NO ONE SIZE FITS ALL: QUERYBANDITS FOR HAL-LUCINATION MITIGATION

Anonymous authors

000

001

002 003 004

010 011

012

013

014

015

016

018

019

021

023

025

026

027

028029030

031

033

034

035

037

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Advanced reasoning capabilities in Large Language Models (LLMs) have led to more frequent hallucinations; yet most mitigation work focuses on open-source models for post-hoc detection and parameter editing. The dearth of studies focusing on hallucinations in closed-source models is especially concerning, as they constitute the vast majority of models in institutional deployments. We introduce QueryBandits, a model-agnostic contextual bandit framework that adaptively learns online to select the optimal query-rewrite strategy by leveraging an empirically validated and calibrated reward function. Across 16 QA scenarios, our top QueryBandit (Thompson Sampling) achieves an 87.5% win rate over a No-REWRITE baseline and outperforms zero-shot static policies (e.g., PARAPHRASE or EXPAND) by 42.6% and 60.3%, respectively. Moreover, all contextual bandits outperform vanilla bandits across all datasets, with higher feature variance coinciding with greater variance in arm selection. This substantiates our finding that there is no single rewrite policy optimal for all queries. We also discover that certain static policies incur higher cumulative regret than No-REWRITE, indicating that an inflexible query-rewriting policy can worsen hallucinations. Thus, learning an online policy over semantic features with QueryBandits can shift model behavior purely through forward-pass mechanisms, enabling its use with closed-source models and bypassing the need for retraining or gradient-based adaptation.

1 Introduction

As Large Language Models (LLMs) grow more powerful, the severity of factual errors, otherwise known as *hallucinations*, can increase (OpenAI, 2025; Times, 2025). Hallucinations refer to the generation of inaccurate outputs relative to the LLM's internal *understanding* of the query and reference context (Ji et al., 2023). However, most mitigation research remains largely confined on retrofitting outputs, post-hoc detection, and correction–approaches that are largely relevant to open-source models (Touvron et al., 2023)—even though closed-source models constitute the majority of institutional deployments in today's society (OpenAI et al., 2024). Moreover, small surface-form perturbations to an input can induce large output differences (Watson et al., 2025a; Cho & Watson, 2025), underscoring the need for an online, model-agnostic policy-learning process to mitigate hallucinations.

We propose **QueryBandits**, a contextual bandit framework that selects, per query, an appropriate rewrite strategy to proactively steer LLMs away from hallucinations. Interventions are derived from the semantic features, or *footprint*, of a query. To formalize the relationship between a query and factuality, we construct a composite reward function, $r_t = \alpha s_{\text{Ilm}} + \beta s_{\text{fuzz}} + \gamma s_{\text{bleu}}$, where $s_{\text{Ilm}} \in \{0, 1\}$ is an LLM-as-a-judge binary correctness label (Liu et al., 2023c; Adlakha et al., 2024), $s_{\text{fuzz}} \in [0, 1]$ is a fuzzy string-similarity score (Bachmann, 2024), and $s_{\text{bleu}} \in [0, 1]$ is the BLEU-1 score capturing unigram lexical overlap (Papineni et al., 2002; Callison-Burch et al., 2006). We *operationalize* hallucination as responses with low r_t . Through our ablations, we identify the Pareto-optimal balance of weights $(\alpha, \beta, \gamma) = (0.6, 0.3, 0.1)$ on a held-out human labeled set (Fig. 2a). This proxy r_t separates correct from incorrect answers with ROC-AUC 0.973 (95% CI: [0.972, 0.975]) across resampling settings, supporting its use as a learning signal. We assign a higher weight to the LLM-as-a-judge term (α) within the Pareto frontier, consistent with studies that highlight the efficacy of LLMs in Natural Language Generation (NLG) evaluation tasks (Wang et al., 2023a; Fu et al., 2023). We make no stationarity assumption about the reward distribution given the extreme dimensionality

Figure 1: QueryBandits selects a rewrite that fixes a counting error. The original query x_t elicits a hallucinatory count (8 integers) due to an ambiguous lower bound (6). Conditioned on the query's 17-dimensional feature vector, QueryBandits selects Expand and rewrites the query to x_t' with explicit bounds; the LLM then returns the correct cardinality (9). Noticeably, the feature vector also shifts: *subordination* (more complex clauses) appears while *specialization* (domain-specific knowledge required) disappears-illustrating how rewriting alters the salient semantics of x_t .

of the output space (Riemer et al., 2022), and therefore evaluate whether rewrite strategies confer advantages under both average-reward and worst-case objectives.

Reinforcement Learning (RL) (Sutton & Barto, 2018) methods have been applied in Natural Language Processing (NLP) for tasks such as optimizing document-level retrieval (Nogueira & Cho, 2017), fine-tuning LLMs (DeepSeek-AI et al., 2025), and post-training (Mudgal et al., 2024). Despite its prevalence, to our knowledge there is limited in-depth research on interactive rewriting for hallucination mitigation. We adopt bandits rather than full RL for three reasons: (i) estimating long-horizon value for hallucination incidence would require repeated queries from a shared subpopulation, whereas interactions are predominantly single-shot; (ii) averaging correctness across heterogeneous contexts obscures informative per-query idiosyncrasies; and (iii) modeling token-level transition dynamics is unwarranted for our objective. That is not to say bandit-style ideas are not without precedent in NLP: Proximal Policy Optimization (Schulman et al., 2017) variants for LLMs such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024) and ReMax (Li et al., 2024c) remove the critic via grouped Monte Carlo or baseline-adjusted returns.

Action Space and Context. We define five rewrite strategies as our action space and a 17-dimensional linguistic feature vector capturing query properties known to affect model understanding (Table 8). QueryBandits therefore learns an online policy mapping this validated linguistic feature vector to arm selections, allocating exploration under uncertainty and exploitation when features are predictive. This contrasts with prior approaches that adopt a one-size-fits-all rewrite strategy and do not learn an adaptive selection policy (Ma et al., 2023; Watson et al., 2025a).

Contribution 1: Reward Modeling for Factuality. We introduce an empirically validated and calibrated reward function r_t , composed of an LLM-judge, fuzzy-match, and BLEU-1 metrics, with $\alpha, \beta, \gamma = (0.6, 0.3, 0.1)$ chosen inside the 1% Pareto-optimal frontier on a held-out human-labeled set (Fig. 2a). Our evaluation rests on the simplex formed by $\alpha, \beta, \gamma \geq 0$, $\alpha + \beta + \gamma = 1$. The reward reliably separates right from wrong answers: its average ROC-AUC is 0.973 across resampling settings, and even the conservative 95% lower bound exceeds 0.97 after 150 samples, indicating a stable and highly discriminative proxy for correctness. Guided by this reward signal, our contextual QueryBandits learn to tailor rewrite choices to each query's linguistic/contextual footprint.

Contribution 2: Contextual Adaptation Wins. Across 13 QA benchmarks (16 scenarios), our best contextual bandit, Thompson Sampling (TS), drives an 87.5% win rate over the NO-REWRITE baseline and outperforms zero-shot static policies (PARAPHRASE, EXPAND) by 42.6% and 60.3%, respectively. Furthermore, certain static strategies accrue higher cumulative regret than NO-REWRITE, indicating that *fixed rewrites can worsen hallucination*. In Fig. 3, contextual QueryBandits quickly

Table 1: Accuracy by dataset (rows) and algorithm family (columns). Higher is better; bold marks the row maximum. "Wins (ties split)" counts 0.5 for ties. "Macro-avg" is the unweighted mean across datasets. Contextual methods dominate: Contextual Thompson Sampling (TS, rightmost column) achieves the best macro-average (0.766) and most wins (8/16); the remaining wins come from the linear contextual family (LinUCB 4.5, LinUCB+KL 3.5). Static prompts and noncontextual bandits do not win on any dataset. NoRw = No-Rewrite.

	Base			Static Prom	pts			Non-	Contextual			Conte	extual Linear		
Dataset	NoRw	Para.	Simpl.	Disamb.	Clarify	Expand	EXP3	FTPL	ϵ -FTRL	TS (NC)	LinUCB	LinUCB+KL	LinEXP3	LinFTPL	TS (C)
ARC-Challenge	0.816	0.813	0.814	0.786	0.800	0.731	0.878	0.792	0.873	0.887	0.888	0.888	0.878	0.826	0.884
ARC-Easy	0.808	0.807	0.810	0.796	0.793	0.748	0.890	0.743	0.859	0.877	0.892	0.888	0.869	0.818	0.895
BoolQA	0.547	0.564	0.574	0.574	0.568	0.554	0.658	0.589	0.649	0.571	0.649	0.668	0.637	0.605	0.673
HotpotQA	0.658	0.653	0.657	0.664	0.650	0.654	0.755	0.660	0.747	0.667	0.764	0.757	0.726	0.670	0.756
MathQA	0.700	0.692	0.678	0.685	0.689	0.691	0.779	0.688	0.758	0.756	0.787	0.784	0.732	0.696	0.785
MMLŬ	0.744	0.748	0.724	0.736	0.728	0.709	0.832	0.747	0.803	0.773	0.837	0.832	0.780	0.721	0.835
OpenBookQA	0.735	0.736	0.738	0.677	0.667	0.553	0.769	0.725	0.776	0.780	0.790	0.791	0.718	0.694	0.793
PIQA	0.717	0.715	0.729	0.639	0.666	0.561	0.772	0.638	0.755	0.733	0.785	0.791	0.766	0.746	0.790
SciQ (Abstract)	0.712	0.725	0.701	0.706	0.704	0.680	0.804	0.704	0.773	0.780	0.800	0.802	0.725	0.693	0.806
SciQ (MC)	0.775	0.777	0.771	0.766	0.749	0.704	0.847	0.764	0.823	0.828	0.851	0.857	0.796	0.787	0.867
SQuAD (Abstract)	0.531	0.559	0.540	0.540	0.531	0.507	0.626	0.553	0.614	0.523	0.632	0.628	0.606	0.568	0.636
SOuAD (Extract)	0.670	0.679	0.681	0.643	0.640	0.565	0.742	0.682	0.738	0.682	0.743	0.752	0.748	0.697	0.759
TriviaQA	0.682	0.668	0.662	0.651	0.646	0.653	0.742	0.670	0.734	0.729	0.754	0.759	0.693	0.671	0.757
TruthfulQA	0.496	0.488	0.509	0.481	0.470	0.441	0.567	0.509	0.577	0.516	0.583	0.595	0.555	0.512	0.586
TruthfulQA (MC)	0.807	0.791	0.834	0.753	0.741	0.679	0.854	0.705	0.802	0.887	0.888	0.863	0.846	0.786	0.852
WikiQA	0.498	0.494	0.498	0.472	0.485	0.470	0.581	0.519	0.562	0.566	0.570	0.576	0.557	0.514	0.590
Macro-avg	0.681	0.682	0.682	0.661	0.658	0.619	0.756	0.668	0.740	0.722	0.763	0.764	0.727	0.688	0.766
Wins (ties split)	_	_	_	-	-	-	_	_	-	-	4.5	3.5	-	-	8.0

hone in on the optimal rewrites, accruing substantially lower cumulative regret than static policies, vanilla (non-contextual) bandits, or no-rewriting. These gains confirm that a feature-aware, online adaptation mechanism consistently outpaces one-shot heuristics in mitigating hallucinations.

Contribution 3: Interpretable Decision Weights. Per-arm regression analyses (Fig. 5) provide empirical evidence that *no single rewrite strategy* maximizes the reward across all types of queries. In fact, each arm's effectiveness hinges on the semantic features of a query. For example, if a query displays the feature (*Domain*) *Specialization*, meaning that the query can only be understood with domain-specific knowledge, the rewrite arm EXPAND is very effective in contrast to SIMPLIFY (Figure 1). Ablating the 17-feature context reduces TS's win rate to 81.7% and the exploration-adjusted reward to 754.66. Macro-averaged accuracy across the 16 scenarios corroborates this decline: noncontextual TS drops to 72.2% from 76.6%. This performance gap confirms that linguistic features carry associative signals about the optimal rewrite strategy. To our knowledge, this is the first work to use a holistic 17-feature linguistic vector as per-query context for a bandit's best-arm selection—moving beyond piecemeal correlations to a single-pass, end-to-end decision policy. Finally, we observe that across datasets, higher feature variance coincides with greater variance in arm selection (Figure 4), yielding genuinely diverse arm choices (Figure 2b).

