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Abstract

Class-based language models (LMs) have001
been long devised to address context sparsity002
in n-gram LMs. In this study, we revisit this003
approach in the context of neural LMs. We004
hypothesize that class-based prediction leads005
to an implicit context aggregation for similar006
words and thus can improve generalization for007
rare words. We map words that have a com-008
mon WordNet hypernym to the same class and009
train large neural LMs by gradually annealing010
from predicting the class to token prediction011
during training. Empirically, this curriculum012
learning strategy consistently improves per-013
plexity over various large, highly-performant014
state-of-the-art Transformer-based models on015
two datasets, WikiText-103 and ARXIV. Our016
analysis shows that the performance improve-017
ment is achieved without sacrificing perfor-018
mance on rare words.Finally, we document019
other attempts that failed to yield empirical020
gains, and discuss future directions for the021
adoption of class-based LMs on a larger scale.022

1 Introduction023

Over the course of the past decades, language mod-024

eling (LM) has transitioned from n-gram to neu-025

ral models (Bengio et al., 2003; Mnih and Hinton,026

2007; Devlin et al., 2019; Brown et al., 2020). Per-027

formance improvement of today’s neural LMs is028

often achieved at the cost of increased computa-029

tional resources. For example, to capture long-term030

dependencies, various extensions of Transformer-031

based LMs have been proposed (Dai et al., 2019;032

Rae et al., 2020). These modifications bring about033

significant improvements on held-out perplexity,034

but training cost also increases significantly due to035

large GPU memory consumption and more compu-036

tations at each training step.037

In parallel, alternative training strategies have038

also been proposed (Guu et al., 2020; Ziegler039

and Rush, 2019; Deng et al., 2020). In this pa-040

per, we explore the effectiveness of class-based041

A final torch used to enter Empire Stadium that
was made of stainless steel and powered by a
magnesium candle

Original Text:

Replaced with hypernym class:
A final instrumentality.n.03 used to enter Empire
structure.n.01 that was made of alloy.n.01
alloy.n.01 and powered by a metallic_element.n.01
instrumentality.n.03

Figure 1: An example of word prediction training text
and hypernym class prediction training text.

language models (CLMs, Brown et al. 1992) in 042

the context of neural LMs. CLMs group indi- 043

vidual words into coarser-grained classes and has 044

proven effective in alleviating context sparsity in 045

n-gram LMs (Dagan et al., 1999). It has been also 046

used to improve computational efficiency in neural 047

LMs (Morin and Bengio, 2005; Grave et al., 2017a). 048

More recently, Levine et al. (2020) pretrain masked 049

LMs (Devlin et al., 2019) by predicting WordNet 050

supersense labels. However, the work focuses on 051

word-sense disambiguation tasks and doesn’t pro- 052

vide clear evidence of gains in terms of perplexity. 053

In this paper, we revisit CLM and assign words 054

to classes by leveraging hypernym relations from 055

the WordNet (Miller, 1995). Our proposal, dubbed 056

Hypernym Class Prediction (HCP) is simple and 057

effective: for each batch, we substitute a subset 058

of the tokens with their WordNet hypernyms (see 059

Figure 1). Then, we train an autoregressive LM 060

on the resulting sentences using a mixed vocabu- 061

lary composed of hypernyms and tokens. Crucially, 062

we anneal the substitution rate during training, i.e., 063

we gently switch from hypernym prediction to to- 064

ken prediction, following a curriculum learning 065

approach. Note that this approach does not re- 066

quire WordNet information at inference time nor 067

increases training time. 068

Our approach is motivated by two hypotheses. 069
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Firstly, mapping words to their hypernyms gives070

