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ABSTRACT

Recent studies about learning multilingual representations have achieved signif-
icant performance gains across a wide range of downstream cross-lingual tasks.
They train either an encoder-only Transformer mainly for understanding tasks,
or an encoder-decoder Transformer specifically for generation tasks, ignoring
the correlation between the two tasks and frameworks. In contrast, this paper
presents a variable encoder-decoder (VECO) pre-training approach to unify the
two mainstreams in both model architectures and pre-training tasks. VECO splits
the standard Transformer block into several sub-modules trained with both inner-
sequence and cross-sequence masked language modeling, and correspondingly
reorganizes certain sub-modules for understanding and generation tasks during
inference. Such a workflow not only ensures to train the most streamlined param-
eters necessary for two kinds of tasks, but also enables them to boost each other
via sharing common sub-modules. As a result, VECO delivers new state-of-the-art
results on various cross-lingual understanding tasks of the XTREME benchmark
covering text classification, sequence labeling, question answering, and sentence
retrieval. For generation tasks, VECO also outperforms all existing cross-lingual
models and state-of-the-art Transformer variants on WMT14 English-to-German
and English-to-French translation datasets, with gains of up to 1∼2 BLEU.

1 INTRODUCTION

Driven by the striking success of pre-trained language models (Devlin et al., 2019), recent cross-
lingual pre-training (Lample & Conneau, 2019; Liu et al., 2020b) has attracted an increasing of
attention. It provides cross-lingual contextualized representations for the inputs of different lan-
guages, which significantly advances performance in both natural language understanding (NLU)
and generation (NLG) tasks.

There are two mainstream architectures in current cross-lingual pre-training literature: encoder-
only and encoder-decoder. The former like XLM (Lample & Conneau, 2019) focuses on conduct-
ing masked language modeling (MLM) with a single Transformer (Vaswani et al., 2017) encoder.
This paradigm is naturally compatible with various NLU tasks, but tends to suffer from limited
gains on cross-lingual generation tasks (e.g., machine translation) due to the lack of effective de-
coder initialization. In contrast, the latter like mBART (Liu et al., 2020b) attempts to pre-train the
encoder-decoder Transformer via denoising auto-encoding tasks to provide complete initialization
for downstream generation tasks. However, when applied in NLU scenarios, it usually requires more
computation and memory to match the performance of the encoder-only models.

In light of the above pros and cons, this work presents Variable Encoder-deCOder (VECO) pre-
training, which targets at providing pre-trained model initialization for both the encoder-only and
encoder-decoder Transformer with the most streamlined parameters. We observe that Transformer
encoder and decoder blocks have two common modules: SelfAttention and FFN (feed-forward
network), with the main difference that the latter introduces an extra CrossAttention (attention
across from the encoder to the decoder) module. Inspired by the lottery ticket hypothesis (Fran-
kle & Carbin, 2018), we split the standard Transformer block into three independent modules
∗Equal contribution.
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(c) NLG Fine-tuning

Figure 1: The overview of VECO. During pre-training, we feed two masked segments x̂ and ŷ into
different modules to perform inner-sentence mask language modeling (IS-MLM) and cross-sentence
mask language modeling (CS-MLM). More specifically, the masked segment x̂ can only attend to its
context via self-attention to recover the original tokens x̄ (IS-MLM), while masked segment ŷ can
attend to its preceding tokens via self-attention and the context x̂ via cross-attention to predict the
original tokens ȳ (CS-MLM). For downstream NLU tasks, we throw out the cross-attention module
and only fine-tune on the self-attention and FFN modules acted as an encoder. For NLG tasks, we
keep all modules to initialize the corresponding encoder and decoders.

{SelfAttention, CrossAttention, FFN} to be collaboratively trained via two specific MLM
tasks. After that, we rebuild the desired complete architecture applicable for NLU or NLG with
different specific combinations of these modules during fine-tuning.1 Specifically, to be equipped
with the ability of language understanding during pre-training, SelfAttention and FFN are assem-
bled into a standard Transformer encoder for conducting inner-sequence masked language modeling
(IS-MLM). In terms of generation, SelfAttention, CrossAttention, and FFN act together as the
decoder in the standard sequence-to-sequence model, and are trained by the elaborately designed
cross-sequence masked language modeling (CS-MLM) task. When applied to downstream fine-
tuning, both SelfAttention and FFN modules constitute the Transformer encoder for contextual
modeling in NLU or NLG, or cooperate with additional CrossAttention to provide the effective
initialization of Transformer decoder. With such kind of workflow, VECO can be applied to both
NLU and NLG tasks with the most streamlined parameters, which significantly reduces computa-
tional overhead and memory costs. Moreover, IS-MLM is specifically designed for understanding
of individual sequences, while both understanding and generation tasks can benefit from CS-MLM.
With such parameter sharing, VECO enables SelfAttention and FFN modules to be jointly trained
by the two MLMs, which boosts both NLU and NLG performance.

We validate VECO on a variety of representative cross-lingual NLU and NLG benchmarks. For
cross-lingual understanding tasks, we conduct experiments on the XTREME benchmark consisting
of 9 cross-lingual tasks, including text classification, sequence labeling, question answering, and
sentence retrieval. VECO ranks first at the XTREME leaderboard2 at the submission deadline and
obtains new state-of-the-art results on most of the tasks. For cross-lingual generation tasks, we val-
idate VECO on the widely used WMT14 English-German and English-French machine translation
benchmarks. VECO obtains 44.4 and 31.5 BLEU scores, consistently outperforming existing cross-
lingual pre-training approaches and state-of-the-art Transformer variants by around 1∼2 BLEU.

2 VARIABLE ENCODER-DECODER PRE-TRAINING

2.1 BACKBONE NETWORK

The backbone network of VECO is composed of a stack of N identical layers. Each layer has three
modules, consisting of a required self-attention module, an optional cross-attention module, and a
required feed-forward linear module. Both self-attention and cross-attention modules are based on

1Thus the word variable means that the backbone Transformer varies during pre-training and fine-tuning.
2https://sites.research.google/xtreme
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the multi-head attention (Vaswani et al., 2017):

MultiHead(Q,K,V) = Concat(head1, ...,headh)WO

headi = Attention(QWQ,KWK,VWV)
(1)

where WO,WQ, WK and WV are parameter matrices. Attention(a, b, c) represents the atten-
tion operation with a as query, b as key, and c as value. We refer the readers to Vaswani et al. (2017)
for more details.

The main difference of the self-attention module and cross-attention module is that Q = K = V
holds in the self-attention module while only K = V exists in the cross-attention module. We
formalize these two modules as:

SelfAttention(x; θs) = AddNorm
(
MultiHead(Q = x,K = x,V = x)

)
CrossAttention(x,y; θc) = AddNorm

(
MultiHead(Q = y,K = x,V = x)

) (2)

where θs and θc are the corresponding parameters, and AddNorm denotes a residual connection (He
et al., 2016) with a post layer normalization (Ba et al., 2016).

After that, a fully connected feed-forward network is applied to each element of input independently:

FFN(x; θf ) = AddNorm
(
W2 GeLU (W1x)

)
(3)

where θf = {W1; W2} are matrices of parameters.

2.2 PRE-TRAINING OBJECTIVES

In cross-lingual pre-training scenarios, we can utilize both monolingual and bilingual data widely
used in previous works (Lample & Conneau, 2019; Chi et al., 2020b; Yang et al., 2020). We formal-
ize both the two adjacent segments in the monolingual corpus and a pair of parallel sentence in the
bilingual corpus as (x,y). We firstly adopt the same mask strategy like BERT (Devlin et al., 2019)
to construct the masked input (x̂, ŷ). Then, the backbone Transformer takes the input to perform
the inner-sequence and cross-sequence masked language modeling, which enables the model to be
optimized jointly for cross-lingual language understanding and cross-sequence generation.

IS-MLM: Inner-Sequence Masked Language Modeling To be equipped with the ability of lan-
guage understanding, we perform masked language modeling of a single-sequence on the self-
attention and FFN modules, while skipping the cross-attention modules. As shown in Figure 1,
the purple lines show the forward process of the IS-MLM task in each layer. To be specific, the
embeddings of the masked input sequence x̂ are fed into the self-attention and FFN modules in each
layer to get a contextual presentation X(i):

H(i) = SelfAttention(X(i−1); θs)

X(i) = FFN(H(i); θf )
(4)

The contextual presentations X(N) of the last layer is used to recover the masked tokens x̄. Thus
the training loss of inner-sequence masked language modeling can be formalized as:

LIS−MLM(x) = −logP (x̄|x̂; θs, θf ) (5)

CS-MLM: Cross-Sequence Masked Language Modeling In order to fully train the cross-
attention module that plays a primary role in semantic mapping between sentences in cross-lingual
generation tasks (e.g., machine translation), we simulate a decoder by reusing the self-attention and
FFN modules to cooperate with the cross-attention module. As shown in Figure 1, the green lines
depict the forward process of the CS-MLM task in each layer. Specifically, we first extract the
contextual representation of ŷ via the SelfAttention module3; then a cross-attention module is
employed to model an interactive representation of (x̂, ŷ):

S(i) = SelfAttention(Y(i−1); θs)

Z(i) = CrossAttention(S(i),X(N); θc)

Y(i) = FFN(Z(i); θf )

(6)

3A triangular attention mask matrix is used to only attend to the preceding tokens of each masked token.
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Finally, Y(N), considering both the context of the semantic-related sequence x̂ and its left segments
ŷ<t, is used to predict the masked tokens ȳ:

LCS−MLM(x,y) = −logP (ȳ|x̂, ŷ<t; θs, θc, θf ) (7)

Note that when optimizing the CS-MLM objective, we detach X(N) in Eq. (6) from the computation
graph (i.e., stop the gradients back-propagation from “virtual” decoder to “virtual” encoder) to let
the two objectives optimized in isolation. It also speeds up and stabilizes the training of this “virtual”
decoder model, since very deep encoder-decoders are typically hard to train.

