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Abstract

Biomedical entity linking (BioEL) aims at map-
ping biomedical mentions to pre-defined en-
tities. While extensive research efforts have
been devoted to BioEL, applying large lan-
guage models (LLMs) for BioEL has not been
fully explored. Previous attempts have revealed
difficulties when directly applying LLMs to the
task of BioEL. Possible errors include gener-
ating non-entity sentences, invalid entities, or
incorrect answers. To this end, we introduce
LLM4BioEL, a concise yet effective frame-
work that enables LLMs to adapt well to the
BioEL task. LLM4BioEL employs restrictive
decoding to ensure the generation of valid enti-
ties and utilizes entropy-based contrastive de-
coding to incorporate additional biomedical
knowledge without requiring further tuning.
Besides, we implement few-shot prompting
to maximize the in-context learning capabil-
ities of LLM. Extensive experiments demon-
strate the effectiveness and applicability of
LLM4BioEL across different BioEL tasks and
with different LLM backbones, and the best-
performing LLM4BioEL variant outperforms
the traditional and LLM-based BioEL base-
lines.

1 Introduction

Biomedical entity linking (BioEL) serves as the
foundation for tasks like biomedical KG construc-
tion (Zhang et al., 2020; Yu et al., 2022), KG-based
answering (Shi et al., 2023; Yang et al., 2024b),
and automatic diagnosis (Qiao et al., 2020; Shi
et al., 2022; Zhao et al., 2024). BioEL aims at
recognizing the biomedical mentions and linking
them to standard entities with valid concept unique
IDs (CUISs) in the given medical knowledge graphs
(KGs), such as UMLS (Bodenreider, 2004). In con-
trast to the general-domain entity linking, BioEL is
characterized by a wide range of diverse and fine-
grained biomedical concepts. A single biomedical
entity can exhibit multiple morphological varia-

Input

[START zirconia END is metal so if you go this route please don 't do it just to avoid metal
because you are getting it either way .]

In the biomedical text given above, what does the entity between the START and END token
refer to (answer without any explanation)?

| ! | |

Llama-2-13b-chat Claude-2/ GPT-3.5

Zirconium

PalM-2 LLM4BioEL

Output

Sure! Based on the text
you provided, the entity
between the START and
END tokens refers to
"zirconia™".

KG cul i ¢ ¢ ¢
Not an entity. x Not found in KG. x‘ 17678002 x 712723002+, / ‘

(a) (b) © (d)

Zirconia Zirconium dioxide

Figure 1: An example BioEL input and different LLMs’
output, where (a) represents the non-entity output that
is not an entity as required, (b) represents the invalid
output that is not found in the given medical KG, (c)
represents the incorrect output, and (d) represents the
correct output.

tions, such as “autosomal recessive disorder” and
“diseases inborn genetic”, while different biomed-
ical entities may share similar surface forms, like
“neoplasm of autonomic nerve disorder” and “neo-
plasm of vagus nerve disorder”. These complexi-
ties present greater challenges for BioEL methods,
requiring the ability to understand and capture their
nuanced relationships and distinctions.

Most current BioEL methods are either discrimi-
native or generative methods. The discriminative
methods employ BERT-based models to encode
the biomedical mentions and entities and retrieve
the most similar entities using embedding similari-
ties. Some discriminative methods further utilize
cross-encoders to rerank the retrieved entities via
modeling the fine-grained mention-entity interac-
tions. The generative methods directly generate the
linked entities based on the task-specific language
models, such as pre-training BART on BioEL
datasets. A recent benchmarking study (Jahan et al.,
2023) investigated and evaluated LLMs’ perfor-



mance on various biomedical tasks in an end-to-end
manner. Considering the sensitivity to prompts, Ja-
han et al. (2023) studied how to construct prompts
for LLMs to simulate common biomedical tasks
effectively. For BioEL, the prompt is designed as
the “Input” in Figure 1, where LLMs are probed to
directly generate the correct entities. We present
the outputs of four different LLMs and our method,
LLM4BioEL, with the same input in Figure 1.!
We observe three scenarios when LLM’s output is
incorrect. (a) LLM does not fully follow the in-
struction and the output is not an entity as required,
such as Llama-2-13b-Chat; (b) LLM follows the
instruction but outputs an invalid entity that is not
in the given biomedical KG, such as Claude-2? and
GPT-3.5; (c) LLM outputs an entity with a valid
CUI that is incorrect answer, such as PaLM-2 (Anil
et al., 2023). The ideal and correct output is shown
in Figure 1 (d), where the output entity corresponds
to the correct CUL

In summary, adapting LL.Ms to BioEL presents
two main challenges. First, LLMs are unfamiliar
with pre-defined biomedical entities, and different
BioEL tasks often utilize different medical KGs,
necessitating rapid adaptation to various entity sets.
The long-tailed distribution in BioEL datasets can
hinder LLMs’ generalization (Lin et al., 2024b),
and the techniques like fine-tuning and in-context
learning may not be suitable for BioEL. Second,
the large scale and ambiguity of biomedical entities
make it challenging for LLMs to accurately link
to the accurate entities without injecting domain-
specific knowledge (Xie et al., 2024).

To address these challenges, we propose a con-
cise yet effective framework, LLM4BioEL, de-
signed to guide LL.Ms for BioEL through two dis-
tinct decoding strategies. The first strategy, restric-
tive decoding, constrains the logit distribution to
relevant tokens associated with the predefined en-
tities. This approach effectively prevents LLMs
from generating non-entity tokens and thus ensures
valid responses in the context of BioEL. The sec-
ond strategy, contrastive decoding, leverages the
inherent knowledge embedded within LLMs and
the external knowledge obtained from a trained re-
triever, which captures the semantic relationships
between mentions and entities. Contrastive decod-

!The outputs of the four LLMs are taken from the released
results of Jahan et al. (2023).