Contribution 4: Scope & Utility. QueryBandits operates entirely at the input layer as a model-agnostic, plug-and-play online learning policy suitable for closed-source LLMs, addressing the critical arena of hallucination mitigation efforts where model weights are inaccessible. By contrast, existing mitigation methods for open-source models such as DoLa (Chuang et al., 2024) and TruthX (Zhang et al., 2024a) modify internal representations or decoding, neither of which are directly available for closed models. On TRUTHFULQA (Lin et al., 2022), their gains on smaller open models (LLAMA-2-7B-CHAT) remain far below strong closed backbones (TruthX: 54.2%, DoLa: 32.2%, vs. GPT-4o: 81.4%). QueryBandits further lifts GPT-4o from 81.4% to 88.8% MC1 (+7.4 pp) by adapting rewrites to per-query features, with minimal compute and token overhead. Because DoLa/TruthX gains are realized on weaker open models, they do not transfer additively at higher baselines due to diminishing headroom.

Interesting Findings. (i) On many standard benchmarks, linear contextual bandits often converge to the NO REWRITE arm (Figure 8), exposing memorization effects. Diversity emerges only when queries are semantically invariant but lexically perturbed; a meaningful insight for the research community that surface-form novelty is essential in training query-rewriting algorithms. (ii) Noncontextual bandits often converge to a single rewrite strategy per dataset, whereas contextual bandits tend to diversify choices conditioned on the presence and/or absence of linguistic features.

Key Empirical Takeaway. Taken together, the dominance of contextual learners, the consistent edge of non-contextual bandits over static prompts, and the near-parity of static prompts with the NO-REWRITE baseline indicate that (a) per-query linguistic features reliably predict rewrite utility,

(b) online adaptation matters even without features, and (c) there is no universally beneficial fixed policy on strong LLMs (Tables 1, 4).

2 RELATED WORKS

Societal Stakes and Gap of Closed-Source Models. LLM hallucinations erode trustworthiness from a societal perspective (Dechert LLP, 2024). Recent conceptual analyses frame them as a new epistemic failure mode requiring dedicated mitigation agendas (Yao et al., 2024). Complementing these views, Kalai et al. (2025) argue that language models hallucinate because prevailing training and evaluation procedures reward guessing over acknowledging uncertainty. Reports on newer advanced-reasoning models (e.g., O3, O4-MINI) indicate increased hallucination rates (OpenAI, 2025), and journalistic case studies document real-world legal exposure from fabricated outputs (Times, 2025). As more LLM-agent systems proliferate (Watson et al., 2025b; 2023), the downstream cost of errors compounds. Yet, there remains a dearth of studies on hallucination mitigation efforts for *closed-source* models—our work targets this underexplored gap.

From Post-hoc Detection to Preemptive Query Shaping. Mitigation is indispensable for faithful LLM interaction (Ji et al., 2023), and research has expanded from post-hoc detection and iterative correction (Madaan et al., 2023) to preemptive grounding and query restructuring. Watson et al. (2025a) estimate hallucination risk *before* generation via query perturbations. Ma et al. (2023) propose *Rewrite-Retrieve-Read* for RAG pipelines, and manual, rule-based rewriting is widely used (Liu & Mozafari, 2024; Mao et al., 2024; Chen et al., 2024a). A common limitation is reliance on raw prompting or static heuristics rather than *guided* rewrites conditioned on the original query's contextual signals.

Linguistic Features as Actionable Context. Blevins et al. (2023) show that pretrained language models can recover linguistic attributes in a few-shot setting. Building on this, we employ an LLM to identify 17 key linguistic features per query (Table 8). Feature selection drew from both existing LLM literature and traditional linguistics, prioritizing properties known to affect comprehension for humans and models alike. These features serve as the context for our bandit policy, enabling *feature-conditioned* query-rewriting rather than one-size-fits-all rules.

3 METHODOLOGY AND EVALUATION METRICS

Bandit Formulation. In the contextual multi-armed bandit framework (Lattimore & Szepesvári, 2020), a learner observes at round t a context vector $x_t \in \mathcal{X} \subset \mathbb{R}^d$ and selects an arm $a_t \in \mathcal{A}$. Upon that basis, Nature reveals a scalar reward $r_t = r(x_t, a_t) \in [0, 1]$, where $r : \mathcal{X} \times \mathcal{A} \to [0, 1]$. The goal of a bandit algorithm is to select arms that maximize the expected (cumulative) reward (Alg. 1; Appx. C). In the stochastic bandit setting, the objective is to choose a *policy* $\pi : \mathcal{X} \to \rho(\mathcal{A})$ that maximizes the expected reward, i.e.,

$$\max_{\pi \in \Pi} \mathbb{E}[r(x, \tilde{a})], \quad \tilde{a} \sim \pi(x),$$

where $\rho(A)$ is the probability simplex over K = |A| arms, and Π is the policy class.

Action Space. Let $A = \{a_0, \dots, a_{K-1}\}$ denote the rewrite strategies (arms), where each $a_i \in A$ represents a distinct style of query reformulation implemented via prompt instructions to an LLM:

- ▶ a₀ PARAPHRASE: Rewrite the query to introduce lexical diversity while preserving semantic meaning, testing whether alternative phrasings reduce hallucinations. Prior work has explored how paraphrasing can improve factual consistency in LLMs (Deng et al., 2024; Witteveen & Andrews, 2019).
- ▶ a_1 SIMPLIFY: Rewrite the query to eliminate nested clauses and complex syntax. This targets hallucinations caused by long-range dependencies or overloaded details, borrowing ideas from educational psychology where simpler, granular prompts enable a child to learn a new skill (Libby et al., 2008). Recently, Van et al. (2021); Zhou et al. (2023) report that simplified prompts reduce off-topic drift and ease reasoning.
- ▶ a₂ DISAMBIGUATE: Rewrite the query by resolving vague references (ambiguous pronouns, temporal expressions). Studies showcase LLMs' inability to resolve ambiguous queries, leading to subpar performance (Deng et al., 2023; Shahbazi et al., 2019).

reward-weight simplex.

216 217

224 225 226

227

228 229

230

231 232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252 253

254

255

256

257

258 259

260

261

262

263

264 265

266

267

268

269

(a) ROC-AUC Pareto frontier on the (b) Mean-reward ranks (1 = best)per rewrite arm / dataset under our contextual bandit; color intensity indicates closeness to the top rank.

Figure 2: (a) Our chosen (α, β, γ) lies deep in the 1% optimal frontier. (b) Breakdown of per-dataset arm performance: different datasets consistently favor different rewrite strategies

- a₃ EXPAND: Rewrite the query to add salient entities and attributes to enrich context (Yu et al., 2023). Since transformers optimize next-token likelihood over attention-mediated context windows (Vaswani et al., 2023), appending fine-grained query constraints effectively conditions the model on a richer semantic prefix.
- a₄ CLARIFY TERMS: Rewrite the query to define jargon and terms of art to reduce domainspecific ambiguity (Clark & Gerrig, 1983; Rippeth et al., 2023). This is especially useful for long-tail knowledge, where LLMs underperform on less-popular entities and benefit from added context or lightweight retrieval (Mallen et al., 2023).

Contextual Attributes. For each query we extract a 17-dimensional binary feature vector $\mathbf{f} \in$ {0,1}¹⁷ capturing linguistically motivated properties known to affect human and LLM comprehension (Table 8). These features serve as the context for our policy, giving contextual bandits the opportunity to learn when to apply which rewrite.

Reward Model. Each rewritten query receives a bounded composite reward $r_t \in [0,1]$ as a convex combination of three complementary correctness signals:

$$r_t = \alpha s_{\text{llm}} + \beta s_{\text{fuzz}} + \gamma s_{\text{bleu}}, \qquad \alpha + \beta + \gamma = 1, \quad \alpha, \beta, \gamma \ge 0$$
 (1)

- $s_{\text{llm}} \in \{0,1\}$: a binary correctness judgment by a GPT-40-based assessor, calibrated on factuality between generated and reference answers (Liu et al., 2023c; Adlakha et al., 2024).
- $s_{\text{fuzz}} \in [0, 1]$: RapidFuzz token-set similarity capturing soft string overlap (Bachmann, 2024).
- $s_{\text{bleu}} \in [0,1]$: BLEU-1 (unigram precision) under a unit-cap ensuring lexical fidelity (Papineni et al., 2002; Callison-Burch et al., 2006).

This triad mitigates individual failure modes inherent in any single metric (e.g. BLEU's paraphrase blindness or edit-distance oversensitivity) while remaining stable for learning. Following Wang et al. (2023a), we leverage the strength of LLMs-as-judges; and as demonstrated by Test-Time RL (Zuo et al., 2025), even noisy, self-supervised signals (e.g. pseudo-labels from majority-voted LLM outputs) can effectively guide policy updates. We validate that our convex proxy r_t aligns with human labels via a 1,000 sample held-out set and report ROC-AUC in Figures 2a and 6.

Validity of the Reward & Simplex Analysis. Across sample sizes (5–1000 samples), the reward attains macro-average ROC-AUC **0.9729**; by 150 samples the 95% CI lower bound exceeds 0.97, indicating a stable and highly discriminative correctness proxy (Fig. 6b; Tab. 6a). We sweep $(\alpha', \beta', \gamma')$ over a simplex grid ($\alpha' + \beta' + \gamma' = 1$) and computed ROC-AUC on the human-labeled validation set (Fig. 2a). Our best weights $(\alpha, \beta, \gamma) = (0.6, 0.3, 0.1)$ lie well within the top 1% Pareto frontier (dark region) and is robust to ± 0.2 perturbations on α . The Pareto frontier reveals the following:

- ▶ LLM-Judge Robustness (α): The ROC-AUC surface is nearly invariant when α varies by ± 0.2 : AUC shifts by < 0.5%, indicating tolerance to large α swings.
- Fuzzy-Match Sensitivity (β): Small increases in β rapidly exit the Pareto region, showing that the fuzzy-match term must be tuned carefully to avoid degrading overall accuracy.
- **BLEU-Only Pitfall** (γ): As γ increases, ROC–AUC steadily declines, bottoming at $\gamma = 1$ (pure-BLEU), where the model over-emphasizes surface overlap at the expense of true correctness.

► Pareto-Optimal Region: The weights (0.6, 0.3, 0.1) sit deep in the high-AUC plateau, confirming it is a Pareto-optimal trade-off among semantic, fuzzy, and lexical signals.

Together, these experiments substantiate our reward design: the LLM-judge provides a forgiving anchor, fuzzy-match demands precise calibration, and BLEU contributes complementary lexical oversight.

Remark 1 Why bandits vs. full RL? Within LLMs, for each input query, the transformer attends over the fixed context window and computes a softmax over the vocabulary to maximize token likelihood (Radford et al., 2019). Consequently, hallucinations occur at the moment of generation for that single query, making hallucination a **per-query** phenomenon (Huang et al., 2025). Indeed, recent PPO variants for LLMs, such as GRPO (Shao et al., 2024) and ReMax (Li et al., 2024c), remove the critic via grouped Monte Carlo or baseline-adjusted returns, highlighting critic-free policies that our bandit formulations naturally generalize. Therefore, a full-episodic RL problem, which must solve a Markov decision process with long-horizon credit assignment and nonstationary transition dynamics (Sutton & Barto, 2018), can be practically suboptimal. Moreover, many of these methods rely on estimating a fixed average reward or state-action value Q(s,a), which can obscure per-query idiosyncrasies; if the optimal rewrite arm varies sharply with linguistic context, a mere empirical average will yield suboptimal policies.

