
Under review as a conference paper at ICLR 2021

LEARNING TO USE FUTURE INFORMATION
IN SIMULTANEOUS TRANSLATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Simultaneous neural machine translation (briefly, NMT) has attracted much atten-
tion recently. In contrast to standard NMT, where the NMT system can access the
full input sentence, simultaneous NMT is a prefix-to-prefix problem, where the
system can only utilize the prefix of the input sentence and thus more uncertainty
and difficulty are introduced to decoding. Wait-k (Ma et al., 2019) inference is a
simple yet effective strategy for simultaneous NMT, where the decoder generates
the output sequence k words behind the input words. For wait-k inference, we
observe that wait-m training with m > k in simultaneous NMT (i.e., using more
future information for training than inference) generally outperforms wait-k train-
ing. Based on this observation, we propose a method that automatically learns how
much future information to use in training for simultaneous NMT. Specifically,
we introduce a controller to adaptively select wait-m training strategies according
to the network status of the translation model and current training sentence pairs,
and the controller is jointly trained with the translation model through bi-level
optimization. Experiments on four datasets show that our method brings 1 to 3
BLEU point improvement over baselines under the same latency. Our code is
available at https://github.com/P2F-research/simulNMT.

1 INTRODUCTION

Neural machine translation (NMT) is an important task for the machine learning community and
many advanced models have been designed (Sutskever et al., 2014; Bahdanau et al., 2014; Vaswani
et al., 2017). In this work, we work on a more challenging task in NMT, simultaneous translation (also
known as simultaneous interpretation), which is widely used in international conferences, summits
and business. Different from standard NMT, simultaneous NMT has a stricter requirement for latency.
We cannot wait to the end of a source sentence but have to start the translation right after reading
the first few words. That is, the translator is required to provide instant translation based on a partial
source sentence.

Simultaneous NMT is formulated as a prefix-to-prefix problem (Ma et al., 2019; 2020; Xiong et al.,
2019), where a prefix refers to a subsequence starting from the beginning of the sentence to be
translated. In simultaneous NMT, we face more uncertainty than conventional NMT, since the
translation starts with a partial source sentence rather than the complete one. Wait-k inference (Ma
et al., 2019) is a simple yet effective strategy in simultaneous NMT where the translation is k words
behind the source input. Rather than instant translation of each word, wait-k inference actually
leverages k more future words during inference phase. Obviously, a larger k can bring more future
information, and therefore results in better translation quality but at the cost of larger latency. Thus,
when used in real-world applications, we should have a relatively small k for simultaneous NMT.

While only small k values are allowed in inference, we observe that wait-m training with m > k
will lead to better accuracy for wait-k inference. Figure 1 shows the results of training with wait-m
but test with wait-3 on IWSLT’14 English→German translation dataset. If training with m = 3, we
will obtain a 22.79 BLEU score. If we set m to larger values such as 7, 13 or 21 and test with wait-3,
we can get better BLEU scores. That is, the model can benefit from the availability of more future
information in training. This is consistent with the observation in (Ma et al., 2019).

The challenge is how much future information we should use in training. As shown in Figure 1, using
more future information does not monotonically improve the translation accuracy of wait-k inference,

1

https://github.com/P2F-research/simulNMT

Under review as a conference paper at ICLR 2021

3 5 7 13 21 30 50 inf

22.8

22.9

23.0

23.1

23.2

23.3

Figure 1: Preliminary exploration of IWSLT
English-to-German simultaneous NMT. x-
axis represents the waiting threshold m dur-
ing training and y-axis represents the BLEU
scores testing with wait-3.

mainly because that more future information results
in a larger mismatch between training and inference
(i.e., m − k more words are used in training than
inference). Besides, due to the diversity of the nat-
ural language, intuitively, using different m’s for
different sentences will lead to better performance.
Even for the same sentence pair, the optimal m for
training might vary in different training stages. In
this work, we propose an algorithm that can auto-
matically determine how much future information
to use in training for simultaneous NMT. Given a
pre-defined k, we want to maximize the performance
of wait-k inference. We have a set of M training
strategies wait-m with different waiting thresholds
m (m ∈ {1, 2, · · · ,M}). We introduce a controller
such that given a training sample, the controller dy-
namically selects one of these training strategies so
as to maximize the validation performance on wait-
k inference. Which wait-m training strategy to select
is based on the data itself and the network status of
the current translation model. The controller and the translation model are jointly trained, and the
learning process is formulated as a bi-level optimization problem (Sinha et al., 2018), where one
optimization problem is nested within another.

Our contribution is summarized as follows:

(1) We propose a new method for simultaneous NMT, where a controller is introduced to adaptively
determine how much future information to use for training. The controller and the translation model
are jointly learned through bi-level optimization.

(2) Experiments on four datasets show that our method improves the wait-k baseline by 1 to 3 BLEU
scores, and also consistently outperforms several heuristic baselines leveraging future information.

2 RELATED WORK

Previous work on simultaneous translation can be categorized by whether using a fixed decoding
scheduler or an adaptive one. Fixed policies usually use pre-defined rules to determine when to read
or to write a new token (Dalvi et al., 2018; Ma et al., 2019). Wait-k is the representative method for
fixed scheduler (Ma et al., 2019), where the decoding is always k words behind the source input.
Wait-k achieves good results in terms of translation quality and controllable latency, and has been
used in speech-related simultaneous translation (Zhang et al., 2019; Ren et al., 2020).

For methods that use adaptive schedulers, Cho & Esipova (2016) proposed wait-if-worse (WIW) and
wait-if-diff (WID) methods which generate a new target word if its probability does not decrease (for
WIW) or the generated word is unchanged (for WID) after reading a new source token. Grissom II
et al. (2014) and Gu et al. (2017) used reinforcement learning to train the read/write controller, while
Zheng et al. (2019a) obtained it in a supervised way. Alinejad et al. (2018) added a “predict” operator
to the controller so that it can anticipate future source inputs. Zheng et al. (2019b) introduced a
“delay” token into the target vocabulary indicating that the model should read a new word instead
of generating a new one. Arivazhagan et al. (2019) proposed monotonic infinite lookback attention
(MILk), which first used a hard attention model to determine when to read new source tokens, and
then a soft attention model to perform translation. Ma et al. (2020) extended MILk into a multi-head
version and proposed monotonic multihead attention (MMA) with two variants: MMA-IL (Infinite
Lookback) which has higher translation quality by looking back at all available source tokens, and
MMA-H(ard) which is more computational efficient by limiting the attention span.

Besides, Zheng et al. (2020a) extended wait-k to an adaptive strategy by training multiple wait-m
models with different m’s and adaptively selecting a decoding strategy during inference. Zheng et al.
(2020b) explored a new setting, where at each timestep, the translation model over generates the
target words and corrects them in a timely fashion.

