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ABSTRACT

Advanced reasoning capabilities in Large Language Models (LLMs) have led to
more frequent hallucinations; yet most mitigation work focuses on open-source
models for post-hoc detection and parameter editing. The dearth of studies fo-
cusing on hallucinations in closed-source models is especially concerning, as they
constitute the vast majority of models in institutional deployments. We intro-
duce QueryBandits, a model-agnostic contextual bandit framework that adap-
tively learns online to select the optimal query-rewrite strategy based on a 17-
dimensional vector of linguistically motivated features. Evaluating our method
on GPT-4o in black-box conditions across 16 QA scenarios, our top QueryBandit
(Thompson Sampling) achieves an 87.5% win rate over a NO-REWRITE base-
line and outperforms zero-shot static policies (e.g., PARAPHRASE or EXPAND)
by 42.6% and 60.3%, respectively. Moreover, all contextual bandits outperform
vanilla bandits across all datasets, with higher feature variance coinciding with
greater variance in arm selection. This substantiates our finding that there is
no single rewrite policy optimal for all queries. We also discover that certain
static policies incur higher cumulative regret than NO-REWRITE, indicating that
an inflexible query-rewriting policy can worsen hallucinations. Thus, learning an
online policy over semantic features with QueryBandits can shift model behav-
ior purely through forward-pass mechanisms, enabling its use with closed-source
models and bypassing the need for retraining or gradient-based adaptation.

1 INTRODUCTION

As Large Language Models (LLMs) grow more powerful, the severity of factual errors, otherwise
known as hallucinations, can increase (OpenAI, 2025; Times, 2025). Hallucinations refer to the
generation of inaccurate outputs relative to the LLM’s internal understanding of the query and ref-
erence context (Ji et al., 2023). However, most existing mitigation approaches, especially those
relying on logits, token-level probabilities, or internal representation editing, are primarily devel-
oped for open-weight models (Touvron et al., 2023)–even though closed-source models constitute
the majority of institutional deployments in today’s society (OpenAI et al., 2024). Moreover, small
surface-form perturbations to an input can induce large output differences (Watson et al., 2025a;
Cho & Watson, 2025), underscoring the need for an online, model-agnostic policy-learning process
to mitigate hallucinations.

We propose QueryBandits, a contextual bandit framework that selects, per query, an appropriate
rewrite strategy to proactively steer LLMs away from hallucinations. Interventions are derived from
the semantic features, or fingerprint, of a query. To formalize the relationship between a query
and factuality, we construct a composite reward function, rt = α sllm + β sfuzz + γ sbleu, where
sllm ∈ {0, 1} is an LLM-as-a-judge binary correctness label (Liu et al., 2023c; Adlakha et al., 2024),
sfuzz ∈ [0, 1] is a fuzzy string-similarity score (Bachmann, 2024), and sbleu ∈ [0, 1] is the BLEU-
1 score capturing unigram lexical overlap (Papineni et al., 2002; Callison-Burch et al., 2006). We
operationalize hallucination as responses with low rt. Through our ablations, we identify the Pareto-
optimal balance of weights (α, β, γ) = (0.6, 0.3, 0.1) on a held-out human labeled set (Fig. 2a). This
proxy rt separates correct from incorrect answers with ROC–AUC 0.973 (95% CI: [0.972, 0.975])
across resampling settings, supporting its use as a learning signal. We assign a higher weight to
the LLM-as-a-judge term (α) within the Pareto frontier, consistent with studies that highlight the
efficacy of LLMs in Natural Language Generation (NLG) evaluation tasks (Wang et al., 2023a; Fu
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Can you determine 
the number of 
integers between 
6 and 74/5?  

First, let's calculate \( \frac{74}{5} \): \frac{74}{5} = 14.8.  Now, we need to determine the number of integers 
between 6 and 14.8. The integers between 6 and 14.8 are 7, 8, 9, 10, 11, 12, 13, and 14.
This gives us a total of 8 integers.  However, the answer choices provided do not include 8. Let's re-
evaluate the problem to ensure there is no misunderstanding:  The integers between 6 and 14.8 are indeed 7 
through 14, which is 8 integers.  It seems there might be an error in the answer choices provided. 

