval-348

uation method and the difference from that used in349

Jahan et al. (2023), please refer to Appendix § E.350

We also report the averaged decoding throughput351

(Token/s).352

LLM backbones. To show the applicability353

of LLM4BioEL, we adopt four LLMs of dif-354

ferent scales in our experiments: 1) Qwen-2-355

1.5b-instruct (Yang et al., 2024a), a relatively356

smaller LLM; 2) Mistral-7b-v0.3-instruct (Jiang357

et al., 2023), a widely-used general-domain LLM;358

3) Llama-3-8b-instruct (AI@Meta, 2024) and 4)359

Llama-3-70b-instruct (AI@Meta, 2024), another360

widely-used general-domain LLMs. Please refer to361

Appendix § B for more details.362

Baseline settings. We compare LLM4BioEL with363

three baseline settings: 1) greedy decoding, 2)364

DoLa (Chuang et al., 2024), a contrastive decoding365

strategy to improve the factuality of LLMs, and366

3) ICL with 10-shot prompts, where the prompts367

are built with randomly shuffled training instances.368

The DoLa baseline contrasts “high” layers to en-369

hance short-answer tasks (Chuang et al., 2024).4 370

Implementation details. The hyper-parameters 371

of LLM4BioEL include the number of retrieved 372

entities k and the number of few-shot prompts n. 373

We apply the grid search strategy on the evaluation 374

split for best-performing k out of [1,10] and n out 375

of [0,10]. Note that we search n out of [10,80] for 376

the COMETA dataset due to greater task difficulty 377

and less contextual information in the question. All 378

the experiments are done with greedy search as the 379

decoding strategy. 380

3.2 Main Results 381

We report the experimental results of LLM4BioEL 382

in Table 1. In greedy decoding, Llama-3-8b 383

and Llama-3-70b noticeably outperform Qwen-2- 384

1.5b and Mistral-7b-v0.3 with Llama-3-70b achiev- 385

ing comparable or superior performance against 386

the three LLM-based BioEL methods. How- 387

ever, Llama-3-70b lacks domain-specific knowl- 388

edge, resulting in invalid entities and Hits@KG 389

of approximately 60.3%, 64.8%, and 41.5% on 390

NCBI, BC5CDR, and COMETA, respectively. The 391

DoLa (Chuang et al., 2024) decoding strategy 392

shows no performance enhancements for LLMs 393

on BioEL. Conversely, ICL with 10-shot prompts 394

leads to performance drops for Qwen-2-1.5b and 395

Llama-3-8b, while Llama-3-70b shows an average 396

performance gain of 28.4% over greedy decoding, 397

attributed to its larger parameter scale. 398

LLM4BioEL demonstrates substantial improve- 399

ments from greedy decoding across different 400

datasets using different LLM backbones. For ex- 401

ample, with LLM4BioEL, Llama-3-8b improves 402

the averaged Hits@1 from 36.3% to 89.9% and 403

Mistral-7b-v0.3 improves from 2.0% to 89.8%. 404

LLM4BioEL effectively enables LLMs to pro- 405

duce valid entities within the biomedical KG, 406

achieving 100.0% Hits@KG across different back- 407

bones. While different LLMs perform differently 408

in greedy decoding, they all can reach relatively 409

comparative performance using LLM4BioEL, high- 410

lighting its wide applicability. As for decoding 411

throughput, Qwen-2-1.5b is the fastest, followed 412

by Mistral-7b-v0.3 and Llama-3-8b, while Llama- 413

3-70b is the slowest in greedy decoding. Although 414

DoLa impacts the throughput with negligible cost 415

for Qwen-2-1.5b and Mistral-7b-v0.3, it signifi- 416

cantly increases the decoding time for Llama-3-8b. 417

4We encountered a GPU out-of-memory issue with Llama-
3-70b when using DoLa strategy, and therefore, we do not
report this part of results.
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Table 1: Experimental results of LLM4BioEL using different LLM backbones.

LLMs NCBI BC5CDR COMETA Avg.
Hits@1 Hits@KG Hits@1 Hits@KG Hits@1 Hits@KG Hits@1 Token/s

Qwen-2-1.5b 20.0 23.7 13.4 17.9 3.1 4.9 12.2 13.0 (× 1.00)
+ DoLa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4 (× 0.80)
+ ICL (10-shot) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 12.4 (× 0.95)
+ LLM4BioEL 92.4 100.0 92.2 100.0 82.7 100.0 89.1 4.8 (× 0.37)

Mistral-7b-v0.3 0.9 0.9 3.9 4.1 1.0 1.2 2.0 10.2 (× 1.00)
+ DoLa 0.0 0.0 0.5 0.5 0.2 0.2 0.2 10.3 (× 1.01)
+ ICL (10-shot) 0.9 0.9 3.9 4.1 28.3 32.7 11.1 9.1 (× 0.89)
+ LLM4BioEL 92.9 100.0 92.4 100.0 84.1 100.0 89.8 4.2 (× 0.41)

