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Abstract

Mean-field variational inference (VI) is computationally scalable, but its highly-
demanding independence requirement hinders it from being applied to wider
scenarios. Although many VI methods that take correlation into account have
been proposed, these methods generally are not scalable enough to capture the
correlation among data instances, which often arises in applications involving
graphs or explicit constraints among instances. In this paper, we developed the
Tree-structured Variational Inference (TreeVI)2, which uses a tree to capture the
correlation among latent variables in the posterior. We show that samples from the
tree-structured posterior can be reparameterized efficiently and parallelly, making
its training cost just 2 or 3 times that of VI under the mean-field assumption. To
capture correlation with more complicated structure, the TreeVI is further extended
to the multiple-tree case. Furthermore, we show that the underlying tree structure
can be automatically learned from training data. With experiments on synthetic
datasets, constrained clustering, user matching and link prediction, we demonstrate
the efficacy of TreeVI in capturing instance-level correlation in posteriors and
enhancing the performance of downstream applications.

1 Introduction

Variational inference is a probabilistic method that is widely used for approximating the exact
posterior in latent-variable models p(X,Z) = p(X|Z)p(Z), with X and Z being the observed
data and latent variable, respectively. When not considering the existence of any relation among
instances, we can write the model into a factorized form as p(X,Z) =

∏
i p(xi|zi)p(zi), where

xi and zi denote the i-th data instance and latent variable. Thanks to the factorized form, we can
reasonably use the mean-field posterior q(Z|X) =

∏
i q(zi|xi) for model inference and training.

However, there are also many circumstances, under which complex relations among instances exist.
For instances, in graph-structured data, VGAE [19] uses two instances’ latent representations to
model the probability of existing an edge eij between them via p(eij |zi, zj), which, obviously,
makes all instances coupled together. Also, in the constrained clustering, DC-GMM [24] designs
a prior p(c;W) to specify the assignment constraints and then uses it to construct the prior distri-
bution p(Z, c) = p(c;W)

∏
i p(zi|ci), which will also cause all zi to be correlated with each other.

Obviously, under these circumstances, due to the existence of correlation among instances, it is
unreasonable to assume a factorized form for the posterior anymore.
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There has been many work on incorporating correlation structures into posterior approximation in
variational inference recently [23, 31, 43], and they are mainly focused on modeling correlation
structure among different dimensions within each latent variable. However, the amount of latent
dimensions is usually no more than a few hundred, at a completely different level from the size of
dataset which might be as large as millions. Therefore, these variational inference methods modeling
correlations among dimensions cannot be leveraged to capture instance-level correlation especially
for large datasets. To investigate correlations among different instances, Tang et al. [36] recently used
a tree structure over latent variables to take instance-level correlations into consideration, but only
capable of capturing correlations between immediately connected nodes.

In this work we propose a novel posterior approximation for variational inference, the Tree-structured
Variational Inference (TreeVI), that models the latent correlation structure with a tree-structure-
induced distribution and enables modeling high-order correlations between non-adjacent latent
variables. Our method provides a matrix-form reparametreization for tree-structured correlated
latents based on ancestral sampling, that is scalable to large datasets with computational complexity
comparable to mean-field variational inference methods. To better capture structural correlation,
we also generalize TreeVI to multiple trees, and propose a continuous optimization algorithm to
stochastically learn a theoretically correlation-rich tree or mixture-of-trees structure.

2 Tree-structured Variational Inference

Consider a latent-variable model pθ(X,Z) = pθ(X|Z)p(Z), where X = [x⊤
1 ,x

⊤
2 , · · · ,x⊤

N ] and
Z = [z⊤1 , z

⊤
2 , · · · , z⊤N ]; and xi and zi ∈ RD denote the i-th data instance and its corresponding

latent variable, respectively. Given the latent-variable model pθ(X,Z), variational inference aims to
find a distribution that is closet to the true posterior pθ(Z|X) from a distribution family Q, which is
achieved by maximizing the evidence lower bound (ELBO)

L(θ,ϕ) = EZ∼qϕ(Z|X) [log pθ(X,Z)− log qϕ(Z|X)] , (1)

where qϕ(Z|X) ∈ Q denotes the approximate posterior parameterized by ϕ. In most of current works,
the latent-variable model is assumed to take a factorized form as pθ(X,Z) =

∏N
i=1 pθ(xi|zi)p(zi)

due to the observed independence among data instances. With the factorized form for the model, it
can be seen that the true posterior pθ(Z|X) also takes a factorized form, hence it is reasonable to
choose a fully factorized form qϕ(Z|X) =

∏N
i=1 qϕ(zi|xi) for the approximate posterior. However,

for applications like constrained clustering with generative model and generative modeling on
graph data, we often need to impose some constraints among the latent variables {zi}Ni=1 by using
a correlated prior distribution p(Z) with p(Z) ̸=

∏N
i=1 p(zi), or use several latent variables zj

to be responsible for generating a data instance xi (e.g., xi representing an edge), which will
result in pθ(X|Z) ̸=

∏N
i=1 pθ(xi|zi). Obviously, under these scenarios, latent variables {zi}Ni=1

from the true posterior pθ(Z|X) are not independent anymore. Thus, if a factorized posterior
qϕ(Z|X) =

∏N
i=1 qϕ(zi|xi) is still employed to approximate the true posterior, the model will

lose the ability to capture the correlations among data instances. To alleviate the deviation caused
by mean-field approximation, we propose to approximate the correlation structure with a tree or a
mixture-of-tree structure as shown in Fig. 1, respectively.

2.1 TreeVI: Variational Inference under a Single Tree

To capture the correlations among latent variables {zi}Ni=1 in the posterior distribution, a multi-
variate normal distribution q(Z|X) = N (Z;µz,Σz) can be used, where µz = [µ⊤

1 , · · · ,µ⊤
N ]⊤ ∈

RND is the mean and Σz = diag(σz)Rdiag(σz) is the ND ×ND covariance matrix; σz =
[σ⊤

1 , · · · ,σ⊤
N ]⊤ ∈ RND is the standard deviation; and R means the correlation matrix, with its

(i, j)-th block taking the form
[R]ij = diag(γij); (2)

γij ∈ (−1, 1)D for i ̸= j denotes the correlation strength between latent variable zi and zj and
γii ≜ 1D for i ∈ V ≜ {1, 2, · · · , N}. Here, the diagonal structure assumed for the (i, j)-th block
[R]ij implies that we are only interested in capturing the correlation among different variables,
without considering the correlation of different dimensions within one variable. Actually, due to the
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(c) MTreeVI: Extension to Multiple Trees

Figure 1: Comparison between the fully-connected correlation structure and approximation by single
and multiple tree-structured variational inference

relatively low dimensions of a latent variable zi, the correlation within a variable can be captured by
combining with existing VI methods, but we here omit the modeling of correlation among dimensions
for simplicity. In the following context, the diagonal operators are omitted for conciseness.

A crucial part of the variational inference is to determine appropriate values for the correlation
parameters Γ0 = {γij : i ̸= j ∈ V}. For a general multivariate normal distribution, all correlation
parameters in Γ0 are learnable, which admits a highly expressive correlation structure, but also
resulting in high computational complexity. The widely-used mean-field approximation reduces the
cost by assuming an independence structure within any pair of latent variables, i.e., γij = 0D for
any i ̸= j, completely ignoring the correlation among latent variables. In order to achieve a balance
between expressiveness and complexity, we propose to approximate the fully-connected correlation
structure with a tree structure, introducing our TreeVI, namely tree-structured variational inference.

The idea of tree-structured variational inference is to impose a tree correlation structure T = (V, E)
among latent variables, as illustrated in the quin-variate example in Fig. 1b. In our TreeVI, given a
tree structure T = (V, E), we only specify the correlation parameters γij for latent variables (zi, zj)
adjacent on the tree, and for any non-adjacent latent variables (zi, zj), the correlation between then
are directly computed as the multiplication of correlation parameters along Pi→j , that is

γ̃ij =
∏

(s,t)∈Pi→j

γst, (i, j) /∈ E , (3)

where Pi→j denotes the path connecting the latent variable zi to zj on the tree T, and the vector
multiplication is assigned as Hadamard product. Therefore, only the correlation strengths w.r.t. the
edges of the tree T are learnable, which can be denoted as ΓT = {γij : (i, j) ∈ E} ⊂ Γ0. The
parameterization leads to a correlation matrix [R(T)]ij = γ̃ij that is totally determined by parameters
in ΓT, with γ̃ii = 1D for i ∈ V . For example, for the quin-variate tree structure in Fig. 1b, the
correlation parameter between z1 and z5 is fixed as γ̃15 = γ12 ⊙ γ23 ⊙ γ35.