To conclude, the total MLM loss for a training instance (x,y), by exchanging the x̂ and ŷ in Eq. (5)
and Eq. (7) 4, can be further formalized as:

LMLM(x,y) = LIS−MLM(x) + LIS−MLM(y) + LCS−MLM(x,y) + LCS−MLM(y,x)

= −
(

logP (x̄|x̂) + logP (ȳ|ŷ) + logP (ȳ|x̂, ŷ<t) + logP (x̄|ŷ, x̂<t)
) (8)

Several monolingual pre-training models such as MASS (Song et al., 2019), BART (Lewis et al.,
2019) and PALM (Bi et al., 2020) also present similar unidirectional language modeling tasks. Ex-
cept that VECO focuses on the multilingual scenario, there are some major differences in terms of
both model architecture and task design: 1) In terms of model architecture, the core difference is
that we share the self-attention and FFN modules in the encoder and decoder. We find that such
parameter sharing can enhance the semantic mapping between different languages not only at the
embedding-level (e.g, shared BPE vocabulary), but also at the module-level. Moreover, it also acts
as a form of regularization that stabilizes the training and helps with generalization (Xia et al., 2019;
Lan et al., 2019). 2) In terms of task design, we differ in several ways. The proposed IS-MLM
task forces the model to bidirectionally comprehend the source input (good for NLU), which is a
shortage of mBART. Meanwhile, CS-MLM predicts the masked words other than generating the
next word (adopted by MASS and mBART), thus keeping in line with IS-MLM towards a more
consistent optimization direction (predicting masked words) on the shared parameters.

In total, the core contribution of this article is the exquisite cooperation of parameters sharing and
pre-training strategy, making VECO flexibly initialize any downstream framework.

2.3 FINE-TUNING ON DOWNSTREAM NLU AND NLG TASKS

When fine-tuning on various downstream tasks, one advantage of VECO is its flexibility for initial-
izing both the encoder-only Transformer and encoder-decoder Transformer.

VECO for Cross-lingual Natural Language Understanding Since the mainstream framework
for NLU is an encoder-only Transformer, we only keep the self-attention and FFN modules while
throwing out the cross-attention module in each layer (Figure 1(b)). Note that the cross-attention
modules only occupy less than 20% of the total parameters, which is smaller than the discarded
generator of ELECTRA (Clark et al., 2020b).

VECO for Cross-lingual Natural Language Generation Considering the most popular back-
bone network for cross-lingual generation tasks like machine translation is the standard Transformer
encoder-decoder model, we reorganize the VECO modules to act like that. As shown in Figure 1(c),
the self-attention and FFN modules constitute the Transformer encoder for contextual modeling,
and the three modules work together to act as a decoder for both inner-sequence and cross-sequence
contextual modeling. Due to the training difficulty and inference speed of the deep network, we can
choose a subset (e.g., 6 layers) of all layers to assemble the decoder. More in-depth analysis can be
found in Table 4 and Section 5.2.

3 PRE-TRAINING SETUP

Model Configuration We pre-train a 24-layer model with 1024 embedding/hidden size and 4096
feed-forward size (∼ 662M parameters). We do not use language embeddings to allow our model to

4Flipping the monolingual sentence order can create ”harder” example pairs, thus pushing the model toward
a stronger ability of language modeling and understanding.
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better deal with downstream tasks of unseen languages. We adopt the same 250K vocabulary that is
also used by XLM-R (Conneau et al., 2019) and mBART (Liu et al., 2020b).

Pre-Training Datasets For monolingual training datasets, we reconstruct Common-Crawl Corpus
used in XLM-R (Conneau et al., 2019). We extract 1.36TB data in 50 languages, which contains
6.5G sentences and 0.4G documents. We up/down-sample the monolingual text like XLM from
each language with a smoothing parameter α = 0.5. For bilingual data, we collect from the OPUS
website5 like previous works (Lample & Conneau, 2019; Chi et al., 2020b). There are 6.4G parallel
sentences, covering 879 language pairs across 50 languages. More details about the languages and
statistics of our training corpus can be founded in Appendix A.

Optimization Settings For each training iteration, we alternately sample a batch of adjacent seg-
ments from monolingual corpus and a batch of parallel sentences from bilingual datasets to conduct
a pair of masked input (x̂, ŷ). We firstly perform IS-MLM for both x̂ and ŷ. Then, we reuse their
hidden states from the last layer to perform CS-MLM. Meanwhile, we also adopt the translation
masked language modeling (TLM) proposed in XLM (Lample & Conneau, 2019) when the inputs
are parallel bilingual sentences. Thus the overall training objective is the sum of three MLM objec-
tives. During training, the model parameters except for cross-attention are initialized by XLM-R.
We first freeze the parameters of XLM-R and only update the cross-attention parameters for faster
convergence. Then, we jointly train the whole model. We pre-train our model with mixed-precision
training using 64 Nvidia Telsa V100 32GB GPUs. More hyperparameters can be founded in Table 7.

4 EXPERIMENTS ON LANGUAGE UNDERSTANDING

4.1 EXPERIMENTAL SETUP

Downstream Tasks We conduct NLU evaluations on XTREME (Hu et al., 2020), a representa-
tive massively multilingual multi-task benchmark. It consists of various NLU tasks over 40 lan-
guages. XTREME tasks can be classified into four different categories: (1) sentence-pair classifi-
cation: XNLI (Conneau et al., 2018), PAWS-X (Yang et al., 2019); (2) structured prediction: UD-
POS (Nivre et al., 2018), Wikiann NER (Pan et al., 2017); (3) question answering: XQuAD (Artetxe
et al., 2020), MLQA (Lewis et al., 2020), TyDiQA (Clark et al., 2020a); (4) sentence retrieval:
BUCC 2018 (Zweigenbaum et al., 2018), Tatoeba (Artetxe & Schwenk, 2019). Tasks in the first
three categories only provide golden training corpus in English and dev/test set in different target
languages. For the two zero-shot sentence retrieval tasks, no training datasets are provided. We refer
the reader to Hu et al. (2020) for additional details about the datasets.

Fine-tuning Setting Following previous works (Conneau et al., 2019; Hu et al., 2020), we con-
sider two typical fine-tuning settings: (1) Cross-lingual Transfer which fine-tunes the pre-trained
model only using English golden data and directly performs inference on the test data of different
target languages; (2) Translate-Train-All which first automatically translates the English golden data
to the remaining target languages and fine-tunes a multilingual model on the concatenation of all
data. We use the machine-translated data released by XTREME, except for two sequence-labeling
tasks (POS, NER) since the golden token labels in the target language are unavailable. To have a
fair comparison with the strong baseline XLM-R (Conneau et al., 2019) under the translate-train-all
setting, we also show the results of XLM-R using the same fine-tuning hyperparameters as VECO.

4.2 EXPERIMENTAL RESULTS

The detailed test results of 9 tasks on the XTREME benchmark are shown in Table 1. It demon-
strates that the proposed VECO outperforms previous cross-lingual models on most of the datasets.
Compared to XLM-R, it averagely scores 5.0 and 2.8 points higher under the cross-lingual transfer
and translation-train-all settings, respectively. It is worth noting that, VECO delivers a large im-
provement on zero-shot sentence retrieval tasks (BUCC, Tatoeba). This phenomenon reflects that
our model has a strong cross-lingual modeling ability, thus it can better mine parallel sentences in
a multilingual corpus. The reasons are two-folds. First is the introduction of more bilingual data

5http://opus.nlpl.eu/
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Model
Sentence Classification Structured Prediction Question Answering Sentence Retrieval

Avg.XNLI PAWS-X UD-POS NER XQuAD MLQA TyDiQA BUCC Tatoeba
Acc Acc F1 F1 F1/EM F1/EM F1/EM F1 Acc

Cross-lingual Transfer: Fine-tune model on English training set and test on all languages
MMTE† 67.4 81.3 73.5 58.3 64.4/46.2 60.3/41.4 58.1/43.8 59.8 37.9 59.5
mBERT† 65.4 81.9 70.3 62.2 64.5/49.4 61.4/44.2 59.7/43.0 56.7 38.7 59.6
XLM† 69.1 80.9 70.1 61.2 59.8/44.3 48.5/32.6 43.6/29.1 56.8 32.6 55.5
XLM-R† 79.2 86.4 72.6 65.4 76.6/60.8 71.6/53.2 65.1/45.0 66.0 57.3 68.1
VECO 79.9 88.7 75.1 65.7 77.3/61.8 71.7/53.2 67.6/49.1 85.0 75.1 73.1

Translate-Train-All: Fine-tune model on English training data and translated data of the target language
XLM-R‡ 82.6 90.4 - - 80.2/65.9 72.8/54.3 66.5/47.7 - - -
XLM-R∗ 82.8 90.2 72.6 65.4 80.0/65.8 73.0/54.3 74.5/58.3 80.2 75.2 74.4
VECO 83.0 91.1 75.1 65.7 79.9/66.3 73.1/54.9 75.0/58.9 89.3 86.9 77.2

Table 1: XTREME results on each dataset (as of Oct 02, 2020). Averaged results on the four
categories can be found at leaderboard: https://sites.research.google/xtreme. “†”
and “‡” indicates results from Hu et al. (2020) and Fang et al. (2020), respectively. “*” indicates the
results obtained by our implementation. The detailed results for each language are in Appendix C.

Models Datasets Tasks Languages Avg.
Mono. Bili. IS-MLM CS-MLM TLM en de es fr ru tr th vi zh

XLMSMALL X X 76.6 58.0 63.5 62.0 56.1 54.8 54.4 57.6 55.5 59.8
VECOSMALL X X X 77.1 60.9 64.7 62.5 56.1 55.3 54.7 57.5 56.6 60.6

XLMSMALL X X X X 78.3 55.1 72.1 72.5 68.2 51.1 48.8 51.6 52.9 61.2
VECOSMALL X X X X X 80.0 66.4 75.6 75.6 70.9 58.7 56.1 63.3 62.9 67.7

Table 2: XNLI accuracy scores for each language under the cross-lingual transfer setting. Both
XLM and VECO are small-sized models trained from scratch on the same monolingual (Mono.)
and bilingual (Bili.) corpus using the same hyperparameters. For this set of experiments, we only
use a subset of the full training corpus and report the results of languages appeared in them.

during pre-training, which is a direct and effective way to enhance the cross-lingual ability of the
model. Second is the mutual improvement between two pre-training tasks and the superiority of
model design.