2https ://www.anthropic.com/index/claude-2

3h'ctps ://platform.openai.com/docs/models/
gpt-3-5

ing has been validated to enhance LLMs’ truthful-
ness and factuality (Chuang et al., 2024), and in
this work, we employ entropy to derive the con-
trasted predictions. When LLM token distribution
is relatively uniform (high entropy), the retriever’s
knowledge is prioritized; when it is less uniform
(low entropy), LLM4BioEL utilizes the inherent
knowledge of LLMs. This dynamic dual approach
facilitates adaptive knowledge injection during the
decoding process, allowing for external knowledge-
aware outputs. To enhance performance, we uti-
lize LLMs’ in-context learning (ICL) capabilities
by organizing few-shot prompts with relevant ex-
amples retrieved by the same retriever, improving
adaptability and ensuring access to pertinent infor-
mation. It is worth noting that LLM4BioEL is a
decoding-enhanced framework that can be applied
to any open-source LLM as it requires no extra
fine-tuning or modification to the architecture.
Our contributions are three-fold:

* We present the first attempt to directly adapt
large language models (LLMs) for the biomed-
ical entity linking (BioEL) task. The code
is available at https://anonymous.4open.
science/r/LLM4BioEL-6D46/.

* LLM4BioEL introduces a novel combination
of restrictive decoding and entropy-based con-
trastive decoding, ensuring the generation of
valid outputs while dynamically incorporat-
ing biomedical knowledge. Additionally, we
leverage in-context learning (ICL) to enhance
the efficacy of LLM4BioEL.

* Our comprehensive experiments reveal the ef-
fectiveness and applicability of LLM4BioEL.
The top-performing variant of LLM4BioEL
surpasses the performance of training-based
discriminative and generative BioEL methods,
as well as other LLLM-based methods, under-
scoring its competitiveness.

2 LLM4BioEL

2.1 Preliminary

Given a pre-identified mention m and a biomedical
knowledge graph with entity set £, the target of
biomedical entity linking (BioEL) is to link m to
the correct entity e € £. To adapt to the question-
answering format of LLMs, Jahan et al. (2023)
constructed the BioEL datasets that are organized
as B = {(=i, yz)}f\il where N denotes the number
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Figure 2: Overall architecture of LLM4BioEL.

of samples in dataset, and = contains the mention
m and y refers to the entity e. For simplicity, we
will use (x,y) to denote (z;,y;) throughout the
paper. An example of (x,y) is provided below.

LLM input x: [START zirconia END is metal so if you
go this route please don’t do it just to avoid metal be-
cause you are getting it either way.| \n \n In the biomed-
ical text given above, what does the entity between the
START and END token refer to (answer without any
explanation)?

LLM output y: Zirconium dioxide.

We denote an LLM as Py (y!,4?, .., y'|r) where
6 denotes the LLM’s parameters and 3 denotes the
' token to be generated. For input z, the greedy
decoding process can be denoted as follows:

y* = argmax Py(y | x). (1)

The overall architecture of LLM4BioEL is
shown as Figure 2 and the following subsections
will detail each component.

2.2 Retriever

LLMA4BioEL introduces a semantic retriever to
obtain an entity subset &, given mention m to
enable restrictive decoding and also calculate se-
mantic similarities sim(m,e) given m and e to
enable contrastive decoding. Following the previ-
ous work (Xu et al., 2023; Lin et al., 2024a), we
employ a bi-encoder based on SapBERT (Liu et al.,
2021) to generate dense vectors for both mentions
and entities. The mention embedding f(m) of m
is denoted as:

f(m) = SapBERT(m)[CLS], 2)

where [CLS] denotes the special token used to de-
rive a fixed-size vector. The entity embedding f(e)
of e is computed similarly. The score of a mention-
entity pair (m, e) is denoted as follows:

sim(m, e) = g(f(m), f(e)), 3)

where g is the cosine similarity and is utilized for
external knowledge injection during contrastive
decoding (see § 2.4). During inference, we
pre-calculate f(e) for each e € &, select top-
k entities for each mention, £k = ||, and
use FAISS (Johnson et al., 2019) for fast re-
trieval. Similarly, we use the same retriever to
calculate similarities of mention-mention pairs,
sim(m;, m;) = g(f(my), f(m;)), for construct-
ing in-context prompts (see § 2.5).

We leverage contrastive learning to train the re-
triever, which aims at optimizing the agreement
between true mention-entity pairs and the disagree-
ment between false ones. The loss for each true
pair (m, e) is computed as:

d(m,e)

6(m,e)+ > d(m,e)
e’'cH(e)
4)

where 0(m,e) = exp(sim(m,e)/T), T is a tem-
perature hyper-parameter, and H(e) C £\{e} is a
set of negatives that excludes e. We obtain 7 (e)
by combining in-batch negative sampling and hard
negative sampling (i.e., highest-scoring incorrect
entities), which has been shown beneficial for en-
tity retrieval (Wu et al., 2020; Gao et al., 2021).

L(m,e) = —log

2.3 Restrictive Decoding

Restrictive decoding aims at guiding LL.Ms to out-
put valid entities with the given biomedical KG,
as shown in Fig 2. Typically, restrictive decod-
ing, also named constrained decoding, modifies the
original decoding process to ensure the output ad-
heres to specific constraints (De Cao et al., 2022;
Beurer-Kellner et al., 2024; Park et al., 2024). In
the context of BioEL, LLMs are required to directly
generate pre-defined biomedical entities, which is
consistent with the concept of restrictive decoding.

Given full set £ and mention m, we leverage
the retriever (see § 2.2) to obtain an entity subset
Em = {e1,e2,...,exr} where k is the number of
retrieved entities & = |&,,,|. We define the tokeniza-
tion process as (-). For an entity e;, we obtain

its token list as Q(e;) = [s}, 57, ..., s¥], where g;

19°1
denotes the number of tokens. The token list is then
padded with [ — ¢; “end-of-text” tokens to reach a
fixed dimension of /. We process all the retrieved
entities to obtain the matrix of tokens Y,,, € R\*k
where each column refers to an entity and each
element Y,;} refers to s; As restrictive decoding

becomes effective starting from ¢ = 1, each row of



Y, represents the candidate tokens for restrictive
decoding when generating the t* token, denoted
as Y, € R Note that each token may corre-
spond to multiple entities; for instance, “diabetes”
is the 15! token for entities “diabetes mellitus type
1” and “diabetes mellitus type 2. For timestep
t in the decoding process, we constrain the logit
distribution with the tokens Y;!, obtained from the
retrieved entities, and we rewrite Eq 1 as follows:

y" = argmax(Py(y | y<',z)- 8", (5

where y <! represents the generated tokens before
tie,y<t = (yt,y? ..., y"!) and 6 determines
whether to filter the token logit:

(6)

st {1.0 ify eY!;

0.0 otherwise.

With restrictive decoding, LLMs are guided to

output a limited set of tokens for each decoding

step, increasing the likelihood of valid responses
and mitigating the issue of invalid entity outputs.