2

Under review as a conference paper at ICLR 2021

3 PROBLEM FORMULATION AND BACKGROUND

In this section, we first introduce the notations used in this work, followed by the formulation of
wait-k strategy, and then we introduce our network architecture adapted from (Ma et al., 2019).

3.1 NOTATIONS AND FORMULATION

Let X and Y denote the source language domain and target language domain. For any x ∈ X and
y ∈ Y , let xi and yi denote the i-th token in x and y respectively. Lx and Ly are the numbers of
tokens in x and y. x≤t represents a prefix of x, which is the subsequence x1, x2, · · · , xt, and similarly
for y≤t. Let Dtr and Dva denote the training and validation sets, both of which are collections of
bilingual sentence pairs.

The wait-k strategy (Ma et al., 2019) is defined as follows: given an input x ∈ X , the generation
of the translation y is always k tokens behind reading x. That is, at the t-th decoding step, we
generate token yt based on x≤t+k−1 (more strictly, x≤min{t+k−1,Lx}). Our goal is to obtain a model
f : X 7→ Y with parameter θ that can achieve better results with wait-k inference.

3.2 MODEL ARCHITECTURE

Our model for simultaneous NMT is based on Transformer model (Vaswani et al., 2017). The model
includes an encoder and a decoder, which are used for incrementally processing the source and target
sentences respectively. Both the encoder and decoder are stacked of L blocks. We mainly introduce
the differences compared with the standard Transformer.

(1) Incremental encoding: Let hlt denote the output of the t-th position from block l. For ease of
reference, let H l

≤t denote {hl1, hl2, · · · , hlt}, and let h0t denote the embeddings of the t-th token. An
attention model attn(q,K, V), takes a query q ∈ Rd, a set of keys K and values V as inputs. K
and V are of equal size, q ∈ Rd where d ∈ Z+ is the dimension, ki ∈ Rd and vi ∈ Rd are the i-th
key and value. attn is defined as follows:

attn(q,K, V) =

|K|∑
i=1

αiWvvi, αi =
exp((Wqq)

>(Wkki))

Z
, Z =

|K|∑
i=1

exp((Wqq)
>(Wkki)),

(1)
where W ’s are the parameters to be optimized. In the encoder side, hlt is obtained in a unidirectional
way: hlt = attn(hl−1t , H l−1

≤t , H
l−1
≤t). That is, the model can only attend to the previously generated

hidden representations, and the computation complexity is O(L2
x). In comparison, (Ma et al.,

2019) still leverages bidirectional attention, whose computation complexity is O(L3
x). We find that

unidirectional attention is much more efficient than bidirectional attention without much accuracy
drop (see Appendix D.1 for details).

(2) Incremental decoding: Since we use wait-k strategy, the decoding starts before reading all inputs.
At the t-th decoding step, the decoder can only read x≤t+k−1. When t ≤ Lx−k, the decoder greedily
generates one token at each step, i.e., the token is yt = argmaxw∈V P (w|y≤t−1;HL

≤t+k−1), where
V is the vocabulary of the target language. When t > Lx − k, the model has read the full input
sentence and can generate words using beam search (Ma et al., 2019).

4 OUR METHOD

We first introduce our algorithm in Section 4.1, and then we discuss its relationship with several other
heuristic algorithms that leverage future information in Section 4.2.

4.1 ALGORITHM

Let f(· · · ; θ) denote a translation model parameterized by θ, and let ϕ denote the controller parame-
terized by ω to guide the training process of f . f(· · · ; θ∗(ω)) is the translation model obtained under
the guidance of the controller ϕ(· · · ;ω), where θ∗(ω) is the corresponding parameter. For each train-
ing data (x, y), the controller ϕ adaptively assigns a training task wait-m, where m ∈ {1, 2, · · · ,M},

3

Under review as a conference paper at ICLR 2021

andM ∈ Z+ is a pre-defined hyperparameter. The input of ϕ consists of two parts: (i) the information
of the training data (x, y); (ii) the network status of the translation model f . For ease of reference,
denote these input features as Ix,y,f . We will discuss how to design Ix,y,f in Section 5.1.

LetMk(Dva; θ
∗(ω)) denote the validation metric, which is evaluated on the validation set Dva with

model f(· · · ; θ∗(ω)) and wait-k inference. We formulate the training process of f and ϕ as a bi-level
optimization, where two optimization problems are nested together. In the inner-optimization, given
a ω, we want to obtain the model f(· · · , θ∗(ω)) that can minimize the loss function ` on the training
set Dtr under the guidance of the controller ϕ(· · · , ω). In the outer-optimization, given a translation
model θ∗(ω), we optimize ω to maximize the validation performance Mk. The mathematical
formulation is shown as follows:

max
ω
Mk(Dva; θ

∗(ω));

s.t. θ∗(ω) = argmin
θ

1

|Dtr|
∑

(x,y)∼Dtr

Em∼ϕ(Ix,y,f ;ω)`(x, y,m; θ);

where `(x, y,m; θ) =
∑
(x,y)

logP (y|x; θ,m) =
∑
(x,y)

|y|∑
t=1

logP (yt|y≤t−1, x≤t+m−1).

(2)

We optimize Equation 2 in an alternative way, where we first optimize θ with a given ω, and then
update ω using the REINFORCE algorithm. We repeat the above process until convergence. Details
are in Algorithm 1:

Algorithm 1: The optimization algorithm.
1 Input: Training episode E; internal update iterations T ; learning rate ηθ of the translation model;

learning rate ηω of the controller; batch size B; initial parameters ω, θ;
2 for e← 1 : E do
3 Init a buffer to store states and actions: B = {};
4 for t← 1 : T do
5 Randomly sample a mini-batch of data De,t from Dtr with batch size B;
6 Assign a wait-m task to each data: D̃ = {(x, y,m)|(x, y) ∈ De,t,m ∼ ϕ(Ix,y,f ;ω)},

where the batch size is B, and m is sampled from to the output distribution of ϕ;
7 Update the buffer: B ← B ∪ {(Ix,y,f ,m)|(x, y,m) ∈ D̃};
8 Update the translation model: θ ← θ − (ηθ/B)∇θ

∑
(x,y,m)∈D̃ `(x, y,m; θ);

9 Calculate the validation performance as the reward: Re =Mk(Dva; θe,T);
10 Update the controller: ω ← ω + ηωRe

∑
(I,m)∈B∇ω logP (ϕ(I;ω) = m).