Remark 2 Link between Algorithm Choices and RL Methods. Several algorithms we investigate in QueryBandits have analogues in RL: posterior sampling (PSRL) (Osband et al., 2013) as an analogue for Thompson sampling (Thompson, 1933); follow-the-regularized leader (FTRL) and its variants (Shalev-Shwartz et al., 2012), originating from proximal-gradient methods (Rockafellar, 1976) whose use in RL as proximal policy optimization (PPO) (Schulman et al., 2017) is well-established. Other PPO-style advances like DAPO (Yu et al., 2025) improve exploration-exploitation via dynamic sampling and reward filtering, and VAPO (Yue et al., 2025) demonstrates stable Long-CoT training with an explicit value model-illustrating the spectrum from model-based to model-free approaches that contextual bandits sit within.

Choice of Algorithms. For linear contextual bandits, we fit a per-arm linear model $x_t^{\top}\theta_k$ and use either a UCB method (LinUCB (Lai & Robbins, 1985) / LinUCB+KL (Garivier & Cappé, 2013)), an FTRL regularized weight (McMahan, 2015), or Thompson sampling with posterior draws (Thompson, 1933)). For adversarial bandits, we consider two parameter-free methods: EXP3 (Auer et al., 2002) and FTPL (Kalai & Vempala, 2005; Suggala & Netrapalli, 2020). Update rules and regret bounds are in Appx. C (Alg. 1).

Evaluation Metrics. We report three complementary metrics for a balanced view of (1) how well a policy explores vs. exploits, (2) how quickly it converges to good answers, and (3) how often it beats the NO-REWRITE baseline in accuracy.

Metric 1: Exploration-Adjusted Reward. Let $r_t \in [0,1]$ be the reward at pull t up to trajectory length T. Define the empirical arm-frequency vector $p_{t,k} = \frac{1}{t} \sum_{\tau=1}^t \mathbf{1}[a_\tau = k]$ and the normalized Shannon entropy $H_t = \left(-\sum_{k=1}^K p_{t,k} \log p_{t,k}\right)/\log K \in [0,1]$. We define the *exploration-adjusted reward* as:

$$R_{\text{adj}} = \sum_{t=1}^{T} (r_t + \lambda H_t),$$

with $\lambda=0.1$ (chosen on validation), rewarding policies that achieve high per-pull rewards while maintaining sufficient exploration.

Metric 2: Mean Cumulative Regret. At each pull the instantaneous regret is the gap between the oracle reward (best achievable rewrite) and the observed reward. Let $r_t^* = \max_{a \in \mathcal{A}} r(x_t, a)$ be the per-round oracle (max) reward. Over R runs, the mean cumulative regret is:

$$\overline{\text{Regret}} = \frac{1}{R} \sum_{i=1}^{R} \sum_{t=1}^{T} \left(r_t^* - r_t^{(i)}\right)$$

Metric 3: Win Rate vs. Baseline. For N test queries, we compute the fraction of trials where a policy's reward r_t^{policy} strictly exceeds the no-rewrite baseline r_t^{base} :

WinRate =
$$\frac{1}{N} \sum_{t=1}^{N} \mathbf{1} \left[r_t^{\text{policy}} \succ r_t^{\text{base}} \right] \times 100\%.$$

4 EXPERIMENTS

Pipeline. For each decision round t:

$$x_t \xrightarrow{\mathbf{f}_t \in \{0,1\}^d} \mathbf{f}_t \xrightarrow{\text{(rewrite strat.)}} x_t' = g_{a_t}(x_t) \xrightarrow{\text{LLM}} y_t \xrightarrow{r_t \in [0,1]} r_t \xrightarrow{\text{Update Bandit}} \varphi$$

- 1. **Feature Extraction.** For query x_t , compute d-dimensional linguistic feature vector $\mathbf{f}_t \in \{0,1\}^d$.
- 2. **Arm Selection.** The bandit receives \mathbf{f}_t and selects a rewrite arm $a_t \in \mathcal{A}$.
- 3. Query Rewriting. Apply the selected arm to obtain the candidate query $x'_t = g_{a_t}(x_t)$.
- 4. **LLM Inference.** Issue x'_t to gpt-40-2024-08-06, producing response y_t .
- 5. **Reward Evaluation.** Compute scalar reward $r_t \in [0, 1]$ via the reward formulation.
- 6. **Bandit Update.** Update the internal state of the bandit based on (a_t, r_t) .

Dataset and Query Construction. We evaluate on D=13 diverse QA benchmarks and S=16 scenarios (see Table 3). For each scenario, we sample $|\mathcal{Q}|$ queries satisfying: (1) *Original Answerability:* the query in the dataset (q_i) is answered correctly by gpt-4o-2024-08-06; and (2) *Perturbation Validity:* among five lexically perturbed but semantically invariant versions of each dataset query, assessed by an LLM-as-judge and n-gram based metrics (Lin, 2004; Papineni et al., 2002; Wang et al., 2023a), between one and three perturbations yield incorrect answers. Then, we randomly choose x_t from $|\mathcal{Q}|$ to train QueryBandits.

The importance of this query construction process deserves emphasis. Through our investigations, we discovered that the ubiquity of benchmarks in Table 3 within pre-training and fine-tuning regimes has engendered a potentially pernicious form of prompt memorization. When we deploy linear contextual bandits, the policy often converges almost exclusively to NO-REWRITE, suggesting that the LLM has memorized exact phrasings rather than exploiting deeper linguistic structure (Figure 8). To evaluate genuine rewrite efficacy—and to avoid a trivial memorization baseline—we therefore use a perturbed version of each dataset query as the **incoming query** for our bandits. This experimental setup prioritizes nondegenerate query-rewriting strategies.

Experimental Configuration. We compare three non-contextual and six linear contextual bandits against zero-shot prompting and a NO-REWRITE baseline. All reported metrics are averaged over all dataset runs per algorithm. We compare M bandit algorithms and prompting strategies over K=5 rewrite arms. Each algorithm runs for $T=|\mathcal{Q}_S|$ rounds on each of the S scenarios (Table 3). Thus, Total Pulls $=M\times S\times |\mathcal{Q}_S|\approx 252,000$, with M=15, S=16, and $|\mathcal{Q}_D|\approx 1050$. We bootstrap samples with replacement for TRUTHFULQA to obtain approximately 1,050 queries. Hyperparameters (learning rates, exploration coefficients, regularization constants) are tuned via grid search on a held-out validation set.

5 RESULTS

Hypothesis 1: Can QueryBandits reduce hallucination? Table 2 and Figure 3 compare QueryBandits against the NO REWRITE baseline and five static prompting strategies across 13 QA benchmarks (16 scenarios, 1,050 queries/dataset). In aggregate, contextual Thompson Sampling (TS) attains an 87.5% query-level win rate and 819.04 exploration-adjusted reward, compared to the NO REWRITE baseline (729.20; $\Delta = -89.84$). At the scenario level (Table 1), the macro-average accuracy improves from 0.681 (Baseline) to 0.766 (Contextual TS; $+8.5\,\mathrm{pp}$). Contextual TS also wins 8/16 scenarios outright (Table 2). Together, these results indicate that *contextual* query rewriting materially reduces hallucination relative to no rewriting.

Hypothesis 2: Can QueryBandits outperform static rewriting? Static rewriting never tops a dataset on accuracy (Table 1). Our best performing bandit, Contextual TS, consistently exceeds the performance of static variants; for example, relative to PARAPHRASE and EXPAND, Contextual

Figure 3: Cumulative Reward (averaged across all runs). Sorted by final performance, highlighting the superior gains achieved by contextual bandits compared to non-contextual learners and static prompt-based rewrites.

Table 2: **Left: Rewrite-policy Performance:** final cumulative exploration-adjusted reward, mean cumulative regret, and win rate vs. no-rewrite. **Right: Who Wins Where:** best accuracy per dataset and gain over NO-REWRITE baseline (pp). TS = Thompson Sampling; (C) = Contextual.

Algorithm	Ctx?	r _{adj} ↑	Cum. Regret↓	Win%↑	Dataset	Winner Algo.	Acc. (%) ↑	Δ (pp) \uparrow	
	Вс	andit Algo	rithms			Winners: TS (Conte	extual)		
TS (C)	/	819.04	135.84	87.5	ARC-Easy	TS (C)	89.5	+8.7	
LinUCB+KL	/	818.79	136.00	87.0	BoolQA	TS (C)	67.3	+12.6	
LinUCB	1	818.60	136.12	86.9	OpenBookQA	TS (C)	79.3	+5.8	
Linear ε-FTRL	/	799.57	155.30	85.0	SciQ (Abstract)	TS (C)	80.6	+9.4	
EXP3 (NC)	X	797.47	157.31	86.5	SciQ (MC)	TS (C)	86.7	+9.2	
Linear EXP3	1	781.05	173.60	83.8	SQuAD (Abstract)	TS (C)	63.6	+10.5	
TS (NC)	X	754.66	200.18	81.7	SQuAD (Extract)	TS (C)	75.9	+8.9	
Linear FTPL	1	738.07	216.54	76.3	WikiQA	TS (C)	59.0	+9.2	
FTPL (NC)	Х	716.05	238.85	62.8		Winners: LinUCB family			
		Static Pro	npts		ARC-Challenge	LinUCB (+KL)	88.8	+7.2	
Paraphrase	_	732.39	222.56	44.9	HotpotQA	LinUCB	76.4	+10.6	
Simplify	_	730.13	224.42	50.1	MathQA	LinUCB	78.7	+8.7	
Disambiguate	_	713.65	241.25	42.4	MMLU	LinUCB	83.7	+9.3	
Clarify Terms	_	711.65	243.35	38.2	PIQA	LinUCB+KL	79.1	+7.4	
Expand	_	639.25	315.71	27.2	TriviaQA	LinUCB+KL	75.9	+7.7	
No-Rewrite (B)	_	729.20	225.85		TruthfulQA TruthfulQA (MC)	LinUCB+KL LinUCB	59.5 88.8	+9.9 +8.1	

TS achieves much higher aggregate reward (819.04 vs. 732.39 and 639.25) and substantially higher accuracy, with typical gains of **+6–12 pp** over the baseline across scenarios (Table 2; e.g., +12.6 on BoolQA, +10.6 on HotpotQA). These gains confirm that adapting the rewrite to each query's linguistic footprint outperforms any one-size-fits-all prompt. By framing rewrite selection as an online decision problem and leveraging per-query context, QueryBandits allocate exploration where uncertainty is high and exploitation where features reliably predict hallucination risk—yielding up to double the hallucination reduction of any static strategy, with no additional model fine-tuning.

Hypothesis 3: Do linear contextual bandits outperform algorithms oblivious to context? Crucially, ablating the 17-dimensional feature vector drops Thompson Sampling's performance from 87.5% to 81.7% query-level win rate and from 819.04 to 754.66 reward (–5.8 pp, –64.38 reward). On accuracy, *contextual* methods dominate: Thompson Sampling wins 8/16 scenarios, while the contextual linear family (LinUCB/LinUCB+KL) takes the rest (tie-split: *LinUCB 4.5*, *LinUCB+KL 3.5*); see Table 1. Non-contextual bandits never top accuracy on any dataset. On regret (Table 4), wins spread to simpler methods—NO REWRITE (BASELINE) (3 scenarios), PARAPHRASE (3.5), SIMPLIFY (2), and Non-Contextual TS (3.5)—while contextual methods rarely minimize *instantaneous* regret (only LinFTPL wins once). This pattern aligns with exploration—exploitation: contextual learners accept small exploration costs (slightly higher regret early) to deliver higher final accuracy. Furthermore, these performance gaps confirm that linguistic features carry associative signals about hallucination risk.

Figure 4: Contextual Per-Feature Variance by Arm. For each arm, we compute the variance of each binary linguistic feature over all queries on which that arm was chosen. High variance means the bandit frequently switches the arm on that feature's presence.

Figure 5: Contextual Feature Contribution Strength. These are the averaged θ weights (direct contributions) per feature to the expected reward under each arm. Positive weights indicate features that boost that arm's reward; negative weights indicate features that *penalize* it.

Hypothesis 4: Is there an association between query features and reward? Arms exhibit distinct sensitivities to the 17 linguistic features (Figures 4–5). The same feature can flip importance across arms; e.g., (*Domain*) Specialization is highly predictive for EXPAND but weak for SIMPLIFY. A plausible mechanism is that domain-specific questions need added qualifiers/entities (EXPAND) to ground retrieval and reasoning, whereas aggressive pruning (SIMPLIFY) risks *excising* critical semantics. These arm–feature associations are correlational rather than causal, but they are consistent with the observed accuracy/regret trade-offs.