With the tree-structured correlation defined above, it can be easily shown that the distribution qTϕ(Z|X)
forms a Markov random field defined by the tree T [3], and its joint probability can be expressed as

qTϕ(Z|X) =
∏
i∈V

qϕ(zi|xi)
∏

(i,j)∈E

qϕ(zi, zj |xi,xj)

qϕ(zi|xi)qϕ(zj |xj)
, (4)

where the marginal distribution qϕ(zi|xi) = N (zi;µi,diag(σ
2
i )), and pairwise marginal distribution

for adjacent variables (i, j) ∈ E is q(zi, zj |xi,xj) = N (zi, zj ;µij ,Σij); and the mean µij =

[µ⊤
i ,µ

⊤
j ]

⊤ and covariance matrix

Σij =

[
σi ⊙ σi γij ⊙ σi ⊙ σj

γij ⊙ σi ⊙ σj σj ⊙ σj

]
; (5)

γij is the correlation parameter between two adjacent variables. Furthermore, we can also see that
the distribution qTϕ(Z|X) can be represented by an acyclic Bayesian network of the form

qTϕ(Z|X) = qϕ(z1)
∏

(i,j)∈E

qϕ(zj |zi), (6)
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where the conditioning on data xi is omitted for conciseness; z1 is assumed to be the root node; the
conditional distribution of latent variables with respect to an edge (i, j) ∈ E is

qϕ(zj |zi) = N
(
zj ;µj + γij ⊙ σj ⊙ σ−1

i ⊙ (zi − µi),σj ⊙
√
1D − γ2

ij

)
. (7)

With the conditional distribution qϕ(zj |zi), joint samples (z1, z2, · · · , zN ) can be drawn from
qTϕ(Z|X) with ancestral sampling. By sampling zi one by one with ancestral sampling, we can show
that the joint sample (z1, z2, · · · , zN ) can be equivalently represented by a set of N independent
Gaussian noises {ϵi}Ni=1 with ϵi ∼ N (0D, ID), as stated in the theorem below.

Theorem 1. Suppose that N latent variables Z = [z1, · · · , zN ]⊤ follow a tree-structured posterior
distribution qTϕ(Z|X) with the tree structure T = (V, E), the joint sample (z1, z2, · · · , zN ) ∼
qTϕ(Z|X) can be expressed as

zj = µj + γ̃1j ⊙ ϵ1 ⊙ σj +
∑

i∈P1→j ,i̸=1

γ̃ij ⊙
√
1D − γ2

pa(i),i ⊙ ϵi ⊙ σj , for j ∈ V, (8)

where ϵi ∼ N (0D, ID) is a Gaussian random noise and pa(i) denotes the parent node of zi with
respect to i ∈ V .

For the proof and a concrete example, we refer to Appendix B. With the reparameterization of sample
zj in Eq. (8), the joint sample Z = [z⊤1 , · · · , z⊤N ]⊤ can be re-parameterized in a matrix-form as

Z(T) = µz + L(T)
z ϵ with ϵ = [ϵ⊤1 , · · · , ϵ⊤N ]⊤, (9)

where ϵi ∼ N (0D, ID) for i ∈ V; and L
(T)
z is a ND × ND matrix, with its (i, j)-th block

[L
(T)
z ]ij = diag(ℓij), and

ℓij =


γ̃1j ⊙ σj , i = 1, j ∈ V,
γ̃ij ⊙

√
1D − γ2

pa(i),i ⊙ σj , i ̸= 1, i ∈ P1→j , j ∈ V,
0D, otherwise.

(10)

Actually, if the variables are indexed according to their positions on the tree T from left to right and
then top to bottom, it can be easily shown that L(T)

z is a lower-triangular block matrix. For example,
the matrix L

(T)
z corresponding to the quin-variate example of Fig. 1b can be written as follows

L(T)
z = diag(σz)


1D

γ̃12

√
1D − γ2

12

γ̃13 γ̃23 ⊙
√
1D − γ2

12

√
1D − γ2

23

γ̃14 γ̃24 ⊙
√
1D − γ2

12 0D

√
1D − γ2

24

γ̃15 γ̃25 ⊙
√
1D − γ2

12 γ̃35 ⊙
√
1D − γ2

23 0D

√
1D − γ2

35


(11)

where diag(·) has been omitted for conciseness.

By parameterizing the mean µi, standard deviation σi and the correlation parameters γij for (i, j) ∈
E with a neural network fϕ(·, ·) as

γij = fϕ(xi,xj), (i, j) ∈ E , (12)

according to Eq. (9), samples drawn from qTϕ(Z|X) can be reparameterized in the form of neural
network parameters ϕ and random Gaussian noise ϵ, which can facilitate the training of variational
inference significantly. Importantly, except the mean and standard deviation, we only need to re-
parameterize the parameters ΓT = {γij : (i, j) ∈ E}, while computing the other non-zero elements

in L
(T)
z with ΓT. In this way, we only need to re-parameterize |E| parameters, and thus only need to

run |E| times of neural network fϕ(·, ·), instead of O(N2) times in the vanilla method. For a tree, the
number of edges |E| ≤ N − 1, thus we only need to additionally run O(N) times of neural networks
fϕ(·, ·), in addition to the runs required by the mean-field method. For a mean-field variational
inference that assumes independence among instances, for each epoch, it also needs to run O(N)
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times of neural network. Thus, the complexity of our proposed method is roughly only 2 times of the
mean-field method. As seen in the experiments on constrained clustering, the consumed time of our
TreeVI is only 2 to 3 times that of mean-field variational inference methods.

It should be pointed that if we simply apply Cholesky decomposition to the correlation matrix R
to produce R = LL⊤ and then directly re-parameterize the elements ℓij in the lower-triangular
matrix L by a neural network fϕ(·, ·), that is, ℓij = fϕ(xi,xj), then we have to re-parameterize
as many as N(N + 1)/2 elements, i.e., all elements from the lower-triangular positions of L need
to be re-parameterized, where N is the number of instances in training dataset. That means we
need to run the neural network fϕ(·, ·) by O(N2) times for every epoch, which is computationally
unacceptable, especially considering that N could be as large as millions in practice. And our main
contribution lies at finding a way to reduce the required times of running the neural network fϕ(·, ·)
from O(N2) to O(N) by restricting the correlation matrix R to a special form R(T) constructed
from a tree T = (V, E), which is actually a dense matrix with its (i, j)-th element [R(T)]ij = γ̃ij

defined as Eq. (3) for (i, j) /∈ E . Under the restricted correlation matrix R(T), the lower-triangular
matrix L

(T)
z possesses a very elegant form, as shown in Eq. (10). The elegance lies at that although

L
(T)
z still has O(N2) non-zero elements, all of these non-zero elements can be explicitly computed

from the |E| parameters ΓT = {γij : (i, j) ∈ E}.

With the tree-structured posterior, the data log-likelihood has the evidence lower bound log p(X) ≥
EZ∼qTϕ(Z|X)[log pθ(X,Z)] + H[qTϕ(Z|X)], where the first term can be estimated by reparam-

eterization Z(T) ∼ qTϕ(Z|X), and the entropy H of the tree-structured posterior distribution

qTϕ(Z|X) =
∏

i∈V qϕ(zi|xi)
∏

(i,j)∈E
qϕ(zi,zj |xi,xj)

qϕ(zi|xi)qϕ(zj |xj)
can be decomposed as entropy terms with

respect to singleton posterior qϕ(zi|xi) and pairwise posterior qϕ(zi, zj |xi,xj) which can be both
directly computed (for detailed expressions we refer to Appendix). Therefore, the optimization of
variational inference with tree-structured posterior approximation can be simplified as maximizing
the following sampling-based evidence lower bound of our proposed TreeVI

LT(θ,ϕ,X) = log pθ(X,Z(T)) +H[qTϕ(Z|X)], (13)

where Z(T) denotes the tree-structured reparameterization for latent variables with respect to the tree
structure T. For detailed computation for the evidence lower bound, we refer to Appendix C.1.

2.2 Extension to Multiple Trees

The expressiveness of a single tree-structured posterior is still restrictive. To alleviate this issue, we
propose to approximate the true posterior with a mixture-of-trees posterior distribution

qMT
ϕ (Z|X) =

M∑
m=1

πmqTm

ϕ (Z|X), (14)

where we use a weighted mixture of tree structures MT = {T1, · · · ,TM}, as shown in Fig. 1c,
to approximate the underlying correlation structure, and the posterior qTm

ϕ (Z|X) with respect to
the m-th tree component is expressed in the form of Eq. (4). Each tree component Tm = (V, Em)
corresponds to a set of latent indices V = {1, · · · , N}, a set of pairwise connections Em, a set of
correlation parameters ΓTm = {γm

ij : (i, j) ∈ Em} to be learned, and a weight controlled by a tree
coefficient πm, where m = 1, · · · ,M .