To analyze whether bilingual data plays a leading role in improving performance, we conduct a
set of more fair experiments. We train small-sized XLM and VECO models from scratch using a
subset of full training data and hyperparameters (see Appendix A for details). Table 2 shows the re-
sults of XNLI, the most widely used cross-lingual evaluation dataset in the XTREME leaderboard.
We observe that, when using monolingual corpus only, VECO can outperform XLM by 0.8 points.
It suggests that our models can benefit from adjacent sentences used by the CS-MLM task to be
equipped with a stronger ability of contextual modeling. Moreover, when trained on both the mono-
lingual and bilingual corpus, VECO can achieve a larger improvement compared to XLM. It reveals
that VECO can better utilize the bilingual corpus, compared to only-optimized translation language
modeling (TLM) in XLM.

5 EXPERIMENTS ON LANGUAGE GENERATION

5.1 EXPERIMENTAL SETUP

Datasets We choose machine translation (MT) task, a typical cross-lingual generation scenario.
In order to illustrate the generality of our approach and have a fair comparison with the most recent
state-of-the-art Transformer works (Liu et al., 2020a), we choose two most widely used datasets:
WMT14 English→German (En-De) and English→French (En-Fr) translation. WMT14 En-De is a
medium-resource dataset which provides 4.5M pairs for training and validation. We adopt standard
newstest2014 as the test set. WMT14 En-Fr is a high-resource dataset which contains 36M pairs
of parallel sentences. We use newstest2012+newstest2013 for validation and newstest2016 for test.
We measure case-insensitive tokenized BLEU with multi-bleu.perl to have a fair compari-
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Model #Layers WMT14 En-Fr WMT14 En-De
Enc Dec BLEU sacreBLEU BLEU sacreBLEU

Randomly Initialized
Transformer-Big (Vaswani et al., 2017) 6 6 41.0 - 28.4 -
Transformer-xBig (Our impl.) 24 6 42.8 40.3 28.6 27.7
Deep-Transfromer (Liu et al., 2020a) 60 12 43.8 41.8 30.1 29.5

Cross-lingual Models Initialized
XLM (Lample & Conneau, 2019) 6 6 - - 28.9 -
XLM-R (Conneau et al., 2019) 24 6 43.7 41.1 30.8 29.9
mBART (Liu et al., 2020b) 12 12 43.2 41.0 30.0 29.1
VECO 24 6 44.4 42.0 31.5 30.5

Table 3: Results on WMT14 En-Fr and WMT14 En-De Machine Translation.

son with previous Transformer variants and de-tokenized SacreBLEU6 to avoid the influence of
different tokenization and normalization between models (Post, 2018).

Fine-tuning Setting In theory, VECO can initialize a 24-layer encoder and 24-layer decoder
Transformer model. However, since VECO follows the post-layernorm design of vanilla Trans-
former (Vaswani et al., 2017) like XLM-R, we find it is hard to train such a deep post-layernorm
Transformer variant without careful parameter searching. This phenomenon is consistent with the
findings in recent researches about deep transformer (Liu et al., 2020a; Bachlechner et al., 2020).
Since these works also show that deeper encoders are more worthwhile than deeper decoders, thus
the main results of VECO and XLM-R are based on the most normal 6-layer decoder with the full
24-layer encoder. The batch size is 64k and 256k for En-De and En-Fr respectively. The total
training updates are set to 100k. The learning rate is 1e-4/2e-4, with linear warmup over the first
16k steps and linear decay. We run En-De and En-Fr MT experiments on 16 and 32 V100 GPUs
respectively. We average the last 10 checkpoints and use beam search with a beam size of 5.

Baselines We consider two types of Transformer baselines: randomly initialized and cross-lingual
models initialized. For random initialization, we take the original Transformer-big and the state-
of-the-art Deep Transformer (Liu et al., 2020a) into consideration. Besides, we also reproduce a
Transformer baseline which adopts the same fine-tuning hyperparameters as VECO but with ran-
dom initialization. For cross-lingual encoder-decoder models, we include mBART, which shows
impressive results on MT. We also conduct the WMT experiments for XLM-R, following the to-
tally same fine-tuning settings as VECO. Note that the layer settings are not totally same, due to the
distinct characteristic of pre-trained models: (1) The layer of pre-trained encoder-decoder models
decide the layer of MT experiments. Thus the layer of mBART is set the same as pre-training (ie,
12-layer encoder and 12-layer decoder); (2) The layer of pre-trained encoder models only decides
the layer of the MT encoder, while the decoder layer can be any value. Thus XLM-R initialized
model is fixed as a 24-layer encoder during fine-tuning. In order to minimize the layer gap between
XLM-R and mBART initialized MT model, we choose the most common 6-layer decoder in Table
3 and 3-layer decoder in Table 4. To have a fair comparison to XLM-R, VECO also adopts the
same layer settings. We also reproduce a same-sized randomly initialized Transformer-xBig model.
In conlusion, we tried our best to use the same layer setting among most of the models if possible
(Transformer-xBig, XLM-R, and VECO).

5.2 EXPERIMENTAL RESULTS

Table 3 shows the comparison between VECO and baselines. Compared to existing cross-lingual
models, VECO can consistently outperform the best models about 1 BLEU. We can also observe
that VECO can largely outperform randomly initialized same-sized Transformer-xBig model by 2
BLEU. And it even beats the state-of-the-art Deep-Transformer with a 60-layer encoder and 12-layer
decoder on both datasets.

6Hash: BLEU+case.mixed+lang.en-{de,fr}+numrefs.1+smooth.exp+test.wmt14/full+tok.13a+version.1.4.9
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Method #Layers WMT14 En-De
Enc Dec BLEU sacreBLEU

Randomly Initialize 24 3 28.5 27.6
24 6 28.6 27.7

Randomly Initialize + More Bilingual Data*
24 6 30.4 29.4

VECO Initialize 24 First-3 30.8 29.8
24 Last-3 31.2 30.3
24 First-6 31.1 30.1
24 Last-6 31.5 30.5 10 15 20 25 30 35

Epochs

25

26

27

28

29

30

sa
cr

e
B

LE
U

VECO Init.

XLM-R Init.

Random Init.

Table 4: BLEU scores (left) and learning curves (right) of different initialization methods.

Table 4 (left) contrasts two ways initializing a Transformer with n(< 24) decoder layers via se-
lecting: (1) the first n layers; (2) the last n layers from a 24-layer pre-trained VECO model. We
consider n = {3, 6} to conduct experiments. The predominant method adopted in this paper, the
straightforward strategy of selecting the last n layers, exhibits better performance. It is possibly
because the last several layers play a more important role in making predictions over the whole
vocabulary. Moreover, we can find that there is 0.2∼0.3 BLEU improvement when increasing the
decoder layers from 3 to 6.7 Regardless of the initialization method, the VECO-initialized model
can gain consistent 1∼2 BLEU improvement over the randomly-initialized model.

Moreover, Table 4 (right) displays the sacreBLEU scores of same-sized (24-layer encoder and 6-
layer decoder) models during training. We find that VECO-initialized model can get a surprising
more than 28 sacreBLEU score just after 10 epochs, which is better than the final score of the
randomly initialized model at 35 epochs. It reveals that VECO can provide a fairly good initialization
for the machine translation model, which can converge quickly and further boost the results.

To investigate whether the exciting improvement in MT mainly comes from 1) the use of parallel
corpus during pre-training or 2) the superiority of the designed model and pre-training tasks, we also
conduct a more comparable experiment. We first train an out-of-domain Transformer-xBig model
using the whole En-De parallel data (∼ 68M) used in VECO pre-training, and then continue to train
the model on the in-domain WMT14 En-De training dataset. Results are shown in Table 4 (left)
marked with *. Under this set of a totally fair comparison, VECO still maintains a lead of 1.1 BLEU
score. This directly confirms that the improvement on MT is not only due to the use of bilingual data.
More importantly, reasonable pre-training tasks and model design ensure better use of bilingual and
large-scale unlabeled multilingual corpus.

6 RELATED WORK

Encoder-only Cross-lingual Pre-training mBERT (Devlin et al., 2019) is the first work to pre-
train a Transformer encoder over multiple languages. There have been several extensions that use
the same encoder-only backbone as mBERT, with the main difference is the introduction of more
training corpus and pre-training tasks. XLM (Lample & Conneau, 2019) utilizes both monolingual
and bilingual corpus to perform mask language modeling. XLM-R (Conneau et al., 2019) extends
to be built on RoBERTa (Liu et al., 2019) using larger monolingual training data. Unicoder (Huang
et al., 2019), ALM (Yang et al., 2020), and InfoXLM (Chi et al., 2020b) propose new pre-training
tasks to better utilize the bilingual data. These works deliver impressive performance on cross-
lingual understanding tasks, while only marginal improvement has been gained on cross-lingual
generation tasks like machine translation, especially on high-resource languages.