Llama-3-8b 36.3 39.5 49.8 56.4 22.9 35.5 36.3 5.4 (× 1.00)
+ DoLa 27.7 30.4 28.2 32.4 7.3 10.0 21.1 0.1 (× 0.02)
+ ICL (10-shot) 12.8 14.7 26.9 28.8 42.1 52.4 27.3 3.6 (× 0.67)
+ LLM4BioEL 93.2 100.0 92.2 100.0 84.4 100.0 89.9 3.3 (× 0.61)

Llama-3-70b 57.3 60.3 61.1 64.8 34.9 41.5 51.1 1.1 (× 1.00)
+ ICL (10-shot) 77.8 79.1 72.7 76.0 46.3 56.7 65.6 0.6 (× 0.55)
+ LLM4BioEL 93.8 100.0 92.4 100.0 84.8 100.0 90.3 1.0 (× 0.91)

Applying in-context learning (ICL) with 10-shot418

prompts leads to a modest decrease in throughput,419

with reduction factors ranging from 0.55 to 0.95.420

LLM4BioEL exhibits varying effects on decoding421

efficiency, resulting in reduction factors of 63%,422

59%, 39%, and 9%, indicating that larger language423

models (LLMs) tend to be less affected. These424

differences in the impact of LLM4BioEL across425

various LLMs can be attributed to variations in426

model architecture and optimization strategies.427

3.3 Comparison with State-of-the-art428

Methods429

We experimentally compare LLM4BioEL against430

the state-of-the-art (SOTA) BioEL methods us-431

ing the His@1 metric on three datasets. The432

BioEL baselines include a) 8 discriminative433

methods, including BioSyn (Sung et al., 2020),434

ResCNN (Lai et al., 2021), SapBERT (Liu435

et al., 2021), Cross-domain (Varma et al., 2021),436

Clustering-based (Angell et al., 2021), Prompt-437

BioEL (Xu et al., 2023), BioFEG (Sui et al.,438

2023) and BioPro (Zhu et al., 2023), b) 7 genera-439

tive methods, including GenBioEL (Yuan et al.,440

2022b), BART-base/large (Yuan et al., 2022a),441

BioBART-base/large (Yuan et al., 2022a), Gen-442

BioEL+ANGEL (Kim et al., 2024a), and Bio-443

BART+ANGEL (Kim et al., 2024a), and c) 8444

LLM-based methods, including GPT-3.5/PaLM-445

2/Claude-2 (Jahan et al., 2023), GPT-4 (Achiam446

et al., 2023), DeepSeek-R1-distilled LLMs,5 and447

5including DeepSeek-R1-Distill-Qwen-1.5B (DeepSeek-
R1-1.5b), DeepSeek-R1-Distill-Qwen-7B (DeepSeek-R1-7b),
and DeepSeek-R1-Distill-Llama-8B (DeepSeek-R1-8b).

DeepSeek-R1 (DeepSeek-AI et al., 2025). 448

As shown in Table 2, LLM4BioEL demonstrates 449

comparative performance to SOTA baselines across 450

different datasets. Overall, LLM4BioEL (Llama-3- 451

70b) shows the best performance, and LLM4BioEL 452

(Llama-3-8b) achieves comparable performance to 453

the second-best Prompt-BioEL (Xu et al., 2023), 454

among which our lower BC5CDR performance 455

likely stems from competitors’ UMLS pretrain- 456

ing (aligned with BC5CDR’s medical subset) and 457

our general-domain LLM’s reduced specificity 458

on specialized terminology. Regarding Qwen-2- 459

1.5b and Mistral-7b-v0.3, both demonstrate per- 460

formance comparable to other SOTA baselines, 461

showing the significant improvements brought by 462

LLM4BioEL. LLM4BioEL shows the flexibility 463

to switch between different biomedical KGs and 464

LLM backbones, as evidenced by the comparative 465

performance of its different variants. Furthermore, 466

LLM4BioEL is a robust framework that offers en- 467

hanced generalization across diverse tasks when 468

compared to other baselines. It is important to 469

note that directly applying LLMs into BioEL with- 470

out proper guidance leads to unsatisfactory perfor- 471

mance. LLMs like GPT-3.5, PaLM-2, Claude-2, 472

and GPT-4 all underperform discriminative and 473

generative baselines by a large margin. Similar 474

findings can be observed with the DeepSeek-R1 475

models, which demonstrate various but limited abil- 476

ities to reason about biomedical entities accurately. 477

3.4 Ablation Studies 478

This subsection investigates different components 479

in LLM4BioEL. We experiment LLM4BioEL with 480
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Table 2: Comparison of LLM4BioEL against discrim-
inative, generative, and LLM-based BioEL baselines
on three BioEL datasets, where the best performance is
in bold and the second best is underlined. The symbol
* denotes the re-calculated metrics and † denotes the
reproduced results.