With the mixture-of-trees posterior, the data log-likelihood has the evidence lower bound log p(X) ≥∑M
m=1 πmEZ∼qTmϕ (Z|X)[log pθ(X,Z)] + H[qMT

ϕ (Z|X)], where the first term can be estimated by

tree-structured reparameterization Z(Tm) ∼ qTm

ϕ (Z|X) within each tree component Tm for m =

1, · · · ,M , but the entropy term has no explicit expression. Since the entropyH[p] is concave in the
probability distribution p, the entropy of the mixture-of-trees posterior distribution is lower bounded
by the weighted sum of entropies with respect to each tree component

∑M
m=1 πmH[qTm

ϕ (Z|X)],
which can be similarly computed by the singular and pairwise marginal posterior distributions
with respect to each tree component Tm, m = 1, · · · ,M . Therefore, the optimization of variational
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inference with mixture-of-trees posterior approximation can be simplified as maximizing the following
sampling-based evidence lower bound of our proposed MTreeVI

LMT(θ,ϕ,X) =

M∑
m=1

πm

[
log pθ(X,Z(Tm)) +H[qTm

ϕ (Z|X)]
]
, (15)

where Z(Tm) denotes the tree-structured reparameterization for latent variables with respect to the
tree structure Tm. For detailed computation for the evidence lower bound, we refer to Appendix C.2.

2.3 Learning the Tree Structure from Data

Our proposed tree-structured and mixture-of-trees structured posterior approximation make variational
inference with pairwise latent correlations feasible, but a specific tree structure over latent variables
need to be determined in advance. In this section, our goal is to develop an efficient algorithm for
learning correlation-rich tree structures to approximate the underlying posterior correlation structure.

To learn a meaningful tree structure from the latent embeddings, we adopt a symmetric binary matrix
A ∈ {0, 1}N×N with entries 0 along the diagonal, where each element aij ∈ {0, 1} represents an
edge between latents zi and zj , i ̸= j ∈ {1, · · · , N} (here we assume D = 1 for convenience).

Proposition 1. Suppose that the symmetric adjacency matrix A ∈ {0, 1}N×N , then the undirected
structure induced by adjacency matrix A is acyclic if and only if

h(A) = trA exp(A2) = 0 (16)

where tr(·) and exp(·) represent the trace and exponential of a matrix respectively, and ⊙ is the
Hadamard product.

For the proof we refer to the Appendix D.1. Inherited from the idea of Zheng et al. [45], we use a
similar indicator function h(A) in Eq. (16) to check the acyclicity of the structure induced by the
symmetric binary matrix A. If and only if h(A) = 0, the adjacency matrix A determines a unique
acyclic undirected graph, which can be leveraged to build a tree structure T(A) = (V, E) with nodes
V ⊂ {1, · · · , N} and edges E = {(i, j) : aij ̸= 0, i ̸= j ∈ V}. Under the constraints Eq. (16), we
seek to establish the following continuous optimization problem

min
θ,ϕ,A

ℓ(θ,ϕ,X,A), subject to h(A) = 0, (17)

where ℓ(θ,ϕ,X,A) = −LT(A)(θ,ϕ,X) is the negative of the evidence lower bound given by Eq.
(13), and the correlation parameters ΓT(A) = {γij : aij ̸= 0, i ̸= j ∈ V} of the learned tree
is determined by the binary adjacency matrix A with γij = fϕ(xi,xj) calculated by the neural
network. A similar optimization can be implemented to stochastically learn a meaningful mixture of
trees by using a set of symmetric adjacency matrices A = {A1, · · · ,AM} to represent multiple tree
components, and further maximizing the evidence lower bound Eq. (15) under acyclic constraints
Eq. (16) of each matrix in A. The constrained optimization problem above can be further converted
into unconstrained subproblems with Lagrangian multiplies and efficiently solved by numerical
algorithms or stochastic gradient methods. For implementation details, we refer to Appendix D.3.

To initialize the tree structure before constrained optimization, the easiest way is to randomly build
from the fully connected graph over data instances by using depth-first search (DFS) algorithm. To
enrich the initialized tree structure with neighboring correlation information, the uniform sampling
process in the DFS algorithm can be further modified to generate a meaningful neighborhood for
each instance, by assigning the probability of sampling a neighbor of each instance according to their
similarity. For detailed implementation of the tree initialization, we refer to the Appendix D.2.

3 Related Work

Variational inference is broadly used for approximating intractable posterior in latent variable models,
but notorious for its restricted variational families, especially mean-field variational family which
is still widely used by modern generative models [4, 37]. So far there has been a wide variety of
variational inference methods that attempt to improve on traditional mean-field variational inference
by modeling dependence structures within latent posterior distribution, such as constructing the
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variational distribution with a normalizing flow [30, 6, 39], which deterministically transforms a
simple probability distribution over latent variable to a complex one through a sequence of invertible
and differentiable functions with tractable Jacobians. Besides deterministic transformations, the
form of structured variational inference can be diverse, such as constructing with implicit models
[12, 35, 26], modeling dependencies between local and global parameters [11, 38], constructing
with a mixture of variational distributions [16, 27, 20], determining pairwise dependencies between
univariate marginals with copula functions [34, 13, 33], and designing variational distribution with
hierarchies [38, 1, 25]. However, these work are mostly focused on distributional assumption over
latent dimensions, that fail to be directly extended to capture instance-level correlation structure.

Recently, there has been some work on incorporating instance-level correlation structure in variational
inference [24, 36, 29]. Manduchi et al. [24] designs a prior information matrix to express must-link
and cannot-link constraints between data in an explicit way, and integrates the instance-level prior
information into the framework of variational inference by conditioning on the prior clustering
preferences. But the instance-level correlation is only considered in the generative process regardless
of the correlation structure induced from latent posterior by still adopting an amortized mean-field
variational distribution. The work of Tang et al. [36] is the most related to ours, which takes instance-
level correlation structure into consideration when learning latent representations, but restricts both the
prior and posterior distributions to be identically tree-structured for tractable optimization. However,
this assumption is unrealistic in most variational inference scenarios, and high-order correlations are
unable to be modeled within the tree structure.

4 Experiments

Tasks & Datasets. We evaluate our methods with four different tasks: synthetic evidence lower
bound test, constrained clustering, user matching and link prediction, on synthetic dataset, standard
datasets (MNIST, Fashion MNIST, Reuters and STL-10), public movie rating and product rating
datasets, respectively. We refer to Appendix E.1 for more dataset details.

Baselines & Implementation Details. For baselines on the user matching and link prediction tasks,
we include the standard variational auto-encoders [18] and a recent modification to VAE [36] taking
instance-level correlation structure into consideration. And we also compare our method to the
state-of-the-art method learning latent embeddings with graph convolutional networks, GraphSAGE
[8]. With regard to the constrained clustering task, we take a variety of constrained clustering methods,
e.g., the traditional pairwise constrained K-means (PCKmeans, [2]), deterministic deep constrained
clustering method based on DEC (SDEC, [32]) and constrained IDEC (C-IDEC, [44]), as state-
of-the-art constrained clustering methods for comparison. We also include the generative models,
the unsupervised VaDE [14], the graph augmented VaDE (DGG, [42]), and the weakly-supervised
DC-GMM [24]. For comparison, we experiment on our methods TreeVI and MTreeVI, where
the number of tree components for the mixture-of-trees posterior is fixed as M = 3. Aadditional
information related to experimental implementation details are in Appendix E.2.

4.1 Synthetic VAE Table 1: Estimated lower bounds
(ELBO) of VAE with posterior dis-
tributions approximation by mean-
field distributions, tree structures
T1 and T2, as well as their mix-
ture model MTreeVI(T1,T2), com-
pared to ground truth log-likelihood
log p(X).