Hypothesis 5: Is there a *single* rewrite strategy that maximizes reward for all types of queries? No. The learned per-arm weights (Figure 5) show distinct *feature footprints*. For instance, SIMPLIFY excels with pragmatic cues (safe pruning) but struggles on superlatives (removing comparative meaning). Appendix Table 6 details these inversions. The diversity of winning arms across scenarios (Table 2) and the split of contextual winners (Contextual TS vs. LinUCB family) further support that *no single rewrite strategy is universally optimal*.

Hypothesis 6: Does QueryBandits improve closed-source model performance? As shown in Table 5, methods such as DoLa and TruthX improve *open-source* backbones (e.g., Llama-2-7B-Chat), but their best reported MC1 (TruthX: 54.2%; DoLa: 32.2%) is far below strong *closed-source* backbones (GPT-4o: 80.7%) (Zhang et al., 2024a; Chuang et al., 2024). By contrast, QueryBandits operates entirely at the input layer and lifts GPT-4o to 88.8% (+8.1 pp). Since DoLa/TruthX modify internal representations or decoding, they are not directly applicable to closed models, and gains on weaker models need not transfer additively at higher baselines.

6 Conclusion

We introduce QUERYBANDITS, a plug-and-play online learning policy that selects among K rewrite strategies to minimize a query's *hallucinatory* trajectory using lightweight linguistic features as context. Across 13 QA benchmarks (16 scenarios), *contextual* learners dominate: Contextual TS and the LinUCB family win nearly all benchmarks, yielding a macro-average accuracy of **0.766** vs. **0.681** for No-Rewrite, with typical gains of \sim 6–12 pp (Table 1). Non-contextual bandits generally beat static prompts, while static prompts are on par with the baseline, indicating that (i) per-query features predict rewrite utility, (ii) online adaptation matters even without features, and (iii) no single fixed rewrite is universally beneficial on strong LLMs.

REFERENCES

- Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, and Siva Reddy. Evaluating correctness and faithfulness of instruction-following models for question answering, 2024. URL https://arxiv.org/abs/2307.16877.
- Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. MathQA: Towards interpretable math word problem solving with operation-based formalisms. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 2357–2367, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1245. URL https://aclanthology.org/N19-1245.
- Alan Ansell, Felipe Bravo-Marquez, and Bernhard Pfahringer. Polylm: Learning about polysemy through language modeling, 2021. URL https://arxiv.org/abs/2101.10448.
- Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multiarmed bandit problem. *SIAM Journal on Computing*, 32(1):48–77, 2002. doi: 10.1137/S0097539701398375. URL https://doi.org/10.1137/S0097539701398375.
- Max Bachmann. rapidfuzz/rapidfuzz: Release 3.8.1, April 2024. URL https://doi.org/10.5281/zenodo.10938887.
- Anas Belfathi, Nicolas Hernandez, and Laura Monceaux. Harnessing gpt-3.5-turbo for rhetorical role prediction in legal cases, 2023. URL https://arxiv.org/abs/2310.17413.
- Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical commonsense in natural language. In *Thirty-Fourth AAAI Conference on Artificial Intelligence*, 2020.
- Terra Blevins, Hila Gonen, and Luke Zettlemoyer. Prompting language models for linguistic structure, 2023. URL https://arxiv.org/abs/2211.07830.
- Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/abs/2005.14165.
- Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in language models without supervision. In *The Eleventh International Conference on Learning Representations*, 2023. URL https://openreview.net/forum?id=ETKGuby0hcs.
- Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of Bleu in machine translation research. In Diana McCarthy and Shuly Wintner (eds.), 11th Conference of the European Chapter of the Association for Computational Linguistics, pp. 249–256, Trento, Italy, April 2006. Association for Computational Linguistics. URL https://aclanthology.org/E06-1032/.
- Hong Chen, Zhenhua Fan, Hao Lu, Alan Yuille, and Shu Rong. PreCo: A large-scale dataset in preschool vocabulary for coreference resolution. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 172–181, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1016. URL https://aclanthology.org/D18-1016/.
- Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang, Nicholas Roy, and Chuchu Fan. PRompt optimization in multi-step tasks (PROMST): Integrating human feedback and heuristic-based sampling. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 3859–3920, Miami, Florida, USA, November 2024a. Association for Computational Linguistics. doi: 10.18653/

```
v1/2024.emnlp-main.226. URL https://aclanthology.org/2024.emnlp-main.
226/.
```

- Zhongzhi Chen, Xingwu Sun, Xianfeng Jiao, Fengzong Lian, Zhanhui Kang, Di Wang, and Cheng-Zhong Xu. Truth forest: Toward multi-scale truthfulness in large language models through intervention without tuning, 2024b. URL https://arxiv.org/abs/2312.17484.
- Nicole Cho and William Watson. Multiq&a: An analysis in measuring robustness via automated crowdsourcing of question perturbations and answers, 2025. URL https://arxiv.org/abs/2502.03711.
- Nicole Cho, Nishan Srishankar, Lucas Cecchi, and William Watson. Fishnet: Financial intelligence from sub-querying, harmonizing, neural-conditioning, expert swarms, and task planning. In *Proceedings of the 5th ACM International Conference on AI in Finance*, ICAIF '24, pp. 591–599. ACM, November 2024. doi: 10.1145/3677052.3698597. URL http://dx.doi.org/10.1145/3677052.3698597.
- Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James R. Glass, and Pengcheng He. Dola: Decoding by contrasting layers improves factuality in large language models. In *The Twelfth International Conference on Learning Representations*, 2024. URL https://openreview.net/forum?id=Th6NyL07na.
- Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In *NAACL*, 2019.
- Herbert H. Clark and Richard J. Gerrig. Understanding old words with new meanings, 1983. URL https://web.stanford.edu/~clark/1980s/Clark.Gerrig.oldwords.83.pdf.
- Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv:1803.05457v1*, 2018.
- Charles L. A. Clarke, Nick Craswell, and Ian Soboroff. Overview of the TREC 2009 web track. In Ellen M. Voorhees and Lori P. Buckland (eds.), *Proceedings of The Eighteenth Text REtrieval Conference, TREC 2009, Gaithersburg, Maryland, USA, November 17-20, 2009*, volume 500-278 of *NIST Special Publication*. National Institute of Standards and Technology (NIST), 2009. URL http://trec.nist.gov/pubs/trec18/papers/WEB09.0VERVIEW.pdf.
- Dechert LLP. Ai expert challenged for relying on ai "hallucinations", December 2024. URL https://www.dechert.com/knowledge/re-torts/2024/12/ai-expert-challenged-for-relying-on-ai-hallucinations-.html. Accessed: 2025-05-12.
- DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,

Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforce-ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

- Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, and Tat-Seng Chua. Prompting and evaluating large language models for proactive dialogues: Clarification, target-guided, and non-collaboration. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023*, pp. 10602–10621, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.711. URL https://aclanthology.org/2023.findings-emnlp.711/.
- Yihe Deng, Weitong Zhang, Zixiang Chen, and Quanquan Gu. Rephrase and respond: Let large language models ask better questions for themselves, 2024. URL https://arxiv.org/abs/2311.04205.
- Esin Durmus, Karina Nguyen, Thomas I. Liao, Nicholas Schiefer, Amanda Askell, Anton Bakhtin, Carol Chen, Zac Hatfield-Dodds, Danny Hernandez, Nicholas Joseph, Liane Lovitt, Sam McCandlish, Orowa Sikder, Alex Tamkin, Janel Thamkul, Jared Kaplan, Jack Clark, and Deep Ganguli. Towards measuring the representation of subjective global opinions in language models, 2024. URL https://arxiv.org/abs/2306.16388.
- Donka F Farkas and Katalin É Kiss. On the comparative and absolute readings of superlatives, 2000.
- Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire, 2023. URL https://arxiv.org/abs/2302.04166.
- Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey, 2024. URL https://arxiv.org/abs/2312.10997.
- Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and beyond, 2013. URL https://arxiv.org/abs/1102.2490.
- E. J. Gumbel. The return period of flood flows, 1941. URL doi:10.1214/aoms/1177731747.
- Janosch Haber and Massimo Poesio. Polysemy—Evidence from linguistics, behavioral science, and contextualized language models. *Computational Linguistics*, 50(1):351–417, March 2024. doi: 10.1162/coli_a_00500. URL https://aclanthology.org/2024.cl-1.10/.
- James Hannan. Approximation to bayes risk in repeated play, 1957.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International Conference on Learning Representations (ICLR)*, 2021.
- Md Mosharaf Hossain and Eduardo Blanco. Leveraging affirmative interpretations from negation improves natural language understanding, 2022. URL https://arxiv.org/abs/2210.14486.
- Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. *ACM Trans. Inf. Syst.*, 43(2), January 2025. ISSN 1046-8188. doi: 10.1145/3703155. URL https://doi.org/10.1145/3703155.

- Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong Park. Adaptive-RAG: Learning to adapt retrieval-augmented large language models through question complexity. In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 7036–7050, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.389. URL https://aclanthology.org/2024.naacl-long.389/.
 - Ziwei Ji, Tiezheng Yu, Yan Xu, ouyang, Etsuko Ishii, and Pascale Fung. Towards mitigating hallucination in large language models via self-reflection, 2023. URL https://arxiv.org/abs/2310.06271.
 - Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints following benchmark for large language models, 2024. URL https://arxiv.org/abs/2310.20410.
 - Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions, 2017. URL https://arxiv.org/abs/1707.06209.
 - Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension. *arXiv e-prints*, art. arXiv:1705.03551, 2017.
 - Jushi Kai, Tianhang Zhang, Hai Hu, and Zhouhan Lin. Sh2: Self-highlighted hesitation helps you decode more truthfully, 2024. URL https://arxiv.org/abs/2401.05930.
 - Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. *Journal of Computer and System Sciences*, 71(3):291–307, 2005. ISSN 0022-0000. doi: https://doi.org/10.1016/j.jcss.2004.10.016. URL https://www.sciencedirect.com/science/article/pii/S0022000004001394. Learning Theory 2003.
 - Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models hallucinate, 2025. URL https://arxiv.org/abs/2509.04664.
 - Gaurav Kamath, Sebastian Schuster, Sowmya Vajjala, and Siva Reddy. Scope ambiguities in large language models. *Transactions of the Association for Computational Linguistics*, 12:738–754, 2024. ISSN 2307-387X. doi: 10.1162/tacl_a_00670. URL http://dx.doi.org/10.1162/tacl_a_00670.
 - Lauri Karttunen. Presupposition: What went wrong?, 2016.
 - Yerbolat Khassanov, Zhiping Zeng, Van Tung Pham, Haihua Xu, and Eng Siong Chng. Enriching rare word representations in neural language models by embedding matrix augmentation. In *Interspeech 2019*, interspeech2019, pp. 3505–3509. ISCA, September 2019. doi: 10. 21437/interspeech.2019-1858. URL http://dx.doi.org/10.21437/Interspeech.2019-1858.
 - T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules, 1985.
 - Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.
 - Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale Fung, Mohammad Shoeybi, and Bryan Catanzaro. Factuality enhanced language models for open-ended text generation, 2023. URL https://arxiv.org/abs/2206.04624.
 - Stephen C. Levinson. *Pragmatics*. Cambridge Textbooks in Linguistics. Cambridge University Press, 1983. URL https://www.cambridge.org/highereducation/books/pragmatics/6D0011901AE9E92CBC1F5F21D7C598C3#contents.
 - Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021. URL https://arxiv.org/abs/2005.11401.

- Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time intervention: Eliciting truthful answers from a language model, 2024a. URL https://arxiv.org/abs/2306.03341.
- Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with long in-context learning, 2024b. URL https://arxiv.org/abs/2404.02060.
- Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12286–12312, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.687. URL https://aclanthology.org/2023.acl-long.687/.
- Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple, effective, and efficient reinforcement learning method for aligning large language models, 2024c. URL https://arxiv.org/abs/2310.10505.
- Myrna E Libby, Julie S Weiss, Stacie Bancroft, and William H Ahearn. A comparison of most-to-least and least-to-most prompting on the acquisition of solitary play skills, 2008. URL https://pubmed.ncbi.nlm.nih.gov/22477678/.
- Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics. URL https://aclanthology.org/W04-1013/.
- Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human falsehoods. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.acl-long.229.
- Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha Swayamdipta, Noah Smith, and Yejin Choi. We're afraid language models aren't modeling ambiguity. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 790–807, Singapore, December 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.51. URL https://aclanthology.org/2023.emnlp-main.51/.
- Jie Liu and Barzan Mozafari. Query rewriting via large language models, 2024. URL https://arxiv.org/abs/2403.09060.
- Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and Percy Liang. Lost in the middle: How language models use long contexts, 2023b. URL https://arxiv.org/abs/2307.03172.
- Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg evaluation using gpt-4 with better human alignment, 2023c. URL https://arxiv.org/abs/2303.16634.
- Fangrui Lv, Kaixiong Gong, Jian Liang, Xinyu Pang, and Changshui Zhang. Subjective topic meets LLMs: Unleashing comprehensive, reflective and creative thinking through the negation of negation. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 12318–12341, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.686. URL https://aclanthology.org/2024.emnlp-main.686/.
- Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting for retrieval-augmented large language models, 2023. URL https://arxiv.org/abs/2305.14283.

- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.17651.
- Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi. When not to trust language models: Investigating effectiveness of parametric and non-parametric memories. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 9802–9822, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.546. URL https://aclanthology.org/2023.acl-long.546/.
- Shengyu Mao, Yong Jiang, Boli Chen, Xiao Li, Peng Wang, Xinyu Wang, Pengjun Xie, Fei Huang, Huajun Chen, and Ningyu Zhang. RaFe: Ranking feedback improves query rewriting for RAG. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 884–901, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.49. URL https://aclanthology.org/2024.findings-emnlp.49/.
- H. Brendan McMahan. A survey of algorithms and analysis for adaptive online learning, 2015. URL https://arxiv.org/abs/1403.3465.
- Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new dataset for open book question answering. In *Conference on Empirical Methods in Natural Language Processing*, 2018.
- Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, Jilin Chen, Alex Beutel, and Ahmad Beirami. Controlled decoding from language models, 2024. URL https://arxiv.org/abs/2310.17022.
- Gergely Neu and Julia Olkhovskaya. Efficient and robust algorithms for adversarial linear contextual bandits. In Jacob Abernethy and Shivani Agarwal (eds.), *Proceedings of Thirty Third Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pp. 3049–3068. PMLR, 09–12 Jul 2020. URL https://proceedings.mlr.press/v125/neu20b.html.
- Rodrigo Nogueira and Kyunghyun Cho. Task-oriented query reformulation with reinforcement learning. In Martha Palmer, Rebecca Hwa, and Sebastian Riedel (eds.), *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pp. 574–583, Copenhagen, Denmark, September 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1061. URL https://aclanthology.org/D17-1061/.
- OpenAI. Openai o3 and o4-mini system card, 2025. URL https://openai.com/index/o3-o4-mini-system-card/.
- OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau, Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian, Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein, Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia, Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li, Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,

811

812

813

814

815

816

817

818

819

820

821

822

823

824

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

858 859

861

862

Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim, Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki, Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay, Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani, Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh, Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers, Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman, Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng, Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine, Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan, Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra, Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024. URL https://arxiv.org/abs/2410.21276.

Ian Osband, Daniel Russo, and Benjamin thompson. (more) efficient reinforcement learning via posterior sampling. *Advances in Neural Information Processing Systems*, 26, 2013.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),

- Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040/.
- Valentina Pyatkin, Bonnie Webber, Ido Dagan, and Reut Tsarfaty. Superlatives in context: Modeling the implicit semantics of superlatives, 2024. URL https://arxiv.org/abs/2405.20967.
- Yang Qiao, Liqiang Jing, Xuemeng Song, Xiaolin Chen, Lei Zhu, and Liqiang Nie. Mutual-enhanced incongruity learning network for multi-modal sarcasm detection. In *Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence*, AAAI'23/IAAI'23/EAAI'23. AAAI Press, 2023. ISBN 978-1-57735-880-0. doi: 10.1609/aaai.v37i8.26138. URL https://doi.org/10.1609/aaai.v37i8.26138.
- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. *OpenAI*, 2019.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text, 2016.
- Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable questions for squad, 2018.
- Matthew Riemer, Sharath Chandra Raparthy, Ignacio Cases, Gopeshh Subbaraj, Maximilian Puelma Touzel, and Irina Rish. Continual learning in environments with polynomial mixing times. *Advances in Neural Information Processing Systems*, 35:21961–21973, 2022.
- Elijah Rippeth, Marine Carpuat, Kevin Duh, and Matt Post. Improving word sense disambiguation in neural machine translation with salient document context, 2023. URL https://arxiv.org/abs/2311.15507.
- R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. *SIAM journal on control and optimization*, 14(5):877–898, 1976.
- Timo Schick and Hinrich Schütze. Rare words: A major problem for contextualized embeddings and how to fix it by attentive mimicking, 2019. URL https://arxiv.org/abs/1904.06707.
- John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- Ethel Schuster. Anaphoric reference to events and actions: A representation and its advantages. In *Coling Budapest 1988 Volume 2: International Conference on Computational Linguistics*, 1988. URL https://aclanthology.org/C88-2126/.
- Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, Rasha Obeidat, and Prasad Tadepalli. Entity-aware elmo: Learning contextual entity representation for entity disambiguation, 2019. URL https://arxiv.org/abs/1908.05762.
- Shai Shalev-Shwartz et al. Online learning and online convex optimization. *Foundations and Trends*® *in Machine Learning*, 4(2):107–194, 2012.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.
- Settaluri Sravanthi, Meet Doshi, Pavan Tankala, Rudra Murthy, Raj Dabre, and Pushpak Bhattacharyya. PUB: A pragmatics understanding benchmark for assessing LLMs' pragmatics capabilities. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics:* ACL 2024, pp. 12075–12097, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.719. URL https://aclanthology.org/2024.findings-acl.719/.

- Arun Sai Suggala and Praneeth Netrapalli. Follow the perturbed leader: Optimism and fast parallel algorithms for smooth minimax games, 2020. URL https://arxiv.org/abs/2006.07541.
 - R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, 2018.
 - William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, 1933.
 - The New York Times. Ai hallucinations: Chatgpt and google's challenges. *The New York Times*, May 2025. URL https://www.nytimes.com/2025/05/05/technology/ai-hallucinations-chatgpt-google.html. Accessed: 2025-05-12.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.
 - Thinh Hung Truong, Timothy Baldwin, Karin Verspoor, and Trevor Cohn. Language models are not naysayers: An analysis of language models on negation benchmarks, 2023. URL https://arxiv.org/abs/2306.08189.
 - Hoang Van, Zheng Tang, and Mihai Surdeanu. How may i help you? using neural text simplification to improve downstream nlp tasks, 2021. URL https://arxiv.org/abs/2109.04604.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/abs/1706.03762.
 - Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. SuperGLUE: A stickier benchmark for general-purpose language understanding systems. *arXiv* preprint 1905.00537, 2019.
 - Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng Qu, and Jie Zhou. Is ChatGPT a good NLG evaluator? a preliminary study. In Yue Dong, Wen Xiao, Lu Wang, Fei Liu, and Giuseppe Carenini (eds.), *Proceedings of the 4th New Frontiers in Summarization Workshop*, pp. 1–11, Singapore, December 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.newsum-1.1. URL https://aclanthology.org/2023.newsum-1.1/.
 - Shuhe Wang, Xiaofei Sun, Xiaoya Li, Rongbin Ouyang, Fei Wu, Tianwei Zhang, Jiwei Li, and Guoyin Wang. Gpt-ner: Named entity recognition via large language models, 2023b. URL https://arxiv.org/abs/2304.10428.
 - William Watson, Nicole Cho, Tucker Balch, and Manuela Veloso. HiddenTables and PyQTax: A cooperative game and dataset for TableQA to ensure scale and data privacy across a myriad of taxonomies. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 7144–7159, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.442. URL https://aclanthology.org/2023.emnlp-main.442.
 - William Watson, Nicole Cho, and Nishan Srishankar. Is there no such thing as a bad question? h4r: Hallucibot for ratiocination, rewriting, ranking, and routing. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(24):25470–25478, Apr. 2025a. doi: 10.1609/aaai.v39i24.34736. URL https://ojs.aaai.org/index.php/AAAI/article/view/34736.
 - William Watson, Nicole Cho, Nishan Srishankar, Zhen Zeng, Lucas Cecchi, Daniel Scott, Suchetha Siddagangappa, Rachneet Kaur, Tucker Balch, and Manuela Veloso. LAW: Legal agentic workflows for custody and fund services contracts. In Owen Rambow, Leo Wanner, Marianna Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, Steven Schockaert, Kareem Darwish, and Apoorv Agarwal (eds.), *Proceedings of the 31st International Conference on Computational Linguistics: Industry Track*, pp. 583–594, Abu Dhabi, UAE, January 2025b. Association for Computational Linguistics. URL https://aclanthology.org/2025.coling-industry.50/.

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023. URL https://arxiv.org/abs/2201.11903.
 - Sam Witteveen and Martin Andrews. Paraphrasing with large language models. In *Proceedings* of the 3rd Workshop on Neural Generation and Translation. Association for Computational Linguistics, 2019. doi: 10.18653/v1/d19-5623. URL http://dx.doi.org/10.18653/v1/D19-5623.
 - Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset for open-domain question answering. In *Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing*, pp. 2013–2018, Lisbon, Portugal, September 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1237. URL https://aclanthology.org/D15-1237.
 - Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.
 - Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Yu-Yang Liu, and Li Yuan. Llm lies: Hallucinations are not bugs, but features as adversarial examples, 2024. URL https://arxiv.org/abs/2310.01469.
 - Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL https://arxiv.org/abs/2503.14476.
 - Wenhao Yu, Dan Iter, Shuohang Wang, Yichong Xu, Mingxuan Ju, Soumya Sanyal, Chenguang Zhu, Michael Zeng, and Meng Jiang. Generate rather than retrieve: Large language models are strong context generators, 2023. URL https://arxiv.org/abs/2209.10063.
 - Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu, Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and reliable reinforcement learning for advanced reasoning tasks, 2025. URL https://arxiv.org/abs/2504.05118.
 - Zhen Zeng, William Watson, Nicole Cho, Saba Rahimi, Shayleen Reynolds, Tucker Balch, and Manuela Veloso. Flowmind: Automatic workflow generation with llms, 2024. URL https://arxiv.org/abs/2404.13050.
 - Shaolei Zhang, Tian Yu, and Yang Feng. TruthX: Alleviating hallucinations by editing large language models in truthful space. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8908–8949, Bangkok, Thailand, August 2024a. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.483. URL https://aclanthology.org/2024.acl-long.483/.
 - Yue Zhang, Leyang Cui, Wei Bi, and Shuming Shi. Alleviating hallucinations of large language models through induced hallucinations, 2024b. URL https://arxiv.org/abs/2312.15710.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in large language models, 2023. URL https://arxiv.org/abs/2205.10625.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning, 2025. URL https://arxiv.org/abs/2504.16084.

A APPENDIX

A.1 LIMITATIONS

Current limitations in our work are as follows: our current contextual bandit framework treats each of the 17 features as independent, but does not capture higher-order interactions. This can provide an exciting avenue of future research in terms of measuring whether the combination of features jointly exacerbates hallucination. Likewise, we would like to highlight that the feature-arm regression weights do not stipulate a causal relationship - highly sophisticated causal relationships are difficult to formulate within LLMs due to the inherent difficulties of interpreting a neural network's internal layers; thus, in this paper, we focus on providing empirical studies and the conclusions we can draw from them. Finally, even with our rigorous studies to find the ROC-AUC Pareto-frontier, our reward model leverages LLM-as-judge, which may reflect the LLM's bias. Overall, these limitations posit potential directions by which the research community can further pursue and ultimately help expand our understanding of these powerful, albeit hallucinatory models.

A.2 ETHICS & SOCIETAL IMPACT.

Our method alters inputs rather than model weights; it can reduce factually incorrect outputs but does not eliminate them. Failure modes include reward misspecification and domain shift. We report error analyses and release prompts to facilitate auditing and replication, as part of the appendix. Furthermore, we discuss the societal impact of hallucinations in the related works.