11 Return θ.

Algorithm 1 consists of E episodes (i.e., the outer loop), and each episode consists of T update
iterations (i.e., the inner loop). The inner loop (from step 4 to step 8) aims to optimize the θ, where
we can update the parameter with any gradient based optimizer like momentum SGD, Adam (Kingma
& Ba, 2015), etc. The outer loop (from step 2 to step 10) aims to optimize ω. ϕ(Ix,y,f ;ω) can be
regarded as a policy network, where the state is Ix,y,f , the action is the choice of the task wait-m,
m ∈ {1, 2, · · · ,M}, and the reward is the validation performance Re (step 9). At the end of each
episode, we update ω using REINFORCE algorithm (step 10).

4.2 DISCUSSION

To use more information and to obtain better wait-k inference, there are several heuristic methods:

(1) Wait-k∗: We train M translation models using the wait-m strategy, m ∈ {1, 2, · · · ,M}, select
the best waiting threshold k∗ according to the validation performance, and use the corresponding
model for wait-k inference.

(2) Random sampling (briefly, Random): For each training data, randomly choose m from
{1, 2, · · · ,M} with equal probability and using wait-m training.

4

Under review as a conference paper at ICLR 2021

(3) Curriculum learning (briefly, CL): We gradually decrease m from M to the threshold k we will
use in the inference (see Appendix A.2 for mathematical definition).

However, a common drawback of them is that they cannot dynamically adjust k according to the
sentence representation and the model status. In wait-k∗, during training, each sentence pair is
treated with the same k∗. For Random and CL, the selection of waiting threshold m is predefined
and not adjusted according to the training. We overcome this difficulty by introducing a controller,
which is trained via reinforcement learning to maximize the validation performance, and is able to
adaptively determine how much exploration the model requires and how long we should use a specific
wait-m strategy. Therefore, our method is expected to outperform wait-k∗, Random and CL.

We also extend our method to an adaptive version by combining with Zheng et al. (2020a). With a set
of pre-trained wait-m models with different m values, Zheng et al. (2020a) adaptively selects the
waiting threshold during inference. Therefore, we can combine Zheng et al. (2020a) with our method,
where the wait-m models are obtained through our strategy.

5 EXPERIMENTS

We work on the text-to-text simultaneous NMT in this paper. Let us briefly denote English, German,
Vietnamese and Chinese as En, De, Vi and Zh respectively. We conduct experiments on three small-
scale datasets: IWSLT’14 En→De, IWSLT’15 En→Vi and IWSLT’17 En→Zh, and a large-scale
dataset: WMT’15 En→De translation.

5.1 SETTINGS

Datasets: For IWSLT’14 En→De, following (Edunov et al., 2018), we split 7k sentences from
the training corpus for validation, and the test set is the concatenation of tst2010, tst2011, tst2012,
dev2010 and dev2012. For IWSLT’15 En→Vi, following (Ma et al., 2020), we use tst2012 as the
validation set and tst2013 as the test set. For IWSLT’17 En→Zh, we concatenate tst2013, tst2014
and tst2015 as the validation set and use tst2017 as the test set. For WMT’15 En→De, following (Ma
et al., 2019; Arivazhagan et al., 2019), we use newstest2013 as the validation set and use newstest2015
as the test set. More details about datasets can be found at Appendix B.1.

Models: The translation model f is based on Transformer. For IWSLT En→Zh and En→Vi, we
use the transformer small model, where the embedding dimension, feed-forward layer dimension,
number of layers are 512, 1024 and 6 respectively. For IWSLT En→De, we use the same architecture
but change the embedding dimension into 256. For WMT’15 En→De, we use the transformer big
setting, where the above three numbers are 1024, 4096 and 6 respectively. The controller ϕ for each
task is a multilayer perceptron (MLP) with one hidden layer and the tanh activation function. The
size of the hidden layer is 256.

Input features of ϕ: The input Ix,y,f is a 7-dimension vector with the following features: (1) the
ratios between the lengths of the source/target sentences to the average source/target sentence lengths
in all training data (2 dimensions), i.e., Lx/(

∑
x′∈X Lx′/|X |) and Ly/(

∑
y′∈Y Ly′/|Y|); (2) the

training loss over data (x, y) evaluated by wait-k; (3) the average of historical training losses; (4)
the validation loss of the previous epoch; (5) the average of historical validation loss; (6) the ratio of
current training step to the total training iteration.

Choice ofMk: The validation performanceM is the negative validation loss with wait-k strategy. To
stabilize the training, we minus a baseline to the Re in step 9 of algorithm 1, which is the validation
loss of the previous episode, i.e., Re−1. That is, the reward signal at episode e is Re −Re−1. R0 is
the negative validation loss of the randomly initialized model.

Baselines: We implement the wait-k∗, Random and CL baselines discussed in Section 4.2. We also
compare our algorithm with several adaptive methods, including Wait-if-Worse (WIW), Wait-if-Diff
(WID), MILk, MMA-IL and MMA-H (refer to Section 2 for a brief introduction). As discussed
in Section 4.2, we also compare and combine our method with Zheng et al. (2020a). We leave the
training details of all algorithms (optimizer, hyperparameter selection, etc) in Appendix B.2, and the
implementation details of baseline algorithms in Appendix B.3.

5

Under review as a conference paper at ICLR 2021

Evaluation: We use BLEU to measure the translation quality, and use Average Proportion (AP) and
Average Lagging (AL) to evaluate translation delay. AP measures the average proportion of source
symbols required for translation, and and AL measures the average number of delayed words, which
is complementary to AP (see Appendix A.1 for details). Following the common practice (Ma et al.,
2019; 2020), we show the BLEU-AP and BLEU-AL curves to demonstrate the tradeoff between
quality and latency. For IWSLT’14 En→De and IWSLT’15 En→Vi, we use multi-bleu.perl
to evaluate the BLEU scores; for IWSLT’17 En→Zh and WMT’15 En→De, we use sacreBLEU to
evaluate the detokenized BLEU scores.

5.2 RESULTS

We first compare our method with the baseline methods on IWSLT datasets. The BLEU-latency
curves are shown in Figure 2, and the BLEU scores of En→Vi under different wait-k inference are
reported in Table 1. The BLEU scores of all language pairs are left in Appendix C.

0.60 0.65 0.70 0.75 0.80 0.85
AP

18

20

22

24

26

28

BL
EU Wait-k

Wait-k *

CL
Random
Ours

(a) BLEU-AP, En→De.

0.65 0.70 0.75 0.80 0.85
AP

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

BL
EU

(b) BLEU-AP, En→Vi.

0.60 0.65 0.70 0.75 0.80
AP

14

16

18

20

22

24

BL
EU

(c) BLEU-AP, En→Zh.

2 3 4 5 6 7 8 9
AL

18

20

22

24

26

28

BL
EU

(d) BLEU-AL, En→De.