Methods NCBI BC5CDR COMETA Avg.

Discriminative BioEL methods

BioSyn 91.1 86.3† 71.3 82.9
ResCNN 92.4 88.8† 80.1 87.1
SapBERT 92.3 89.7† 75.1 85.7
Cross-domain – 89.3 – –
Clustering-based – 91.3 – –
Prompt-BioEL 92.6 93.7 83.7 90.0
BioFEG – 93.4 – –
BioPro 94.5 – – –

Generative BioEL methods

GenBioEL 91.9 93.3 81.4 88.9
BART-base 88.5 91.6 78.3 86.1
BART-large 90.2 92.5 80.7 87.8
BioBART-base 89.3 93.0 79.6 87.3
BioBART-large 89.9 93.3 81.8 88.3
GenBioEL+ANGEL 92.5 94.4 82.4 89.8
BioBART+ANGEL 91.9 94.7 82.2 89.6

LLM-based BioEL methods

GPT-3.5 – – 27.3* –
PaLM-2 – – 29.5* –
Claude-2 – – 37.2* –
GPT-4 59.4 66.3 40.3 55.3
DeepSeek-R1-1.5b 2.3 2.3 2.0 2.2
DeepSeek-R1-7b 9.0 7.9 4.9 7.3
DeepSeek-R1-8b 2.0 1.9 2.9 2.3
DeepSeek-R1 62.6 71.4 37.6 57.2
LLM4BioEL (Ours)
Qwen-2-1.5b 92.4 92.2 82.7 89.1
Mistral-7b-v0.3 92.9 92.4 84.1 89.8
Llama-3-8b 93.2 92.2 84.4 89.9
Llama-3-70b 93.8 92.4 84.8 90.3

Llama-3-8b as LLM backbone by 1) removing con-481

trastive decoding (w/o contrastive), 2) replacing482

fixed-value α = 0.5 in Eq 9 (w/ fixed α), 3) re-483

moving few-shot prompting (w/o few-shot), and484

4) replacing few-shot examples with randomly se-485

lected examples (w/ random prompts). As listed486

in Table 3, we observe performance degradation487

of removing contrastive decoding and using the488

fixed value of α in the contrasting process. In ad-489

dition, we observe that few-shot prompting has490

a greater impact on COMETA (9.4% drop) than491

on NCBI (1.8% drop) or BC5CDR (1.5% drop),492

suggesting that LLM4BioEL relies more on few-493

shot prompting to address limited contextual in-494

formation provided by the original prompt in495

COMETA. The comparison between LLM4BioEL496

and LLM4BioEL w/ random prompts further con-497

Table 3: Ablation study of LLM4BioEL (Hits@1).

Settings NCBI BC5CDR COMETA

LLM4BioEL 93.2 92.2 84.4
w/o contrastive 91.8 91.9 83.6
w/ fixed α 91.9 92.2 84.1
w/o few-shot 91.5 90.8 76.3
w/ random prompts 92.1 92.0 81.4

firms the effectiveness of the prompting design 498

proposed in § 2.5. For instance, when using ran- 499

dom prompts instead of retrieval-based prompts, 500

Hits@1 drops by 1.2%, 0.2%, and 3.3% for NCBI, 501

BC5CDR, and COMETA, respectively. 502

3.5 Hyper-parameter Sensitivity Analysis 503

This subsection discusses hyper-parameters sensi- 504

tivity on the NCBI dataset, including the number 505

of retrieved entities k and the number of few-shot 506

prompts n. We report the Hits@1 metrics for three 507

LLM backbones, with varying values of k while 508

keeping n fixed, and vice versa. As shown in Fig- 509

ure 3 (a), Hits@1 is observed to reach its highest 510

values mostly at k = 2, and as k increases, Hits@1 511

generally shows a decreasing trend. This suggests 512

that retrieving more entities introduces additional 513

noise, making entity disambiguation more chal- 514

lenging and affecting the contrastive process. For 515

hyperparameter n, Figure 3 (b) shows significant 516

increases of Hits@1, when comparing zero-shot 517

(n = 0) and 10-shot (n = 10) prompting. This 518

shows clear evidence of the retrieval-based few- 519

shot prompts. While n continues to rise, the per- 520

formance gain is less obvious than from n = 0 to 521

n = 10. Overall, LLM4BioEL reaches the high- 522

est Hits@1 when n = 3/3/2 on NCBI for three 523

backbones. Please refer to Appendix § C for the 524

experiments on BC5CDR and COMETA datasets. 525
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Figure 3: Hyper-parameter sensitivity experiments.
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3.6 Comparison of Different Retrievers526