rise to a natural gradation of difficulty in the pre-071

diction task. Prior work has shown that LM bene-072

fits from training on instances of increasing diffi-073

culty (Bengio et al., 2009; Press et al., 2021). We074

thus postulate that, when coupled with the right075

curriculum, hypernym prediction can improve LM076

training and perplexity. Secondly, we hypothesize077

that HCP can improve rare word generalization078

through implicit context sharing. Neural models079

still struggle to learn reliable representations for080

rare words (Schick and Schütze, 2020). With CLM-081

based models, data sparsity for rare words can be082

abated when they share the same class and hence083

the same contexts with more frequent words.084

Empirically, the proposed method consistently085

yields about 0.6–1.9% relative reduction in perplex-086

ity over baselines on the WikiText-103 dataset,087

and 1.3–3.1% on the ARXIV dataset. These im-088

provements are observed with respect to memory-089

augmented and segment-aware LMs. Importantly,090

the proposed method improves performance for091

both rare and frequent words. We also observe that092

this is in contrast with performance improvements093

in regular LMs, which seem to be achieved at the094

cost of worsened performance on rare words.095

To the best of our knowledge, this is the first096

work that shows how perplexity of Transformer097

LMs can be improved by leveraging hypernymy re-098

lationships. We provide an extensive ablation study099

highlighting crucial elements of HCP. Amongst100

those, we found particularly important to adopt a101

curriculum learning approach, rather than multi-102

objective learning or adaptive-softmax, and exclud-103

ing frequent words from the hypernym prediction104

task. We highlight the simplicity and effectiveness105

of the proposed method as our main contribution,106

and hope this study would facilitate further explo-107

ration in this line of research.108

2 Related Work109

Transformer-based models are now popular lan-110

guage models. Dai et al. (2019) propose111

Transformer-XL by extending the vanilla Trans-112

former (Vaswani et al., 2017) with a memory seg-113

ment, which can encode more context tokens to114

predict the next token. Rae et al. (2020) extend115

Transformer-XL with a compressed memory seg-116

ment to further encode long-time context memory.117

Other works explore different sparse Transformers118

to encode much longer sequences for LM (Beltagy119

et al., 2020; Roy et al., 2021). Bai et al. (2021) 120

propose a segment-aware Transformer (Segatron) 121

to encode more positional information for language 122

modeling. Despite their effectiveness, neural mod- 123

els still struggle to learn reliable representations 124

for rare words. Some approaches have been pro- 125

posed to tackle this challenge by way of morphol- 126

ogy (Luong et al., 2013), lexical similarity (Khas- 127

sanov et al., 2019), context similarity (Schick and 128

Schütze, 2020; Khandelwal et al., 2020) and tok- 129

enization (Kudo and Richardson, 2018). 130

In addition to the model modifications, other 131

work investigated curriculum learning to train LMs. 132

Bengio et al. (2009) first find that curriculum learn- 133

ing could benefit LM training by training with high- 134

frequency tokens first and low-frequency tokens 135

later. Wu et al. (2021) find that curricula works 136

well when the training data is noisy or the training 137

data is too large to iterate multiple epochs. Press 138

et al. (2021) find that training Transformer-based 139

LMs with short sequences first could improve con- 140

vergence speed and perplexity. 141

Related work aimed at integrating WordNet in- 142

formation into pretrained language models. Levine 143

et al. (2020) propose SenseBERT by adding the 144

word sense (WordNet supersense) prediction as an 145

additional task during BERT (Devlin et al., 2019) 146

pre-training. SenseBERT outperforms BERT on 147

both word supersense disambiguation (Raganato 148

et al., 2017) task and word in context (Pilehvar and 149

Camacho-Collados, 2019) task. Recently, (Porada 150

et al., 2021) use WordNet hypernymy chains as in- 151

put to a Roberta (Liu et al., 2019) model to predict 152

the plausibility of input events. In this work, our 153

focus is to improve performance of auto-regressive 154

LMs. We show that a multi-task strategy harms 155

performance in this setting, and give a successful 156

recipe to consistently boost LM performance with 157

class-based predictions. 158

3 Method 159

Coupling class-based LM (CLM) and curriculum 160

learning, HCP is to gradually anneal class predic- 161

tion to token prediction during LM training. In this 162

section, we first describe how we instantiate word 163

classes by leveraging hypernym relation from the 164

WordNet. We then present how to incorporate the 165

proposed Hypernym Class Prediction task into LM 166

training via curriculum learning. 167
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Entity.n.01 physical_entity.n.01 matter.n.03 substance.n.01 chemical_element.n.01

abstraction.n.06 relation.n.01 part.n.01

Entity.n.01 physical_entity.n.01 matter.n.03 substance.n.01 chemical_element.n.01

iron.n.01abstraction.n.06 relation.n.01 part.n.01

metallic_element.n.01

Entity.n.01 physical_entity.n.01 object.n.01 whole.n.02 artifact.n.01 instrumentality.n.03

furnishing.n.02furniture.n.01table.n.02desk.n.01

magnesium.n.01

metallic_element.n.01

Figure 2: Hypernym-paths of synsets “magnesium.n.01”, “iron.n.01”, and “desk.n.01”, corresponding to the word
magnesium, iron, and desk respectively.