3 4 5 6 7 8 9 10
AL

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

BL
EU

(e) BLEU-AL, En→Vi.

2 3 4 5 6 7 8
AL

14

16

18

20

22

24

BL
EU

(f) BLEU-AL, En→Zh.

Figure 2: Translation quality against latency metrics (AP and AL) on IWSLT’14 En→De, IWSLT’15
En→Vi and IWSLT’17 En→Zh tasks .

Test k wait-k wait-k∗/ k∗ CL Random Ours

1 25.14 26.14 / 5 26.01 26.12 27.03
3 27.17 28.25 / 5 26.37 28.54 29.01
5 28.29 28.44 / 9 27.97 28.61 28.91
7 28.31 28.38 / 13 28.31 28.77 29.17
9 28.39 28.39 / 9 28.31 28.70 29.06

Table 1: BLEU scores on IWSLT En→Vi simultaneous NMT tasks.

We have the following observations:

(1) Generally, our method consistently performed the best across different translation tasks in terms
of both translation quality and controllable latency. As shown in Table 1, our method achieves the
highest BLEU scores among all baselines. We perform significance test on En→Vi and find that our
method significantly outperforms wait-k (p < 0.01 for wait-1,3 and 9; p < 0.05 for wait-5 and 7). In
Figure 2, the curve for our method (i.e., the red one) is on the top in most cases, which indicates that
given specific latency (e.g., AP or AL), we can achieve the best translation quality.

6

Under review as a conference paper at ICLR 2021

(2) Baselines like wait-k∗, Random and CL can also outperform the vanilla wait-k, which demon-
strates the effectiveness of leveraging future information. However, the improvements are not
consistent, and it is hard to tell which baseline is better. On En→De, the performance of the three
baselines is similar and CL slightly outperforms the other two. On En→Zh, wait-k∗ performs the
best followed by CL which performs well at higher latency. In comparison, the improvement brought
by our method is much more consistent.

(3) The improvement brought by our method is more significant with smaller k’s than that with bigger
k’s. We observe that all baselines perform well with bigger k, where more information is available
during inference. That is, the advantages of leveraging future information are less significant. We
provide analysis on the training and validation loss in Appendix ??, which shows that leveraging
future information can improve generalization ability.

The results of WMT’15 En→De, whose training corpus is larger, are shown in Figure 3. The heuristic
methods (wait-k∗, Random, CL) do not bring much improvement compared to wait-k. Our method
consistently outperforms all baselines, which demonstrates the effectiveness of our method on large
datasets. We further evaluate them on WMT’14 and WMT’16 test sets and obtain similar conclusions
(see Figure 7 in Appendix C for details).

0.60 0.65 0.70 0.75 0.80
AP

18

20

22

24

26

28

BL
EU Wait-k

Wait-k *

CL
Random
Ours

(a) BLEU-AP

3 4 5 6 7 8 9
AL

18

20

22

24

26

28

BL
EU

(b) BLEU-AL

Figure 3: Translation quality against latency metrics (AP and AL) on WMT’15 En→De.

We further compare our method with WIW, WID, MILk, MMA-IL and MMA-H on IWSLT En→Vi.
The BLEU-AL curves are shown in Figure 4(a) and the BLEU-AP curves are in Appendix C.
When AL ≥ 5.0, our method outperforms all baseline models, and when AL < 5.0, our method
performs slightly worse than MMA-IL and MMA-H, since ours does not take reducing latency into
consideration explicitly but focuses on improving performance under given waiting thresholds.

To verify the effectiveness of the adaptive extension of our method, we compare and combine our
method with Zheng et al. (2020a) , where the wait-m models are obtained through the vanilla wait-k
(denoted by “Zheng et al.”) and our strategy respectively (denoted by “+Ours”. The BLEU-AL
curves are shown in Figure 4(b), and the BLEU-AP curves are in Appendix C. We can see that: (1)
our method catches up with (Zheng et al., 2020a), which is built upon 10 models in total (wait-1 to
wait-10); (2) after combing our approach with Zheng et al. (2020a), the performance can be further
improved, which shows that our method is complementary to adaptive inference strategies like Zheng
et al. (2020a).

5.3 COMPUTATIONAL OVERHEAD

To evaluate the additional computational overhead brought by our method, we compare the training
speed of wait-3 (measured by batch per second) of standard wait-k and our method. Results on
IWSLT datasets are summarized in Table 2. Our method requires 20% ∼ 30% additional training
time, which is acceptable considering the improvements of performance. The main overhead is from
computing the training loss by wait-k. To verify that, we record the training speed of our method
without the second and third input features of ϕ, which are the training loss over data (x, y) evaluated
by wait-k; and the average of historical training losses. Without them, the training speed of our
method is similar to wait-k (i.e., the “Ours w/o feature (2,3)”).

7

Under review as a conference paper at ICLR 2021

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
AL

21

22

23

24

25

26

27

28

29

BL
EU

Wait-k
Ours
MMA-IL
MMA-H

MILk
WIW
WID

(a) Comparison of our method, WIW, WID,
MILk, MMA-IL and MMA-H.

4 6 8 10 12 14 16 18
AL

25

26

27

28

29

BL
EU

Wait-k
Ours
Zheng et al.
Zheng et al. + ours

(b) Comparison and combination of our
method and Zheng et al. (2020a).

Figure 4: BLEU-AL comparison between our method and baselines on En→Vi.

Task wait-k Ours Ours w/o feature (2,3)

En→De 5.3 4.0 (-23%) 5.2 (-2%)
En→Vi 1.5 1.1 (-27%) 1.4 (-7%)
En→Zh 2.5 1.8 (-28%) 2.4 (-4%)

Table 2: Comparison of training speed (batch / sec) between wait-k and our methods.

5.4 ANALYSIS

(I) Strategy analysis: In Figure 5, we visualize the distribution of wait-m training strategies obtained
by our algorithm for wait-3 and wait-9 inference on IWSLT En→Zh task. We show the frequency of
each wait-m strategy sampled by the controller ϕ at the 0th, 1st, 5th, 10th and 40th episode.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

40

10

5

1

0

Ep
iso

de

Wait-3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

40

10

5

1

0

Ep
iso

de

Wait-9

k=1
k=2
k=3
k=4
k=5
k=6
k=7
k=8
k=9
k=10
k=11
k=12
k=13

Figure 5: An illustration of the strategies for wait-3 and wait-9 on En→Zh dataset.