Encoder-Decoder Cross-lingual Pre-training BART (Lewis et al., 2019) pre-trains denois-
ing auto-encoder built with a standard Transformer-based encoder-decoder architecture. And

7However, we observe that only marginal improvement can be gained when further increasing the decoder
layers to 12 or 24 in our primary experiments, which is also in line with the findings in Liu et al. (2020a).
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mBART (Liu et al., 2020b) extends it to the multilingual setting, demonstrating significant gains
in low/medium-resource machine translation, but with a decrease in high resource languages. Chi
et al. (2020a) first trains an encoder via MLM and then frozen the encoder to train the decoder only
via two generative tasks. A similar approach is also proposed in Liang et al. (2020) that extends
Unicoder (Huang et al., 2019) to generation tasks, with the main difference exists in the joint train-
ing of encoder-decoder. All these cross-lingual models emphasize training a dedicated model for
NLG, thus these didn’t improve or even hurt the NLU capabilities of the encoder. Or they require
more computation and memory to match the performance of the encoder-only models when using
comparable training resources. For example, BART, when fine-tuning on NLU tasks, the same input
is fed into the encoder and decoder, and the final output from the decoder is used. Thus it would
cost more memory due to extra cross-attention modules (roughly 10%∼20% more parameters) than
encoder-only RoBERTa model, but BART still can’t performs better than RoBERTa.

Unified Language Representation for NLU and NLG BART (Lewis et al., 2019) and
UNILM (Dong et al., 2019) also endeavor to build a unified model for NLU and NLG tasks, with
the core idea that allows the model to see both unidirectional and bidirectional context. UNILM
pre-trains a Transformer encoder with an ensemble of attention masks, while BART pre-trains a
Transformer encoder-decoder model with arbitrary noising functions. Our work differs from them
in several ways. Firstly, they only focus on the monolingual (English) domain, while we dedi-
cate to the more challenging multilingual domain. Secondly, since multiple languages cannot be
completely mapped to the same space at every layer only via self-attention like UNILM, the cross-
attention module is important to model the cross-lingual mapping. Thus we drop the way to pre-train
an encoder-only model under the multilingual scenario. Thirdly, previous work (Xia et al., 2019)
have shown that sharing the encoder and decoder of the Transformer can strengthen the semantic
correlation between languages and regularize the encoder-decoder with high capacity on machine
translation. Due to the above reasons, VECO varies during training to train specific modules via a
bidirectional task (IS-MLM) and unidirectional task (CS-MLM).

7 CONCLUSION

We present VECO, a variable cross-lingual pre-training model, targeted at initializing both NLU
preferred encoder-only and NLG specialized encoder-decoder Transformer. We analyze three core
modules in standard Transformer and propose two masked language modeling tasks to train the
reasonable combinations of them. The two tasks jointly optimize for inner-sequence understanding
and cross-sequence generation, enabling them to boost each other via strong regularization from
module sharing. On this account, VECO achieves consistent improvements on various language
understanding and generation tasks compared to existing cross-lingual encoder-only and encoder-
decoder approaches, opening up new ways of thinking about pre-trained backbone architecture.

REFERENCES

Mikel Artetxe and Holger Schwenk. Massively Multilingual Sentence Embeddings for Zero-Shot
Cross-Lingual Transfer and Beyond. Transactions of the ACL 2019, 2019.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the Cross-lingual Transferability of Mono-
lingual Representations. In Proceedings of ACL 2020, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016. URL https://arxiv.org/pdf/1607.06450.pdf.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Huanru Henry Mao, Garrison W Cottrell,
and Julian McAuley. Rezero is all you need: Fast convergence at large depth. arXiv preprint
arXiv:2003.04887, 2020. URL https://arxiv.org/pdf/2003.04887.pdf.

Bin Bi, Chenliang Li, Chen Wu, Ming Yan, and Wei Wang. PALM: Pre-training an autoen-
coding&autoregressive language model for context-conditioned generation. arXiv preprint
arXiv:2004.07159, 2020. URL https://arxiv.org/pdf/2004.07159.pdf.

Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian-Ling Mao, and Heyan Huang. Cross-lingual
natural language generation via pre-training. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020a. URL https://arxiv.org/pdf/1909.10481.pdf.

9

https://arxiv.org/pdf/1607.06450.pdf
https://arxiv.org/pdf/2003.04887.pdf
https://arxiv.org/pdf/2004.07159.pdf
https://arxiv.org/pdf/1909.10481.pdf


Under review as a conference paper at ICLR 2021

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham Singhal, Wenhui Wang, Xia Song, Xian-Ling
Mao, Heyan Huang, and Ming Zhou. InfoXLM: An information-theoretic framework for cross-
lingual language model pre-training. arXiv preprint arXiv:2007.07834, 2020b. URL https:
//arxiv.org/pdf/2007.07834.pdf.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
and Jennimaria Palomaki. TyDi QA: A Benchmark for Information-Seeking Question Answer-
ing in Typologically Diverse Languages. In Transactions of the Association of Computational
Linguistics, 2020a.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. ELECTRA: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020b.
URL https://openreview.net/pdf?id=r1xMH1BtvB.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. XNLI: Evaluating cross-lingual sentence representations. In
Proceedings of EMNLP 2018, pp. 2475–2485, 2018.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
supervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116, 2019.
URL https://arxiv.org/pdf/1911.02116v1.pdf.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019. URL https:
//www.aclweb.org/anthology/N19-1423.pdf.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. Unified language model pre-training for natural language understanding
and generation. In Advances in Neural Information Processing Systems, 2019. URL https:
//arxiv.org/pdf/1905.03197.pdf.

Yuwei Fang, Shuohang Wang, Zhe Gan, Siqi Sun, and Jingjing Liu. FILTER: An enhanced fusion
method for cross-lingual language understanding. arXiv preprint arXiv:2009.05166, 2020. URL
https://arxiv.org/pdf/2009.05166.pdf.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural net-
works. CoRR, abs/1803.03635, 2018. URL https://arxiv.org/pdf/1803.03635.
pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2016.
URL https://arxiv.org/pdf/1512.03385.pdf.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson.
XTREME: A massively multilingual multi-task benchmark for evaluating cross-lingual general-
ization. arXiv preprint arXiv:2003.11080, 2020. URL https://arxiv.org/pdf/2003.
11080.pdf.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong, Linjun Shou, Daxin Jiang, and Ming Zhou.
Unicoder: A universal language encoder by pre-training with multiple cross-lingual tasks. arXiv
preprint arXiv:1909.00964, 2019. URL https://arxiv.org/pdf/1909.00964.pdf.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.
URL https://arxiv.org/pdf/1808.06226.pdf.

Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining. arXiv preprint
arXiv:1901.07291, 2019. URL https://arxiv.org/pdf/1901.07291.pdf.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. ALBERT: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019. URL https://arxiv.org/pdf/1909.11942.pdf.

10

https://arxiv.org/pdf/2007.07834.pdf
https://arxiv.org/pdf/2007.07834.pdf
https://openreview.net/pdf?id=r1xMH1BtvB
https://arxiv.org/pdf/1911.02116v1.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://www.aclweb.org/anthology/N19-1423.pdf
https://arxiv.org/pdf/1905.03197.pdf
https://arxiv.org/pdf/1905.03197.pdf
https://arxiv.org/pdf/2009.05166.pdf
https://arxiv.org/pdf/1803.03635.pdf
https://arxiv.org/pdf/1803.03635.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/2003.11080.pdf
https://arxiv.org/pdf/2003.11080.pdf
https://arxiv.org/pdf/1909.00964.pdf
https://arxiv.org/pdf/1808.06226.pdf
https://arxiv.org/pdf/1901.07291.pdf
https://arxiv.org/pdf/1909.11942.pdf


Under review as a conference paper at ICLR 2021

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint
arXiv:1910.13461, 2019. URL https://arxiv.org/pdf/1910.13461.pdf.
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A PRE-TRAINING DETAILS

For monolingual data, following XLM-R (Conneau et al., 2019), we build a clean CommonCrawl
Corpus using an open-source tool CCNet (Wenzek et al., 2019). Table 5 reports the language codes
and statistics of datasets. There are 1.36TB monolingual data in 50 languages before up/down-
sampling.

We collect bilingual corpus in 50 languages from the OPUS website8, including MultiUN, UNPC,
Bombay, EU-bookshop, OpenSubtitles2018, Tanzil, GlobalVoices, ParaCrawl, MultiParaCrawl,
DGT, Tilde, Europarl, Wikipedia, ECB, TED2013, News-Commentary, Ubuntu, Books, UN,
infopankki-v1, EUconst, and Bianet. In total, there are 1TB bilingual training corpus before pre-
processing, covering 879 language pairs. Table 6 lists the statistics for each language pair.

We then apply subword tokenization directly on raw text data using Sentence Piece Model (Kudo &
Richardson, 2018) without any additional preprocessing.

We use the whole corpus to train VECO, while using a subset (∼ 1/4) that contains 33 languages
to train XLMSMALL and VECOSMALL. The full set of pre-training hyperparameters for small-sized
and large-sized VECO (default) are listed in Table 7. The comparisons between VECO and other
cross-lingual models are shown in Table 8.

B NLU FINE-TUNING DETAILS

We consider two typical fine-tuning settings:

• Cross-lingual Transfer: For all tasks except sentence retrieve tasks (BUCC and Tatoeba),
we select the model with the best average result over all the languages on the dev sets, by
searching the learning rate over [1e-5,2e-5,3e-5], training epoch over [3,5,10], and batch
size over [16,32,64]. As for sentence retrieve tasks without fine-tuning on any parallel
sentences at all, we use the average word embeddings in the middle layer to extract the
sentence representations.

• Translate-Train-All: We found that the large-sized training datasets can benefit from a
smaller learning rate. Therefore, for translate-train-all, we select the model on the dev
sets, by searching the learning rate over [3e-6,5e-6,1e-5]. For XNLI, PAWS-X, XQuAD
and MLQA, we fine-tune our model directly on the translation data provided by the official
XTREME repo9. Following the participants (FILTER and Anonymous1) on the XTREME
leaderboard, we use several methods to further improve the scores. For TyDiQA, we start
fine-tuning based on the best XQuAD translate-train-all model. For the sentence retrieve
tasks, BUCC and Tatoeba, we use the averaged representation in the middle layer of the
best XNLI model. Note that we only use these tricks under the translate-train-all setting,
wishing to have a possible fair comparison on the XTREME leaderboard. However, we
still use less fine-tuned data compared to concurrent works FILTER and Anonymous1.
Specifically, FILTER, a model-agnostic fine-tune method, uses more translation data on
POS and NER tasks. Anonymous1 uses other labeled data outside of XTREME.