A.3 REPRODUCIBILITY STATEMENT.

We aim to make our results fully reproducible. The main paper specifies the learning setup and algorithms (Algorithm 1; $\S3-\S4$), including the five rewrite arms with exact system-prompt templates (Table 7), the feature set used by the contextual policies (Table 9, Table 8), and the reward definition with its components and weights ($\S3$, Table 6a, Figure 2). Evaluation datasets, splits, preprocessing, dataset-specific details, and licenses are detailed in $\S4$ and Table 3; decoding/API configurations are documented here. For all experiments, we apply OpenAI's gpt-4o-2024-08-06 with API parameters: temperature=0.2, top-p=1.0, frequency/presence penalties=0. We report statistical uncertainty (95% CIs) and paired significance tests, and provide ablations/sensitivity analyses through the paper that support our claims.

B TRUTHFULQA METRICS AND EVALUATION SETUP

TruthfulQA (Lin et al., 2022) offers several evaluation modes:

- ► MC1 (single-true): Given a multiple-choice question with four or five options, select the single true option. The model's choice is the option with the highest completion log probability; the score is accuracy over questions.
- ► MC2 (multi-true): Given a multiple-choice question with multiple reference answers labeled true or false, the score is the normalized total probability assigned to the set of true answers.
- ► **Generation:** Given a free-form question, generate a 1–2-sentence answer that maximizes truthfulness while maintaining informativeness. Metrics include GPT-judge and GPT-info (finetuned evaluators), BLEURT, ROUGE, and BLEU. A similarity-based score is computed as $\max_{\text{true}} \sin \max_{\text{false}} \sin$.

Algorithm 1 General Bandit + Rewrite Loop

1080

1092 1093

1094

1095

1099

1100 1101

1102

1103

1104

1105

1106

1107

1108

1109 1110

1111

1113

1114

1115

1116

1117

1118

1119

1120

1121 1122

11231124

1125

1126

1127

11281129

1130

11311132

1133

Require: arms A, context x_t , algorithm algo $\in \{\text{EXP3}, \text{FTPL}, \text{LinUCB}, \text{KL}, \text{FTRL}, \text{Thompson}\}$, 1082 hyperparameters 1: **for** t = 1 to T **do** 1084 observe x_t 2: 1085 3: for each arm $k \in \mathcal{A}$ do 4: $s_k \leftarrow \text{Score}(\text{algo}, k, x_t)$ 1087 5: end for 1088 6: select $a_t = \arg \max_{k \in \mathcal{A}} s_k$ 1089 7: apply rewrite a_t to query and observe reward r_t Update(algo, a_t, x_t, r_t) 1090 9: end for 1091

In the main paper we focus on **MC1** for comparability across methods, as this regime aligns naturally with notions of *correctness* and *equivalence*. Zhang et al. (2024a) evaluate the **generation** setting using two fine-tuned GPT-3 classifiers (GPT-judge and GPT-info) to label responses for truthfulness and informativeness (binary classification). These labels are not accuracy and therefore are not directly comparable to our generative evaluation.

C SUMMARY OF BANDITS

► Non-Contextual Adversarial

- **EXP3** (Auer et al., 2002) Maintains weights w_k , samples $a_t \propto w_k$, updates $w_{a_t} \leftarrow w_{a_t} \exp\left(\frac{\gamma r_t}{K p_{a_t}}\right)$.
- FTPL (Kalai & Vempala, 2005; Suggala & Netrapalli, 2020) Adds Gumbel noise $\xi_k \sim \text{Gumbel}(0, 1/\eta)$ (Gumbel, 1941) to cumulative rewards, selects $a_t = \arg\max(\text{cum_reward}_k + \xi_k)$, then increments the chosen arm's reward.

▶ Contextual Stochastic

- LinUCB (Lai & Robbins, 1985) Selects $a_t = \underset{k}{\operatorname{arg\,max}} \left(x_t^{\top} \hat{\theta}_k + \alpha \sqrt{x_t^{\top} A_k^{-1} x_t} \right)$, updates $A_k \leftarrow A_k + x_t x_t^{\top}, \ b_k \leftarrow b_k + r_t x_t$.
- KL-UCB (LinUCB-KL) (Garivier & Cappé, 2013) Replaces the UCB term with a KL-divergence-based confidence bound.
- Thompson Sampling Maintains Gaussian posterior $\mathcal{N}(\mu_k, \Sigma_k)$; samples $\tilde{\theta}_k$, picks $a_t = \arg\max x_t^{\top} \tilde{\theta}_k$, updates the posterior.

► Contextual Adversarial

- FTRL (McMahan, 2015) Selects arm maximizing $x_t^\top w_k \lambda ||w_k||_1$, with an ℓ_1 regularizer.
- ϵ -greedy FTRL ...
- LinearEXP3 (Neu & Olkhovskaya, 2020) Contextual extension of EXP3, sampling arms based on exponentiated linear scores.
- LinearFTPL (Hannan, 1957) Contextual adaptation of FTPL, applying Gumbel perturbations to linear reward estimates.

C.1 LINUCB

The estimated parameter is:

$$\hat{\theta}_a = A_a^{-1} \mathbf{b}_a. \tag{2}$$

Given a query feature vector \mathbf{x} , the upper confidence bound (UCB) for arm a is:

$$UCB_a(\mathbf{x}) = \mathbf{x}^{\top} \hat{\theta}_a + \alpha \sqrt{\mathbf{x}^{\top} A_a^{-1} \mathbf{x}},$$
(3)

where α controls the exploration–exploitation trade-off. The arm selected is:

$$a^* = \operatorname*{arg\,max}_{a \in A} \operatorname{UCB}_a(\mathbf{x}). \tag{4}$$

Upon observing reward r, update:

$$A_a \leftarrow A_a + \mathbf{x}\mathbf{x}^{\top}, \quad \mathbf{b}_a \leftarrow \mathbf{b}_a + r\,\mathbf{x}.$$
 (5)

Table 3: **Datasets.** Overview of datasets, including domain, license, number of examples, associated scenarios, etc. These datasets span a diverse range of question types, domains, and reasoning skills, supporting robust evaluation. E = Extractive, M = Multiple Choice, A = Abstractive.

Dataset	Scenario	Domain	License	Count	Citation
SQuADv2	E, A	Wikipedia	CC BY-SA 4.0	86K	Rajpurkar et al. (2016; 2018)
TruthfulQA	M, A	General Knowledge	Apache-2.0	807	Lin et al. (2022)
SciQ	M, A	Science	CC BY-NC 3.0	13K	Johannes Welbl (2017)
MMLU	M	Various	MIT	15K	Hendrycks et al. (2021)
PIQA	M	Physical Commonsense	AFL-3.0	17K	Bisk et al. (2020)
BoolQ	M	Yes/No Questions	CC BY-SA 3.0	13K	Clark et al. (2019); Wang et al. (2019)
OpenBookQA	M	Science Reasoning	Apache-2.0	6K	Mihaylov et al. (2018)
MathQA	M	Mathematics	Apache-2.0	8K	Amini et al. (2019)
ARC-Easy	M	Science	CC BY-SA 4.0	5K	Clark et al. (2018)
ARC-Challenge	M	Science	CC BY-SA 4.0	2.6K	Clark et al. (2018)
WikiQA	A	Wikipedia QA	Other	1.5K	Yang et al. (2015)
HotpotQA	A	Multi-hop Reasoning	CC BY-SA 4.0	72K	Yang et al. (2018)
TriviaQA	A	Trivia	Apache-2.0	88K	Joshi et al. (2017)

Table 4: **Instantaneous Regret.** Each cell reports mean per-step regret; **bold** marks the *minimum* per scenario. "Wins" counts per-family minima with ties split (0.5 each). "Macro-avg" is the unweighted average over scenarios. Static prompts sometimes win on regret by avoiding exploration, whereas contextual methods typically incur slightly higher immediate regret while delivering higher final accuracy (see Table 1), reflecting the exploration–exploitation tradeoff. NoRw = No-Rewrite

	Base			Static Pron	npts			Non-Co	ontextual			Conte	xtual Linear		
Dataset	NoRw	Para	Simpl	Disamb	Clarify	Expand	EXP3	FTPL	ϵ -FTRL	TS	LinUCB	LinUCB+KL	LinEXP3	LinFTPL	TS
ARC-Challenge	0.095	0.098	0.097	0.124	0.111	0.180	0.123	0.125	0.106	0.109	0.118	0.121	0.107	0.102	0.121
ARC-Easy	0.103	0.104	0.102	0.115	0.118	0.163	0.111	0.172	0.124	0.096	0.115	0.121	0.098	0.107	0.115
BoolQA	0.219	0.202	0.192	0.199	0.197	0.212	0.202	0.185	0.198	0.208	0.211	0.197	0.191	0.186	0.186
HotpotQA	0.198	0.203	0.199	0.191	0.206	0.201	0.197	0.199	0.188	0.197	0.191	0.197	0.192	0.196	0.194
MathQA	0.096	0.103	0.118	0.111	0.106	0.104	0.115	0.108	0.107	0.109	0.106	0.111	0.110	0.110	0.108
MMLŬ	0.134	0.130	0.153	0.142	0.150	0.168	0.139	0.143	0.146	0.143	0.139	0.145	0.144	0.168	0.139
OpenBookQA	0.160	0.159	0.157	0.218	0.228	0.341	0.223	0.169	0.177	0.159	0.200	0.198	0.243	0.221	0.188
PIQA	0.172	0.174	0.161	0.252	0.236	0.340	0.213	0.259	0.192	0.174	0.197	0.193	0.173	0.152	0.186
SciQ (Abstract)	0.147	0.135	0.158	0.153	0.155	0.179	0.150	0.176	0.149	0.137	0.156	0.155	0.174	0.176	0.150
SciQ (MC)	0.140	0.137	0.143	0.148	0.166	0.211	0.159	0.155	0.155	0.137	0.155	0.154	0.165	0.140	0.141
SQuAD (Abstract)	0.183	0.155	0.174	0.175	0.184	0.208	0.185	0.180	0.191	0.198	0.180	0.186	0.183	0.176	0.176
SQuAD (Extract)	0.139	0.129	0.128	0.165	0.169	0.244	0.166	0.130	0.148	0.168	0.165	0.154	0.147	0.133	0.141
TriviaQA	0.131	0.145	0.151	0.162	0.167	0.160	0.153	0.150	0.154	0.148	0.155	0.153	0.148	0.157	0.155
TruthfulQA	0.151	0.159	0.141	0.166	0.180	0.206	0.173	0.167	0.138	0.155	0.161	0.150	0.171	0.180	0.155
TruthfulQA (MC)	0.099	0.115	0.073	0.153	0.165	0.227	0.146	0.202	0.139	0.084	0.114	0.142	0.123	0.159	0.151
WikiQA	0.137	0.140	0.139	0.163	0.150	0.165	0.150	0.135	0.153	0.126	0.162	0.156	0.141	0.159	0.141
Macro-avg	0.144	0.140	0.148	0.160	0.163	0.216	0.166	0.159	0.157	0.155	0.160	0.159	0.160	0.156	0.160
Wins	3.0	3.5	3.0	-	-	-	-	1.0	2.0	2.5	-	-	-	1.0	-

C.2 LINUCB+KL BANDIT STRATEGY

The algorithm is initialized with parameters: number of arms $n_{\rm arms}$, dimension d, regularization parameter λ , exploration parameter α , noise variance $\sigma_{\rm noise}$, and KL-bound constant c. Each arm a maintains a matrix \mathbf{A}_a and a vector \mathbf{b}_a , initialized as $\lambda \mathbf{I}_d$ and $\mathbf{0}_d$, respectively.