We observed that the controller uniformly samples different m’s at first, and then the strategies
converge within 10 episodes. After convergence, the controller mainly samples several specific
actions, i.e., m = 5, 9, 12 for wait-3, and m = 5, 12 for wait-9. The action that both controllers
prefer most is m = 12, which is close to the wait-k∗ strategy (k∗ = 11) for both wait-3 and wait-9.
Generally, these two strategies assign most of the sampling frequency to large m, which again shows
the importance of using future information. However, it is worth noting that the controller also
samples smaller m, which means that the past information is also utilized. For example, the controller
for wait-9 still samples m = 5 with a probability about 0.02. Our conjecture is that the use of past

8

Under review as a conference paper at ICLR 2021

information helps mitigate the mismatch between training and inference. If the model is always
trained with future information, this mismatch will be large.

(II) Action space selection: In previous experiments, both future information and past information
are leveraged. We want to study the effect of using past information or future information only. For any
wait-k, we build two other action spaces for ϕ: Kp(k) = {1, 2, · · · , k}; Kf (k) = {k, k+1, · · · ,K}.
We evaluate wait-3, 5 on IWSLT’14 En→De with the above two action spaces.

The results are reported in Table 3. We observe that our method with full action space significantly
outperforms that with Kp(k) and slightly outperforms that using Kf (k). This shows that leveraging
both kinds of information can help improve the performance.

k = 3 k = 5
BLEU AP AL BLEU AP AL

Full action space 23.91 0.650 3.252 26.27 0.723 4.887
Kf (k) 23.70 0.655 3.386 26.04 0.730 5.134
Kp(k) 22.80 0.645 3.078 25.58 0.726 4.979

Table 3: Ablation study for feature selection on IWSLT’14 En→De dataset.

(III) Feature selection: To emphasize the importance of the selected features in Section 5.1, we
provide four groups of ablation study, where in each group some specific features are excluded:
(i) source and target sentence lengths; (ii) current training loss and average historical training loss;
(iii) current validation loss and average historical validation loss; (iv) training step. We work on
IWSLT’14 En→De task and study the effect to wait-3, 5, 7,

The results are shown in Table 4. We report the BLEU scores only, since the latency metrics (AP
and AL) are not significantly influenced. Removing any feature causes performance drop, indicating
that they all contribute to the decision making. Specifically, network status information including
validation performance (feature iii) and training stage (feature iv) is more important than input data
information including sequence length (feature i) and data difficulty (feature ii).

k = 3 k = 5 k = 7

Ours 23.91 26.27 27.19
- (i) 23.67 (-1.00%, rank 3) 26.03 (-0.91%, rank 3) 26.92 (-0.99%, rank 4)
- (ii) 23.70 (-0.88%, rank 4) 26.04 (-0.88%, rank 4) 26.91 (-1.03%, rank 3)
- (iii) 23.57 (-1.42%, rank 1) 25.92 (-1.33%, rank 2) 26.72 (-1.73%, rank 1)
- (iv) 23.65 (-1.09%, rank 2) 25.63 (-2.44%, rank 1) 26.86 (-1.21%, rank 2)

Table 4: Ablation study for feature selection on IWSLT’14 En→De dataset.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed a new approach for simultaneous NMT. Motivated by the fact that wait-k
benefits from future information, we introduced a controller, which adaptively assigns a training task
wait-m to each input. A bi-level optimization method is leveraged to jointly obtain the translation
model and the controller. Experiments on four translation tasks demonstrate the effectiveness of our
approach. For future work, first, we will enhance the objective function in Eqn.(2) beyond using
translation quality only and explicitly introduce the latency constraint. Second, we will combine our
method with the adaptive decoding methods (Arivazhagan et al., 2019; Ma et al., 2020). Third, we
will apply the idea in this work to more applications like action prediction (Kong et al., 2020; Cai
et al., 2019), weather forecasting, game AI (Li et al., 2020; Vinyals et al., 2019), etc.

REFERENCES

Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar. Prediction improves simultaneous neural
machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural

9

Under review as a conference paper at ICLR 2021

Language Processing, pp. 3022–3027, Brussels, Belgium, October-November 2018. Association
for Computational Linguistics. doi: 10.18653/v1/D18-1337. URL https://www.aclweb.
org/anthology/D18-1337.

Naveen Arivazhagan, Colin Cherry, Wolfgang Macherey, Chung-Cheng Chiu, Semih Yavuz, Ruoming
Pang, Wei Li, and Colin Raffel. Monotonic infinite lookback attention for simultaneous machine
translation. In Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 1313–1323, Florence, Italy, 2019. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P19-1126.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2014. URL https://arxiv.org/abs/1409.
0473.

Yijun Cai, Haoxin Li, Jian-Fang Hu, and Wei-Shi Zheng. Action knowledge transfer for action
prediction with partial videos. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 8118–8125, 2019.

Kyunghyun Cho and Masha Esipova. Can neural machine translation do simultaneous translation?
CoRR, abs/1606.02012, 2016. URL http://arxiv.org/abs/1606.02012.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and Stephan Vogel. Incremental decoding and training
methods for simultaneous translation in neural machine translation. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Papers), pp. 493–499, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2079. URL https:
//www.aclweb.org/anthology/N18-2079.

Sergey Edunov, Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Classical
structured prediction losses for sequence to sequence learning. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pp. 355–364, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1033. URL https:
//www.aclweb.org/anthology/N18-1033.

Alvin Grissom II, He He, Jordan Boyd-Graber, John Morgan, and Hal Daumé III. Don’t until the final
verb wait: Reinforcement learning for simultaneous machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1342–1352,
Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1140.
URL https://www.aclweb.org/anthology/D14-1140.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Victor O.K. Li. Learning to translate in real-
time with neural machine translation. In Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pp. 1053–
1062, Valencia, Spain, April 2017. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/E17-1099.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015. URL https://arxiv.org/pdf/1412.
6980.pdf.

Y. Kong, Z. Tao, and Y. Fu. Adversarial action prediction networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 42(3):539–553, 2020.

Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan Yang, Li Zhao, Tao Qin,
Tie-Yan Liu, and Hsiao-Wuen Hon. Suphx: Mastering mahjong with deep reinforcement learning.
arXiv preprint arXiv:2003.13590, 2020.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng, Kaibo Liu, Baigong Zheng, Chuanqiang
Zhang, Zhongjun He, Hairong Liu, Xing Li, Hua Wu, and Haifeng Wang. STACL: Simultaneous
translation with implicit anticipation and controllable latency using prefix-to-prefix framework.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 3025–3036, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1289. URL https://www.aclweb.org/anthology/P19-1289.