8http://opus.nlpl.eu/
9https://github.com/google-research/xtreme
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Language #Document(M) #Sentence(M) Size(GB)
af 0.023 0.522 0.107
ar 2.823 42.659 11.786
bg 0.919 14.743 5.217
bn 0.750 9.217 4.264
cs 3.980 55.754 9.668
de 21.410 310.942 66.333
el 1.740 24.334 9.737
en 130.087 2,215.534 479.099
es 17.569 267.764 58.774
et 0.347 5.252 0.877
eu 0.342 5.216 0.613
fr 15.819 267.888 58.023
fa 2.506 43.570 13.831
fi 1.530 23.790 3.940
fy 0.027 0.537 0.054
gu 0.039 0.519 0.228
gd 0.009 0.126 0.020
he 0.755 12.338 3.073
hi 0.536 7.303 3.762
hu 1.816 29.962 6.421
id 3.417 60.908 11.528
it 9.336 133.006 30.854
ja 27.967 588.926 71.785
jv 0.002 0.138 0.030
ka 0.141 1.756 0.766
kk 0.061 1.545 0.448
ko 11.609 227.396 27.837
lt 0.552 7.996 1.480
lv 0.281 4.159 0.798
ms 0.334 3.762 0.455
ml 0.162 2.615 1.025
my 0.045 0.893 0.306
mr 0.059 0.708 0.365
pl 6.642 93.760 19.082
pt 8.623 128.107 25.612
ne 0.080 0.829 0.429
nl 6.513 85.997 16.648
ru 35.887 580.291 203.105
ro 1.944 31.929 7.056
si 0.132 2.927 0.902
sw 0.057 0.945 0.179
ta 0.876 20.376 6.422
te 0.288 4.995 1.721
tr 18.547 291.081 40.321
th 6.278 117.826 27.941
tl 0.166 5.611 0.679
vi 12.183 234.071 37.919
ur 0.460 7.509 2.003
yo 0.0002 0.003 0.0005
zh 27.067 497.408 87.005