Methods Lower Bound

Mean-field -11.1535
TreeVI (T1) -10.8998
TreeVI (T2) -10.6137

MTreeVI -10.3586

log p(X) -10.3417

We design a synthetic dataset with a graph-structured latent
variable model. The dataset contains N = 6000 data points
x1, · · · ,xN ∈ RD with D = 4, each independently gener-
ated from the conditional distribution p(x|z) = N (x; z, σ2I4)
given latent embeddings z1, · · · , zN ∈ RD where σ2 is a
fixed value and set to 0.5. The latent embeddings z1, · · · , zN
are drawn from a zero-mean normal distribution p(z) =
N (z;04,Σz), and the graph-structured correlation is incor-
porated into the latent covariance matrix Σz = I4 + λA via
an affinity matrix A ∈ R4×4 assigned with a loopy graph
structure

A =

 0 1 0 0.3
1 0 1 0.3
0 1 0 0.4
0.3 0.3 0.4 0

 (18)
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Table 2: Clustering performances (%) of our proposed methods TreeVI and MTreeVI compared
with baselines. Means and standard deviations are computed across 10 runs with different random
initializations. † Results taken from DC-GMM [24]

Dataset Metric VaDE† SDEC† C-IDEC† DGG DC-GMM TreeVI MTreeVI

MNIST ACC 89.0 ±5.0 86.2 ±0.1 96.3 ±0.2 95.8 ±0.1 96.5 ±0.2 97.4 ±0.3 97.5 ±0.4
NMI 82.8 ±3.0 84.2 ±0.1 91.8 ±1.0 91.2 ±0.2 91.4 ±0.3 93.1 ±0.6 93.1 ±0.6
ARI 80.9 ±5.0 80.1 ±0.1 92.1 ±0.4 91.4 ±0.3 92.5 ±0.5 93.7 ±0.7 94.0 ±0.5

fMNIST ACC 55.1 ±2.2 54.0 ±0.2 68.1 ±3.0 79.9 ±0.4 80.5 ±0.8 81.4 ±0.6 82.1 ±0.7
NMI 57.9 ±2.7 57.3 ±0.1 66.7 ±2.0 70.1 ±0.3 72.0 ±0.4 73.9 ±0.6 74.1 ±0.6
ARI 41.6 ±3.1 40.2 ±0.1 52.3 ±3.0 64.9 ±0.3 66.4 ±0.5 67.9 ±0.9 68.1 ±0.6

Reuters ACC 76.0 ±0.7 82.1 ±0.1 94.7 ±0.6 93.5 ±0.6 95.4 ±0.2 95.9 ±0.6 96.1 ±0.7
NMI 50.1 ±1.3 62.3 ±0.1 81.4 ±0.7 81.2 ±0.8 82.7 ±0.7 83.4 ±0.5 83.9 ±0.5
ARI 58.0 ±1.4 66.7 ±0.1 87.7 ±0.9 87.8 ±0.5 89.0 ±0.6 90.2 ±0.4 90.5 ±0.4

STL-10 ACC 77.3 ±0.5 79.2 ±0.1 81.6 ±3.8 89.9 ±0.3 89.5 ±0.5 90.4 ±0.9 90.7 ±0.9
NMI 70.6 ±0.4 78.6 ±0.1 77.3 ±1.7 80.9 ±0.5 80.2 ±0.7 81.3 ±0.8 81.6 ±0.7
ARI 62.7 ±0.4 71.0 ±0.1 71.8 ±3.4 79.0 ±0.4 78.4 ±0.9 79.5 ±0.7 79.7 ±0.9

where λ is leveraged to control the overall correlation strength and set to 0.5. Two tree structures over
latent dimensions T1 = (V, E1) and T2 = (V, E2) are designed with vertex set V = {1, 2, 3, 4} and
edge sets E1 = {(1, 2), (1, 3), (2, 4)} and E2 = {(1, 2), (1, 4), (2, 3)}, respectively. The posterior
correlation structure is modeled by T1, T2 and their mixture model MTreeVI(T1,T2), with the
estimated evidence lower bounds and ground truth log-likelihood shown in Table 1. It can be seen
that tree-structured posteriors can learn more correlation information than traditional mean-field
approximations. Moreover, different choices of the tree structures influence the amount of correlation
information, and mixture of tree components can obtain more correlations than each individual.

4.2 Constrained Clustering

Constrained clustering tasks differ from the classic clustering scenario with access to instance-level
constraints, consisting of must-links if two samples are believed to belong to the same cluster, and
cannot-links, otherwise. Based on the variational deep embedding (VaDE) framework [14], con-
strained clustering can be formulated as a probabilistic clustering problem with joint probability
pθ(X,Z, c) = pθ(X|Z)p(Z|c)p(c), where the sample xi is generated from a normal distribution
conditioned on zi, zi is sampled from p(zi|ci) = N (zi;µci ,diag(σ

2
ci)), and the cluster assignments

c = {ci}Ni=1 are sampled from a categorical distribution. Following previous work [24], we in-
corporate the clustering preference through a conditional probability p(c|W) with a pairwise prior
information matrix W

p(c|W) :=

∏
i πcihi(c,W)∑

c

∏
j πcjhj(c,W)

=
1

Ω(π)

∏
i

πcihi(c,W) (19)

where π = {πk}Kk=1 are the weights associated to each cluster, Ω(π) is the normalization factor and
hi(c,W) =

∏
j ̸=i exp(Wijδcicj ) is a weighting function. The pairwise prior information matrix W

is defined as a symmetric matrix containing the pairwise constraints: Wij > 0 if there is a must-link
constraint between xi and xj , Wij < 0 if there is a cannot-link constraint between xi and xj , and
Wij = 0 otherwise. The values |Wij | ∈ [0,∞) reflect the degree of certainty in the constraints, and
are set to 104 for all datasets. And 6000 pairwise constraints are used for experiments on both our
methods and other constrained clustering baselines.

The variational posterior distribution is defined as qϕ(Z, c|X) = qϕ(Z|X)q(c|Z), where the prob-
ability of cluster assignments is factorized as q(c|Z) =

∏
i q(ci|zi) which can be easily computed

by Bayes theorem. In the work of DC-GMM [24], the posterior distribution qϕ(Z|X) for latent
variables is assumed to be mean-field which fails to capture the posterior correlation structure, while
in our methods TreeVI and MTreeVI, the latent posterior is approximated by tree-structured and
mixture-of-trees distribution, respectively. In Table 2 we report the averaged clustering performances
across 10 turns of both our proposed methods against baseline methods. Accuracy (ACC), Normalized
Mutual Information (NMI), and Adjusted Rand Index (ARI) are used as evaluation metrics. It can be
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Figure 2: T-SNE visualization of MNIST samples in the embedded space and the learnt tree structure
of our proposed TreeVI. 100 samples are randomly selected to plot their instance-level tree structure
(colored in black).

easily observed that our models reach the state-of-the-art clustering performance in all metrics and
datasets, benefiting from the correlation structures captured by our designed correlated posteriors.
Moreover, due to high efficiency of tree-structured reparameterization, our methods have computa-
tional complexity comparable to DC-GMM that adopts the fully factorized posterior distribution. For
example, the training of DC-GMM on MNIST dataset each epoch takes 2 to 3 seconds on GeForce
RTX 3090, while our TreeVI and MTreeVI take around 5 and 9 seconds, respectively. Further, we
plot the tree learned over the constrained clustering experiment on MNIST dataset, as shown in Figure
2. From the figure, we can see that instances from the same category are connected more tightly than
those from different categories in the learned tree. This demonstrates that our method has the abilities
to capture the underlying inherent correlations among different instances.

4.3 User Matching

We evaluate our methods against the baselines on a public movie rating dataset MovieLens 20M. The
ratings of each user ui are binarized as a bag-of-word vector xui

(i = 1, 2, · · · , N ), and only ratings
for movies that have been rated over 1000 times are preserved for simplicity. In our experiments,
the watch history of each user ui is randomly split into two halves, leading to two synthetic users
uA
i and uB

i with the most similar movie preference, and a correlation graph G = (V, E) with nodes
V = {uA

i , u
B
i : i = 1, · · · , N} and edges E = {(uA

i , u
B
i ) : i = 1, · · · , N}.

Suppose that the joint distribution of rating data X and the corresponding latent embeddings Z is
modeled by pθ(X,Z) = pθ(X|Z)p(Z), and the variational posterior distribution is modeled by
qϕ(Z|X). In the work of CVAE [36], both the prior distribution p(Z) and posterior distribution
qϕ(Z|X) are designed as weighted sums of tree-structured distributions with respect to each maximal
acyclic subgraph of the correlation graph G. While in our work, the latent representations are
drawn from a Gaussian distribution of the form p(Z) = N (Z;02N ; (I2N + λA)⊗ ID), where the
hyper-parameter λ ∈ (0, 1) is used to control the overall correlation strength, and the affinity matrix
A = [aij ]i,j∈V is derived from the correlation graph with aij = 1 if (i, j) ∈ E and aij = 0 otherwise.
And our latent posterior distribution qϕ(Z|X) is modeled by tree-structured and mixture-of-trees
distributions, respectively.