2.4 Contrastive Decoding

Based on the restricted logit distributions,
LLM4BioEL introduces contrastive decoding to
contrast the inherent knowledge within LLMs and
external knowledge brought by the retriever (see
§ 2.2), thereby enhancing entity disambiguation
abilities. At timpstep ¢, we denote the logit dis-
tribution produced by LLMs as Py(y | y~' ).
the logit distribution obtained by the retriever as
P(y|m, &), which represents the distribution of
semantic similarities among entity token y given
mention m. For simplicity, we take the entity-
level semantic similarity as the token-level simi-
larity, and for an entity e and its token y € Q(e),
P(y|m, &) is computed as follows:

sim(m, e)

Yece,, sim(m, e’

P(y|m, &n) (7)

where sim(m, e) denotes the similarity computa-
tion between mention m and entity e (taken from
Eq 3). Token y may correspond to multiple entities
and the maximized similarity value among these
entities is taken. Higher similarity values suggest
increased probabilities of the correct entities, which
can be regarded as external knowledge brought by
the retriever to guide the LLMs’ decoding process.

However, LLMs may exhibit inherent knowl-
edge regarding some biomedical concepts, which

can be correctly linked without the use of external
knowledge. We thus utilize the entropy of the logit
distribution H(Py(y | y<t,z)) to express LLMs’
uncertainty under the given question (Kuhn et al.,
2023; Kim et al., 2024b). Intuitively, when LLMs
are uncertain about some biomedical concepts, the
entropy H (Py(y | y<t,z)) tends to be higher, in-
dicating that external knowledge should be priori-
tized to assist LLMs rather than relying on internal
knowledge. Conversely, a lower entropy suggests
LLMs are more confident in the predictions, al-
lowing LLMs to utilize their inherent knowledge
to answer the questions. Therefore, we design an
entropy-based parameter to balance the logit distri-
butions of LL.Ms and the retriever. Since the ranges
of logit distributions differ greatly, the distributions
are normalized before calculating the entropies:

e H(P(y | y<',2))
H(Py(y [ y<t,x)) + H(P(y|m, Em)) '(8)
Guided by o, LLM4BioEL enables an adaptive
adjustment in the extent to which LLMs leverage
external knowledge for prediction. Thus, we can re-
formulate Eq 5 to derive the contrastive prediction
as follows:

y"! = argmax ((1 —a') - Pp(y |y~ z) - &'

+a' - Py | m,é’m)) .
©)
Through contrastive decoding, LLM4BioEL
adaptively guides the answer generation by con-
trasting and injecting external knowledge brought
by the retriever.

2.5 In-context Learning (ICL)

Semantically similar samples can serve as informa-
tive inputs to LLMs and some previous studies pro-
posed to retrieve similar samples to construct better
few-shot prompts (Rubin et al., 2022; Liu et al.,
2022). Inspired by these findings, we leverage ICL
capabilities to improve LLM4BioEL further. For-
mally, some training samples are taken from B and
linearized to incorporate into the input x, which
formulates the output y* as follows:

yx = argmax Py(y [ 21,41, .-, Tn, Yn, T),

context

(10)
where each pair (z;,y;) is selected from B and
n denotes the number of samples. The selec-



tion requires retrieving top-n similar mentions us-
ing sim(m;, m;) where mention m; is within in-
put  and m; is within input z;. We use the
same retriever (see § 2.2) to create a datastore
with key-value pairs (f(m;),e;) for the i in-
stance (m;, e;), where f(m;) is the mention em-
bedding from Eq 2. Consequently, we replace x
in Eq 9 with (z1, 91, - .., Zn, Yn, ) to incorporate
ICL. Notably, if retrieved samples provide infor-
mative clues, LLM4BioEL will prioritize inherent
knowledge, leading to a lower value of v in Eq 9.

3 Experiments

3.1 Experimental Setup

We adopt 3 BioEL datasets for
evaluation, including NCBI (Dogan et al.,
2014), BC5CDR (Li et al, 2016), and
COMETA (Basaldella et al., 2020). Please
refer to Appendix § A for more details.

Metrics. We report Hits@1 along with the newly
designed Hits@KG for evaluation. The metric
Hits@KG aims to compute the ratio of valid gen-
erated entities in the biomedical KG, and higher
Hits @KG indicates that LLM’s output is more in
line with the biomedical KG. Different from Jahan
et al. (2023), we report metrics of directly retriev-
ing CUIs of the LLM’s output as LLM has been
required to “answer without any explanation”. The
metrics are thus re-calculated for the LLMs taken
from Jahan et al. (2023). For the details of our eval-
uation method and the difference from that used in
Jahan et al. (2023), please refer to Appendix § E.
We also report the averaged decoding throughput
(Token/s).

LLM backbones. To show the applicability
of LLM4BioEL, we adopt four LLMs of dif-
ferent scales in our experiments: 1) Qwen-2-
1.5b-instruct (Yang et al., 2024a), a relatively
smaller LLM; 2) Mistral-7b-v0.3-instruct (Jiang
et al., 2023), a widely-used general-domain LLM;
3) Llama-3-8b-instruct (Al@Meta, 2024) and 4)
Llama-3-70b-instruct (AI@Meta, 2024), another
widely-used general-domain LLMs. Please refer to
Appendix § B for more details.

Baseline settings. We compare LLM4BioEL with
three baseline settings: 1) greedy decoding, 2)
DoLa (Chuang et al., 2024), a contrastive decoding
strategy to improve the factuality of LLMs, and
3) ICL with 10-shot prompts, where the prompts
are built with randomly shuffled training instances.
The DoLa baseline contrasts “high” layers to en-

Datasets.

hance short-answer tasks (Chuang et al., 2024).4
Implementation details. The hyper-parameters
of LLM4BioEL include the number of retrieved
entities k and the number of few-shot prompts n.
We apply the grid search strategy on the evaluation
split for best-performing & out of [1,10] and n out
of [0,10]. Note that we search n out of [10,80] for
the COMETA dataset due to greater task difficulty
and less contextual information in the question. All
the experiments are done with greedy search as the
decoding strategy.