Total 382.735 6,475.444 1,360.526

Table 5: The statistics of monolingual pre-training corpus.
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Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K) Pair #Sent(K)
af-ar 12.34 bg-my 0.08 de-he 12751.69 en-tr 46584.82 eu-zh 19.76 fy-vi 34.95 id-pt 6825.29 ko-sw 6.74 pl-es 46863.47
af-bg 18.19 bg-ne 0.01 de-hi 106.11 en-ur 781.60 fa-fi 4485.62 gd-es 21.62 id-ro 7944.59 ko-ta 13.74 pl-pt 72437.93
af-bn 1.19 bg-nl 30757.50 de-hu 24409.40 en-vi 3563.39 fa-fr 4507.06 gd-it 13.26 id-ru 5039.44 ko-te 0.93 pl-ru 19170.23
af-cs 17.93 bg-pl 33043.03 de-id 4786.89 en-yo 0.13 fa-he 4944.80 gd-pl 12.29 id-si 366.00 ko-th 230.84 pl-sw 1424.02
af-de 19.28 bg-pt 30058.54 de-it 35936.62 en-zh 28952.02 fa-hi 186.23 gd-pt 18.90 id-sw 30.56 ko-tl 1.21 pl-tl 1039.37
af-el 29.83 bg-ro 38925.52 de-ja 1472.72 es-et 18090.74 fa-hu 5201.51 gd-ru 10.39 id-ta 35.37 ko-tr 1246.58 pl-tr 32470.18
af-en 44.70 bg-ru 17423.43 de-ka 123.12 es-eu 793.59 fa-id 3220.00 gd-tr 14.12 id-te 13.30 ko-ur 57.21 pl-ur 391.99
af-es 34.31 bg-si 460.50 de-kk 3.72 es-fa 5696.70 fa-it 4243.56 he-hi 57.85 id-th 1562.94 ko-vi 345.79 pl-vi 3790.71
af-et 6.34 bg-sw 10.80 de-ko 776.89 es-fi 34222.07 fa-ja 1072.14 he-hu 23959.87 id-tl 7.80 ko-zh 56.43 pt-ro 33802.95
af-fa 3.07 bg-ta 27.14 de-lt 9134.99 es-fr 96233.21 fa-ka 96.32 he-id 6362.29 id-tr 8017.99 lt-lv 6546.76 pt-ru 14698.48
af-fi 10.25 bg-te 17.14 de-lv 8532.06 es-he 27060.49 fa-kk 1.01 he-it 19908.66 id-ur 172.71 lt-ml 66.40 pt-si 450.40
af-fr 18.56 bg-th 2733.84 de-ml 294.16 es-hi 85.35 fa-ko 627.97 he-ja 1683.29 id-vi 2081.70 lt-ms 393.89 pt-sw 13.06
af-fy 36.94 bg-tl 6.69 de-ms 1228.82 es-hu 43947.78 fa-lt 615.78 he-ka 149.06 id-zh 356.46 lt-nl 7497.18 pt-ta 26.37
af-he 14.53 bg-tr 31179.35 de-my 0.68 es-id 8015.69 fa-lv 228.40 he-kk 2.38 it-ja 1613.05 lt-pl 9965.36 pt-te 19.32
af-hi 1.15 bg-ur 71.60 de-ne 0.28 es-it 49423.51 fa-ml 308.49 he-ko 1094.72 it-ka 106.70 lt-pt 7663.84 pt-th 2561.09
af-hu 16.32 bg-vi 2855.13 de-nl 34909.49 es-ja 1929.41 fa-ms 1072.22 he-lt 1220.91 it-kk 2.54 lt-ro 5786.22 pt-tl 10.35
af-id 4.56 bg-zh 746.27 de-pt 32610.10 es-ka 181.19 fa-my 0.06 he-lv 461.81 it-ko 1125.97 lt-ru 950.02 pt-tr 27428.79
af-it 15.01 bn-cs 340.51 de-ro 24261.82 es-kk 2.48 fa-ne 0.01 he-ml 250.07 it-lt 7359.92 lt-si 106.53 pt-ur 73.57
af-ja 1.98 bn-de 346.51 de-ru 10904.25 es-ko 1229.50 fa-nl 5010.64 he-ms 1455.61 it-lv 6607.27 lt-sw 0.02 pt-vi 2963.83
af-lt 0.65 bn-el 340.94 de-si 324.86 es-lt 7702.99 fa-pt 4998.09 he-my 0.05 it-ml 235.96 lt-ta 13.04 pt-yo 0.05
af-lv 1.08 bn-en 752.08 de-sw 45.61 es-lv 6703.10 fa-ro 5714.73 he-nl 22186.61 it-ms 1269.97 lt-te 9.71 pt-zh 846.44
af-ml 2.18 bn-es 480.35 de-ta 42.32 es-ml 339.71 fa-ru 4205.20 he-pl 24962.23 it-my 0.36 lt-th 263.89 ro-ru 19568.56
af-ms 1.31 bn-et 252.68 de-te 12.81 es-ms 1731.36 fa-si 292.78 he-pt 21226.36 it-ne 1.02 lt-tl 1.36 ro-si 504.24
af-nl 22.61 bn-eu 42.42 de-th 1695.53 es-my 2.50 fa-sw 69.51 he-ro 26370.15 it-nl 37644.29 lt-tr 1377.40 ro-sw 10.72
af-pl 1096.89 bn-fa 391.89 de-tl 12.91 es-ne 2.87 fa-ta 83.30 he-ru 14873.77 it-pl 35037.31 lt-ur 4.47 ro-ta 33.50
af-pt 22.68 bn-fi 279.35 de-tr 17579.53 es-nl 46908.79 fa-te 10.11 he-si 435.87 it-pt 35301.98 lt-vi 486.84 ro-te 24.44
af-ro 32.19 bn-fr 373.13 de-ur 218.89 es-pt 47542.26 fa-th 1201.04 he-sw 0.06 it-ro 32153.38 lt-zh 40.65 ro-th 2874.73
af-ru 15.41 bn-he 302.62 de-vi 2284.70 es-ro 48229.60 fa-tl 7.02 he-ta 23.99 it-ru 17669.12 lv-ml 23.32 ro-tl 8.61
af-si 0.98 bn-hi 38.68 de-zh 587.96 es-ru 55569.05 fa-tr 6217.24 he-te 18.65 it-si 366.97 lv-ms 163.28 ro-tr 36549.61
af-ta 1.13 bn-hu 321.36 el-en 55078.46 es-si 512.22 fa-ur 568.00 he-th 2666.00 it-sw 15.77 lv-nl 6622.81 ro-ur 73.55
af-th 2.08 bn-id 360.65 el-es 46876.21 es-sw 41.33 fa-vi 1514.04 he-tl 6.58 it-ta 17.39 lv-pl 9460.93 ro-vi 3207.73
af-tr 24.22 bn-it 301.31 el-et 16463.57 es-ta 31.19 fa-zh 372.10 he-tr 25179.32 it-te 9.93 lv-pt 6672.14 ro-zh 947.91
af-vi 3.30 bn-ja 142.19 el-eu 673.93 es-te 21.76 fi-fr 28973.81 he-ur 20.57 it-th 2447.55 lv-ro 4833.77 ru-si 340.11
ar-bg 23090.32 bn-ka 8.68 el-fa 5137.52 es-th 2976.49 fi-he 17820.49 he-vi 2813.73 it-tl 13.30 lv-ru 435.73 ru-sw 84.77
ar-bn 378.28 bn-ko 93.92 el-fi 28885.65 es-tl 13.55 fi-hi 55.60 he-zh 563.24 it-tr 25770.29 lv-si 34.42 ru-ta 61.50
ar-cs 24147.25 bn-lt 96.24 el-fr 38560.84 es-tr 39805.02 fi-hu 27350.30 hi-hu 60.05 it-ur 69.89 lv-sw 0.01 ru-te 10.80
ar-de 12733.65 bn-lv 41.21 el-he 22042.85 es-ur 79.44 fi-id 5806.36 hi-id 85.85 it-vi 2542.41 lv-ta 4.10 ru-th 2194.91
ar-el 22486.60 bn-ml 93.14 el-hi 62.26 es-vi 3215.16 fi-it 26756.85 hi-it 60.12 it-yo 0.10 lv-te 4.01 ru-tl 13.43
ar-en 60392.55 bn-ms 203.84 el-hu 34559.75 es-yo 0.12 fi-ja 1599.82 hi-ja 46.14 it-zh 473.74 lv-th 108.92 ru-tr 19317.60
ar-es 57561.29 bn-my 0.78 el-id 7098.25 es-zh 28688.60 fi-ka 148.42 hi-ka 0.80 ja-ka 35.37 lv-tr 515.30 ru-ur 417.23
ar-et 9738.71 bn-ne 0.78 el-it 34337.63 et-eu 406.33 fi-kk 3.41 hi-ko 33.66 ja-kk 1.21 lv-ur 1.08 ru-vi 2289.72
ar-eu 578.30 bn-nl 331.34 el-ja 1740.08 et-fa 3085.41 fi-ko 859.31 hi-lt 23.67 ja-ko 308.30 lv-vi 209.40 ru-yo 0.10
ar-fa 5679.85 bn-pt 333.59 el-ka 167.39 et-fi 15969.08 fi-lt 7507.00 hi-lv 12.61 ja-lt 281.74 lv-zh 14.71 ru-zh 28138.59
ar-fi 17169.90 bn-ro 337.94 el-kk 2.33 et-fr 15697.59 fi-lv 6732.38 hi-ml 30.28 ja-lv 99.97 ml-ms 101.75 si-ta 6.33
ar-fr 50632.52 bn-ru 392.15 el-ko 1130.94 et-fy 51.63 fi-ml 232.48 hi-ms 40.38 ja-ml 79.78 ml-nl 268.10 si-te 1.85
ar-he 20577.16 bn-si 47.49 el-lt 7400.42 et-he 9814.49 fi-ms 1276.96 hi-my 0.01 ja-ms 489.33 ml-pt 280.62 si-th 109.38
ar-hi 96.26 bn-sw 23.91 el-lv 6549.40 et-hi 43.98 fi-nl 30693.72 hi-ne 0.04 ja-nl 1716.42 ml-ro 325.97 si-tl 3.02
ar-hu 23770.38 bn-ta 15.67 el-ml 302.85 et-hu 16819.43 fi-pl 29451.87 hi-nl 92.46 ja-pl 3295.60 ml-ru 310.59 si-tr 492.12
ar-id 6989.56 bn-th 129.60 el-ms 1547.63 et-id 4282.23 fi-pt 29269.50 hi-pl 681.08 ja-pt 1756.87 ml-si 28.01 si-ur 4.95
ar-it 20070.27 bn-tl 2.05 el-my 0.55 et-it 14462.11 fi-ro 27988.13 hi-pt 62.44 ja-ro 1843.14 ml-sw 12.47 si-vi 210.15
ar-ja 1847.98 bn-tr 441.74 el-ne 1.04 et-ja 1176.51 fi-ru 12403.26 hi-ro 82.89 ja-ru 1491.65 ml-ta 15.90 si-zh 14.28
ar-ka 161.65 bn-ur 108.74 el-nl 37188.78 et-ka 110.02 fi-si 391.99 hi-ru 142.53 ja-si 162.96 ml-th 81.03 sw-ta 6.24
ar-kk 1.28 bn-vi 219.57 el-pt 35491.54 et-kk 1.14 fi-sw 0.02 hi-si 11.41 ja-sw 6.24 ml-tl 3.30 sw-th 6.24
ar-ko 1262.60 bn-zh 85.24 el-ro 37986.26 et-ko 492.79 fi-ta 20.08 hi-sw 12.52 ja-ta 18.92 ml-tr 439.25 sw-tr 91.95
ar-lt 1177.67 cs-de 24049.84 el-ru 17052.36 et-lt 7431.17 fi-te 17.13 hi-ta 41.00 ja-te 5.68 ml-ur 100.52 sw-ur 50.29
ar-lv 433.66 cs-el 35372.28 el-si 466.44 et-lv 6728.85 fi-th 2288.65 hi-te 23.18 ja-th 632.26 ml-vi 124.30 sw-yo 0.03
ar-ml 348.33 cs-en 54470.47 el-sw 4.85 et-ml 179.99 fi-tl 5.91 hi-th 37.53 ja-tl 10.06 ml-zh 34.77 sw-zh 19.31
ar-ms 1555.33 cs-es 44962.42 el-ta 20.44 et-ms 1135.84 fi-tr 22551.99 hi-tl 0.51 ja-tr 1896.56 ms-nl 1409.07 ta-te 21.16
ar-my 0.18 cs-et 17819.46 el-te 18.10 et-nl 16560.63 fi-ur 19.43 hi-tr 176.39 ja-ur 61.41 ms-pt 1523.57 ta-th 14.15
ar-ne 0.41 cs-eu 686.53 el-th 2505.71 et-pl 19633.08 fi-vi 2517.08 hi-ur 101.10 ja-vi 679.31 ms-ro 1732.68 ta-tr 77.76
ar-nl 21273.78 cs-fa 5417.48 el-tl 10.13 et-pt 16768.45 fi-zh 630.12 hi-vi 32.99 ja-zh 104.37 ms-ru 1210.56 ta-ur 49.89
ar-pl 24819.83 cs-fi 28031.47 el-tr 31048.88 et-ro 15880.62 fr-he 21218.88 hi-zh 25.57 ka-ko 17.13 ms-si 204.06 ta-vi 12.65
ar-pt 20379.56 cs-fr 34876.02 el-ur 24.36 et-ru 6630.25 fr-hi 68.31 hu-id 7253.81 ka-lt 30.49 ms-sw 8.99 ta-zh 13.02
ar-ro 26187.15 cs-he 24503.29 el-vi 2966.14 et-si 331.22 fr-hu 37027.57 hu-it 33513.06 ka-lv 10.71 ms-ta 15.24 te-th 0.96
ar-ru 45992.72 cs-hi 86.86 el-yo 0.11 et-sw 0.01 fr-id 6235.29 hu-ja 1767.63 ka-ml 6.56 ms-te 4.70 te-tr 18.84
ar-si 483.96 cs-hu 39272.92 el-zh 649.81 et-ta 14.34 fr-it 41162.37 hu-ka 165.84 ka-ms 31.86 ms-th 413.17 te-vi 9.34
ar-sw 16.52 cs-id 7310.27 en-es 156560.00 et-te 14.44 fr-ja 1608.52 hu-kk 2.58 ka-nl 155.10 ms-tl 7.26 th-tl 7.28
ar-ta 37.15 cs-it 33935.96 en-et 22284.30 et-th 1746.50 fr-ka 139.63 hu-ko 1168.66 ka-pt 165.00 ms-tr 1754.22 th-tr 3054.07
ar-te 19.33 cs-ja 1806.97 en-eu 805.78 et-tl 3.09 fr-kk 1.34 hu-lt 7623.58 ka-ro 182.79 ms-ur 68.94 th-ur 58.65
ar-th 2959.96 cs-ka 163.35 en-fa 7462.52 et-tr 11408.82 fr-ko 991.60 hu-lv 6776.32 ka-ru 104.82 ms-vi 851.69 th-vi 672.82
ar-tl 7.58 cs-kk 1.26 en-fi 42783.36 et-ur 19.52 fr-lt 9440.34 hu-ml 279.13 ka-si 7.96 ms-zh 85.86 th-zh 133.45
ar-tr 26683.62 cs-ko 1199.62 en-fr 161519.91 et-vi 2048.37 fr-lv 8569.67 hu-ms 1581.43 ka-th 43.37 my-nl 0.10 tl-tr 14.51
ar-ur 126.33 cs-lt 7694.12 en-fy 126.19 et-zh 405.30 fr-ml 278.47 hu-my 0.06 ka-tl 1.27 my-pt 0.10 tl-vi 5.86
ar-vi 2875.00 cs-lv 6745.84 en-gd 47.02 eu-fa 245.78 fr-ms 1423.08 hu-nl 33904.34 ka-tr 178.79 my-ro 0.03 tr-ur 473.08
ar-yo 0.01 cs-ml 319.93 en-he 30028.28 eu-fi 581.61 fr-my 1.47 hu-pl 39869.14 ka-ur 1.98 my-ru 0.81 tr-vi 3178.03
ar-zh 28120.22 cs-ms 1592.17 en-hi 1844.38 eu-fr 636.16 fr-ne 1.45 hu-pt 31715.19 ka-vi 53.58 my-sw 0.15 tr-zh 1029.21
bg-bn 310.12 cs-my 0.08 en-hu 55233.87 eu-he 566.71 fr-nl 47363.70 hu-ro 38807.61 ka-zh 6.52 my-tr 0.03 ur-vi 12.52
bg-cs 34502.46 cs-ne 0.07 en-id 9677.33 eu-hi 9.98 fr-pt 42850.13 hu-ru 19172.99 kk-lt 0.83 my-ur 0.02 ur-zh 99.78
bg-de 19852.81 cs-nl 34427.07 en-it 76257.21 eu-hu 663.68 fr-ro 37249.80 hu-si 460.99 kk-lv 1.13 my-zh 0.13 vi-zh 148.22
bg-el 32130.86 cs-pt 32469.01 en-ja 2177.89 eu-id 307.85 fr-ru 54231.81 hu-sw 0.68 kk-ms 1.12 ne-nl 0.09
bg-en 47247.04 cs-ro 39226.31 en-ka 199.98 eu-it 568.66 fr-si 393.48 hu-ta 20.63 kk-nl 1.85 ne-pt 0.38
bg-es 39728.55 cs-ru 19703.43 en-kk 3.71 eu-ja 139.14 fr-sw 29.32 hu-te 17.57 kk-pl 77.88 ne-ro 0.04
bg-et 15188.54 cs-si 454.26 en-ko 1493.95 eu-ka 9.42 fr-ta 24.03 hu-th 2867.23 kk-pt 3.35 ne-ru 1.30
bg-eu 605.10 cs-sw 17.34 en-lt 10992.89 eu-ko 72.17 fr-te 11.93 hu-tl 10.79 kk-ro 2.35 ne-sw 0.05
bg-fa 4927.53 cs-ta 32.81 en-lv 9883.08 eu-lt 108.12 fr-th 2325.22 hu-tr 32494.90 kk-ru 2.22 ne-tr 0.03
bg-fi 25191.01 cs-te 18.72 en-ml 573.95 eu-lv 36.81 fr-tl 13.18 hu-ur 23.32 kk-th 0.93 ne-ur 0.06
bg-fr 30185.98 cs-th 2858.53 en-ms 2050.83 eu-ml 42.72 fr-tr 29245.91 hu-vi 2974.61 kk-tr 2.59 ne-zh 0.01
bg-he 22887.40 cs-tl 7.44 en-my 2.43 eu-ms 129.20 fr-ur 73.99 hu-zh 730.70 kk-vi 1.18 nl-pt 37775.73
bg-hi 71.38 cs-tr 32797.28 en-ne 2.89 eu-nl 619.88 fr-vi 2752.32 id-it 5831.16 ko-lt 148.54 nl-ro 36051.60
bg-hu 34293.44 cs-ur 122.87 en-nl 65918.54 eu-pt 641.30 fr-yo 0.12 id-ja 1271.31 ko-lv 57.10 nl-ru 16582.78
bg-id 7047.21 cs-vi 3040.14 en-pl 59729.77 eu-ro 715.99 fr-zh 28008.77 id-ka 85.07 ko-ml 42.92 nl-si 410.92
bg-it 27649.85 cs-zh 894.87 en-pt 61861.36 eu-ru 435.12 fy-es 49.12 id-kk 1.03 ko-ms 291.25 nl-sw 31.38
bg-ja 1658.40 de-el 30170.64 en-ro 60415.46 eu-si 34.56 fy-he 44.06 id-ko 605.78 ko-my 0.12 nl-ta 39.21
bg-ka 193.27 de-en 83872.47 en-ru 65105.13 eu-ta 3.35 fy-it 47.88 id-lt 855.43 ko-ne 0.01 nl-te 16.07
bg-kk 3.40 de-es 41634.80 en-si 601.16 eu-te 0.73 fy-ja 37.61 id-lv 342.36 ko-nl 1120.75 nl-th 2548.14
bg-ko 1056.96 de-et 15186.40 en-sw 171.65 eu-th 80.75 fy-pl 49.37 id-ml 230.67 ko-pl 2722.47 nl-tl 8.18
bg-lt 5604.11 de-eu 534.93 en-ta 125.96 eu-tl 2.60 fy-pt 95.81 id-ms 1614.63 ko-pt 1119.49 nl-tr 28822.22
bg-lv 4748.15 de-fa 3948.14 en-te 27.22 eu-tr 722.77 fy-ru 45.83 id-my 0.11 ko-ro 1242.76 nl-ur 171.71
bg-ml 283.77 de-fi 25753.06 en-th 3375.07 eu-ur 2.01 fy-sw 0.37 id-ne 0.07 ko-ru 959.46 nl-vi 2748.28
bg-ms 1506.56 de-fr 44392.06 en-tl 16.03 eu-vi 201.28 fy-tr 45.40 id-nl 6493.33 ko-si 58.66 nl-zh 866.75 Total 6,421,152.04