Given the mathematical expression 74/5, which represents 
the division of 74 by 5, can you calculate the number of 
whole numbers or integers that fall within the range 
starting from 6 up to the result of this division? This 
involves understanding both the division operation and the 
concept of counting integers within a specified range.

First, let's calculate the result of the division \( \frac{74}{5} \). 
\[ \frac{74}{5} = 14.8 \].  Now, we need to count the whole 
numbers or integers that fall within the range starting from 6 up 
to 14.8. The integers in this range are: 6, 7, 8, 9, 10, 11, 12, 13, 14
There are 9 integers in this range.  
Therefore, the correct answer is: 9

Original Query (࢚࢞) 

Rewritten Query (࢞ᇱ)

Rewrite 
Arm: 

Expand 

Output (Hallucination)

Output (Correct)

௧ݔ

ᇱݔ
t

t

Figure 1: QueryBandits selects a rewrite that fixes a counting error. The original query xt

elicits a hallucinatory count (8 integers) due to an ambiguous lower bound (6). Conditioned on the
query’s 17-dimensional feature vector, QueryBandits selects EXPAND and rewrites the query to x′

t
with explicit bounds; the LLM then returns the correct cardinality (9). Noticeably, the feature vector
also shifts: subordination (more complex clauses) appears while specialization (domain-specific
knowledge required) disappears-illustrating how rewriting alters the salient semantics of xt.

et al., 2023). We make no stationarity assumption about the reward distribution given the extreme
dimensionality of the output space (Riemer et al., 2022), and therefore evaluate whether rewrite
strategies confer advantages under both average-reward and worst-case objectives.

Reinforcement Learning (RL) (Sutton & Barto, 2018) methods have been applied in Natural Lan-
guage Processing (NLP) for tasks such as optimizing document-level retrieval (Nogueira & Cho,
2017), fine-tuning LLMs (Christiano et al., 2017), and post-training (Mudgal et al., 2024). De-
spite its prevalence, to our knowledge there is limited in-depth research on interactive rewriting
for hallucination mitigation. We adopt bandits rather than full RL for three reasons: (i) estimat-
ing long-horizon value for hallucination incidence would require repeated queries from a shared
subpopulation, whereas interactions are predominantly single-shot; (ii) averaging correctness across
heterogeneous contexts obscures informative per-query idiosyncrasies; and (iii) modeling token-
level transition dynamics is unwarranted for our objective. That is not to say bandit-style ideas are
not without precedent in NLP: Proximal Policy Optimization (Schulman et al., 2017) variants for
LLMs such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024) and ReMax (Li et al.,
2024c) remove the critic via grouped Monte Carlo or baseline-adjusted returns.

Action Space and Context. We define five rewrite strategies as our action space and a 17-
dimensional linguistic feature vector capturing query properties known to affect model understand-
ing (Table 10). QueryBandits therefore learns an online policy mapping this validated linguistic
feature vector to arm selections, allocating exploration under uncertainty and exploitation when fea-
tures are predictive. This contrasts with prior approaches that adopt a one-size-fits-all rewrite strat-
egy and do not learn an adaptive selection policy (Ma et al., 2023; Watson et al., 2025a). Our aim is
not to propose a new mechanistic theory of hallucination formation, but to cast the rewrite-selection
problem as a contextual bandit with bounded rewards. Under this view, the bandit’s optimal policy
minimizes expected hallucination probability as proxied by our reward. Existence of such a policy
follows from standard bandit theory under bounded rewards, and our empirical analyses show that
Thompson Sampling and LinUCB converge toward high-reward rewrite policies in our setting (Auer
et al., 2002a; Lattimore & Szepesvári, 2020).