The retriever assists in various components of527

LLM4BioEL, including restricting logit distribu-528

tion (§ 2.3), contrasting logit distribution (§ 2.4),529

and building few-shot prompts (§ 2.5). To assess530

the impacts of different retrievers, we compare our531

retriever with other models: SapBERT (Liu et al.,532

2021), a specialized BERT variant for biomedical533

text processing, and SimCSE (Gao et al., 2021),534

a general-domain sentence embedding model. As535

shown in Table 4, we find performance improve-536

ments in LLM4BioEL when applying more capa-537

ble retrievers. Specifically, the retriever (§ 2.2)538

performs the best, followed by SapBERT and Sim-539

CSE, and the performance drops are even more540

pronounced on the COMETA dataset. This under-541

scores the importance of a capable retriever for the542

performance of LLM4BioEL.543

Table 4: Comparison of different retrievers (Hits@1).

Settings NCBI BC5CDR COMETA

LLM4BioEL
w/ Retriever (§ 2.2) 93.2 92.2 84.4
w/ SapBERT 92.2 88.7 68.3
w/ SimCSE 88.9 83.1 56.5

4 Related Work544

4.1 Biomedical Entity Linking545

The current BioEL methods can be broadly cat-546

egorized into discriminative methods and gener-547

ative methods (Shi et al., 2023). Discriminative548

BioEL methods focus on training bi-encoders or549

cross-encoders to enhance the retrieval of relevant550

biomedical entities. For instance, Liu et al. (2021)551

introduced a self-alignment pretraining strategy to552

refine biomedical entity representations. Lai et al.553

(2021) presented a lightweight yet effective CNN,554

demonstrating that complex models are not always555

necessary. Furthermore, some studies (Xu et al.,556

2020; Angell et al., 2021; Xu et al., 2023) have557

explored using cross-encoders to capture subtle558

mention-entity relationships. Besides, some stud-559

ies (Lin et al., 2024a,b) proposed using similar560

instance references during training or prediction to561

address the long-tailed distribution issue. Gener-562

ative BioEL methods bypass retrieval by directly563

generating linked entities. For instance, Yuan et al.564

(2022b) enhanced generation with knowledge base565

pre-training and synonym-aware fine-tuning, while566

Yuan et al. (2022a) developed BioBART for strong567

biomedical NLG benchmarks. Kim et al. (2024a) 568

further improved generative models by incorpo- 569

rating negative samples, enhancing their ability to 570

distinguish similar entities. Recent studies (Wang 571

et al., 2023b; Xie et al., 2024) have investigated the 572

potential of large language models for in-context 573

learning in biomedical concept linking via prompt- 574

ing, yet are limited by retrieval-dependent candi- 575

date selection. Our LLM4BioEL framework ad- 576

dresses this by enabling direct entity generation 577

from biomedical KGs, better suited for clinical ap- 578

plications where predefined candidate sets may not 579

be available. 580

4.2 Biomedical Large Language Models 581

In recent years, large language models (LLMs) 582

like ChatGPT, PaLM-2, Claude-2, and Llama have 583

shown promising potential in biomedical tasks (Ja- 584

han et al., 2023; Liu et al., 2024). To enhance their 585

domain-specific capabilities, several methods have 586

been developed, including extra pre-training with 587

biomedical data. Luo et al. (2022) pre-trained a 588

model on biomedical literature, while Wang et al. 589

(2023a) fine-tuned LLMs with diverse medical data 590

for clinical tasks. Additionally, Christophe et al. 591

(2024) fine-tuned Llama-3 models with medical 592

instruction data and implemented multi-stage pref- 593

erence alignment. Although these models have 594

shown strong performance in various biomedical 595

tasks, their application in BioEL remains underex- 596

plored. This work introduces a universal frame- 597

work tailored for BioEL to enhance the perfor- 598

mance of open-source LLMs. 599

5 Conclusion 600

In this paper, we introduced LLM4BioEL, a 601

straightforward yet effective framework for BioEL. 602

LLM4BioEL consists of restrictive decoding to en- 603

sure valid output, entropy-based contrastive decod- 604

ing to adaptively integrate external knowledge, and 605

few-shot prompting to enhance the linking perfor- 606

mance. We experimented with four different LLMs 607

and validated the performance improvement of 608

LLM4BioEL compared to other baselines. We also 609

demonstrated its comparative performance to other 610

state-of-the-art BioEL baselines, and its flexibility 611

to switch between different tasks and backbones 612

without fine-tuning. For future exploration, we plan 613

to investigate LLM4BioEL in the general-domain 614

EL and investigate the combination of decoding 615

strategies for other knowledge-intensive tasks. 616
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Limitations617