Table 6: The statistics of bilingual (parallel) pre-training corpus.
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Pre-training Hyperparameters Large Small

Number of layers 24 6
Hidden Size 1024 768
FFN inner hidden size 4096 3072
Attention heads 16 12
Attention head size 64 64
Embedding Size 1024 768
Mask percent (monolingual/ bilingual) 15%/25% 15%/25%
Learning Rate Decay Linear Linear
Warmup steps 12k 12k
Learning Rate 2e-4 3e-4
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.999
Attention Dropout 0.1 0.1
Dropout 0.1 0.1
Weight Decay 0.01 0.01
Max Sequence Length (monolingual/bilingual) 512/128 512/128
Batch Size (monolingual/bilingual) 1024/4096 1024/4096
Train Steps 240k 240k
Total Parameters 662M 247M

Table 7: The pre-training hyperparameters.

Model Architecture Params Enc Layers Dec Layers #Languages Vocab Size

mBERT (Devlin et al., 2019) Encoder-only 110M 12 - 104 110k
XLM (Lample & Conneau, 2019) Encoder-only 570M 24 - 100 200k
XLM-R (Conneau et al., 2019) Encoder-only 550M 24 - 100 250k
MMTE (Siddhant et al., 2020) Encoder-decoder 375M 6 6 103 64k
mBART (Liu et al., 2020b) Encoder-decoder 680M 12 12 25 250k

VECO Variable 662M 24* 50 250k

Table 8: Comparison of large cross-lingual models. * denotes encoder and decoder share all self-
attention and feed-forward sub-layers.

The full set of fine-tuning hyperparameters is listed in Table 9.

Learning Rate [1e-5,2e-5,3e-5] for Cross-lingual Transfer

[3e-6,5e-6,1e-5] for Translate-Train-All
Adam ε 1e-8
Adam β1 0.9
Adam β2 0.999
Batch Size [16,32,64]
Train Epochs [3,5,10]

Table 9: The fine-tuning hyperparameters

C DETAILED RESULTS ON XTREME

The detailed results of each XTREME task under the cross-lingual transfer and translate-train-all
settings on all languages are listed in the following tables.
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Model en ar bg de el es fr hi ru sw th tr ur vi zh Avg.
Cross-lingual Transfer
mBERT† 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
MMTE† 79.6 64.9 70.4 68.2 67.3 71.6 69.5 63.5 66.2 61.9 66.2 63.6 60.0 69.7 69.2 67.5
XLM† 82.8 66.0 71.9 72.7 70.4 75.5 74.3 62.5 69.9 58.1 65.5 66.4 59.8 70.7 70.2 69.1
XLM-R† 88.7 77.2 83.0 82.5 80.8 83.7 82.2 75.6 79.1 71.2 77.4 78.0 71.7 79.3 78.2 79.2
VECO 88.2 79.2 83.1 82.9 81.2 84.2 82.8 76.2 80.3 74.3 77.0 78.4 71.3 80.4 79.1 79.9
Translate-Train-All
XLM‡ 85.0 80.8 81.3 80.3 79.1 80.9 78.3 75.6 77.6 78.5 76.0 79.5 72.9 72.8 68.5 77.8
XLM-R† 88.6 82.2 85.2 84.5 84.5 85.7 84.2 80.8 81.8 77.0 80.2 82.1 77.7 82.6 82.7 82.6
VECO 88.9 82.4 86.0 84.7 85.3 86.2 85.8 80.1 83.0 77.2 80.9 82.8 75.3 83.1 83.0 83.0

Table 10: XNLI accuracy scores for each language. “†” and ‡ results are provided by Hu et al.
(2020) and Conneau et al. (2019), respectively.

Model en de es fr ja ko zh Avg.

Cross-lingual Transfer
mBERT 94.0 85.7 87.4 87.0 73.0 69.6 77.0 81.9
XLM 94.0 85.9 88.3 87.4 69.3 64.8 76.5 80.9
MMTE 93.1 85.1 87.2 86.9 72.0 69.2 75.9 81.3
XLM-R 94.7 89.7 90.1 90.4 78.7 79.0 82.3 86.4
VECO 96.2 91.3 91.4 92.0 81.8 82.9 85.1 88.7

Translate-Train-All
VECO 96.4 93.0 93.0 93.5 87.2 86.8 87.9 91.1

Table 11: PAWS-X accuracy scores for each language.

Model de fr ru zh Avg.
Cross-lingual Transfer
mBERT 62.5 62.6 51.8 50.0 56.7
XLM 56.3 63.9 60.6 46.6 56.8
MMTE 67.9 63.9 54.3 53.3 59.8
XLM-R 67.5 66.5 73.5 56.7 66.0
VECO 89.6 84.6 87.4 78.5 85.0
Translate-Train-All
VECO 93.0 88.7 89.9 85.7 89.3

Table 12: BUCC results (F1 scores).

Model en ar de el es hi ru th tr vi zh Avg.
Cross-lingual Transfer
mBERT 83.5 / 72.2 61.5 / 45.1 70.6 / 54.0 62.6 / 44.9 75.5 / 56.9 59.2 / 46.0 71.3 / 53.3 42.7 / 33.5 55.4 / 40.1 69.5 / 49.6 58.0 / 48.3 64.5 / 49.4
XLM 74.2 / 62.1 61.4 / 44.7 66.0 / 49.7 57.5 / 39.1 68.2 / 49.8 56.6 / 40.3 65.3 / 48.2 35.4 / 24.5 57.9 / 41.2 65.8 / 47.6 49.7 / 39.7 59.8 / 44.3
MMTE 80.1 / 68.1 63.2 / 46.2 68.8 / 50.3 61.3 / 35.9 72.4 / 52.5 61.3 / 47.2 68.4 / 45.2 48.4 / 35.9 58.1 / 40.9 70.9 / 50.1 55.8 / 36.4 64.4 / 46.2
XLM-R 86.5 / 75.7 68.6 / 49.0 80.4 / 63.4 79.8 / 61.7 82.0 / 63.9 76.7 / 59.7 80.1 / 64.3 74.2 / 62.8 75.9 / 59.3 79.1 / 59.0 59.3 / 50.0 76.6 / 60.8
VECO 87.6 / 76.5 73.6 / 56.1 79.8 / 62.2 79.6 / 61.6 81.2 / 61.6 74.7 / 57.6 78.7 / 62.1 72.8 / 60.6 75.1 / 58.3 79.0 / 59.8 69.2 / 59.2 77.3 / 61.8
Translate-Train-All
VECO 88.3/77.9 76.9/61.1 80.5/64.6 81.5/64.1 84.2/66.8 78.8/62.5 80.2/66.1 77.0/70.4 77.8/62.2 82.5/63.7 71.6/69.4 79.9/66.3

Table 13: XQuAD results (F1 / EM) for each language.