3.1 Hypernymy as Word Classes168

WordNet (Miller, 1995) is a lexical database that169

groups words into sets of cognitive synonyms170

known as synsets, which are in turn organized into171

a directed graph by various lexical relations includ-172

ing the hypernymy (is-a) relation. As shown in173

Figure 2, each vertex is a synset, labeled by the174

text within the box, and each edge points from the175

hypernym (supertype) to the hyponym (subtype).176

Note that a word form (spelling) may be associated177

with multiple synsets – each corresponding to a178

different sense of the word, which are sorted by179

the frequency of the sense estimated from a sense-180

annotated corpus. For example, iron has 6 synsets,181

among which “iron.n.01” is the most common one.182

Hence, if two words share the same hypernym183

at a certain level in their hypernym-paths (to the184

root in WordNet), we could say they are similar185

at that level. Here we use "Depth" to quantify the186

hypernym-path level. In Figure 2, for example, at187

Depth 6, iron and magnesium are mapped to the188

same group named “metallic_element.n.01”, while189

desk is mapped to “instrumentality.n.03”. At Depth190

2, all these three words share the same (indirect)191

hypernym “physical_entity.n.01”.192

In this work, we map each token in our training193

set into its hypernym class if this token (1) has a194

noun synset in the WordNet, (2) with a hypernym-195

path longer than a given depth d, and (3) has fre-196

quency above a given threshold f in the training197

corpus. We only consider nouns because it is not198

only the most common class in the WordNet but199

also a difficult class for LMs to learn (Lazaridou200

et al., 2021). We will also show the empirical im-201

portance of frequency filtering in Section 4.3.2.202

Algorithm 1 Token to class mapping
Require: Depth d, Frequency threshold f , Vf vocabulary

with tokens occurring less than f
1: for token t in Vf do
2: Found← False
3: for synset in wordnet.synsets(t) do
4: for path in synset.hypernym_paths() do
5: if |path| ≥ d and path[d-1] is Noun then:
6: Found← True
7: break
8: end if
9: end for

10: if Found then:
11: break . break for the next token

The mapping pseudo-code is shown in Alg. 1. 203

3.2 Hypernym Class Prediction 204

We first partition the vocabulary into Vx and V¬x 205

based on whether or not a token has a hypernym 206

in the Wordnet, and Vh denotes the set of all hy- 207

pernyms. The original task in a Transformer-based 208

LM is then to predict the token wj’s probability 209

with the output x from the last layer: 210

P (y = wj |x) =
exp(xTvwj )∑

wk∈Vx∪V¬x
exp(xTvwk

)
(1) 211

where wk is the kth word in the original vocabu- 212

lary and vwk
is its embedding. Here we assume 213

the output layer weights are tied with the input em- 214

beddings. We call any training step predicted with 215

Eq. 1 a token prediction step. 216

To do the Hypernym Class Prediction step, we 217

replace all tokens in Vx in a batch of training data 218

with their corresponding hypernym classes in Vh. 219

After the replacement, only hypernym classes in 220

Vh and tokens in V¬x can be found in that batch. 221
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Figure 3: Probabilities of HCP step over training pro-
cess with different pacing functions.