This section discusses the limitations of our work.618

First, LLM4BioEL requires preprocessing steps for619

entity retrieval and tokenization, which introduce620

additional computational costs to the decoding pro-621

cess of the LLMs. Second, the decoding-enhanced622

nature of LLM4BioEL limits its applicability to623

closed-source models, such as ChatGPT. Lastly,624

the performance of LLM4BioEL is influenced by625

the effectiveness of the retriever (as discussed in626

§ 2.2). In the future, we aim to explore advanced re-627

trieval techniques to reduce this dependency, such628

as hybrid retrieval combined with rule-based fil-629

tering that applies semantic type constraints, or630

synonym expansion.631

References632

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama633
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,634
Diogo Almeida, Janko Altenschmidt, Sam Altman,635
Shyamal Anadkat, et al. 2023. GPT-4 Technical Re-636
port. arXiv preprint arXiv:2303.08774.637

AI@Meta. 2024. Llama 3 Model Card.638

Rico Angell, Nicholas Monath, Sunil Mohan, Nishant639
Yadav, and Andrew McCallum. 2021. Clustering-640
based Inference for Biomedical Entity Linking. In641
Proceedings of the 2021 Conference of the North642
American Chapter of the Association for Computa-643
tional Linguistics: Human Language Technologies,644
pages 2598–2608.645

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John-646
son, Dmitry Lepikhin, Alexandre Passos, Siamak647
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng648
Chen, et al. 2023. PaLM 2 technical report. arXiv649
preprint arXiv:2305.10403.650

Marco Basaldella, Fangyu Liu, Ehsan Shareghi, and651
Nigel Collier. 2020. COMETA: A Corpus for Medi-652
cal Entity Linking in the Social Media. In Proceed-653
ings of the 2020 Conference on Empirical Methods654
in Natural Language Processing, pages 3122–3137.655

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.656
2024. Guiding LLMs The Right Way: Fast, Non-657
Invasive Constrained Generation. arXiv preprint658
arXiv:2403.06988.659

Olivier Bodenreider. 2004. The Unified Medical Lan-660
guage System (UMLS): integrating biomedical ter-661
minology. Nucleic Acids Research, 32.662

Clément Christophe, Tathagata Raha, Nasir Hayat,663
Praveen Kanithi, Ahmed Al-Mahrooqi, Prateek Mun-664
jal, Nada Saadi, Hamza Javed, Umar Salman, Svet-665
lana Maslenkova, Marco Pimentel, Ronnie Rajan,666
and Shadab Khan. 2024. Med42-v2 - A Suite of667
Clinically-aligned Large Language Models.668

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon 669
Kim, James R. Glass, and Pengcheng He. 2024. 670
DoLa: Decoding by Contrasting Layers Improves 671
Factuality in Large Language Models. In The Twelfth 672
International Conference on Learning Representa- 673
tions. 674

Nicola De Cao, Ledell Wu, Kashyap Popat, Mikel 675
Artetxe, Naman Goyal, Mikhail Plekhanov, Luke 676
Zettlemoyer, Nicola Cancedda, Sebastian Riedel, and 677
Fabio Petroni. 2022. Multilingual Autoregressive 678
Entity Linking. Transactions of the Association for 679
Computational Linguistics, 10:274–290. 680

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, 681
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, 682
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, 683
Xingkai Yu, Yu Wu, et al. 2025. DeepSeek-R1: In- 684
centivizing Reasoning Capability in LLMs via Rein- 685
forcement Learning. Preprint, arXiv:2501.12948. 686
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A Datasets 897

Table 5 represents the dataset statistics and task 898

prompt used in the experiments. 899

Table 5: Dataset statistics and task prompt.

Datasets Entity Types Entities |E| Dataset Split
Train / Valid / Test

NCBI Disease 14,967 5,784 / 787 / 960
BC5CDR Disease & Chemical 268,162 9,285 / 9,515 / 9,654
COMETA Clinical Terms 350,830 13,489 / 2,176 / 4,350

Task Prompt

[TEXT_S <START> ENTITY <END> TEXT_E]
In the biomedical text given above, what does the entity between the
START and END token refer to (answer without any explanation)?