And our goal is to identify the dual user uB
i given a synthetic user uA

i from a held-out set in terms of
the latent embedding distance. The user data are implemented a random train/test split with a 90/10
ratio, and the synthetic user pairs from the training set are used to train all the methods. To evaluate
the user matching accuracies, a fixed number N eval = 1000 of synthetic user pairs are selected from
the test set and for each synthetic user uA

i (or uB
i ), we summarize the ranking of its dual user uB

i (or
uA
i ) among all other 2N eval − 1 synthetic user candidates in terms of latent embedding distances.
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Table 3: Synthetic user matching test RR

Methods Test RR

VAE 0.3498± 0.0167
CVAEind 0.6608± 0.0066
CVAEcorr 0.7129± 0.0096
TreeVI (Ours) 0.7408± 0.0124
MTreeVI (Ours) 0.7521± 0.0101

Table 4: Link prediction test Normalized CRR

Methods Test NCRR

VAE 0.0052± 0.0007
GraphSAGE 0.0115± 0.0025
CVAEind 0.0160± 0.0004
CVAEcorr 0.0171± 0.0009
TreeVI (Ours) 0.0188± 0.0007
MTreeVI (Ours) 0.0203± 0.0014

In Table 3 we show the average Reciprocal Ranking (RR) for all the methods, which demonstrates
superiority of our model over both implementations for the baseline method CVAE.

4.4 Link Prediction

We perform link prediction task on a constructed undirected correlation graph G = (V, E) within
the public product rating dataset Epinions. The rating data are binarized into bag-of-words feature
vectors xui

for each user ui, and only products that have been rated at least 100 times are kept and
users who have rated these products at least once are considered. To construct the undirected graph
G from the single-directional "trust" statements between users ui, uj ∈ V provided by the dataset,
we only build an edge (ui, uj) ∈ E if both ui trusts uj and uj trusts ui. The experiment setting
of our TreeVI and MTreeVI are similar to the user matching task, by defining a correlation graph
incorporated prior distribution and approximating latent posterior distribution with tree-structured
and mixture-of-trees distributions, respectively.

The product rating dataset is split for each user ui ∈ V into training and test sets, with
max

(
1, 1

20 · degree(ui)
)

edges held out for test edge set Etest. The remaining edges for the training
edge set Etrain are used to train all methods on the product rating data. To evaluate the link prediction
accuracies, we calculate for each user ui the Normalized Cumulative Reciprocal Rank NCRRi

of the ratings of ui’s test edges among all possible connections except for the training edges, in
terms of latent embedding distance metrics. Formally, the NCRR value is the [0, 1]-normalization
of the Cumulative Reciprocal Rank (CRR) formulated as CRRi =

∑
(ui,uj)∈Etest

|{k : (ui, uk) /∈
Etrain, dik ≤ dij}|−1, where dij represents the latent embedding distance between users ui and uj

for 1 ≤ i ̸= j ≤ N . Larger NCRRi indicates better ability to predict held-out test links with respect
to each user ui, and the averaged results for all methods are reported in Table 4.

5 Conclusion

In this work, we present a novel variational inference method called TreeVI, that approximates the
intractable latent posterior distribution with a tree-structured distribution. This induces a Bayesian
network whose ancestral sampling gives a matrix-form reparameterization for the correlated latents
and enables efficient optimization. To enrich the correlation structure, TreeVI is further extended to
MTreeVI with a mixture of trees to better approximate the underlying posterior. Furthermore, the tree
and mixture-of-trees structures are allowed stochastically learned from data by solving a constrained
optimization problem under our proposed acyclicity constraints. With correlated posteriors, we show
that our methods can capture more correlation information and achieve superior performances in
real-world tasks.

Limitations & Future Work The proposed method requires a tree structure to approximate the
graph-structured posterior correlation structure. This limitation is mitigated by adopting a weighted
mixture of trees and stochastically learning a correlation-rich tree or mixture-of-trees structure with
our proposed constrained optimization. For future work, we will further investigate on correlation
structures with higher expressivity for approximating the latent posterior.

Acknowledgment This work is supported by the National Natural Science Foundation of China (No.
62276280, U1811264), Guangzhou Science and Technology Planning Project (No. 2024A04J9967).
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A Precision Matrix of Tree-structured Posterior

When latent variables Z = [z1, · · · , zN ]⊤ are all Gaussian, it is a well-known consequence of the
Hammersley-Clifford theorem that the entries of the precision matrix Pz = Σ−1

z correspond to
rescaled conditional correlations. Denote Pz = [diag(pij)]i,j=1,··· ,N with pij ∈ RD, then the
magnitude of pij expresses the correlation of zi and zj conditioned on other latent variables. In
particular, the sparsity pattern of pij reflects the edge structure of the correlation graph: pij = 0D if
and only if zi ⊥⊥ zj |z{1,··· ,N}\{i,j}.

The tree structure T = (V, E) with non-adjacent correlation parameters defined as Eq. (3) forms
a Markov random field with joint probability given by Eq. (4), which follows the principle of
conditional independence. Therefore, the precision vector pij ̸= 0D if and only if latent variables zi
and zj are adjacent, that is, (i, j) ∈ E .

Example. In the example of tree-structured correlation approximation with 5 latent variables as
shown in Fig. 1b, the precision matrix corresponding to the tree-structured latent covariance matrix
can be expressed as

[Σ(T)
z ]−1 = diag(σ−1

z )[R(T)]−1 diag(σ−1
z ), (20)

with the inverse of tree-structured correlation matrix given by

[R(T)]−1 =


s11 s12
s12 s22 s23 s24

s23 s33 s35
s24 s44

s35 s55

 , (21)

demonstrating that only correlation parameters along the edge set E = {(1, 2), (2, 3), (2, 4), (3, 5)} of
tree structure T has been essentially captured in the underlying correlation structure, where all of the
matrix elements are simply combinations of correlation parameters from ΓT = {γ12,γ23,γ24,γ35}:

s11 = (1D − γ2
12)

−1, (22)

s12 = −γ12 ⊙ (1D − γ2
12)

−1, (23)

s22 = (1D + 2γ2
12 ⊙ γ2

23 ⊙ γ2
24 − γ2

12 ⊙ γ2
23 − γ2

12 ⊙ γ2
24 − γ2

23 ⊙ γ2
24) (24)

⊙ (1D − γ2
12)

−1 ⊙ (1D − γ2
23)

−1 ⊙ (1D − γ2
24)

−1,

s23 = −γ23 ⊙ (1D − γ2
23)

−1, (25)

s24 = −γ24 ⊙ (1D − γ2
24)

−1, (26)

s33 = (1D − γ2
23 ⊙ γ2

35)⊙ (1D − γ2
23)

−1 ⊙ (1D − γ2
35)

−1, (27)

s35 = −γ35 ⊙ (1D − γ2
35)

−1, (28)

s44 = (1D − γ2
24)

−1, (29)

s55 = (1D − γ2
35)

−1. (30)

B Ancestral Sampling for Tree-structured Posterior

B.1 Proof of Theorem 1

Suppose that N latent variables Z = [z1, · · · , zN ]⊤ follow a tree-structured posterior distribution
given the tree structure T = (V, E) with V = {1, · · · , N}, the ancestral sampling for each latent
variable zj , j ∈ V can be expressed by

zj = µj + γ̃1j ⊙ ϵ1 ⊙ σj +
∑

i∈P1→j ,i̸=1

γ̃ij ⊙
√
1D − γ2

pa(i),i ⊙ ϵi ⊙ σj , j ∈ V, (31)

where ϵi ∼ N (0D, ID) is a randomly sampled noise from the standard normal distribution and pa(i)
denotes the parent node of zi with respect to i ∈ V .
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Proof. For each latent variable zj , there exist a unique path P1→j = (v1, v2, · · · , vn) along the
tree-structured Bayesian network that starts from the root node v1 = 1 and ends at the goal node
vn = j. The joint distribution along the path P1→j is given by

qϕ(zv1 , zv2 , · · · , zvn) = qϕ(zv1)

n∏
i=1

qϕ(zvi+1 |zvi). (32)

The ancestral sampling starts by sampling from qϕ(zv1): zv1 = µv1 + σv1 ⊙ ϵv1 , where ϵv1 ∼
N (0D, ID). Given the observation of zv1 , then the latent variable zv2 can be sampled using the
conditional distribution Eq. (7):

zv2 = µv2 + γv1v2 ⊙ σv2 ⊙ σ−1
v1 ⊙ (zv1 − µv1) +

√
1D − γ2

v1v2 ⊙ ϵv2 ⊙ σv2 (33)

= µv2 + γv1v2 ⊙ ϵv1 ⊙ σv2
+
√
1D − γ2

v1v2 ⊙ ϵv2 ⊙ σv2 . (34)

Assume that at the k-th step of the ancestral sampling, we have

zvk = µvk
+ γ̃v1vk

⊙ ϵv1 ⊙ σvk +

k∑
i=2

γ̃vivk
⊙
√

1D − γ2
vi−1vi ⊙ ϵvi ⊙ σvk , (35)

where γ̃vivk
= γvivi+1

⊙ · · · ⊙ γvk−1vk
for i < k and γ̃vkvk

= 1D. Then at the (k + 1)-th step of
the ancestral sampling, the latent variable zvk+1

can be similarly sampled by conditional sampling

zvk+1
= µvk+1

+ γvkvk+1
⊙ σvk+1

⊙ σ−1
vk
⊙ (zvk − µvk

) +
√

1D − γ2
vkvk+1

⊙ ϵvk+1
⊙ σvk+1

(36)

= µvk+1
+ γ̃v1vk+1

⊙ ϵv1 ⊙ σvk+1
+

k+1∑
i=2

γ̃vivk+1
⊙

√
1D − γ2

vi−1vi ⊙ ϵvi ⊙ σvk+1
(37)

Therefore by induction, the ancestral sampling for the latent variable zj can be expressed as

zvj = µvj + γ̃v1vj ⊙ ϵv1 ⊙ σvj +

j∑
i=2

γ̃vivj ⊙
√
1D − γ2

vi−1vi ⊙ ϵvi ⊙ σvj , (38)

which is consistent with the expression of Eq. (31).