3.2 Main Results

We report the experimental results of LLM4BioEL
in Table 1. In greedy decoding, Llama-3-8b
and Llama-3-70b noticeably outperform Qwen-2-
1.5b and Mistral-7b-v0.3 with Llama-3-70b achiev-
ing comparable or superior performance against
the three LLM-based BioEL methods. How-
ever, Llama-3-70b lacks domain-specific knowl-
edge, resulting in invalid entities and Hits@KG
of approximately 60.3%, 64.8%, and 41.5% on
NCBI, BC5CDR, and COMETA, respectively. The
DoLa (Chuang et al., 2024) decoding strategy
shows no performance enhancements for LLMs
on BioEL. Conversely, ICL with 10-shot prompts
leads to performance drops for Qwen-2-1.5b and
Llama-3-8b, while Llama-3-70b shows an average
performance gain of 28.4% over greedy decoding,
attributed to its larger parameter scale.
LLM4BioEL demonstrates substantial improve-
ments from greedy decoding across different
datasets using different LLM backbones. For ex-
ample, with LLM4BioEL, Llama-3-8b improves
the averaged Hits@1 from 36.3% to 89.9% and
Mistral-7b-v0.3 improves from 2.0% to 89.8%.
LLMA4BioEL effectively enables LLMs to pro-
duce valid entities within the biomedical KG,
achieving 100.0% Hits@KG across different back-
bones. While different LLMs perform differently
in greedy decoding, they all can reach relatively
comparative performance using LLM4BioEL, high-
lighting its wide applicability. As for decoding
throughput, Qwen-2-1.5b is the fastest, followed
by Mistral-7b-v0.3 and Llama-3-8b, while Llama-
3-70b is the slowest in greedy decoding. Although
DoLa impacts the throughput with negligible cost
for Qwen-2-1.5b and Mistral-7b-v0.3, it signifi-
cantly increases the decoding time for Llama-3-8b.

*We encountered a GPU out-of-memory issue with Llama-
3-70b when using DoL.a strategy, and therefore, we do not
report this part of results.



Table 1: Experimental results of LLM4BioEL using different LLM backbones.

LLMs NCBI BC5CDR COMETA Avg.
Hits@1 Hits@KG | Hits@1 Hits@KG | Hits@1 Hits@KG | Hits@1 Token/s
Owen-2-1.5b 20.0 23.7 134 17.9 3.1 4.9 12.2 13.0 (x 1.00)
+ DoLa 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4 (x 0.80)
+ ICL (10-shot) 0.0 0.0 0.0 0.0 0.0 0.1 0.0 12.4 (x 0.95)
+ LLM4BioEL 924 100.0 92.2 100.0 82.7 100.0 89.1 4.8 (x 0.37)
Mistral-7b-v0.3 0.9 0.9 3.9 4.1 1.0 1.2 2.0 10.2 (x 1.00)
+ DoLa 0.0 0.0 0.5 0.5 0.2 0.2 0.2 10.3 (x 1.01)
+ ICL (10-shot) 0.9 0.9 3.9 4.1 28.3 327 11.1 9.1 (x 0.89)
+ LLM4BioEL 92.9 100.0 92.4 100.0 84.1 100.0 89.8 4.2 (x 0.41)
Llama-3-8b 36.3 39.5 49.8 56.4 229 35.5 36.3 5.4 (x 1.00)
+ DoLa 27.7 30.4 28.2 324 7.3 10.0 21.1 0.1 (x 0.02)
+ ICL (10-shot) 12.8 14.7 26.9 28.8 42.1 52.4 27.3 3.6 (x 0.67)
+ LLM4BioEL 932 100.0 92.2 100.0 84.4 100.0 89.9 3.3 (x 0.61)
Llama-3-70b 57.3 60.3 61.1 64.8 34.9 41.5 51.1 1.1 (x 1.00)
+ ICL (10-shot) 77.8 79.1 72.7 76.0 46.3 56.7 65.6 0.6 (x 0.55)
+ LLM4BioEL 93.8 100.0 92.4 100.0 84.8 100.0 90.3 1.0 (x 0.91)

Applying in-context learning (ICL) with 10-shot
prompts leads to a modest decrease in throughput,
with reduction factors ranging from 0.55 to 0.95.
LLM4BioEL exhibits varying effects on decoding
efficiency, resulting in reduction factors of 63%,
59%, 39%, and 9%, indicating that larger language
models (LLMs) tend to be less affected. These
differences in the impact of LLM4BioEL across
various LLMs can be attributed to variations in
model architecture and optimization strategies.

3.3 Comparison with State-of-the-art
Methods

We experimentally compare LLM4BioEL against
the state-of-the-art (SOTA) BioEL methods us-
ing the His@1 metric on three datasets. The
BioEL baselines include a) 8 discriminative
methods, including BioSyn (Sung et al., 2020),
ResCNN (Lai et al.,, 2021), SapBERT (Liu
et al., 2021), Cross-domain (Varma et al., 2021),
Clustering-based (Angell et al., 2021), Prompt-
BioEL (Xu et al., 2023), BioFEG (Sui et al.,
2023) and BioPro (Zhu et al., 2023), b) 7 genera-
tive methods, including GenBioEL (Yuan et al.,
2022b), BART-base/large (Yuan et al., 2022a),
BioBART-base/large (Yuan et al., 2022a), Gen-
BioEL+ANGEL (Kim et al., 2024a), and Bio-
BART+ANGEL (Kim et al., 2024a), and c¢) 8
LLM-based methods, including GPT-3.5/PalLM-
2/Claude-2 (Jahan et al., 2023), GPT-4 (Achiam
et al., 2023), DeepSeek-R1-distilled LLMs,> and

Sincluding DeepSeek-R 1-Distill-Qwen-1.5B (DeepSeek-
R1-1.5b), DeepSeek-R1-Distill-Qwen-7B (DeepSeek-R1-7b),
and DeepSeek-R1-Distill-Llama-8B (DeepSeek-R1-8b).

DeepSeek-R1 (DeepSeek-Al et al., 2025).