Then, the LM probability prediction becomes:222

P (y = wj |x) =
exp(xTvwj )∑

wk∈Vh∪V¬x
exp(xTvwk

)
(2)223

where wj could be either a token or a hypernym224

class. We called this batch step is a Hypernym225

Class Prediction (HCP) step.226

Note that Eq. 2 is different from the multi-227

objective learning target, where the hypernym class228

would be predicted separately:229

P (y = wj |x) =
exp(xTvwj )∑

wk∈Vh
exp(xTvwk

)
(3)230

where wj is a hypernym class. We will elaborate231

on this difference in the experiment results part.232

3.3 Training Method233

We train a LM by switching from HCP to token pre-234

diction. For the example in Figure 3, our target is to235

teach a model to distinguish whether the next token236

belongs to the metallic element class or instrumen-237

tality class during the earlier stage in training, and238

to predict the exact word from magnesium, iron,239

and desk later.240

Inspired by Bengio et al. (2009), we choose cur-241

riculum learning to achieve this. Curriculum learn-242

ing usually defines a score function and a pacing243

function, where the score function maps from a244

training example to a difficulty score, while the245

pacing function determines the amount of the easi-246

est/hardest examples that will be added into each247

epoch. We use a simple scoring function which248

treats HCP as an easier task than token prediction.249

Therefore, there is no need to sort all training ex-250

amples. The pacing function determines whether251

the current training step is a HCP step, i.e. whether252

tokens will be substituted with their hypernyms.253

Our pacing function can be defined as: 254

P (y = c|t) =
{

b t < a ∗N
0 t ≥ a ∗N (4) 255

or 256

P (y = c|t) =
{

b− b ∗ t
a∗N t < a ∗N

0 t ≥ a ∗N (5) 257

where P (y = c|t) is the probability that the current 258

step t is a hypernym class prediction step. N is the 259

total training steps. a and b are hyper-parameters. 260

So, Eq. 4 is a constant pacing function in the first a∗ 261

N steps, while Eq. 5 is a linear decay function. We 262

plot these two functions in Figure 3. According to 263

our experimental results Tab. 5, these two functions 264

are both effective in improving the language model. 265

4 Experiments 266

We conduct experiments on two datasets. 267

WikiText-103 (Merity et al., 2016) is a large word- 268

level dataset with long-distance dependencies for 269

language modeling. There are 103M tokens and 270

28K articles (3.6K tokens per article on average). 271

The original vocabulary size is 271121, among 272

which we find 3383 hypernym classes for 71567 273

tokens with d = 6 and f = 6000 (Section 3.1). 274

ARXIV (Lazaridou et al., 2021) is collected from 275

publicly available arXiv abstracts1 with an average 276

of 172 words per abstract and partitioned into 277

training (1986–Sept 2017), evaluation (Aug–Dec 278

2017), and test (2018–2019). Following Lazaridou 279

et al. (2021), we use the BPE (Sennrich et al., 2015) 280

tokenization for this dataset. The final vocabulary 281

size is 48935, and we find 1148 hypernym classes 282

for 5969 tokens among the vocabulary with d = 6 283

and f = 1000. 284

Several variants of the Transformer model have 285

been used for our experiments: 286

• small model: 12 layers, 10 heads, hidden size 287

300, batch size 256, training steps 100k; 288

• base model: 16 layers, 10 heads, hidden size 289

410, batch size 64, training steps 200k; 290

• large model: 18 layers, 16 heads, hidden size 291

1024 batch size 128. 292

The input lengths are 150 for the base model 293

and 384 for the large model. The memory 294

length is equal to the input length for both train- 295

ing and testing. The hyper-parameters used for 296

1https://arxiv.org/help/oa/index
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Model #Param. Valid PPL Test PPL

LSTM+Neural cache (Grave et al., 2017b) - - 40.8
Transformer small 91M 34.5 36.5

+ HCP 34.1 35.9
Transformer base 151M 29.2 30.7

+ HCP 29.1 30.2
Transformer-XL base, M=150 (Dai et al., 2019) 151M - 24.0
Segatron-XL base (Bai et al., 2021), M=150 151M - 22.5

+ HCP 21.9 22.1
Transformer Large 257M 24.0 25.8 (80k steps)

+ HCP 23.7 25.3 (80k steps)
Adaptive Input (Baevski and Auli, 2019) 247M - 18.7 (286k steps)
Transformer-XL large, M=384 (Dai et al., 2019) 257M - 18.3 (400k steps)
Compressive Transformer, M=1024 (Rae et al., 2020) 257M 16.0 17.1 (400k steps)
Segatron-XL large, M=384 (Bai et al., 2021) 257M - 17.1 (350k steps)

+ HCP 16.1 17.0 (350k steps)