B.2 Example of Ancestral Sampling Procedure

For the quin-variate example in Fig. 1b, we assume z1 as the root node, and the detailed ancestral
sampling procedure for the tree-structured Bayesian network Eq. (6) is shown as follows.

1. Start by sampling from qϕ(z1):

z1 = µ1 + σ1 ⊙ ϵ1, (39)

where ϵ1 ∼ N (0D, ID);

2. Then sample from qϕ(z2|z1) given the observation of z1:

z2 = µ2 + γ12 ⊙ σ2 ⊙ ϵ1 +
√
1D − γ2

12 ⊙ σ2 ⊙ ϵ2, (40)

where ϵ2 ∼ N (0D, ID);
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3. Then sample from qϕ(z3|z2) given the observation of z2:

z3 = µ3 + γ23 ⊙ σ3 ⊙
(
γ12 ⊙ ϵ1 +

√
1D − γ2

12 ⊙ ϵ2

)
+
√
1D − γ2

23 ⊙ σ3 ⊙ ϵ3

= µ3 + γ12 ⊙ γ23 ⊙ σ3 ⊙ ϵ1 + γ23 ⊙
√
1D − γ2

12 ⊙ σ3 ⊙ ϵ2

+
√
1D − γ2

23 ⊙ σ3 ⊙ ϵ3
(41)

where ϵ3 ∼ N (0D, ID);

4. Then sample from qϕ(z4|z2) given the observation of z2:

z4 = µ4 + γ12 ⊙ γ24 ⊙ σ4 ⊙ ϵ1 + γ24 ⊙
√
1D − γ2

12 ⊙ σ4 ⊙ ϵ2

+
√
1D − γ2

24 ⊙ σ4 ⊙ ϵ4

(42)

where ϵ4 ∼ N (0D, ID);

5. Finally, sample from qϕ(z5|z3) given the observation of z3:

z5 = µ5 + γ12 ⊙ γ23 ⊙ γ35 ⊙ σ5 ⊙ ϵ1 + γ23 ⊙ γ35 ⊙
√
1D − γ2

12 ⊙ σ5 ⊙ ϵ2

+ γ35 ⊙
√
1D − γ2

23 ⊙ σ5 ⊙ ϵ3 +
√
1D − γ2

35 ⊙ σ5 ⊙ ϵ5

(43)

where ϵ5 ∼ N (0D, ID);

It is easily noted that, the expression of each latent sample in this ancestral sampling procedure is
consistent to Eq. (8).

C Evidence Lower Bound

C.1 Evidence Lower Bound for TreeVI

For a tree-structured posterior approximation with respect to the tree structure T = (V, E), the
evidence lower bound of our proposed TreeVI is given by

LT(θ,ϕ,X) = log pθ(X,Z(T)) +H[qTϕ(Z|X)], (44)

where Z(T) denotes the tree-structured reparameterization for latent variables. The first term can be
directly computed by

log pθ(X,Z(T)) =

N∑
i=1

log pθ(xi|z(T)i ) + log p(z
(T)
i ), (45)

where z(T)i is the reparameterization for latent variable zi, i = 1, · · · , N . And the entropy of the tree-
structured posterior qTϕ(Z|X) can be factorized as entropy terms with respect to singleton posterior
qϕ(zi|xi) and pairwise posterior qϕ(zi, zj |xi,xj)

H[qTϕ(Z|X)] =
∑
i∈V
H[qϕ(zi|xi)] +

∑
(i,j)∈E

H[qϕ(zi, zj |xi,xj)]−H[qϕ(zi|xi)]−H[qϕ(zi|xi)].

(46)
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where the entropy of singleton posterior qϕ(zi|xi) = N (zi;µi,diag(σ
2
i )) is given by

H[qϕ(zi|xi)] = −Ezi∼qϕ(zi|xi)[log qϕ(zi|xi)] (47)

= −Ezi∼qϕ(zi|xi)

[
log

[
(2π)−

D
2 |Σi|−

1
2 exp

(
−1

2
(zi − µi)

⊤Σ−1
i (zi − µi)

)]]
(48)

⋆
=

D

2
[1 + log(2π)] +

1

2
log |Σi| (49)

=
D

2
[1 + log(2π)] +

1

2

D∑
d=1

log σ2
id, (50)

where Σi = diag(σ2
i ), and the step ⋆ relies on several properties of the trace operator:

Ezi

[
(zi − µi)

⊤Σ−1
i (zi − µi)

]
= Ezi

[
tr
(
(zi − µi)

⊤Σ−1
i (zi − µi)

)]
(51)

= Ezi

[
tr
(
Σ−1

i (zi − µi)
⊤(zi − µi)

)]
(52)

= tr
(
Σ−1

i Ezi

[
(zi − µi)

⊤(zi − µi)
])

(53)

= tr(Σ−1
i Σ) = tr(ID) = D. (54)

And the entropy of pairwise posterior qϕ(zi, zj |xi,xj) = N (zi, zj ;µij ,Σij) with mean µij =

[µi,µj ]
⊤ and covariance matrix

Σij =

[
σi ⊙ σi γij ⊙ σi ⊙ σj

γij ⊙ σi ⊙ σj σj ⊙ σj

]
(55)

is similarly given by

H[qϕ(zi, zj |xi,xj)] = −Ezi,zj [log qϕ(zi, zj |xi,xj)] (56)

= −Ezij

[
log

[
(2π)−D|Σij |−

1
2 exp

(
−1

2
(zij − µij)

⊤Σ−1
ij (zij − µij)

)]]
(57)

= D +D log(2π) +
1

2
log |Σij | (58)

= D +D log(2π) +
1

2

D∑
d=1

[
log(1− γ2

ijd) + log σ2
id + log σ2

jd

]
(59)

where we denote zij = [zi, zj ]
⊤.

C.2 Evidence Lower Bound for MTreeVI

For a mixture-of-trees structured posterior approximation with respect to the mixture of tree compo-
nents MT = {T1, · · · ,TM}, the evidence lower bound of our proposed MTreeVI is given by

LMT(θ,ϕ,X) =

M∑
m=1

πm

[
log pθ(X,Z(Tm)) +H[qTm

ϕ (Z|X)]
]
, (60)

where Z(Tm) denotes the tree-structured reparameterization for latent variables with respect to the
m-th tree component Tm, m = 1, · · · ,M . The first weighted summations can be directly computed
by

M∑
m=1

πm log pθ(X,Z(Tm)) =

M∑
m=1

πm

N∑
i=1

log pθ(xi|z(Tm)
i ) + log p(z

(Tm)
i ), (61)

where z
(Tm)
i is the reparameterization for latent variable zi, i = 1, · · · , N with respect to the m-th

tree component, m = 1, · · · ,M . And the weighted summations of the entropy terms can be similarly
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factorized and calculated as Appendix C.1 by entropy terms with respect to singleton posteriors
qϕ(zi|xi) and pairwise posteriors qϕ(zi, zj |xi,xj).

D Constrained Optimization Details

D.1 Proof of Proposition 1

Recall that the spectral radius r(·) is the largest absolute eigenvalue of a matrix. The following show
characterizations for acyclicity of the undirected structure induced by the symmetric matrix A:

1. Suppose that A ∈ {0, 1}N×N and r(A) < 1, then A is acyclic if and only if

trA(IN −A2)−1 = 0. (62)

2. Suppose that A ∈ {0, 1}N×N , then A is acyclic if and only if

trA exp(A2) = 0. (63)

3. Suppose that A ∈ RN×N , then A is acyclic if and only if

tr(A⊙A) exp[(A⊙A)2] = 0, (64)

where tr(·) and exp(·) represent the trace and exponential of a matrix respectively, and ⊙ is the
Hadamard product.

Proof. The proof relies on the fact that trAk counts the number of length-k closed walks in a directed
graph.