Contribution 1: Reward Modeling for Factuality. We introduce an empirically validated and
calibrated reward function rt, composed of an LLM-judge, fuzzy-match, and BLEU-1 metrics, with
α, β, γ = (0.6, 0.3, 0.1) chosen inside the 1% Pareto-optimal frontier on a held-out human-labeled
set (Fig. 2a). Our evaluation rests on the simplex formed by α, β, γ ≥ 0, α+β+γ = 1. The reward
reliably separates right from wrong answers: its average ROC–AUC is 0.973 across resampling
settings, and even the conservative 95% lower bound exceeds 0.97 after 150 samples, indicating a
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Table 1: Accuracy by dataset (rows) and algorithm family (columns). Higher is better; bold
marks the row maximum. “Wins (ties split)” counts 0.5 for ties. “Macro-avg” is the unweighted
mean across datasets. Contextual methods dominate: Contextual Thompson Sampling (TS, right-
most column) achieves the best macro-average (0.766) and most wins (8/16); the remaining wins
come from the linear contextual family (LinUCB 4.5, LinUCB+KL 3.5). Static prompts and non-
contextual bandits do not win on any dataset. NoRw = No-Rewrite.

Base Static Prompts Non-Contextual Contextual Linear

Dataset NoRw Para. Simpl. Disamb. Clarify Expand EXP3 FTPL ϵ-FTRL TS (NC) LinUCB LinUCB+KL LinEXP3 LinFTPL TS (C)

ARC-Challenge 0.816 0.813 0.814 0.786 0.800 0.731 0.878 0.792 0.873 0.887 0.888 0.888 0.878 0.826 0.884
ARC-Easy 0.808 0.807 0.810 0.796 0.793 0.748 0.890 0.743 0.859 0.877 0.892 0.888 0.869 0.818 0.895
BoolQA 0.547 0.564 0.574 0.574 0.568 0.554 0.658 0.589 0.649 0.571 0.649 0.668 0.637 0.605 0.673
HotpotQA 0.658 0.653 0.657 0.664 0.650 0.654 0.755 0.660 0.747 0.667 0.764 0.757 0.726 0.670 0.756
MathQA 0.700 0.692 0.678 0.685 0.689 0.691 0.779 0.688 0.758 0.756 0.787 0.784 0.732 0.696 0.785
MMLU 0.744 0.748 0.724 0.736 0.728 0.709 0.832 0.747 0.803 0.773 0.837 0.832 0.780 0.721 0.835
OpenBookQA 0.735 0.736 0.738 0.677 0.667 0.553 0.769 0.725 0.776 0.780 0.790 0.791 0.718 0.694 0.793
PIQA 0.717 0.715 0.729 0.639 0.666 0.561 0.772 0.638 0.755 0.733 0.785 0.791 0.766 0.746 0.790
SciQ (Abstract) 0.712 0.725 0.701 0.706 0.704 0.680 0.804 0.704 0.773 0.780 0.800 0.802 0.725 0.693 0.806
SciQ (MC) 0.775 0.777 0.771 0.766 0.749 0.704 0.847 0.764 0.823 0.828 0.851 0.857 0.796 0.787 0.867
SQuAD (Abstract) 0.531 0.559 0.540 0.540 0.531 0.507 0.626 0.553 0.614 0.523 0.632 0.628 0.606 0.568 0.636
SQuAD (Extract) 0.670 0.679 0.681 0.643 0.640 0.565 0.742 0.682 0.738 0.682 0.743 0.752 0.748 0.697 0.759
TriviaQA 0.682 0.668 0.662 0.651 0.646 0.653 0.742 0.670 0.734 0.729 0.754 0.759 0.693 0.671 0.757
TruthfulQA 0.496 0.488 0.509 0.481 0.470 0.441 0.567 0.509 0.577 0.516 0.583 0.595 0.555 0.512 0.586
TruthfulQA (MC) 0.807 0.791 0.834 0.753 0.741 0.679 0.854 0.705 0.802 0.887 0.888 0.863 0.846 0.786 0.852
WikiQA 0.498 0.494 0.498 0.472 0.485 0.470 0.581 0.519 0.562 0.566 0.570 0.576 0.557 0.514 0.590

Macro-avg 0.681 0.682 0.682 0.661 0.658 0.619 0.756 0.668 0.740 0.722 0.763 0.764 0.727 0.688 0.766
Wins (ties split) – – – – – – – – – – 4.5 3.5 – – 8.0

stable and highly discriminative proxy for correctness. Guided by this reward signal, our contextual
QueryBandits learn to tailor rewrite choices to each query’s linguistic/contextual fingerprint.