Table 1: Results on WikiText-103 dataset with different models.
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Figure 4: Valid perplexity curves during the training of
small and large models with WikiText-103

the ARXIV dataset are as same as the WikiText-297

103, except the ARXIV base model’s input length298

is 384. The number of training steps varies greatly299

for the large model in previous work, so we experi-300

ment on both the lower (80k) higher (350k) ends.301

302

4.1 Main results303

Our main results are shown in Table 1. We can304

see that all architectures could benefit from HCP:305

Transformer-small improved 0.6 ppl, Transformer-306

base improved 0.5, Segatron-XL base improved307

0.4, Transformer-large improved 0.5, and Segatron-308

XL large improved 0.1. We also plot the validation309

perplexities of small and large models trained with310

and without HCP in Figure 4. In the beginning, the311

perplexity of the HCP models is higher due to the312

mixed training steps from the two tasks, but we can313

see that HCP perplexity goes down faster than the314

baseline method. And after fully switching to token315

prediction, HCP outperforms the baseline method 316

quickly and the gap between these two methods 317

remains stable. These results suggest that HCP is 318

indeed effective in improving LM training. 319

For experiments on the ARXIV dataset, we first 320

compare the Segatron-XL base model trained with 321

and without HCP. The results are shown in Table 2. 322

The improvements over the validation set and test 323

set are 0.6 and 0.75 respectively. For the large 324

model, we use the same model architecture and 325

hyper-parameters as the WikiText-103 large model 326

but change the vocabulary to BPE sub-tokens. The 327

final perplexity outperforms its counterparts about 328

0.4 and outperforms a larger model trained with 329

1024 input sequence length over 0.47, while our 330

model length is 384. 331

4.2 Generalization on Rare Tokens 332

In addition to the overall perplexity comparison, 333

we also conduct pairwise model comparisons with 334

tokens that have been replaced during HCP training 335

on the WikiText-103 test set. Given two models, 336

we compare the prediction probabilities for each 337

occurrence of a target token, and register a “win” 338

for the model with a higher probability. We then 339

calculate the percentage of winnings (as well as 340

ties) for each model by tallying over all occurrences 341

of the token. The results are then stratified by token 342

frequency and plotted in Figure 5. The better model 343

is placed on the right in both sub-figures. 344

In Figure 5(a), we see that HCP outperforms 345
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Model #Param. Valid PPL Test PPL

Segatron-XL base 59M 22.39 24.21
+ HCP 21.79 23.46

Transformer-XL large (Lazaridou et al., 2021) 287M - 23.07
Segatron-XL large 283M 21.28 22.99 (80k steps)

+ HCP 283M 20.93 22.60 (80k steps)

Table 2: Results on ARXIV dataset with different models.

all_tokens

freq<1000

freq<500

freq<400

freq<300

freq<100

freq<50

freq<30

freq<20

freq<10

freq<5

0% 25% 50% 75% 100%

Baseline_better Indistinguishable HCP_LM_better

(a) Baseline model and HCP model

all_tokens

freq<1000

freq<500

freq<400

freq<300

freq<100

freq<50

freq<30

freq<20

freq<10

freq<5

0% 25% 50% 75% 100%

SubOpt_better indistinguishable Baseline_better

(b) Baseline model and sub-optimal model

Figure 5: Pairwise comparison results. The baseline model and HCP model are training without and with hypernym
class prediction respectively. The sub-optimal model is trained with different hyper-parameters, whose perplexity
is increased by 0.9 compared with the baseline model.

the baseline model on all frequency strata. Inter-346

estingly, the performance gap widens as frequency347

decreases, indicating that HCP is beneficial in mod-348

eling rare tokens. In Figure 5(b), we compare the349

baseline model against an under-optimized model350

of identical architecture but slightly different hyper-351

parameters.2 Here, the (optimal) baseline outper-352

forms the sub-optimal model on all but the least353

frequent stratum, suggesting the possibility that per-354

plexity reduction (resulting from hyperparameter355

tuning in this case) might be achieved by improv-356

ing frequent word prediction at the expense of rare357

words. This is inline with observations made re-358

cently in vision tasks (Sagawa et al., 2020).359

4.3 Ablation study360

We conduct ablation studies with WikiText-361

103 dataset and Transformer small model to in-362

vestigate how to map words to hypernym classes,363

2The sub-optimal model has batch size 128 instead of the
optimal 64, and the perplexity gap between these two models
is observed to be slightly larger than that between HCP and
the baseline (0.9 vs 0.5).