10

https://www.aclweb.org/anthology/D18-1337
https://www.aclweb.org/anthology/D18-1337
https://www.aclweb.org/anthology/P19-1126
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1606.02012
https://www.aclweb.org/anthology/N18-2079
https://www.aclweb.org/anthology/N18-2079
https://www.aclweb.org/anthology/N18-1033
https://www.aclweb.org/anthology/N18-1033
https://www.aclweb.org/anthology/D14-1140
https://www.aclweb.org/anthology/E17-1099
https://www.aclweb.org/anthology/E17-1099
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://www.aclweb.org/anthology/P19-1289

Under review as a conference paper at ICLR 2021

Xutai Ma, Juan Pino, James Cross, Liezl Puzon, and Jiatao Gu. Monotonic multihead attention. In
8th International Conference on Learning Representations, 2020.

Yi Ren, Jinglin Liu, Xu Tan, Chen Zhang, Tao Qin, Zhou Zhao, and Tie-Yan Liu. Simulspeech:
End-to-end simultaneous speech to text translation. In ACL, 2020.

A. Sinha, P. Malo, and K. Deb. A review on bilevel optimization: From classical to evolutionary
approaches and applications. IEEE Transactions on Evolutionary Computation, 22(2):276–295,
2018.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems
27. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Hao Xiong, Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua Wu, and Haifeng Wang.
Dutongchuan: Context-aware translation model for simultaneous interpreting. arXiv preprint
arXiv:1907.12984, 2019.

Chen Zhang, Xu Tan, Jinglin Liu, Yi Ren, Tao Qin, and Tie-Yan Liu. Simuls2s: End-to-end
simultaneous speech to speech translation. Openreview, 2019. URL https://openreview.
net/pdf?id=Ske_56EYvS.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simpler and faster learning of adaptive
policies for simultaneous translation. In Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 1349–1354, Hong Kong, China, November 2019a. Association
for Computational Linguistics. doi: 10.18653/v1/D19-1137. URL https://www.aclweb.
org/anthology/D19-1137.

Baigong Zheng, Renjie Zheng, Mingbo Ma, and Liang Huang. Simultaneous translation with
flexible policy via restricted imitation learning. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 5816–5822, Florence, Italy, July 2019b. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1582. URL https://www.aclweb.
org/anthology/P19-1582.

Baigong Zheng, Kaibo Liu, Renjie Zheng, Mingbo Ma, Hairong Liu, and Liang Huang. Simultaneous
translation policies: From fixed to adaptive. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 2847–2853, 2020a. doi: 10.18653/v1/2020.
acl-main.254. URL https://www.aclweb.org/anthology/2020.acl-main.254.

Renjie Zheng, Mingbo Ma, Baigong Zheng, Kaibo Liu, and Liang Huang. Opportunistic decoding
with timely correction for simultaneous translation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 437–442, Online, July 2020b. Association for
Computational Linguistics. doi: 10.18653/v1/2020.acl-main.42. URL https://www.aclweb.
org/anthology/2020.acl-main.42.

A MATHEMATICAL DEFINITIONS

A.1 LATENCY METRICS DEFINITIONS

Given the input sentence x and the output sentence y, let Lx and Ly denote the length of x and
y respectively. Define a function g(t) of decoding step t, which denotes the number of source

11

http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://openreview.net/pdf?id=Ske_56EYvS
https://openreview.net/pdf?id=Ske_56EYvS
https://www.aclweb.org/anthology/D19-1137
https://www.aclweb.org/anthology/D19-1137
https://www.aclweb.org/anthology/P19-1582
https://www.aclweb.org/anthology/P19-1582
https://www.aclweb.org/anthology/2020.acl-main.254
https://www.aclweb.org/anthology/2020.acl-main.42
https://www.aclweb.org/anthology/2020.acl-main.42

Under review as a conference paper at ICLR 2021

tokens processed by the encoder when deciding the target token yt. For wait-k strategy, g(t) =
min{t+ k− 1, Lx}. The definition of Average Proportion (AP) and Average Lagging (AL) are listed
in Equation 3 and Equation 4.

APg(x, y) =
1

|x||y|

|y|∑
t=1

g(t); (3)

ALg(x, y) =
1

τg(|x|)

τg(|x|)∑
t=1

(
g(t)− t− 1

|y|/|x|

)
, (4)

where τg(|x|) = min{t|g(t) = |x|}.
We use the scripts provided by Ma et al. (2019) to calculate AP and AL scores.

A.2 MATHEMATICAL FORMULATION OF CURRICULUM LEARNING

In the curriculum learning (briefly, CL) baseline, we gradually decrease m from K to the threshold k
which will used in the test setting. The mathematical formulations are shown as follows:

m =M − b t− 1

T
(M − k + 1)c (5)

where T denotes the total update number, t denotes the current update number (t = 1, 2, ..., T).

B MORE DETAILED SETTINGS ABOUT EXPERIMENTS

B.1 DETAILED INTRODUCTION OF THE DATASETS

For IWSLT’14 En→De, following Edunov et al. (2018), we lowercase all words, tokenize them
and apply BPE with 10k merge operations jointly to the source and target sequences. We split 7k
sentences from the training corpus for validation and the remaining 160k sequences are left as the
training set. The test set is the concatenation of tst2010, tst2011, tst2012, dev2010 and dev2012,
which consists of 6750 sentences.

For IWSLT’15 En→Vi, following Ma et al. (2020), we tokenize the data and replace words with
frequency less than 5 by <unk>1. We use tst2012 as the validation set and tst2013 as the test set.
The training, validation and test sets contains 133k, 1268 and 1553 sentences respectively.

For IWSLT’17 En→Zh, we tokenize the data and apply BPE with 10k merge operations independently
to the source and target sequences2. We use the concatenation of tst2013, tst2014 and tst2015 as the
validation set and use tst2017 as the test set. The training, validation and test sets contains 235k, 3874
and 1459 sentences respectively. For WMT’15 En↔De, we follow the setting in Ma et al. (2019);
Arivazhagan et al. (2019). We tokenize the data, apply BPE with 32k merge operations jointly to the
source and target sentences, and get a training corpus with 4.5M sentences. We use newstest2013 as
the validation set and use newstest2015 as the test set.

B.2 DETAILED TRAINING STRATEGY

For the translation model, we use Adam (Kingma & Ba, 2015) optimizer with initial learning rate
5× 10−4 and inverse_sqrt scheduler (see Section 5.3 of (Vaswani et al., 2017) for details). The
batch size and the number of GPUs of IWSLT En→De, En→Vi, En→Zh and WMT’15 En→De are
4096× 1GPU, 16000× 1GPU, 4000× 1GPU and 3584× 8× 16GPU respectively. For IWSLT tasks,
the learning rate η is grid searched from {5×10−4, 5×10−5, 5×10−6, 5×10−7} with vanilla SGD
optimizer, and the internal update iteration T is grid searched from { 12 t, t, 2t}, where t is the number
of updates in an epoch of the translation model training. For WMT’15 En→De, due to resource
limitation, we do not train the translation model from scratch. The translation model is warm started
from pretrained wait-k model, the learning rate is set as 5× 10−5, and the internal update iteration T
is 16.