B LLM Descriptions 900

This section provides descriptions of the 5 901

instruction-tuned LLMs used in the evaluation: 902

• Qwen-2-1.5b (Yang et al., 2024a): As part 903

of the Qwen series of models, Qwen-2-1.5b 904

is an instruction-tuned language model with 905

1.5 billion parameters. Qwen-2-1.5b is de- 906

signed for easy deployment and quick ap- 907

plication, and the model checkpoints can 908

be accessed via https://huggingface.co/ 909

Qwen/Qwen2-1.5B-Instruct. 910

• Mistral-7b-v0.3 (Jiang et al., 2023): Mistral- 911

7b-v0.3, developed by Mistral AI, is a 912

large language model with 7 billion pa- 913

rameters. It can follow instructions, com- 914

plete requests, and generate creative con- 915

tent. The model checkpoints can be accessed 916

via https://huggingface.co/mistralai/ 917

Mistral-7B-Instruct-v0.3. 918

• Llama-3-8b/70b (AI@Meta, 2024): Llama-3 919

family of large language models is a col- 920

lection of pre-trained and instruction-tuned 921

generative text models in 8B and 70B sizes. 922

The instruction-tuned Llama-3 models are 923

optimized for dialogue use cases. The 924

model checkpoints can be accessed via 925

https://huggingface.co/meta-llama/ 926

Meta-Llama-3-8B-Instruct and 927

https://huggingface.co/meta-llama/ 928

Meta-Llama-3-70B-Instruct. 929

• Llama-3-Med42-8b (Christophe et al., 2024): 930

Med42-v2 is a suite of open-access clini- 931

cal large language models instruction- and 932
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preference-tuned by M42 to expand access933

to medical knowledge and to provide high-934

quality answers to medical questions. Llama-935

3-Med-8b is built upon Llama-3-8b with 8936

billion parameters. The model checkpoints937

can be accessed via https://huggingface.938

co/m42-health/Llama3-Med42-8B.939

C Hyper-parameter Sensitivity Analysis940

(Cont’)941

The experiments conducted on the BC5CDR and942

COMETA datasets yield conclusions consistent943

with § 3.5. LLM4BioEL reaches the highest944

Hits@1 n = 9/7/1 on BC5CDR, and n =945

20/70/70 on COMETA, for three backbones, re-946

spectively.947
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Figure 4: Hyper-parameter sensitivity experiments.

C.1 Comparison of General-domain LLM948

and Domain-specific LLM949

Another method for adapting LLMs to BioEL is950

domain-specific fine-tuning. This subsection inves-951

tigates the suitability of LLM4BioEL for fine-tuned952

LLMs and compares general-domain LLMs with953

domain-specific ones. We use Llama-3-Med42-8b6954

as the domain-specific LLM, as it is instruction-955

tuned from Llama-3-8b using domain-specific cor-956

pora, including medical flashcards and exam ques-957

tions (Christophe et al., 2024). Following the958

6https://huggingface.co/m42-health/
Llama3-Med42-8B

setup in § 3.1, we report the performance of 959

greedy decoding and LLM4BioEL settings. Ta- 960

ble 6 shows the Hits@1 (H@1) and Hits@KG 961

(H@E) metrics. Surprisingly, Llama-3-Med42-8b 962

underperforms compared to Llama-3-8b in greedy 963

decoding, likely due to the instruction gap be- 964

tween its fine-tuning data and BioEL data, as it fo- 965

cuses on dialogue-oriented medical scenarios rather 966

than task-oriented ones. In contrast, LLM4BioEL 967

significantly enhances the performance of both 968

Llama-3-8b and Llama-3-Med42-8b, achieving av- 969

erage Hits@1 of 89.9% and 89.4%, respectively. 970

Specifically, LLM4BioEL (Llama-3-8b) excels on 971

NCBI and COMETA, while LLM4BioEL (Llama- 972

3-Med42-8b) shows comparable performance to 973

LLM4BioEL (Llama-3-8b) on BC5CDR. These 974

results indicate that LLM4BioEL is effective for 975

domain-specific LLMs, even when their original 976

fine-tuning objectives are not directly related to 977

BioEL. 978

Table 6: Comparison of general-domain Llama-3-8b
and domain-specific Llama-3-Med42-8b.

LLMs NCBI BC5CDR COMETA
H@1 H@E H@1 H@E H@1 H@E

Llama-3-8b 36.3 39.5 49.8 56.4 22.9 35.5
+ LLM4BioEL 93.2 100.0 92.2 100.0 84.4 100.0

Llama-3-Med42-8b 2.1 2.6 2.4 2.7 10.6 13.5
+ LLM4BioEL 92.3 100.0 92.2 100.0 83.6 100.0

C.2 Investigation of different BioEL Task 979

Formats 980

Compared to directly generating the correct en- 981

tities, some previous work attempted to probe 982

LLMs to conduct multiple-choice question answer- 983

ing (MCQA) (Lin et al., 2024a). This subsection 984

investigates the performance comparison of differ- 985

ent task formats, namely 1) entity generation and 986

2) entity selection. As for entity selection (MCQA 987

format), each question is provided by five options 988

recalled by the Retriever (§ 2.2). Similar to the ICL 989

(10-shot) setting, we also provide 10-shot examples 990

to probe LLMs in the MCQA setting. Table 8 re- 991

ports the results of four LLM backbones. It clearly 992

shows that modeling BioEL as MCQA brings per- 993

formance gains compared to ICL, but it still under- 994

performs LLM4BioEL. Although the MCQA task 995

seems to simplify it, we find that LLMs exhibit 996

selection bias in MCQA and are susceptible to the 997

influence of option positioning. Besides, LLMs 998

need to learn to associate the symbol with the cho- 999

sen answer option; otherwise, the output symbol 1000
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Table 7: Case studies of LLM4BioEL against other baselines using Llama-3-8b as LLM backbone.