Model en ar de es hi vi zh Avg.
Cross-lingual Transfer
mBERT 80.2 / 67.0 52.3 / 34.6 59.0 / 43.8 67.4 / 49.2 50.2 / 35.3 61.2 / 40.7 59.6 / 38.6 61.4 / 44.2
XLM 68.6 / 55.2 42.5 / 25.2 50.8 / 37.2 54.7 / 37.9 34.4 / 21.1 48.3 / 30.2 40.5 / 21.9 48.5 / 32.6
MMTE 78.5 / – 56.1 / – 58.4 / – 64.9 / – 46.2 / – 59.4 / – 58.3 / – 60.3 / 41.4
XLM-R 83.5 / 70.6 66.6 / 47.1 70.1 / 54.9 74.1 / 56.6 70.6 / 53.1 74.0 / 52.9 62.1 / 37.0 71.6 / 53.2
VECO 83.6 / 70.5 65.0 / 44.6 69.8 / 54.6 73.8 / 55.6 69.1 / 51.4 73.1 / 51.8 67.3 / 43.6 71.7 / 53.2
Translate-Train-All
VECO 84.1/71.3 67.8/47.1 70.7/55.8 74.6/56.6 71.1/53.4 74.8/54.4 68.8/45.8 73.1/54.9

Table 14: MLQA results (F1 / EM) for each language.

Model en ar bn fi id ko ru sw te Avg.
Cross-lingual Transfer
mBERT 75.3 / 63.6 62.2 / 42.8 49.3 / 32.7 59.7 / 45.3 64.8 / 45.8 58.8 / 50.0 60.0 / 38.8 57.5 / 37.9 49.6 / 38.4 59.7 / 43.9
XLM 66.9 / 53.9 59.4 / 41.2 27.2 / 15.0 58.2 / 41.4 62.5 / 45.8 14.2 / 5.1 49.2 / 30.7 39.4 / 21.6 15.5 / 6.9 43.6 / 29.1
MMTE 62.9 / 49.8 63.1 / 39.2 55.8 / 41.9 53.9 / 42.1 60.9 / 47.6 49.9 / 42.6 58.9 / 37.9 63.1 / 47.2 54.2 / 45.8 58.1 / 43.8
XLM-R 71.5 / 56.8 67.6 / 40.4 64.0 / 47.8 70.5 / 53.2 77.4 / 61.9 31.9 / 10.9 67.0 / 42.1 66.1 / 48.1 70.1 / 43.6 65.1 / 45.0
VECO 71.3 / 58.2 73.1 / 52.8 58.9 / 42.5 70.9 / 55.1 77.2 / 60.0 54.2 / 39.9 66.1 / 37.6 65.8 / 45.7 70.6 / 50.7 67.6 / 49.1
Translate-Train-All
VECO 77.2/64.8 77.0/57.5 72.2/56.6 76.6/59.3 80.0/64.4 63.4/52.2 72.8/50.5 79.4/67.1 76.0/58.0 75.0/58.9

Table 15: TyDiQA-GolP results (F1 / EM) for each language.
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Model af ar bg de el en es et eu fa fi fr he hi hu id it

Cross-lingual Transfer
mBERT 86.6 56.2 85.0 85.2 81.1 95.5 86.9 79.1 60.7 66.7 78.9 84.2 56.2 67.2 78.3 71.0 88.4
XLM 88.5 63.1 85.0 85.8 84.3 95.4 85.8 78.3 62.8 64.7 78.4 82.8 65.9 66.2 77.3 70.2 87.4
MMTE 86.2 65.9 87.2 85.8 77.7 96.6 85.8 81.6 61.9 67.3 81.1 84.3 57.3 76.4 78.1 73.5 89.2
XLM-R 89.8 67.5 88.1 88.5 86.3 96.1 88.3 86.5 72.5 70.6 85.8 87.2 68.3 76.4 82.6 72.4 89.4
VECO 88.3 67.4 87.4 88.5 86.7 95.9 89.0 87.8 75.1 70.9 86.2 88.9 67.5 76.2 82.9 72.9 89.9

ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh Avg.
mBERT 49.2 70.5 49.6 69.4 88.6 86.2 85.5 59.0 75.9 41.7 81.4 68.5 57.0 53.2 55.7 61.6 71.5
XLM 49.0 70.2 50.1 68.7 88.1 84.9 86.5 59.8 76.8 55.2 76.3 66.4 61.2 52.4 20.5 65.4 71.3
MMTE 48.6 70.5 59.3 74.4 83.2 86.1 88.1 63.7 81.9 43.1 80.3 71.8 61.1 56.2 51.9 68.1 73.5
XLM-R 15.9 78.1 53.9 80.8 89.5 87.6 89.5 65.2 86.6 47.2 92.2 76.3 70.3 56.8 24.6 25.7 73.8
VECO 31.4 79.3 53.1 84.3 89.8 88.3 90.2 64.3 85.8 48.0 93.7 77.2 69.2 58.1 26.2 39.4 75.1

Table 16: POS results (Accuracy) for each language.

Model en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

Cross-lingual Transfer
mBERT 85.2 77.4 41.1 77.0 70.0 78.0 72.5 77.4 75.4 66.3 46.2 77.2 79.6 56.6 65.0 76.4 53.5 81.5 29.0 66.4
XLM 82.6 74.9 44.8 76.7 70.0 78.1 73.5 74.8 74.8 62.3 49.2 79.6 78.5 57.7 66.1 76.5 53.1 80.7 23.6 63.0
MMTE 77.9 74.9 41.8 75.1 64.9 71.9 68.3 71.8 74.9 62.6 45.6 75.2 73.9 54.2 66.2 73.8 47.9 74.1 31.2 63.9
XLM-R 84.7 78.9 53.0 81.4 78.8 78.8 79.5 79.6 79.1 60.9 61.9 79.2 80.5 56.8 73.0 79.8 53.0 81.3 23.2 62.5
VECO 83.8 77.5 48.2 83.9 77.2 79.4 79.3 75.4 80.4 68.3 68.2 80.6 80.1 55.0 71.0 80.9 52.9 81.7 19.4 63.2

ka kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh

mBERT 64.6 45.8 59.6 52.3 58.2 72.7 45.2 81.8 80.8 64.0 67.5 50.7 48.5 3.6 71.7 71.8 36.9 71.8 44.9 42.7
XLM 67.7 57.2 26.3 59.4 62.4 69.6 47.6 81.2 77.9 63.5 68.4 53.6 49.6 0.3 78.6 71.0 43.0 70.1 26.5 32.4
MMTE 60.9 43.9 58.2 44.8 58.5 68.3 42.9 74.8 72.9 58.2 66.3 48.1 46.9 3.9 64.1 61.9 37.2 68.1 32.1 28.9
XLMR 71.6 56.2 60.0 67.8 68.1 57.1 54.3 84.0 81.9 69.1 70.5 59.5 55.8 1.3 73.2 76.1 56.4 79.4 33.6 33.1
VECO 67.1 51.2 59.9 63.4 65.0 70.0 56.1 83.4 83.1 71.3 70.5 60.5 56.2 1.4 71.3 80.4 69.3 76.0 37.4 29.1

Table 17: NER results (F1) for each language.

Model af ar bg bn de el es et eu fa fi fr he hi hu id it ja

Cross-lingual Transfer
BERT 42.7 25.8 49.3 17 77.2 29.8 68.7 29.3 25.5 46.1 39 66.3 41.9 34.8 38.7 54.6 58.4 42
XLM 43.2 18.2 40 13.5 66.2 25.6 58.4 24.8 17.1 32.2 32.2 54.5 32.1 26.5 30.1 45.9 56.5 40
XLMR 58.2 47.5 71.6 43 88.8 61.8 75.7 52.2 35.8 70.5 71.6 73.7 66.4 72.2 65.4 77 68.3 60.6
VECO 48.2 70.9 86.7 57.7 97.5 81.5 94.8 89.7 62.9 82.1 87.9 88.8 74.7 80.7 87.6 89.6 89.2 83.2
Translate-Train-All
VECO 80.9 85.1 91.3 78.1 98.5 89.5 97.4 94.8 79.8 93.1 95.4 93.7 85.8 94.2 93.8 93.0 92.2 92.8

jv ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh

Cross-lingual Transfer
BERT 17.6 20.5 27.1 38.5 19.8 20.9 68 69.9 61.2 11.5 14.3 16.2 13.7 16 34.8 31.6 62 71.6
XLM 22.4 22.9 17.9 25.5 20.1 13.9 59.6 63.9 44.8 12.6 20.2 12.4 31.8 14.8 26.2 18.1 47.1 42.2
XLMR 14.1 52.1 48.5 61.4 65.4 56.8 80.8 82.2 74.1 20.3 26.4 35.9 29.4 36.7 65.7 24.3 74.7 68.3
VECO 17.6 58.5 53.9 75.3 80.1 64.2 94.4 92.8 88.6 37.4 61.9 65.8 84.5 52.5 89.3 64.3 85.8 82.7
Translate-Train-All
VECO 35.1 83.0 74.1 88.7 94.8 82.5 95.9 94.6 92.2 69.7 82.4 91.0 94.7 73.0 95.2 63.8 95.1 93.9

Table 18: Tatoeba results (Accuracy) for each language

17


	Introduction
	Variable Encoder-decoder Pre-training
	Backbone Network
	Pre-training Objectives
	Fine-tuning on Downstream NLU and NLG Tasks

	Pre-training Setup
	Experiments on Language Understanding
	Experimental Setup
	Experimental Results

	Experiments on Language Generation
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion
	Pre-Training Details
	NLU Fine-Tuning Details
	Detailed Results on XTREME