As shown in Table 2, LLM4BioEL demonstrates
comparative performance to SOTA baselines across
different datasets. Overall, LLM4BioEL (Llama-3-
70b) shows the best performance, and LLM4BioEL
(Llama-3-8b) achieves comparable performance to
the second-best Prompt-BioEL (Xu et al., 2023),
among which our lower BC5CDR performance
likely stems from competitors’ UMLS pretrain-
ing (aligned with BC5CDR’s medical subset) and
our general-domain LLM’s reduced specificity
on specialized terminology. Regarding Qwen-2-
1.5b and Mistral-7b-v0.3, both demonstrate per-
formance comparable to other SOTA baselines,
showing the significant improvements brought by
LLM4BioEL. LLM4BioEL shows the flexibility
to switch between different biomedical KGs and
LLM backbones, as evidenced by the comparative
performance of its different variants. Furthermore,
LLM4BioEL is a robust framework that offers en-
hanced generalization across diverse tasks when
compared to other baselines. It is important to
note that directly applying LL.Ms into BioEL with-
out proper guidance leads to unsatisfactory perfor-
mance. LLMs like GPT-3.5, PaLM-2, Claude-2,
and GPT-4 all underperform discriminative and
generative baselines by a large margin. Similar
findings can be observed with the DeepSeek-R1
models, which demonstrate various but limited abil-
ities to reason about biomedical entities accurately.

3.4 Ablation Studies

This subsection investigates different components
in LLM4BioEL. We experiment LLM4BioEL with



Table 2: Comparison of LLM4BioEL against discrim-
inative, generative, and LLM-based BioEL baselines
on three BioEL datasets, where the best performance is
in bold and the second best is underlined. The symbol
* denotes the re-calculated metrics and  denotes the
reproduced results.

Methods | NCBI | BCSCDR | COMETA | Avg.

Discriminative BioEL methods

BioSyn 91.1 86.31 71.3 82.9
ResCNN 924 | 88.8f 80.1 | 87.1
SapBERT 923 | 89.7 75.1 85.7
Cross-domain - 89.3 - -
Clustering-based - 91.3 - -
Prompt-BioEL 92.6 93.7 83.7 90.0
BioFEG - 93.4 -

BioPro 94.5 - - -
Generative BioEL methods

GenBioEL 91.9 93.3 81.4 88.9
BART-base 88.5 91.6 78.3 86.1
BART-large 90.2 92.5 80.7 87.8
BioBART-base 89.3 93.0 79.6 87.3
BioBART-large 89.9 93.3 81.8 88.3

GenBioEL+ANGEL | 92.5 94.4 82.4 89.8
BioBART+ANGEL | 91.9 94.7 82.2 89.6

LLM-based BioEL methods

GPT-3.5 - - 27.3% -
PaLM-2 - - 29.5% -
Claude-2 - - 37.2% -
GPT-4 59.4 66.3 40.3 55.3
DeepSeek-R1-1.5b 2.3 2.3 2.0 2.2
DeepSeek-R1-7b 9.0 7.9 4.9 7.3
DeepSeek-R1-8b 2.0 1.9 2.9 23
DeepSeek-R1 62.6 71.4 37.6 57.2
LLMA4BioEL (Ours)

Qwen-2-1.5b 924 92.2 82.7 89.1
Mistral-7b-v0.3 92.9 924 84.1 89.8
Llama-3-8b 93.2 922 84.4 89.9
Llama-3-70b 93.8 924 84.8 90.3

Llama-3-8b as LLM backbone by 1) removing con-
trastive decoding (w/o contrastive), 2) replacing
fixed-value a = 0.5 in Eq 9 (w/ fixed o), 3) re-
moving few-shot prompting (w/o few-shot), and
4) replacing few-shot examples with randomly se-
lected examples (w/ random prompts). As listed
in Table 3, we observe performance degradation
of removing contrastive decoding and using the
fixed value of « in the contrasting process. In ad-
dition, we observe that few-shot prompting has
a greater impact on COMETA (9.4% drop) than
on NCBI (1.8% drop) or BCSCDR (1.5% drop),
suggesting that LLM4BioEL relies more on few-
shot prompting to address limited contextual in-
formation provided by the original prompt in
COMETA. The comparison between LLM4BioEL
and LLM4BioEL w/ random prompts further con-

Table 3: Ablation study of LLM4BioEL (Hits@1).

Settings \ NCBI \ BC5CDR \ COMETA
LLM4BioEL 93.2 92.2 84.4
w/o contrastive 91.8 91.9 83.6
w/ fixed o 91.9 92.2 84.1
w/o few-shot 91.5 90.8 76.3
w/ random prompts | 92.1 92.0 81.4

firms the effectiveness of the prompting design
proposed in § 2.5. For instance, when using ran-
dom prompts instead of retrieval-based prompts,
Hits@1 drops by 1.2%, 0.2%, and 3.3% for NCBI,
BC5CDR, and COMETA, respectively.

3.5 Hyper-parameter Sensitivity Analysis

This subsection discusses hyper-parameters sensi-
tivity on the NCBI dataset, including the number
of retrieved entities £ and the number of few-shot
prompts n. We report the Hits@ 1 metrics for three
LLM backbones, with varying values of k£ while
keeping n fixed, and vice versa. As shown in Fig-
ure 3 (a), Hits@1 is observed to reach its highest
values mostly at k = 2, and as k increases, Hits@1
generally shows a decreasing trend. This suggests
that retrieving more entities introduces additional
noise, making entity disambiguation more chal-
lenging and affecting the contrastive process. For
hyperparameter n, Figure 3 (b) shows significant
increases of Hits@1, when comparing zero-shot
(n = 0) and 10-shot (n = 10) prompting. This
shows clear evidence of the retrieval-based few-
shot prompts. While n continues to rise, the per-
formance gain is less obvious than from n = 0 to
n = 10. Overall, LLM4BioEL reaches the high-
est Hits@1 when n = 3/3/2 on NCBI for three
backbones. Please refer to Appendix § C for the
experiments on BCSCDR and COMETA datasets.
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Figure 3: Hyper-parameter sensitivity experiments.



3.6 Comparison of Different Retrievers

The retriever assists in various components of
LLM4BioEL, including restricting logit distribu-
tion (§ 2.3), contrasting logit distribution (§ 2.4),
and building few-shot prompts (§ 2.5). To assess
the impacts of different retrievers, we compare our
retriever with other models: SapBERT (Liu et al.,
2021), a specialized BERT variant for biomedical
text processing, and SimCSE (Gao et al., 2021),
a general-domain sentence embedding model. As
shown in Table 4, we find performance improve-
ments in LLM4BioEL when applying more capa-
ble retrievers. Specifically, the retriever (§ 2.2)
performs the best, followed by SapBERT and Sim-
CSE, and the performance drops are even more
pronounced on the COMETA dataset. This under-
scores the importance of a capable retriever for the
performance of LLM4BioEL.

Table 4: Comparison of different retrievers (Hits@1).