ID LLM Input Methods LLM Output KG CUI

(1)

[ blodshot eyes , START wrinkles END , hair loss , hunger attacks ,
cravings , weight loss , heartburn , caffeine , addiction .] \n \n In the
biomedical text given above, what does the entity between the START
and END token refer to (answer without any explanation)?

greedy decoding symptoms N/A
DoLa The entity is "wrinkles". N/A
ICL (10-shot) wrinkles N/A
LLM4BioEL wrinkle 27367001
ground truth wrinkle 27367001

(2)

[ syncope caused by hyperkalemia during use of a combined therapy
with the angiotensin-converting enzyme inhibitor and spironolactone. a
76 year-old woman with a history of coronary artery bypass grafting and
prior myocardial infarction was transferred to the emergency room with
START loss of consciousness END due to marked bradycardia caused
by hyperkalemia. the concentration of serum potassium was high, and
normal sinus rhythm was restored after correction of the serum
potassium level. the cause of hyperkalemia was considered to be several
doses of spiranolactone, an aldosterone antagonist, in addition to the
long-term intake of ramipril, an ace inhibitor ...... ] \n \n In the
biomedical text given above, what does the entity between the START
and END token refer to (answer without any explanation)?

greedy decoding Loss of consciousness D014474
DoLa The entity between the START and END

tokens refers to "START loss of con-
sciousness" or "loss of consciousness". It
describes the acute symptom experienced
by the 76-year-old woman in the emer-
gency room.

N/A

ICL (10-shot) Here are the answers:\n1. focal glomeru-
losclerosis\n2. nonsmall cell lung carci-
noma\n3. coccidioidomycosis\n4. param-
ethasone\n5. tamoxifen\n6. potas-
sium\n7. glutathione\n8. warfarin\n9. an-
giotensin

N/A

LLM4BioEL loss of consciousness D014474
ground truth loss of consciousness D014474

may lack meaningfulness and exhibit a degree of1001

randomness.1002

Table 8: Comparison of different BioEL task format.

Methods NCBI BC5CDR COMETA Avg.

Qwen-2-1.5b
ICL 0.0 0.0 0.0 0.0
ICL + MCQA 48.1 46.0 16.2 36.8
LLM4BioEL 92.4 92.2 82.7 89.1

Mistral-7b-v0.3
ICL 0.9 3.9 28.3 11.1
ICL + MCQA 85.8 88.8 69.9 81.6
LLM4BioEL 92.9 92.4 84.1 89.8

Llama-3-8b
ICL 12.8 26.9 42.1 27.3
ICL + MCQA 80.2 77.4 54.2 70.6
LLM4BioEL 93.2 92.2 84.4 89.9

Llama-3-70b
ICL 77.8 72.7 46.3 65.6
ICL + MCQA 87.0 89.5 59.9 78.8
LLM4BioEL 93.8 92.4 84.8 90.3