1. Clearly the directed graph induced by the symmetric matrix A will only have self-loops,
and hence trA2k+1 = 0 for all k = 1, · · · ,∞. In other words, A has no cycles if and only
if f(A) =

∑∞
k=1

∑N
i=1(A

2k+1)ii = 0, then

trA(IN −A2)−1 = tr

∞∑
k=1

A2k+1 =

∞∑
k=1

N∑
i=1

(A2k+1)ii = 0. (65)

The desired result follows.

2. Similar to the proof of Proposition 1.1 by noting that A has no cycles if and only if
(A2k+1)ii = 0 for all k ≥ 1 and all i ∈ {1, · · · , N}, which is true if and only if

trA exp(A2) = tr

∞∑
k=1

1

k!
A2k+1 =

∞∑
k=1

N∑
i=1

1

k!
(A2k+1)ii = 0. (66)

3. The proof is similar to Proposition 1.2 by replacing A with A⊙A, which counts weighted
closed walks.

D.2 Greedy Searched Initialization

The constrained optimization of tree structure requires an initialization by construction from data,
and the easiest way of tree construction is to randomly build from the fully-connected graph by using
depth-first-search (DFS) algorithm. Algorithm 1 shows the DFS algorithm for our tree initialization.
In the algorithm, RC[·] means randomly choosing one index according to the indicator function; ID[·]
represents the set of node indexes satisfying the indicator condition and N (i) denotes the neighbors
of node i.
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Algorithm 1 DFS Algorithm for Tree Generation

Input: Fully-connected graph G; number of trees M
Output: Edges list of generated trees E

1: procedure TREEGENERATION(M ) ▷ Input: #tree M
2: E = [ ] ▷ Initial edges list
3: for k = 0, · · · ,M − 1 do
4: V = [False]|V| ▷ Visited node list
5: while False in V do
6: i← RC[V==False] ▷ Choose node
7: Q = [i] ▷ Initial queue
8: while len(Q) > 0 do
9: i← Q[0]

10: V [i]← True
11: N = ID[V [N (i)==False]]

12: if len(N) == 0 then
13: POP (Q,−1)
14: break
15: end if
16: j ← RC[N ] ▷ Choose neighbor
17: V [j]← True
18: APPEND(Q, j)
19: APPEND(E, [i, j])
20: end while
21: end while
22: end for
23: end procedure

To enrich the constructed spanning tree with neighboring correlation information, the uniform
sampling process (line 16 in Algorithm 1) in the DFS algorithm can be further modified to generate a
meaningful neighborhood for each data instance, by assigning the probability of sampling neighbor j
of instance i as

exp(cos(x⊤
j xi)/α)∑

k∈N (i exp(cos(x
⊤
k xi)/α)

, (67)

where α is the temperature parameter controlling the trade-off between the precision and diver-
sity of edges, and we find the best configuration of α on the validation set with the values in
{0.1, 0.2, · · · , 1.0}.
In Table 5, we show the constrained clustering accuracies on the MNIST dataset, with different
initializations, and with or without our constrained optimization. It can be seen that without con-
strained optimization, both initializations underperform. And with constrained optimization, both
initializations converge to substantially better performances, with the greedy-searched initialization
slightly better. Overall, the constrained optimization procedure makes our proposed TreeVI less
sensitive to initializations.

Table 5: Constrained clustering accuracies (%) on the MNIST dataset, with random tree or greedy-
searched tree initializations, with or without our constrained optimization

Random Tree Greedy Search

w/o CO 96.58 96.70
w/ CO 97.31 97.45
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D.3 Solving Constrained Optimization

In section 2.3, we establish a continuous characterization of acyclicity, leading to the following
equality-constrained program (ECP)

min
A∈RN×N

ℓ(A)

subject to h(A) = 0,
(68)

Solving the constrained optimization requires classical techniques from the mathematical optimization
literature. However, this is a nonconvex program since {A : h(A) = 0} is a non-convex constraint,
and hence we are aiming to find its stationary points with non-convex optimization. The algorithm
for solving Eq. (68) consists of three steps: (i) converting the constrained problem into a series of
unconstrained subproblems, (ii) optimizing the unconstrained subproblems, and (iii) thresholding.
The full algorithm is outlined in Algorithm 2.

Algorithm 2 Algorithm for Constrained Optimization

Input: Initial guess (A0, α0); progress rate c ∈ (0, 1); tolerance ϵ > 0; threshold ω > 0
Output: Threshold matrix A

1: for t = 0, 1, 2, · · · do
2: Solve At+1 ← argminA Lρ(A, αt) with ρ such that h(At+1) < ch(At)
3: αt+1 ← αt + ρh(At+1) ▷ Dual ascent
4: if h(At+1) < ϵ then
5: Â← At+1

6: break
7: end if
8: end for
9: A← Â⊙ 1(|Â| > ω)

Converting constrained optimization into unconstrained subproblems. The augmented La-
grangian method [28] can be leveraged to solve the equality-constrained program Eq. (68) by first
augmenting the original problem with a quadratic penalty:

min
A∈RN×N

ℓ(A) +
ρ

2
|h(A)|2

subject to h(A) = 0,
(69)

with a penalty parameter ρ > 0, which approximates well the solution of the original constrained
problem by the solution of unconstrained problems without increasing ρ to infinity. Then the algorithm
implements dual ascent for Eq. (69) by defining a dual function with Lagrange multiplier α

D(α) = min
A∈RN×N

Lρ(A, α), (70)

where Lρ(A, α) = ℓ(A) +
ρ

2
|h(A)|2 + αh(A) (71)

is the augmented Lagrangian. And the goal is to find a local solution to the dual problem

max
α∈R

D(α). (72)

Let A∗
α be the local minimizer of the Lagrangian (70) at α, i.e., D(α) = Lρ(A∗

α, α). Since the dual
objective D(α) is linear in α with the derivative simply given by∇D(α) = h(A∗

α), one can perform
dual gradient ascent to optimize the dual problem (72):

α← α+ ρh(A∗
α). (73)

Solving the unconstrained subproblem. The augmented Lagrangian converts the constrained
problem (69) into a series of subproblems (70), and our goal is to solve these subproblems efficiently.
Let a = vec(A) ∈ Rp, with p = N2. The unconstrained subproblem (70) can be considered as a

20



typical minimization problem over real vectors:

min
a∈Rp

f(a), (74)

where f(a) = ℓ(A) +
ρ

2
|h(A)|2 + αh(A) (75)

is a smooth objective, for which a number of efficient numerical algorithms are available, such as
L-BFGS [5]. In our experiments, the values of a can be learned by a neural network that encodes
pairwise correlation.

Thresholding. Motivated by post-processing estimates of coefficients via hard thresholding, we
threshold the edge weights as follows: after obtaining a stationary point Â of (69) given a fixed
threshold ω > 0, set any weights smaller than ω in absolute value to zero. This strategy also has the
effect of "rounding" the numerical solution of the augmented Lagrangian (69), since the solution
satisfies h(Â) ≤ ϵ for some all tolerance ϵ (set to ϵ = 10−8 in our experiments) instead of h(Â) = 0
strictly due to numerical precisions. However, a small threshold ω suffices to rule out cycle-inducing
edges since h(Â) explicity quantifies the acyclicity of Â. Following [45], a fixed value of threshold
ω = 0.3 is set in all our experiments.

E Experimental Details

E.1 Datasets

The datasets used in the experiments are the followings:

• MovieLens 20M: A dataset describing ratings and free-text tagging activities from Movie-
Lens, a movie recommendation service. It contains 20,000,263 ratings and 465,564 tag
applications across 27,278 movies created by 138,493 users [9].

• Epinions: A dataset that records ratings and trust statements issued by users from Epinions,
a consumers opinion site where users can review items and assign them numeric ratings in
the range 1 to 5, and also express their Web of Trust by issuing trust statements. It consists
of 49,290 users who rated a total of 139,738 different items at least once. The total number
of review is 664,824. The total number of issued trust statements is 487,181.

• MNIST: It consists of 70,000 handwritten digits. The images are centered and of size 28 by
28 pixels, each reshaped to a 784-dimensional vector [21].

• Fashion MNIST: A dataset of Zalando’s article images consisting of a training set of 60,000
examples and a test set of 10,000 examples [40].

• Reuters: It contains 810,000 English news stories [22]. Following the work of [41], we used
4 root categories: corporate/industrial, government/social, markets, and economics as labels
and discarded all documents with multiple labels, which results in a 685,071-article dataset.
We computed tf-idf features on the 2000 most frequent words to represent all articles. A
random subset of 10,000 documents is then sampled.

• STL-10: It contains color images of 96-by-96 pixel size. There are 10 classes with 13,000
examples each [7]. As pre-processing, we extracted features from the STL-10 image dataset
using a ResNet-50 [10], as in previous works [15].