1The data is downloaded from https://nlp.stanford.edu/projects/nmt/, which has been
tokenized already.

2The Chinese sentences are tokenized using Jieba (https://github.com/fxsjy/jieba).

12

https://nlp.stanford.edu/projects/nmt/
https://github.com/fxsjy/jieba

Under review as a conference paper at ICLR 2021

B.3 DETAILED BASELINE IMPLEMENTATION

In this section, we introduce how we reproduce baseline models and get the results on En→Vi task.

For MILk (Arivazhagan et al., 2019) and MMA (Ma et al., 2020), we do not reproduce the results,
but directly use the results reported in Ma et al. (2020). Note that the results for MILk is reproduced
by Ma et al. (2020).

For WIW and WID (Cho & Esipova, 2016), we pre-train a standard translation model, using the
exact same architecture and training hyperparameters as our method and in (Ma et al., 2020). For fair
comparison, we adopt bi-directional attention.

For Zheng et al. (2020a), we use the pre-trained wait-k model and the model obtained through
our results (k = 1, 2, 3, ..., 10). We use only single model rather than ensemble. As in Zheng et al.
(2020a), the thresholds of different k values are obtained in this way: ρi = ρ1−(i−1)∗(ρ1−ρ10)/9,
where we test with ρ1 ∈ {0.2, 0.4, 0.6, 0.8}, ρ10 = 0; and ρ1 = 1, ρ10 ∈ {0, 0.2, 0.4, 0.6, 0.8}.

C SUPPLEMENTAL RESULTS

In this section, we report the specific BLEU scores and some additional results. The BLEU scores
for IWSLT tasks and WMT’15 En→De task are reported in Table 5 and Table 6 respectively. We
further evaluate the baselines and our methods on WMT’14 and WMT’18 test sets, and report the
BLEU-latency curves in Figure 7. The BLEU-AL curves of our methods and baselines on IWSLT’15
En→Vi are reported in Figure 6(a), the BLEU-AL curves of our method and Zheng et al. (2020a) are
in Figure 6(b).

Task wait-k wait-k∗/ best k∗ CL Random Ours

En→De (k = 1) 16.75 19.11 / 9 18.23 18.53 19.10
En→De (k = 3) 22.79 23.36 / 13 23.41 23.50 23.91
En→De (k = 5) 25.34 25.76 / 11 25.88 25.84 26.27
En→De (k = 7) 26.74 26.87 / 9 26.85 26.88 27.19
En→De (k = 9) 27.25 27.54 / 11 27.48 27.07 27.68

En→Vi (k = 1) 25.14 26.14 / 5 26.01 26.12 27.03
En→Vi (k = 3) 27.17 28.25 / 5 26.37 28.54 29.01
En→Vi (k = 5) 28.29 28.44 / 9 27.97 28.61 28.91
En→Vi (k = 7) 28.31 28.38 / 13 28.31 28.77 29.17
En→Vi (k = 9) 28.39 28.39 / 9 28.31 28.70 29.06

En→Zh (k = 1) 14.24 19.34 / 9 17.26 18.02 19.21
En→Zh (k = 3) 19.90 21.66 / 11 21.64 21.36 22.18
En→Zh (k = 5) 21.45 23.57 / 11 23.62 22.59 23.70
En→Zh (k = 7) 23.23 24.95 / 11 24.32 23.15 24.35
En→Zh (k = 9) 23.93 24.83 / 11 24.55 23.55 24.78

Table 5: BLEU scores on IWSLT simultaneous NMT tasks.

k wait-k wait-k∗/ best k∗ CL Random Ours

1 17.07 19.83 / 9 19.41 17.59 18.14
3 22.86 23.14 / 7 22.51 22.76 23.58
5 25.52 26.09 / 7 25.51 25.66 26.18
7 27.32 27.50 / 9 26.80 26.91 27.89
9 28.05 28.05 / 9 28.20 27.82 28.42

Table 6: BLEU scores on WMT’15 En→De dataset.

13

Under review as a conference paper at ICLR 2021

0.6 0.7 0.8 0.9 1.0
AP

21

22

23

24

25

26

27

28

29

BL
EU

Wait-k
Ours
MMA-IL
MMA-H

MILk
WIW
WID

(a) Comparison of our method, WIW, WID,
MILk, MMA-IL and MMA-H.

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
AP

25

26

27

28

29

BL
EU

Wait-k
Ours
Zheng et al.
Zheng et al. + ours

(b) Comparison and combination of our
method and Zheng et al. (2020a).

Figure 6: BLEU-AP comparison between our method and baselines on En→Vi.

0.60 0.65 0.70 0.75 0.80
AP

16

18

20

22

24

BL
EU Wait-k

Wait-k *

CL
Random
Ours

(a) BLEU-AP, WMT’14 En→De

0.60 0.65 0.70 0.75 0.80
AP

20

22

24

26

28

30

32

BL
EU

(b) BLEU-AP, WMT’16 En→De

3 4 5 6 7 8 9
AL

16

18

20

22

24

BL
EU

(c) BLEU-AL, WMT’14 En→De

3 4 5 6 7 8 9
AL

20

22

24

26

28

30

32

BL
EU

(d) BLEU-AL, WMT’16 En→De

Figure 7: Translation quality against latency metrics (AP and AL) on WMT’14 and 16
English→German test sets.

14

Under review as a conference paper at ICLR 2021

D ADDITIONAL ABLATIONS AND ANALYSIS

D.1 MODEL ARCHITECTURE SELECTION

As mentioned in Section 3 of the main content,we adopt unidirectional attention instead of bidi-
rectional attention in the encoder side. We compare the performance the wait-k model with two
attention types on IWSLT’14 En→De dataset, and the results are in Figure 8(a) and Figure 8(b).
On IWSLT’14, we observe that the performance of wait-k with unidirectional attention slightly
drops than that with bidirectional attention. On WMT’15 En→De dataset, our implementation of
wait-k with unidirectional attention is slightly better than that of bidirectional attention reported
in Ma et al. (2019). However, the computational cost of bidirectional attention is much larger than
unidirectional attention. For example, the inference speed of unidirectional wait-9 model is 57.39
sentences / second, while the inference speed of bidirectional attention is 6.48 sentences / second.

0.60 0.65 0.70 0.75 0.80 0.85
AP

18

20

22

24

26

28

BL
EU

Unidirectional attention
Bidirectional attention

(a) BLEU-AP, IWSLT’14 En→De

2 3 4 5 6 7 8 9
AL

18

20

22

24

26

28

BL
EU

(b) BLEU-AL, IWSLT’14 En→De

Figure 8: Ablation study of different model architectures on IWSLT’14 En→De dataset and WMT’15
En→De dataset.