Settings | NCBI | BC5CDR | COMETA
LLM4BioEL

w/ Retriever (§ 2.2) 93.2 92.2 84.4

w/ SapBERT 92.2 88.7 68.3
w/ SimCSE 88.9 83.1 56.5

4 Related Work

4.1 Biomedical Entity Linking

The current BioEL methods can be broadly cat-
egorized into discriminative methods and gener-
ative methods (Shi et al., 2023). Discriminative
BioEL methods focus on training bi-encoders or
cross-encoders to enhance the retrieval of relevant
biomedical entities. For instance, Liu et al. (2021)
introduced a self-alignment pretraining strategy to
refine biomedical entity representations. Lai et al.
(2021) presented a lightweight yet effective CNN,
demonstrating that complex models are not always
necessary. Furthermore, some studies (Xu et al.,
2020; Angell et al., 2021; Xu et al., 2023) have
explored using cross-encoders to capture subtle
mention-entity relationships. Besides, some stud-
ies (Lin et al., 2024a,b) proposed using similar
instance references during training or prediction to
address the long-tailed distribution issue. Gener-
ative BioEL methods bypass retrieval by directly
generating linked entities. For instance, Yuan et al.
(2022b) enhanced generation with knowledge base
pre-training and synonym-aware fine-tuning, while
Yuan et al. (2022a) developed BioBART for strong

biomedical NLG benchmarks. Kim et al. (2024a)
further improved generative models by incorpo-
rating negative samples, enhancing their ability to
distinguish similar entities. Recent studies (Wang
et al., 2023b; Xie et al., 2024) have investigated the
potential of large language models for in-context
learning in biomedical concept linking via prompt-
ing, yet are limited by retrieval-dependent candi-
date selection. Our LLM4BioEL framework ad-
dresses this by enabling direct entity generation
from biomedical KGs, better suited for clinical ap-
plications where predefined candidate sets may not
be available.

4.2 Biomedical Large Language Models

In recent years, large language models (LLMs)
like ChatGPT, PalLM-2, Claude-2, and Llama have
shown promising potential in biomedical tasks (Ja-
han et al., 2023; Liu et al., 2024). To enhance their
domain-specific capabilities, several methods have
been developed, including extra pre-training with
biomedical data. Luo et al. (2022) pre-trained a
model on biomedical literature, while Wang et al.
(2023a) fine-tuned LLMs with diverse medical data
for clinical tasks. Additionally, Christophe et al.
(2024) fine-tuned Llama-3 models with medical
instruction data and implemented multi-stage pref-
erence alignment. Although these models have
shown strong performance in various biomedical
tasks, their application in BioEL remains underex-
plored. This work introduces a universal frame-
work tailored for BioEL to enhance the perfor-
mance of open-source LLMs.

5 Conclusion

In this paper, we introduced LLM4BioEL, a
straightforward yet effective framework for BioEL.
LLM4BioEL consists of restrictive decoding to en-
sure valid output, entropy-based contrastive decod-
ing to adaptively integrate external knowledge, and
few-shot prompting to enhance the linking perfor-
mance. We experimented with four different LLMs
and validated the performance improvement of
LLMA4BioEL compared to other baselines. We also
demonstrated its comparative performance to other
state-of-the-art BioEL baselines, and its flexibility
to switch between different tasks and backbones
without fine-tuning. For future exploration, we plan
to investigate LLM4BioEL in the general-domain
EL and investigate the combination of decoding
strategies for other knowledge-intensive tasks.



Limitations

This section discusses the limitations of our work.
First, LLM4BioEL requires preprocessing steps for
entity retrieval and tokenization, which introduce
additional computational costs to the decoding pro-
cess of the LLMs. Second, the decoding-enhanced
nature of LLM4BioEL limits its applicability to
closed-source models, such as ChatGPT. Lastly,
the performance of LLM4BioEL is influenced by
the effectiveness of the retriever (as discussed in
§ 2.2). In the future, we aim to explore advanced re-
trieval techniques to reduce this dependency, such
as hybrid retrieval combined with rule-based fil-
tering that applies semantic type constraints, or
synonym expansion.
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A Datasets

Table 5 represents the dataset statistics and task
prompt used in the experiments.

Table 5: Dataset statistics and task prompt.

. . Dataset Split
Datasets Entity Types Entities | £ Train / Valid / Test
NCBI Disease 14,967 5,784 /787 1 960
BC5CDR Disease & Chemical 268,162 9,285/9,515 /9,654
COMETA  Clinical Terms 350,830 13,489/2,176 /4,350
Task Prompt

[TEXT_S <START> ENTITY <END> TEXT_E]
In the biomedical text given above, what does the entity between the
START and END token refer to (answer without any explanation)?

B LLM Descriptions

This section provides descriptions of the 5
instruction-tuned LLMs used in the evaluation:

* Qwen-2-1.5b (Yang et al., 2024a): As part
of the Qwen series of models, Qwen-2-1.5b
is an instruction-tuned language model with
1.5 billion parameters. Qwen-2-1.5b is de-
signed for easy deployment and quick ap-
plication, and the model checkpoints can
be accessed via https://huggingface.co/
Qwen/Qwen2-1.5B-Instruct.

* Mistral-7b-v0.3 (Jiang et al., 2023): Mistral-
7b-v0.3, developed by Mistral Al, is a
large language model with 7 billion pa-
rameters. It can follow instructions, com-
plete requests, and generate creative con-
tent. The model checkpoints can be accessed
via https://huggingface.co/mistralai/
Mistral-7B-Instruct-ve.3.

* Llama-3-8b/70b (Al@Meta, 2024): Llama-3
family of large language models is a col-
lection of pre-trained and instruction-tuned
generative text models in 8B and 70B sizes.
The instruction-tuned Llama-3 models are
optimized for dialogue use cases. The
model checkpoints can be accessed via
https://huggingface.co/meta-1lama/
Meta-Llama-3-8B-Instruct and
https://huggingface.co/meta-1lama/
Meta-Llama-3-70B-Instruct.

* Llama-3-Med42-8b (Christophe et al., 2024):
Med42-v2 is a suite of open-access clini-
cal large language models instruction- and
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preference-tuned by M42 to expand access
to medical knowledge and to provide high-
quality answers to medical questions. Llama-
3-Med-8b is built upon Llama-3-8b with 8
billion parameters. The model checkpoints
can be accessed via https://huggingface.
co/m42-health/Llama3-Med42-8B.