how to select curriculum learning pacing functions 364

and to show why we use curriculum training. 365

4.3.1 Hypernym-path Depth 366

The hypernym classes are chosen from the 367

hypernym-paths in WordNet. Considering that a 368

hypernym-path consists of multiple hypernyms, it 369

is not straightforward to tell which layer is the best. 370

But the best depth d should be some layer in the 371

middle. Because a small depth might map multi- 372

ple distant words into the same class, while a large 373

depth will result in too many classes which are hard 374

for a model to learn. The extreme examples could 375

be d = 1 and d = ∞, corresponding to mapping 376

all candidate words into the class “Entity.n.01” and 377

mapping each word into itself respectively. In Ta- 378

ble 3, we show evaluation results among different 379

depth selections. We find that depth 6th is the best 380

choice, with the lowest valid perplexity. The re- 381

sults also confirm our assumption that the best one 382

would be some middle layer. 383
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Depth Valid PPL #Classes

Baseline 34.5 0
d = 4 34.54 145
d = 5 34.29 1169
d = 6 34.05 3383
d = 7 34.37 6604
d = 8 34.25 9063

Table 3: Clustering words into classes with different
layer’s hypernym parents. The average depth is 8.03.
#Classes denotes the total number of hypernym classes.

FilterFreq. Valid PPL #Rep.

Baseline 34.5 0
f = 3000 34.14 70859
f = 5000 34.50 71735
f = 6000 34.05 71971
f = 7000 34.32 72153
f = 8000 34.35 72291
f =∞ 40.10 73067

Table 4: Ignoring words whose frequency more than a
threshold f during hypernym class clustering. #Rep.
denotes the number of tokens in the vocabulary that
will mapped.