The $select_arm$ method computes the score for each arm a using the following formulation:

$$\begin{split} \theta_a &= \mathbf{A}_a^{-1} \mathbf{b}_a \\ \mu_a &= \mathbf{x}^\top \theta_a \\ \mathrm{var}_a &= \mathbf{x}^\top \mathbf{A}_a^{-1} \mathbf{x} \\ n_a &= \max(1, \mathrm{counts}[a]) \\ \mathrm{raw_bound}_a &= \frac{\log(t) + c \log(\log(t+1))}{n_a} \\ \mathrm{bound}_a &= \max(\mathrm{raw_bound}_a, 0.0) \\ \mathrm{bonus}_a &= \sqrt{2 \cdot \mathrm{var}_a \cdot \mathrm{bound}_a} \\ \mathrm{score}_a &= \mu_a + \mathrm{bonus}_a \end{split}$$

where \mathbf{x} is the context vector, t is the time step, and counts [a] is the number of times arm a has been selected. The arm with the highest score is selected for exploration.

# Groups	Mean ROC-AUC	95% CI
5	0.9524	[0.9165, 0.9884]
10	0.9720	[0.9549, 0.9891]
15	0.9709	[0.9581, 0.9836]
25	0.9747	[0.9674, 0.9821]
50	0.9695	[0.9633, 0.9756]
75	0.9745	[0.9688, 0.9801]
100	0.9709	[0.9626, 0.9792]
150	0.9767	[0.9716, 0.9819]
200	0.9710	[0.9653, 0.9767]
300	0.9734	[0.9709, 0.9758]
400	0.9741	[0.9713, 0.9769]
500	0.9736	[0.9703, 0.9769]
600	0.9732	[0.9701, 0.9763]
700	0.9721	[0.9695, 0.9748]
800	0.9719	[0.9699, 0.9738]
900	0.9725	[0.9716, 0.9734]
1000	0.9737	[0.9721, 0.9753]
Macro-avg	0.9729	-

(a) Validity of the exploration-adjusted reward $r_{\rm adj}$ as a correctness proxy. Mean ROC–AUC and 95% Confidence Intervals (± 1.96 SE); 10 resamples per n. By $\sim \! 150$ groups, the CI lower bound exceeds 0.97.

(b) Mean ROC-AUC vs. sample size n, with 95% CIs.

(c) Distribution of r_t for correct vs. wrong (normalized density). Our reward presents a clear separation between our human validated labels. Per dataset reward distributions are located in Figure 14.

Figure 6: **Summary of reward validity. Left:** (a) numerical ROC-AUC and CIs across sample sizes. **Right:** (b) power curve; (c) class-conditional reward histogram of r_t vs. human labels.

The update method updates the matrix A_a and vector b_a for the selected arm a based on the received reward r_t :

$$\mathbf{A}_a \leftarrow \mathbf{A}_a + \mathbf{x}\mathbf{x}^{\top}$$
 $\mathbf{b}_a \leftarrow \mathbf{b}_a + r_t\mathbf{x}$
 $\mathbf{counts}[a] \leftarrow \mathbf{counts}[a] + 1$

This strategy leverages the KL-bound to dynamically adjust exploration bonuses, enhancing the LinUCB algorithm's ability to balance exploration and exploitation in a contextual setting.

C.3 FTRL

The algorithm is initialized with the following parameters: number of arms n_{arms} , dimension d, learning rate α , exploration parameter β , and regularization parameters l_1 and l_2 . The cumulative gradient vectors for each arm are stored in \mathbf{z}_a , initialized as zero vectors of dimension d.

The weight vector \mathbf{w}_a for each arm a is computed as:

$$w_i = \begin{cases} -\frac{z_i - \operatorname{sign}(z_i) \cdot l_1}{\frac{\beta + \sqrt{n_i}}{\alpha} + l_2} & \text{if } |z_i| > l_1 \\ 0 & \text{otherwise} \end{cases}$$

where z_i is the cumulative gradient for the *i*-th feature of arm a, and n_i is the cumulative squared gradient for the *i*-th feature. The arm with the highest score, calculated as the dot product of the weight vector w and the context vector, is selected:

$$a_t = \arg\max_{a \in \{1, \dots, n_{\text{arms}}\}} \left(\sum_{i=1}^d w_i \cdot \mathbf{x}_i\right)$$

Table 5: **TruthfulQA MC1 comparison.** Δ reports absolute percentage–point change vs our No–Rewrite baseline (80.7%). *QueryBandits* achieves the best score (LinUCB 88.8%, +8.1 pp) and strong Non–Contextual TS (88.7%, +8.0 pp); Contextual TS also improves (+4.5 pp). Closed GPT baselines cluster near \sim 81%, while open–model interventions reported on Llama–2–7B remain far below the GPT–4o baseline (e.g., TruthX 54.22%, -26.5 pp). Results across families highlight that context–aware linear bandits (LinUCB) are most effective on MC1, with TS (Non–Contextual) close but lacking per–query adaptation.

Method	Backbone	MC1 (%)	Δ (pp)	Source	Notes
	QueryBandits	(ours)	•••		
Best (Dataset): LinUCB	GPT-40	88.8	+8.1	Closed	_
Best (Overall): Contextual TS	GPT-40	85.2	+4.5	Closed	_
Best (Non-Contextual): TS	GPT-40	88.7	+8.0	Closed	_
Best Static: Simplify	GPT-40	83.4	+2.7	Closed	No learning
Worst Static: Expand	GPT-40	67.9	-12.8	Closed	— 11—
No-Rewrite (Baseline)	GPT-40	80.7	0.0	Closed	Baseline for Δ
	Closed models (refer	ence points)			
GPT-40	GPT-40	81.4	+0.7	Closed	OpenAI et al. (2024)
GPT-4	GPT-4	81.3	+0.6	Closed	I
GPT-4o mini	GPT-40 mini	66.5	-14.2	Closed	———
GPT-3.5 Turbo	GPT-3.5 Turbo	53.6	-27.1	Closed	
	Open models: base	/ finetuned			
Llama-2-7B-Chat (base)	Llama-2-7B-Chat	34.64	-46.1	Open	Lin et al. (2022)
Supervised Finetuning	Llama-2-7B-Chat	24.20	-56.5	Open	Zhang et al. (2024a)
	Contrastive decoding (open models)			
Contrastive Decoding (CD)	Llama-2-7B-Chat	24.40	-56.3	Open	Li et al. (2023)
Decoding by Contrasting Layers (DoLa)	Llama-2-7B-Chat	32.20	-48.5	Open	Chuang et al. (2024)
Self-Highlighted Hesitation (SH2)	Llama-2-7B-Chat	33.90	-46.8	Open	Kai et al. (2024)
Induce-then-Contrast Decoding (ICD)	Llama-2-7B-Chat	46.32	-34.4	Open	Zhang et al. (2024b)
1	Representation editing	(open models)			
Contrast-Consistent Search (CCS)	Llama-2-7B-Chat	26.20	-54.5	Open	Burns et al. (2023)
Inference Time Intervention (ITI)	Llama-2-7B-Chat	34.64	-46.1	Open	Li et al. (2024a)
Truth Forest (TrFr)	Llama-2-7B-Chat	36.70	-44.0	Open	Chen et al. (2024b)
TruthX	Llama-2-7B-Chat	54.22	-26.5	Open	Zhang et al. (2024a)
Leg	acy references (Truthf	ulQA paper, M	(C)		
GPT-3 175B	GPT-3 175B	21.0	-59.7	Closed	Lin et al. (2022)
GPT-J 6B	GPT-J 6B	20.0	-60.7	Open	———
GPT-2 1.5B	GPT-2 1.5B	22.0	-58.7	Open	——II—
UnifiedQA 3B	UnifiedQA 3B	19.0	-61.7	Open	——II——

Upon receiving a reward r_t for the selected arm a_t , the algorithm updates the cumulative gradient vector \mathbf{z} and the squared gradient sum \mathbf{n} for the selected arm:

$$\begin{split} \varepsilon_{error} &= \langle w, \mathbf{x} \rangle - r_t \\ g &= \varepsilon_{error} \cdot \mathbf{x} \\ \sigma &= \frac{\sqrt{n_i + g_i^2} - \sqrt{n_i}}{\alpha} \\ z_i &\leftarrow z_i + g_i - \sigma \cdot w_i \\ n_i &\leftarrow n_i + g_i^2 \end{split}$$

This formulation allows the FTRL algorithm to adaptively adjust the exploration-exploitation trade-off by incorporating both the cumulative reward and the uncertainty in the form of regularization terms, which are scaled by the learning rate α and exploration parameter β .

C.4 LINEAR EXP3

The algorithm is initialized with parameters: number of arms n_{arms} , dimension d, exploration parameter γ , and learning rate η . Each arm a maintains a parameter vector θ_a , initialized as $\mathbf{0}_d$.

(a) Arm Diversity for Contextual Bandits, as a Fraction of Trials.

(b) Arm Diversity for Non-Contextual Bandits, as a Fraction of Trials.

Figure 7: For Non-Contextual bandits, *almost every* dataset is dominated by a single arm with the highest global reward (typically 40%-60% of the trials). The remaining 40-60% is split among the other four arms as noise, the non-contextual policy has no way to "know" when within a dataset a different arm might do better. In contrast, Contextual bandits show a more even mix: the top arm is only \sim 25-30%, with two or three other arms contributing sizable shares (15-25% each). The contextual policy *reads the features* and diversifies its choices within each dataset.

(a) Soft Rank Heatmap for all Bandits, including arm No REWRITE.

(b) Arm Diversity when including NO REWRITE.

Figure 8: **Impact of the No-Rewrite Arm.** Note that these experiments are conducted on the original query "as-is" in the benchmark dataset, with no perturbations. Upon enabling the NO REWRITE option, our contextual bandit rapidly converges to this arm, which then achieves the highest reward on several datasets. We attribute this behavior to the LLM's tendency to memorize benchmark questions.

We compute the probability distribution over arms using the following formulation:

$$\begin{split} & \operatorname{logits}_{a} = \boldsymbol{\theta}_{a}^{\top} \mathbf{x} \\ & \operatorname{logits} = \operatorname{logits} - \operatorname{max}(\operatorname{logits}) \\ & \operatorname{exp_logits}_{a} = \operatorname{exp}(\operatorname{logits}_{a}) \\ & \operatorname{base_probs}_{a} = \frac{\operatorname{exp_logits}_{a}}{\sum_{a=1}^{n_{\operatorname{arms}}} \operatorname{exp_logits}_{a}} \\ & \operatorname{probs}_{a} = (1 - \gamma) \cdot \operatorname{base_probs}_{a} + \frac{\gamma}{n_{\operatorname{arms}}} \end{split}$$

where x is the context vector. The arm is selected based on the probability distribution probs.

- (a) Contextual Model Feature Variance.
- (b) Non-Contextual Model Feature Variance.

Figure 9: Comparison of Feature Variance between (a) our contextual bandits and (b) its non-contextual counterparts. *Polysemy, Constraints* and *Entities* show the most variation. *Presupposition, Excessive Details*, and *Grounding* have the least.

(a) Contextual Model KL Distance.

(b) Non-Contextual Model KL Distance.

Figure 10: Comparison of Inter-Arm Context Distances (Symmetric KL) between (a) our contextual bandits and (b) its non-contextual counterparts. Arm pairs such as EXPAND and PARAPHRASE in the non-contextual bandit setting exhibit high KL distances at 1.01. One interpretation is that the context-clouds barely overlap from dataset to dataset (Figure 7b).

The update method updates the parameter vector θ_a for the selected arm a using the estimated reward \hat{r}_t :

$$\begin{split} \hat{r}_t &= \frac{r_t}{p_a} \\ \theta_a &\leftarrow \theta_a + \eta \cdot \hat{r}_t \cdot \mathbf{x} \end{split}$$

where p_a is the probability of selecting arm a, and r_t is the received reward. This strategy leverages exponential weighting and exploration bonuses to balance exploration and exploitation in a linear contextual setting.

C.5 LINEAR FTPL

The algorithm is initialized with parameters: number of arms n_{arms} , dimension d, and learning rate η . Each arm a maintains a parameter vector θ_a , initialized as $\mathbf{0}_d$.

- (a) Contextual Model Raw Feature Strength.
- (b) Non-Contextual Model Raw Feature Strength.

Figure 11: Comparison of Raw feature-level regression coefficients between (a) our contextual bandits and (b) its non-contextual counterparts. Each cell shows how enables a raw view into how specific linguistic feature changes the expected reward under each rewrite strategy.