C Hyper-parameter Sensitivity Analysis

(Cont’)

The experiments conducted on the BCSCDR and
COMETA datasets yield conclusions consistent
with § 3.5. LLM4BioEL reaches the highest
Hits@1 n 9/7/1 on BC5CDR, and n
20/70/70 on COMETA, for three backbones, re-
spectively.
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Figure 4: Hyper-parameter sensitivity experiments.

C.1 Comparison of General-domain LLM
and Domain-specific LLM

Another method for adapting LLMs to BioEL is
domain-specific fine-tuning. This subsection inves-
tigates the suitability of LLM4BioEL for fine-tuned
LLMs and compares general-domain LLMs with
domain-specific ones. We use Llama-3-Med42-8b®
as the domain-specific LLM, as it is instruction-
tuned from Llama-3-8b using domain-specific cor-
pora, including medical flashcards and exam ques-
tions (Christophe et al., 2024). Following the

6https://huggingface.co/m42—hea1th/
L1lama3-Med42-8B
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setup in § 3.1, we report the performance of
greedy decoding and LLM4BioEL settings. Ta-
ble 6 shows the Hits@1 (H@1) and Hits@KG
(H@¢&) metrics. Surprisingly, Llama-3-Med42-8b
underperforms compared to Llama-3-8b in greedy
decoding, likely due to the instruction gap be-
tween its fine-tuning data and BioEL data, as it fo-
cuses on dialogue-oriented medical scenarios rather
than task-oriented ones. In contrast, LLM4BioEL
significantly enhances the performance of both
Llama-3-8b and Llama-3-Med42-8b, achieving av-
erage Hits@1 of 89.9% and 89.4%, respectively.
Specifically, LLM4BioEL (Llama-3-8b) excels on
NCBI and COMETA, while LLM4BioEL (Llama-
3-Med42-8b) shows comparable performance to
LLM4BioEL (Llama-3-8b) on BC5CDR. These
results indicate that LLM4BioEL is effective for
domain-specific LLMs, even when their original
fine-tuning objectives are not directly related to
BioEL.

Table 6: Comparison of general-domain Llama-3-8b
and domain-specific Llama-3-Med42-8b.

COMETA

LLMs ‘ NCBI ‘

BC5CDR ‘

H@l H@Ef | Hel H@E | Hel HeE
Llama-3-8b 36.3 39.5 49.8 56.4 229 355
+ LLM4BioEL 93.2  100.0 | 922 100.0 | 84.4 100.0
Llama-3-Med42-8b 2.1 2.6 2.4 2.7 10.6 13.5
+ LLM4BioEL 923 100.0 | 922 100.0 | 83.6 100.0

C.2 Investigation of different BioEL Task
Formats

Compared to directly generating the correct en-
tities, some previous work attempted to probe
LLMs to conduct multiple-choice question answer-
ing (MCQA) (Lin et al., 2024a). This subsection
investigates the performance comparison of differ-
ent task formats, namely 1) entity generation and
2) entity selection. As for entity selection (MCQA
format), each question is provided by five options
recalled by the Retriever (§ 2.2). Similar to the ICL
(10-shot) setting, we also provide 10-shot examples
to probe LLMs in the MCQA setting. Table 8 re-
ports the results of four LLM backbones. It clearly
shows that modeling BioEL as MCQA brings per-
formance gains compared to ICL, but it still under-
performs LLM4BioEL. Although the MCQA task
seems to simplify it, we find that LLLMs exhibit
selection bias in MCQA and are susceptible to the
influence of option positioning. Besides, LLMs
need to learn to associate the symbol with the cho-
sen answer option; otherwise, the output symbol


https://huggingface.co/m42-health/Llama3-Med42-8B
https://huggingface.co/m42-health/Llama3-Med42-8B
https://huggingface.co/m42-health/Llama3-Med42-8B
https://huggingface.co/m42-health/Llama3-Med42-8B
https://huggingface.co/m42-health/Llama3-Med42-8B

Table 7: Case studies of LLM4BioEL against other baselines using Llama-3-8b as LLM backbone.

ID | LLM Input | Methods LLM Output KG CUI
[ blodshot eyes , START wrinkles END , hair loss , hunger attacks , greedy decoding Symptoms N/A
) cravings , weight loss , heartburn , caffeine , addiction .] \n \n In the DoLa The entity is "wrinkles". N/A
biomedical text given above, what does the entity between the START ICL (10-shot) wrinkles N/A
and END token refer to (answer without any explanation)? LLM4BioEL wrinkle 27367001
ground truth wrinkle 27367001
[ syncope caused by hyperkalemia during use of a combined therapy greedy decoding ~ Loss of consciousness DO014474
with the angiotensin-converting enzyme inhibitor and spironolactone. a [ DoLa The entity between the START and END ~ N/A
@ 76 year-old woman with a history of coronary artery bypass grafting and tokens refers to "START loss of con-
prior myocardial infarction was transferred to the emergency room with sciousness" or "loss of consciousness”. It
START loss of consciousness END due to marked bradycardia caused describes the acute symptom experienced
by hyperkalemia. the concentration of serum potassium was high, and by the 76-year-old woman in the emer-
normal sinus rhythm was restored after correction of the serum gency room.
potassium level. the cause of hyperkalemia was considered to be several [~ [cL (10-shot) Here are the answers:\nl. focal glomeru-  N/A
doses of spiranolactone, an aldosterone antagonist, in addition to the losclerosis\n2. nonsmall cell lung carci-
long-term intake of ramipril, an ace inhibitor ...... J\n\n In the noma\n3. coccidioidomycosis\nd. param-
biomedical text given above, what does the entity between the START ethasone\n5.  tamoxifen\n6.  potas-
and END token refer to (answer without any explanation)? sium\n7. glutathione\n8. warfarin\n9. an-
giotensin
LLM4BioEL loss of consciousness D014474
ground truth loss of consciousness DO014474

may lack meaningfulness and exhibit a degree of
randomness.

Table 8: Comparison of different BioEL task format.