4.3.2 Filter Frequency384

In addition to the hypernym-path depth, we also385

investigate how to select frequency threshold f . As386

we mentioned above, our target is to map similar387

words into the same class, where predicting a hyper-388

nym class might be easier than predicting multiple389

different words. After the mapping process, low-390

frequency words can be clustered into hypernym391

classes with higher frequency. Table 4 shows the392

results of different f . We can see that f = 6000393

achieves the best results while f = ∞ (without394

filter) is the worst. We hypothesize this might be395

due to two reasons. First, for some high-frequency396

common words, the model can learn them well al-397

ready, while mapping them into hypernym classes398

may be superfluous or even harmful. Second, in-399

cluding frequent words skews the marginal distri-400

bution over hypernym classes, causing hypernym401

prediction to be more class-imbalanced, which in402

turn might lead to collapsed representation in the403

resulting LM (Fang et al., 2021). This hypothesis404

deserves further investigation. It should be noted405

that although the difference of #Rep.Tokens looks406

minor, the difference in the token’s appearance is407

significant. For example, f = ∞ maps only 776408

additional tokens compared with f = 8000, but409

each token’s appearance is more than 8000, which410

explains the different perplexities in Table 4.411

4.3.3 Pacing Function 412

Table 5 shows the results of models trained with var- 413

ious curriculum pacing functions. We also report 414

the validation perplexities of the tokens that have 415

ever been replaced with hypernym class (Rep.PPL) 416

during training and tokens without hypernym 417

class (NonRep.PPL). 418

For the constant pacing function, we fix b = 1 419

and change the value of a, In this case, the models 420

are always training with HCP in the first a ∗ 100k 421

steps and then switch to the token prediction train- 422

ing, which is a pre-training pacing function. We can 423

see that all models outperform the baseline model 424

over the validation perplexity. Rep.PPL improves 425

from 348 to 339. The perplexity of NonRep.PPL 426

between baseline model and HCP models are sim- 427

ilar, except the model trained with a = 4, which 428

indicates the pre-training should not take up too 429

many steps. 430

For the linear pacing function, we choose some 431

specific a and b to achieve the same HCP steps as 432

the constant functions above. For simplicity, we 433

also set a = b. In Table 5, we can see that the over- 434

all perplexity of the linear functions is similar to the 435

corresponding constant functions, where the Non- 436

Rep.PPL is slightly decreased while the Rep.PPL 437

is slightly increased. We conduct a grid search over 438

different pacing functions with Transformer small 439

model and WikiText-103, and finally, use the con- 440

stant function with a = 0.12 and b = 0.8 for all 441

base models and large models. 442

Curriculum hyper-parameters could be trans- 443

ferred to the ARXIV dataset successfully. However, 444

we tune the frequency threshold f on each dataset, 445

because different tokenization methods change the 446

frequency distribution. All HCP models in Table 2 447

are using d = 6, f = 1000, and the constant pacing 448

function with a = 0.12 and b = 0.8. 449

4.3.4 Other Training Objectives 450

We also experimented with two other methods to in- 451

corporate hypernym information into LM training. 452

Although neither method has yielded any empiri- 453

cal gain, we nonetheless report these methods and 454

offer possible explanations for their failure. 455

Multi-objective Training Multi-objective (or 456

multi-task) training consists in a weighted sum of 457

token and hypernym prediction losses. We set the 458

weight of the hypernym prediction loss to 0.2. The 459

prediction of a token is calculated with Eq. 1. The 460

prediction of a hypernym class is calculated with 461
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Constant Func. HCP steps Valid PPL NonRep.PPL Rep.PPL

a=0 b=0 0 34.5 22.07 348.87
a=0.1 b=1 10k 34.18 22.08 339.30
a=0.2 b=1 20k 34.15 22.07 339.34
a=0.3 b=1 30k 34.26 22.07 338.14
a=0.4 b=1 40k 34.39 22.26 338.31

Linear Func.

a=0.45 b=0.45 10k 34.14 22.04 340.55
a=0.64 b=0.64 20k 34.05 21.96 341.33
a=0.78 b=0.78 30k 34.26 22.05 346.77
a=0.90 b=0.90 40k 34.56 22.12 354.40

Table 5: Training N steps hypernym class prediction among 100k training steps with different pacing functions.
NonRep.PPL denotes non-replaced tokens’ perplexity, and Rep.PPL denotes replaced tokens’ perplexity.

Valid PPL Test PPL NonRep.PPL Rep.PPL

Baseline 34.50 36.46 22.07 348.87
Adaptive Softmax 36.32 38.16 22.48 435.93
Multi-obj

last layer 46.06 48.49 27.81 627.23
8th layer 43.42 45.37 26.13 597.66
8th layer + mix vocab 35.97 38.02 22.98 365.27

Hypernym Class Prediction 34.05 35.87 21.96 341.33

Table 6: Results obtained by alternative strategies for integrating hypernymy information into the LM: adaptive
softmax and multi-objective training. Both under-perform the proposed HCP method.

Eq. 3, where x can be the output vector from any462

layer in the Transformer LM. Table 6 lists the re-463

sults using the last layer and the 8th layer. Using464

the last layer significantly undermines the original465

token prediction results. Using the 8th layer is bet-466

ter but the final perplexity is still no better than467

the baseline model. Simply forcing the language468

model to predict the hypernym class for each token469

is harmful to LM performance. We also tried to re-470

place Eq. 3 with Eq. 2, by mixing Vh and V¬w to-471

gether when predicting the hypernym classes (mix472

vocab). This significantly improves multi-objective473

training. Learning to predict the hypernym class474

from a mixed vocabulary Vh ∪V¬w is better than475

only hypernym classes Vh.476

Adaptive Softmax Another method is the477

adaptive-softmax (Grave et al., 2017a), where the478

model first predict the hypernym probability among479

Vh ∪V¬w and then predict the token probability480

among the tokens with the same hypernym class.481

In Table 6, we can see that the adaptive-softmax482

is no better than the multi-objective trained model.483

By looking into the poor perplexity of Rep.PPL,484

we find this method cannot improve the prediction485

of tokens in Vw. We believe this is due to the noise486

of hypernym class mapping, where we choose the487

first synset path as the token’s hypernym synset 488

without considering the context. Such noise will 489

affect the adaptive-softmax prediction but is not an 490

issue for curriculum training as the final training 491

stage is fully trained with the original text. 492

5 Conclusion 493

In this work, we propose a new LM training strat- 494

egy with WordNet’s super-subordinate relation and 495

curriculum learning. Although WordNet is an ex- 496

ternal resources, it’s not clear how to get lower 497

perplexity using WordNet before this work. Con- 498

sistent perplexity reduction can be observed over 499

various models. Both rare and frequent tokens can 500

be modeling better with our proposed method while 501

other optimization method may sacrifice the perfor- 502

mance on rare tokens. 503

We’d like to address the limitations of this work: 504

other methods to map words to classes; LM experi- 505

ments with other languages; pre-training LM with 506

our proposed method and testing on downstream 507

tasks. We hope to investigate these directions in 508

the future. 509
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