D Case Studies1003

This subsection presents two case studies in Table 7.1004

We list the ground truth with the output of Llama-3-1005

8b using greedy decoding, DoLa, ICL with 10-shot1006

prompting (ICL (10-shot)), and LLM4BioEL, same1007

as § 3.1. We also list the KG CUI, which is directly1008

obtained using the LLM output, to show the valid-1009

ity and correctness of the LLM output. Overall,1010

LLM4BioEL is shown capable of generating valid1011

and correct biomedical entities. In contrast, while1012

applying DoLa appears to improve the actuality1013

of output, it fails to adhere to the instructions, as1014

seen in Case (2). when using ICL with 10-shot1015

prompting, Llama-3-8b generates invalid biomed- 1016

ical entities (Case (1)) and non-entity sequences 1017

(Case (2)). 1018

E Evaluation Method for LLM4BioEL 1019

In this work, we utilize a different evaluation 1020

method from that used in Jahan et al. (2023) 1021

and report the re-calculated metrics in our exper- 1022

iments. We emphasize the importance of con- 1023

ducting an equal comparison between LLM-based 1024

BioEL methods and discriminative and generative 1025

methods, following the approach used in Xu et al. 1026

(2023); Lin et al. (2024b,a); Kim et al. (2024a) to 1027

evaluate the LLM-based BioEL methods. Specifi- 1028

cally, we directly utilize the LLM output to retrieve 1029

KG CUI, which returns N/A if the output is not a 1030

valid entity. We define Hits@1 as 1 if the corre- 1031

sponding KG CUI is the same as the ground truth 1032

and 0 otherwise. In contrast, Jahan et al. (2023) 1033

evaluated the performance of LLMs on BioEL us- 1034

ing a straightforward method: they define Hits@1 1035

as 1 if a) the LLM output equals the ground truth; b) 1036

the LLM output exists within the ground truth; or c) 1037

the ground truth exists within the LLM output. This 1038

method heavily biases the evaluated performance 1039

as it counts more false positives. For instance, if the 1040

LLM output is "neoplasm of oesophagus" and the 1041

ground truth is "benign neoplasm of oesophagus", 1042

the evaluation method in (Jahan et al., 2023) would 1043

determine this as correct, which is not accurate. 1044

To illustrate the difference between the two eval- 1045

uation methods, we report both metrics for all 1046

datasets and LLM backbones in Table 9. We ob- 1047

serve that the evaluation method in (Jahan et al., 1048
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Table 9: Comparison of LLM4BioEL and other LLM-based BioEL baselines using different evaluation methods.

Models Evaluation method in Jahan et al. (2023) Evaluation method in this work
NCBI BC5CDR COMETA Avg. NCBI BC5CDR COMETA Avg.

GPT-3.5 52.2 54.9 43.5 50.2 - - 27.3 -
PaLM-2 38.4 52.1 48.8 46.5 - - 29.5 -
Claude-2 70.2 78.0 53.3 67.2 - - 37.2 -
GPT-4 81.0 81.3 55.5 72.6 59.4 66.3 40.3 55.3
DeepSeek-R1-1.5b 20.0 26.2 15.3 20.5 2.3 2.3 2.0 2.2
DeepSeek-R1-7b 27.3 29.7 15.8 24.3 9.0 7.9 4.9 7.3
DeepSeek-R1-8b 21.4 14.4 15.6 17.1 2.0 1.9 2.9 2.3
DeepSeek-R1 76.3 82.3 48.2 68.9 62.6 71.4 37.6 57.2

Qwen-2-1.5b 53.5 51.3 27.2 44.0 20.0 13.4 3.1 12.2
+ DoLa 60.7 63.7 35.1 53.2 0.0 0.0 0.0 0.0
+ ICL (10-shot) 27.6 20.3 14.4 20.8 0.0 0.0 0.0 0.0
+ LLM4BioEL 89.4 91.0 84.3 88.2 92.4 92.2 82.7 89.1

Mistral-7b-v0.3 64.9 73.4 46.8 61.7 0.9 3.9 1.0 2.0
+ DoLa 68.4 74.4 47.2 63.3 0.0 0.5 0.2 0.2
+ ICL (10-shot) 64.9 73.4 47.4 61.9 0.9 3.9 28.3 11.1
+ LLM4BioEL 88.4 91.2 84.6 88.1 92.9 92.4 84.1 89.8

Llama-3-8b 64.3 68.3 35.3 55.9 36.3 49.8 22.9 36.3
+ DoLa 51.7 46.6 20.9 39.7 27.7 28.2 7.3 21.1
+ ICL (10-shot) 56.9 53.5 55.0 55.1 12.8 26.9 42.1 27.3
+ LLM4BioEL 87.5 91.0 84.9 87.8 93.2 92.2 84.4 89.9

Llama-3-70b 77.6 79.7 51.8 69.7 57.3 61.1 34.9 51.1
+ ICL (10-shot) 86.6 84.5 57.9 76.3 77.8 72.7 46.3 65.6
+ LLM4BioEL 89.2 91.1 85.2 88.5 93.8 92.4 84.8 90.3

2023) usually obtains higher metrics than our1049

method, and on the COMETA dataset, for instance,1050

the averaged Hits@1 drops from 43.5% to 27.3%,1051

from 48.8% to 29.5%, and from 53.3% to 37.2% for1052

GPT-3.5, PaLM-2, and Claude-2, respectively. For1053

GPT-4 and DeepSeek-R1 models, similar Hits@11054

degradation is observed. Besides, for Mistral-7b-1055

v0.3 in greedy decoding, the evaluation method1056

in (Jahan et al., 2023) obtains the averaged Hits@11057

of 61.7% while ours obtains 2.0%, and for Qwen-1058

2-1.5b in ICL with 10-shot prompts, their method1059

obtains the average Hits@1 of 20.8% while ours1060

obtains 0.0%. Our evaluation method considers1061

the synonym relationships in the biomedical KG,1062

which means that our method considers a generated1063

entity as correct if it is a synonym of the ground1064

truth. Therefore, LLM4BioEL typically produces1065

higher Hits@1 metrics using our evaluation method1066

than Jahan et al. (2023); for instance, LLM4BioEL1067

(Llama-3-8b) achieves averaged Hits@1 of 87.8%1068

with Jahan et al. (2023) but 89.9% using our evalu-1069

ation method.1070
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