Methods | NCBI | BC5CDR | COMETA | Avg.
Owen-2-1.5b

ICL 0.0 0.0 0.0 0.0
ICL + MCQA | 48.1 46.0 16.2 36.8
LLM4BioEL 92.4 92.2 82.7 89.1
Mistral-7b-v0.3

ICL 0.9 3.9 28.3 11.1
ICL + MCQA | 85.8 88.8 69.9 81.6
LLM4BioEL 92.9 92.4 84.1 89.8
Liama-3-8b

ICL 12.8 26.9 42.1 27.3
ICL + MCQA | 80.2 77.4 54.2 70.6
LLM4BioEL 93.2 92.2 84.4 89.9
Llama-3-70b

ICL 77.8 72.7 46.3 65.6
ICL + MCQA | 87.0 89.5 59.9 78.8
LLM4BioEL 93.8 92.4 84.8 90.3

D Case Studies

This subsection presents two case studies in Table 7.
We list the ground truth with the output of Llama-3-
8b using greedy decoding, DoLa, ICL with 10-shot
prompting (ICL (10-shot)), and LLM4BioEL, same
as § 3.1. We also list the KG CUI, which is directly
obtained using the LLM output, to show the valid-
ity and correctness of the LLM output. Overall,
LLM4BioEL is shown capable of generating valid
and correct biomedical entities. In contrast, while
applying DoLa appears to improve the actuality
of output, it fails to adhere to the instructions, as
seen in Case (2). when using ICL with 10-shot

prompting, Llama-3-8b generates invalid biomed-
ical entities (Case (1)) and non-entity sequences
(Case (2)).

E Evaluation Method for LLM4BioEL

In this work, we utilize a different evaluation
method from that used in Jahan et al. (2023)
and report the re-calculated metrics in our exper-
iments. We emphasize the importance of con-
ducting an equal comparison between LLM-based
BioEL methods and discriminative and generative
methods, following the approach used in Xu et al.
(2023); Lin et al. (2024b,a); Kim et al. (2024a) to
evaluate the LLM-based BioEL methods. Specifi-
cally, we directly utilize the LLM output to retrieve
KG CUI, which returns N/A if the output is not a
valid entity. We define Hits@1 as 1 if the corre-
sponding KG CUI is the same as the ground truth
and O otherwise. In contrast, Jahan et al. (2023)
evaluated the performance of LLMs on BioEL us-
ing a straightforward method: they define Hits@ 1
as 1 if a) the LLM output equals the ground truth; b)
the LLM output exists within the ground truth; or c)
the ground truth exists within the LLM output. This
method heavily biases the evaluated performance
as it counts more false positives. For instance, if the
LLM output is "neoplasm of oesophagus" and the
ground truth is "benign neoplasm of oesophagus”,
the evaluation method in (Jahan et al., 2023) would
determine this as correct, which is not accurate.
To illustrate the difference between the two eval-
uation methods, we report both metrics for all
datasets and LLLM backbones in Table 9. We ob-
serve that the evaluation method in (Jahan et al.,
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Table 9: Comparison of LLM4BioEL and other LLM-based BioEL baselines using different evaluation methods.

Models Evaluation method in Jahan et al. (2023) Evaluation method in this work
NCBI \ BC5CDR \ COMETA \ Avg. | NCBI \ BC5CDR \ COMETA \ Avg.
GPT-3.5 52.2 54.9 435 50.2 - - 27.3 -
PalLM-2 38.4 52.1 48.8 46.5 - - 29.5 -
Claude-2 70.2 78.0 53.3 67.2 - - 37.2 -
GPT-4 81.0 81.3 55.5 72.6 | 59.4 66.3 40.3 55.3
DeepSeek-R1-1.5b 20.0 26.2 15.3 20.5 2.3 2.3 2.0 2.2
DeepSeek-R1-7b 27.3 29.7 15.8 24.3 9.0 7.9 4.9 7.3
DeepSeek-R1-8b 21.4 14.4 15.6 17.1 2.0 1.9 2.9 2.3
DeepSeek-R1 76.3 82.3 48.2 68.9 | 62.6 71.4 37.6 57.2
Owen-2-1.5b 53.5 51.3 27.2 44.0 | 20.0 13.4 3.1 12.2
+ DoLa 60.7 63.7 35.1 53.2 0.0 0.0 0.0 0.0
+ ICL (10-shot) 27.6 20.3 14.4 20.8 0.0 0.0 0.0 0.0
+ LLM4BioEL 89.4 91.0 84.3 88.2 | 924 92.2 82.7 89.1
Mistral-7b-v0.3 64.9 73.4 46.8 61.7 0.9 39 1.0 2.0
+ DoLa 68.4 74.4 47.2 63.3 0.0 0.5 0.2 0.2
+ ICL (10-shot) 64.9 73.4 474 61.9 0.9 39 28.3 11.1
+ LLM4BioEL 88.4 91.2 84.6 88.1 92.9 92.4 84.1 89.8
Llama-3-8b 64.3 68.3 35.3 559 | 36.3 49.8 22.9 36.3
+ DoLa 51.7 46.6 20.9 39.7 27.7 28.2 7.3 21.1
+ ICL (10-shot) 56.9 53.5 55.0 55.1 12.8 26.9 42.1 27.3
+ LLM4BioEL 87.5 91.0 84.9 87.8 93.2 92.2 84.4 89.9
Llama-3-70b 77.6 79.7 51.8 69.7 57.3 61.1 349 51.1
+ ICL (10-shot) 86.6 84.5 57.9 76.3 77.8 72.7 46.3 65.6
+ LLM4BioEL 89.2 91.1 85.2 88.5 93.8 92.4 84.8 90.3

2023) usually obtains higher metrics than our
method, and on the COMETA dataset, for instance,
the averaged Hits@1 drops from 43.5% to 27.3%,
from 48.8% to 29.5%, and from 53.3% to 37.2% for
GPT-3.5, PaLLM-2, and Claude-2, respectively. For
GPT-4 and DeepSeek-R1 models, similar Hits@1
degradation is observed. Besides, for Mistral-7b-
v0.3 in greedy decoding, the evaluation method
in (Jahan et al., 2023) obtains the averaged Hits@1
of 61.7% while ours obtains 2.0%, and for Qwen-
2-1.5b in ICL with 10-shot prompts, their method
obtains the average Hits@1 of 20.8% while ours
obtains 0.0%. Our evaluation method considers
the synonym relationships in the biomedical KG,
which means that our method considers a generated
entity as correct if it is a synonym of the ground
truth. Therefore, LLM4BioEL typically produces
higher Hits @ 1 metrics using our evaluation method
than Jahan et al. (2023); for instance, LLM4BioEL
(Llama-3-8b) achieves averaged Hits@1 of 87.8%
with Jahan et al. (2023) but 89.9% using our evalu-
ation method.
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