E.2 Implementation Details

Synthetic Data. For synthetic VAEs, we apply a two-layer feed-forward neural network for
the generative model pθ(xi|zi) and a two-layer feed-forward neural network for the variational
posterior approximation qϕ(zi|xi), with each zi ∈ RD where D = 4. The traditional mean-
field approximation assumes the posterior distribution for each latent to be fully factorized:
qϕ(zi|xi) =

∏D
d=1 qϕ(zid|xid), while in our methods the posterior is assumed to be tree-structured

and mixture-of-trees structured, which can be factorized into singleton posterior qϕ(zid|xid) and
pairwise posterior qϕ(zid, zie|xid, xie) both assumed to be Gaussian. Each edge in the tree structure
corresponds to a correlation parameter γde to be learned in the bi-variate normal distribution, which
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Table 6: Hyperparameters setting of constrained clustering task.

MNIST fMNIST Reuters STL-10

Batch size 256 256 256 256
Epchs 1000 500 500 500
Learning rate 0.001 0.001 0.001 0.001
Decay 0.9 0.9 0.9 0.9
Epochs decay 20 20 20 20

is shared for all data points to capture dimension-level correlation. Our synthetic VAE is trained for
200 epochs for all methods. We apply stochastic gradient optimizations with a step size of 0.005, and
use the Adam algorithm [17] to adjust the learning rates.

Constrained Clustering. To implement our methods, we are careful in maintaining a fair compari-
son with the baseline methods. In particular, we adopt the same encoder and decoder feed-forward
architecture used by the baseline method: four layers of 500, 500, 2000, D units respectively, where
D = 10 unless stated otherwise. VAE-based baselines and the VAEs equipped with our posterior
approximation methods are pretrained for 10 epochs while the DEC-based baselines involve 50
epochs of pretraining for each layer and 100 epochs of pretraining as finetuning. Each dataset is
divided into training and test sets, where the former one is used for training and our reported results
are operated on the latter one. The pairwise constraints used in our experiments are randomly chosen
within the training set, by randomly sampling any two data points and assigning a must-link if they
have the same label and a cannot-link otherwise. The absolute values of the elements |Wij | in the
pairwise prior information matrix are set to 104 for all datasets for convenience, and 6000 pairwise
constraints are sampled for training both our methods and other baselines. Following DC-GMM [24],
the hyper-parameters are universally set for four different datasets, as shown in Table 6. The learning
rate is set to 0.001 and it decreases every 20 epochs with a decay rate of 0.9. The number of tree
components adopted in our MTreeVI is set to M = 3.

User Matching & Link Prediction. For both tasks of user matching and link prediction, we set the
dimensionality of latent embeddings as D = 100 for all methods. For VAE-based methods (including
TreeVI and MTreeVI), we apply a two-layer feed-forward neural network for the generative model
pθ(xi|zi) and a two-layer feed-forward neural network for the posterior approximation qϕ(zi|xi).
The model likelihood function pθ(X|Z) is a multinomial distribution, and the singleton posterior
distributions qϕ(zi|xi) are all diagonal normal distributions. For CVAEcorr and our methods, we
also learn a two-layer feed-forward neural network that takes the concatenation [xi;xj ] as input and
output the correlation parameter between zi and zj on each of the D dimensions. To determine the
tree structure for TreeVI and MTreeVI, we take average of these correlation parameters across all D
dimensions and obtain a correlation matrix A ∈ RN×N or a set of correlation matrices that is used
for constrained optimization. For GraphSAGE, we choose to use K = 2 aggregation steps and use
the mean aggregator function. We use Q = 20 negative samples to optimize the loss function. For
all methods, we apply stochastic gradient optimizations with a step size of 0.001, and use the Adam
optimizer to adjust the learning rates. The number of tree components adopted in our MTreeVI is set
to M = 3 for both tasks.

E.3 Further Experiments

Synthetic Data. We design a synthetic dataset with a graph-structured latent variable model.
The dataset contains N = 6000 data points x1, · · · ,xN ∈ RD with D = 4, each independently
generated from the conditional distribution p(x|z) = N (x;θz, σ2I4) given latent embeddings
z1, · · · , zN ∈ RD where σ2 is a fixed value and set to 0.5. The latent embeddings z1, · · · , zN are
drawn from a standard normal distribution p(z) = N (z;04, I4), and the graph-structured correlation
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Table 7: Estimated lower bounds (ELBO) of VAE with posterior distributions approximation by mean-
field, tree-structured, and mixture-of-trees distributions, compared to ground truth log-likelihood
log p(X).

Methods Lower Bound

Mean-field -9.022
TreeVI (1 Tree) -8.8838

MTreeVI (2 Trees) -8.8729
MTreeVI (3 Trees) -8.8690

log p(X) -8.8142

Table 8: Clustering with constructed affinity matrices performances (%) of our proposed methods
TreeVI and MTreeVI compared with baselines

MNIST fMNIST Reuters STL-10

ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

VADE 92.00 90.80 82.90 63.20 62.90 48.30 83.35 63.10 67.09 84.45 79.10 73.98
DEC 87.93 80.71 78.35 60.61 63.70 47.41 76.33 51.91 57.31 78.56 72.47 63.91
DCN 83.10 82.50 75.60 53.10 57.10 38.60 76.60 61.10 65.40 78.40 65.50 60.70
DGG 97.58 92.50 93.40 81.33 73.20 67.90 93.50 81.23 87.85 90.59 81.58 79.80

DC-GMM 95.28 90.01 90.55 77.24 70.05 65.73 92.38 80.68 88.05 88.70 78.90 77.50

TreeVI 96.30 92.21 92.82 78.90 72.08 66.39 95.12 82.40 89.02 90.22 80.97 79.30
MTreeVI 97.66 92.96 93.52 81.57 73.61 68.20 95.31 82.64 89.20 90.50 81.22 79.62

is incorporated into the sample generation via a coefficient matrix θ

θ =

 2 0 1 0
1 2 0 0
0 1 2 0
0.3 0.3 0.4 2

 (76)

And we adopt different number of tree components to model the posterior correlation, the comparison
of their estimated evidence lower bounds to the ground truth log-likelihood is presented in Table 7. It
can be observed that tree-structured poterior benefits from capturing more pairwise correlations, and
the mixture of more tree components better approximates the ground truth log-likelihood.

Clustering with Constructed Affinity Matrix. Besides the weak supervision of pairwise con-
straints, we also analyze the unsupervised scenario of constructed affinity matrix in this work, where
we construct an affinity matrix under a specific similarity measure and each entry is a value between
[0, 1] reflecting the similarity between a sample pair. To construct the affinity matrix W, we find a
set of nearest neighbors for a given data point and compute their similarity using a predefined kernel
function, such as Gaussian kernel

Wij =

{
exp

(
−∥xi−xj∥2

2

2s2i

)
, if xj ∈ N (xi)

0, otherwise
(77)

where si is a predefined scalar, N (xi) denotes the set consisting of the nearest Ns neighbors of xi.
To enhance robustness to different datasets, we train a Siamese network to measure the similarity
between data points. With the constructed affinity matrix W, the conditional distribution of the
cluster assignment can be similarly defined as Eq. (19), with the weighting function modified as

hi(c,W) =
∏
j ̸=i

exp
[
Wijδcicj + (1−Wij)(1− δcicj )

]
. (78)

The clustering performances of our proposed methods against baseline methods are shown in Table 8.
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E.4 Resource Usage

Experiments were conducted on an internal computing cluster. Each experiment configuration used
one NVIDIA GPU (either a 2080TI or 3090TI), 16 CPUs and a total of 24GB of memory.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction have clearly reflected the
paper’s main contributions in the following context.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of our work has been discussed in Section 5 in the paper.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Assumptions for the theoretical results are given in the descriptions of theorem
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
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the experimental results are included in the Section 4, and we refer to Appendix E for more
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• The answer NA means that the paper does not include experiments.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The datasets and experimental settings are provided in Section 4 and Appendix
E, and our code will be submitted to the GitHub repository soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training details of all our experiments have been specified in the Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical significances of our experiments that support the main claims of
the paper are shown in Table 1, Table 2, Table 3 and Table 4, respectively. And the related
metrics have been depicted in the context.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources needed to reproduce our experiments have been
specified in Appendix E.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics, and make sure that our research
follows the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work mainly focuses on basic theory about combination of variational
inference and instance-level correlation structure, meaning that there is no societal impact to
be addressed.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our experiments are conducted on standard and public datasets available
for everyone, and our proposed methods focus on basic theory with regards to variational
inference without safety risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets used in our experiments are all public, and their related papers have
been cited in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are introduced or released in our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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