The select_arm method computes the perturbed scores for each arm using the following formulation:

$$\begin{aligned} \text{linear_score}_a &= \theta_a^\top \mathbf{x} \\ \text{noise}_a &\sim \text{Gumbel}(0, \frac{1}{\eta}) \\ \text{score}_a &= \text{linear_score}_a + \text{noise}_a \end{aligned}$$

where x is the context vector. The arm with the highest perturbed score is selected:

$$a_t = \arg\max_{a \in \{1, \dots, n_{\text{arms}}\}} \mathsf{score}_a$$

$$\theta_a \leftarrow \theta_a + r_t \cdot \mathbf{x}$$

This strategy leverages random perturbations from a Gumbel distribution to balance exploration and exploitation, allowing the algorithm to explore suboptimal arms while exploiting the accumulated knowledge of their performance in a linear contextual setting.

C.6 THOMPSON SAMPLING

For a given x, sample $\tilde{\theta}a \sim \mathcal{N}(\mu_a, \Sigma_a)$ and select the arm maximizing:

$$a^* = \arg\max_{a \in \mathcal{A}} \mathbf{x}^\top \tilde{\theta}_a. \tag{6}$$

Standard Bayesian linear regression updates are then used to update μ_a and Σ_a based on the observed reward r.

$$\Sigma_a^{-1} \leftarrow \Sigma_a^{-1} + \frac{1}{\sigma^2} \mathbf{x} \mathbf{x}^{\top},$$

$$\mu_a \leftarrow \Sigma_a \left(\Sigma_a^{-1} \mu_a + \frac{1}{\sigma^2} \mathbf{x} r \right).$$
(7)

(a) Contextual Model Relative Feature Strength.

(b) Non-Contextual Model Relative Feature Strength.

Figure 12: Comparison of Min-Max Normalized feature-level regression coefficients between (a) our contextual bandits and (b) its non-contextual counterparts. Each cell shows how enables a relative view into how specific linguistic feature changes the expected reward under each rewrite strategy. Table 6 highlights contextual bandit trends.

Table 6: Top Drivers (f_{max}^+) and Reducers (f_{max}^-) of Rewrite Strategies per Linguistic Features For each rewrite arm, we list the feature whose normalized coefficient was highest (100%) and lowest (0%), alongside a brief rationale for its positive or negative impact on downstream reward.

Arm a	f_{max}^+	Interpretation	f_{\max}^-	Interpretation
DISAMBIGUATE	Subordination (100 %)	Long or nested clauses benefit from targeted disambiguation, which isolates and clarifies the core semantic relation.	Polysemy (0%)	Highly polysemous terms lead disambiguation to pick the wrong sense, degrading downstream reward.
SIMPLIFY	Pragmatics (100 %)	Pragmatic cues (e.g. discourse markers, politeness) guide safe simplification without loss of meaning.	Superlative (0 %)	Stripping superlative constructions removes essential comparative context, hurting reward.
EXPAND	Constraints (100 %)	Queries already rich in constraints (time, location, numeric bounds) gain precision when expanded with further qualifiers.	Ambiguity (0 %)	Underspecified queries offer no detail to expand, so further addition of terms only introduces noise.
PARAPHRASE	Answerability (100 %)	Paraphrasing queries that are already answerable refreshes wording while preserving solvability, boosting LLM performance.	Presupposition (0%)	Altering queries with strong presuppositions can break implied assumptions, reducing effective reward.
CLARIFY TERMS	Rarity (100%)	Defining rare or domain-specific terms anchors the LLM's understanding of technical queries.	Subordination (0 %)	Clarifications in convoluted sentences can introduce further parsing difficulty, impeding reward.

Figure 13: **Reward Uplift by Contextual Feature and Strategy.** Feature Uplift measures how much the presence of a binary feature changes the expected reward for a given rewrite arm, formally $\Delta(f_i,a) = \mathbb{E}[r_t \mid \text{arm} = a, f_i = 1] - \mathbb{E}[r_t \mid \text{arm} = a, f_i = 0]$. (a) Under the **contextual** bandit, the strongest positive uplifts come from **Answerability** ($\approx +17$ uniformly) and **Grounding** (+15-18), while **Ambiguity** (≈ -15 to -18) and **Subjectivity** (≈ -10 to -14) impose the largest hits across all arms. Mid-range features like **Presupposition** and **Constraints** deliver modest boosts (≈ 5), and **Excessive Details** and **Anaphora** slightly hurt performance (≈ -5 to -7). (b) The **non-contextual** bandit amplifies these trends: **Answerability** and **Grounding** remain the top drivers ($\approx +18-20$), but **Ambiguity** becomes even more detrimental (≈ -17 to -18), and **Mismatch** drops to nearly -16

under some arms. Notably, the non-contextual model shows a stronger negative effect for **Excessive Details** (up to -12) and **Entities** (≈ -6) than the linear one, suggesting it more sharply penalizes noisy contexts. Together, these heatmaps reveal which linguistic signals each rewrite strategy leverages (or struggles with), and how context vs. context-blind policies weigh them differently.

Figure 14: Per-dataset distributions of r_t (normalized density).

Figure 15: **Pairwise Normalized Coefficient Differences for Contextual Bandits.** Each cell shows the min–max–normalized difference in regression weight for a given linguistic feature (rows) between two rewrite arms (columns), e.g. "Paraphrase vs Disambiguate," "Simplify vs Expand," etc. Cells labeled "Win" (blue) indicate the feature favors the first arm in the matchup, while "Loss" (red) indicates it favors the second. Values are expressed as a percentage of the feature's full coefficient range.

Table 7: System prompt templates for rewrite arms. Replace {original_query} with the input at runtime. Each template must output *only* the rewritten query (no explanations).

ID	Arm	System prompt template
$\overline{a_0}$	PARAPHRASE	You are a rewriting module. You will be given a user query: {original_query}. Rephrase it to improve clarity and introduce lexical diversity while strictly preserving semantic meaning, entities (including casing/accents), numbers, units, and constraints. Do not add or remove information. Output only the rewritten query.
a_1	SIMPLIFY	You are a rewriting module. You will be given a user query: {original_query}. Simplify it by removing nested clauses and complex syntax. Use short, concrete phrasing (S–V–O order), keep all entities, numbers, units, and constraints, and avoid changing intent. Do not invent details. Output only the simplified query.
a_2	DISAMBIGUATE	You are a rewriting module. You will be given a user query: {original_query}. Resolve vague references by replacing ambiguous pronouns (e.g., it/they/this) and temporal expressions with explicit, context-grounded referents and normalized dates. If a referent cannot be determined from the query alone, insert a bracketed placeholder (e.g., [ENTITY], [DATE]) rather than guessing. Preserve the original intent. Output only the disambiguated query.
a_3	EXPAND	You are a rewriting module. You will be given a user query: {original_query}. Expand it by making implicit context explicit and adding salient, non-speculative attributes (e.g., scope, timeframe, location, units) that are entailed by the query. If crucial specifics are missing, insert neutral bracketed placeholders (e.g., [TIMEFRAME], [LOCATION]) instead of fabricating facts. Preserve the original intent and constraints. Output only the expanded query.
a_4	CLARIFY TERMS	You are a rewriting module. You will be given a user query: {original_query}. Identify domain-specific jargon or terms of art and add concise parenthetical glosses (e.g., "term (brief definition)") where the meaning is standard and unambiguous. If uncertain, use a bracketed clarification placeholder (e.g., [DEFINE: TERM]) rather than guessing. Do not alter intent, entities, or constraints. Output only the clarified query.

Table 8: Binary linguistic feature vector $\mathbf{f} \in \{0,1\}^{17}$ identified as challenging from a linguistics and LLM perspective. Features are grouped by type and grounded in prior work. For more specific examples, see Table 9.

Feature	Description	Citation
	Structural Features	
Anaphora	Contains anaphoric references (e.g., it, this)	Schuster (1988); Chen et al. (2018)
Subordination	Contains multiple subordinate clauses (multi-clause structure)	Jeong et al. (2024); Blevins et al. (2023)
	Scenario-Based Features	
Mismatch	Question-task mismatch (e.g., open-ended query against retrieval-style task)	Gao et al. (2024); Kamath et al. (2024)
Presupposition	Assumptions within the query are implicitly regarded as truthful	Karttunen (2016); Levinson (1983)
Pragmatics	Requests phrased indirectly (e.g., can you pass me the salt)	Sravanthi et al. (2024); Levinson (1983)
	Lexical Features	
Rarity	Presence of rare words with poor representation	Schick & Schütze (2019); Khassanov et al. (2019)
Negation	Presence of negation (e.g., not, never)	Hossain & Blanco (2022); Truong et al. (2023)
Superlative	Presence of forms (e.g., best, largest) with implicit comparison sets	Pyatkin et al. (2024); Farkas & Kiss (2000)
Polysemy	Presence of words with multiple, related meanings	Ansell et al. (2021); Haber & Poesio (2024)
	Stylistic Complexity	
Answerability	Absence of speculative, sarcastic, or rhetorical phrasing	Qiao et al. (2023); Belfathi et al. (2023)
Excessive	Presence of excessive details/instructions that overload context; verbosity	Li et al. (2024b); Liu et al. (2023b)
Subjectivity	Query requires LLM to reflect creatively and engender a personal opinion	Durmus et al. (2024); Lv et al. (2024)
Ambiguity	Presence of ambiguous phrasing that opens multiple interpretations	Brown et al. (2020); Liu et al. (2023a)
	Semantic Grounding	
Grounding	Presence of a clear intent/goal statement	Clarke et al. (2009); Wei et al. (2023)
Constraints	Presence of temporal/spatial/task-specific constraints	Jiang et al. (2024); Lewis et al (2021)
Entities	Presence of verifiable entities	Lee et al. (2023); Wang et al. (2023b)
Specialization	Query requires domain-specific knowledge for understanding	Watson et al. (2025b); Cho et al. (2024); Zeng et al. (2024)

Table 9: Detailed Summary and Examples of Feature Categories, Definitions, and Examples (See Table 8). These definitions and examples become the prompts to create the binary context vector for our bandits.

	Feature	Definition	Example
Structural	Anaphora	Presence of pronouns or references requiring external context.	"What about that one?" (Unclear reference)
Stru	Subordination	Measures the presence of multiple sub- ordinate clauses	"While I was walking home, saw a cat that looked just like my friend's."
Scenario-Based	Mismatch	Mismatch between the query's intended output and its actual structure.	"Find me this paragraph in thi document" (When document isn' given, this query cannot be an swered)
Scenari	Presupposition	Unstated assumptions embedded in the query.	"Who is the musician that developed neural networks?" (Assume such a musician exists)
	Pragmatics	Captures context-dependent meanings beyond literal interpretation.	"Can you pass the salt?" (A reques not a literal ability)
	Rarity	Use of rare or niche terminology.	"What are the ramifications of quantum decoherence?" (Uses low frequency terms)
Lexical	Negation	Presence of negation words (not, never).	"Is it not possible to do this?"
Γ	Superlatives	Detection of superlative expressions (biggest, fastest).	"What is the fastest algorithm?"
	Polysemy	Presence of ambiguous words with multiple related meanings.	"Explain how a bank operates (Ambiguity: financial institutio vs. riverbank)
	Answerability	Assesses whether the query has a verifiable answer.	"What is the exact number of galaxies?" (Unanswerable)
Stylistic	Excessive	Evaluates whether a query is overloaded with information, potentially distracting the model.	"Can you explain how convolutional neural networks work, ir cluding all mathematical formulas?"
	Subjectivity	Query requires the degree of opinion or personal bias	"What is the best programming lar guage?"
	Ambiguity	Highly ambiguous context, task, and wording	"Tell me about history." (Too broad
	Grounding	Evaluates how clearly the query's purpose is expressed.	"How does reinforcement learning optimize control in robotics? (Clear intent)
Semantic	Constraints	Identifies explicit constraints (time, location, conditions) provided in the query.	"What was the inflation rate in th US in 2023?"
Ś	Entities	Checks for the inclusion of verifiable named entities.	"Who founded OpenAI?"
	Specialization	Determines whether the query belongs to a specialized domain (e.g., finance, law).	"What are the legal implications of the GDPR ruling?"