D.2 CASE STUDY

To analyze the effect of using future information, we present two translation examples for En→Zh
wait-3 translation in Table 7 and Table 8. We observe that all methods tend to anticipate when the
future information is lacking (Table 7). Wait-3 makes more mistake (Table 7) and even makes wrong
anticipation where there is no need to anticipate (Table 8), while wait-k∗ and Ours anticipate more
appropriately (Table 7). However, as in Table 8, wait-k∗ sometimes generates repeated information,
therefore increasing the overall latency. This might be resulted from the gap between training and
testing, as wait-k∗ is trained to produce higher latency. Our method can leverage the advantages of
both methods, and produces translations with the best quality.

D.3 MORE HEURISTIC BASELINES

In this section, we conduct ablation studies on two more heuristic baselines to demonstrate the
effectiveness of our method.

(1) Randomly selecting k in a window around k∗: We implement another baseline which is a
combination of wait-k∗ and Random. After obtaining k∗, instead of sampling wait-m on all possible
{1, 2, · · · ,M}, we sample on a smaller region around k∗. We conduct experiments on IWSLT
En→De and the results are in Figure 9. We can see that this variant achieves similar results with
wait-k∗, but is not as good as our method. This shows the importance of using an adaptive controller
to guide the training.

(2) A variant of CL: We implement self-paced learning (SPL) for wait-k, a CL method based on
loss function: within each minibatch, we remove the τ% sentences with the largest loss, where τ is
gradually decreased from 40 to 0. On IWSLT En→De, when k = 3, the BLEU/AL/AP for SPL are
22.87/0.66/3.47, which are worse than conventional CL (23.41/0.66/3.48).

15

Under review as a conference paper at ICLR 2021

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
I was born with epi@@ le@@ p@@ sy and an intellectual disability .

wait-3 我 出生 在 一个 充满 癫@@ 痫 的 知识@@ 产@@ 障碍 的 国家 。

I was born in a full of epilepsy - Not a word - country .
I was born in a country full of epilepsy Not a word.

Wait-k∗ 我 出生 的 时候 ， 我 患有 癫@@ 痫 和 智力 障碍 。

I was born - when , I suffered from epilepsy and intellectual disability .
When I was born, I suffered from epilepsy and intellectual disability.

Ours 我 出生 时 ， 伴随 着 癫@@ 痫 和 智力 障碍 。

I was born when , with - epilepsy and intellectual disability .
When I was born, I was accompanied by epilepsy and intellectual disability.

Table 7: Example 1 for En→Zh wait-3 translation. In this example and the next example, different
colors represent different meanings. Specifically, green and red represents information that does not
exist in the source sentence (i.e., anticipated by the model), where green represents information that
is consistent with the input sentence (i.e. correctly anticipated), and red represents information that is
inconsistent with the input sentence (i.e., wrongly anticipated).
At step 5, Wait-3 anticipates "在一个" (in a), while wait-k∗ and Ours anticipates "的时候" (when)
and "时" (when) respectively. The anticipation generated by wait-k∗ and Ours are more appropriate
within the context, while wait-3 makes mistakes.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
And I opened up the website , and there was my face staring right back at me .

wait-3 我 打开 了 网站 ， 我 发现 了 我 的 脸 。

I opened - the website , I found - I POS face .
I opened the website and I found my face.

Wait-k∗ 我 打开 了 网站 ， 打开 了 网站 ， 我 的 脸 就 在 看着 我。

I opened - the website , opened the website , I POS face PROG PROG looking at me .
I opened the website, opened the website, and my face was looking at me.

Ours 我 打开 了 网站 ， 然后 就 有 了 我 的 脸 盯 着 我 。

I opened - the website , then - there was - I POS face stare PROG me .
I opened the website, and then there was my face staring at me.

Table 8: Example 2 for En→Zh wait-3 translation, where POS indicates possessive forms, and PROG
indicates progressive tense. In this example, there is no need to anticipate. However, wait-3 still
anticipates "发现" (found) and makes a mistake. Wait-k∗ makes a mistake by repeating "打开了网
站" (opened the website). Ours generates the best translation.

0.60 0.65 0.70 0.75 0.80 0.85
AP

18

20

22

24

26

28

BL
EU

Wait-k
Wait-k *

Ours
Random in k * window

(a) BLEU-AP, IWSLT’14 En→De

2 3 4 5 6 7 8 9
AL

18

20

22

24

26

28

BL
EU

(b) BLEU-AL, IWSLT’14 En→De

Figure 9: Randomly selecting k in a window around k∗.

16

Under review as a conference paper at ICLR 2021

(3) An annealing strategy: Inspired by Figure 5, we design a baseline where we randomly sample
the waiting threshold m from a distribution pt(m) at each training step t. The distribution pt(m)
linearly anneals from a uniform distribution to a distribution which prefers larger m. We expect a
single annealing strategy can train reasonably good models for different inference-time k values.
Suppose the minimal m value is mmin, the maximal m value is mmax. mmin and mmax are two integers
and m ∈ {mmin,mmin + 1, · · · ,mmax}. The total training step is denote T . pt(m) is mathematically
defined as follows:

pt(m) = (1− t

T
) · pinit(m) +

t

T
· pfinal(m),

pinit(m) =
1

mmax −mmin + 1
, pfinal(m) =

m∑mmax
i=mmin

i
.

(6)

The results are shown in Figure 10, which shows this baseline brings limited improvement compared
to wait-k. A possible reason is that this baseline cannot guarantee the best “annealing” strategy for
each separate k, while our method can adaptively find the optimal strategy. Besides, as shown in
Figure 5, the learned strategies for different wait-k inference are pretty different.

0.65 0.70 0.75 0.80 0.85
AP

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

BL
EU

Wait-k
Ours
Annealing

(a) BLEU-AP, IWSLT’14 En→De

3 4 5 6 7 8 9 10
AL

25.0

25.5

26.0

26.5

27.0

27.5

28.0

28.5

29.0

BL
EU

(b) BLEU-AL, IWSLT’14 En→De

Figure 10: Randomly selecting k in a window around k∗.

17

	Introduction
	Related work
	Problem formulation and background
	Notations and formulation
	Model architecture

	Our method
	Algorithm
	Discussion

	Experiments
	Settings
	Results
	Computational overhead
	Analysis

	Conclusion and future work
	Mathematical definitions
	Latency metrics definitions
	Mathematical formulation of curriculum learning

	More detailed settings about experiments
	Detailed introduction of the datasets
	Detailed training strategy
	Detailed baseline implementation

	Supplemental results
	Additional ablations and analysis
	Model architecture selection
	Case study
	More heuristic baselines