Contribution 2: Contextual Adaptation Wins. Across 13 QA benchmarks (16 scenarios), our best
contextual bandit, Thompson Sampling (TS), drives an 87.5% win rate over the NO-REWRITE base-
line and outperforms zero-shot static policies (PARAPHRASE, EXPAND) by 42.6% and 60.3%, re-
spectively. Furthermore, certain static strategies accrue higher cumulative regret than NO-REWRITE,
indicating that fixed rewrites can worsen hallucination. In Fig. 3, contextual QueryBandits quickly
hone in on the optimal rewrites, accruing substantially lower cumulative regret than static policies,
vanilla (non-contextual) bandits, or no-rewriting. These gains confirm that a feature-aware, online
adaptation mechanism consistently outpaces one-shot heuristics in mitigating hallucinations.

Contribution 3: Interpretable Decision Weights. Per-arm regression analyses (Fig. 5) provide
empirical evidence that no single rewrite strategy maximizes the reward across all types of queries.
In fact, each arm’s effectiveness hinges on the semantic features of a query. For example, if a query
displays the feature (Domain) Specialization, meaning that the query can only be understood with
domain-specific knowledge, the rewrite arm EXPAND is very effective in contrast to SIMPLIFY (Fig-
ure 1). Ablating the 17-feature context reduces TS’s win rate to 81.7% and the exploration-adjusted
reward to 754.66. Macro-averaged accuracy across the 16 scenarios corroborates this decline: non-
contextual TS drops to 72.2% from 76.6%. This performance gap confirms that linguistic features
carry associative signals about the optimal rewrite strategy. To our knowledge, this is the first work
to use a holistic 17-feature linguistic vector as per-query context for a bandit’s best-arm selection–
moving beyond piecemeal correlations to a single-pass, end-to-end decision policy. Finally, we
observe that across datasets, higher feature variance coincides with greater variance in arm selection
(Figure 4), yielding genuinely diverse arm choices (Figure 2b).

Contribution 4: Scope & Utility. QueryBandits operates entirely at the input layer as a model-
agnostic, plug-and-play online learning policy suitable for closed-source LLMs, addressing the crit-
ical arena of hallucination mitigation efforts where model weights are inaccessible. By contrast,
existing mitigation methods for open-source models such as DoLa (Chuang et al., 2024) and TruthX
(Zhang et al., 2024a) modify internal representations or decoding, neither of which are directly avail-
able for closed models. On TRUTHFULQA (Lin et al., 2022), their gains on smaller open models
(LLAMA-2-7B-CHAT) remain far below strong closed backbones (TruthX: 54.2%, DoLa: 32.2%,
vs. GPT-4o: 81.4%). QueryBandits further lifts GPT-4o from 81.4% to 88.8% MC1 (+7.4 pp)
by adapting rewrites to per-query features, with minimal compute and token overhead. Because
DoLa/TruthX gains are realized on weaker open models, they do not transfer additively at higher
baselines due to diminishing headroom.

Interesting Findings. (i) On many standard benchmarks, linear contextual bandits often converge
to the NO REWRITE arm (Figure 8), exposing memorization effects. Diversity emerges only when
queries are semantically invariant but lexically perturbed; a meaningful insight for the research
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community that surface-form novelty is essential in training query-rewriting algorithms. (ii) Non-
contextual bandits often converge to a single rewrite strategy per dataset, whereas contextual bandits
tend to diversify choices conditioned on the presence and/or absence of linguistic features.

Key Empirical Takeaway. Taken together, the dominance of contextual learners, the consistent
edge of non-contextual bandits over static prompts, and the near-parity of static prompts with the
NO-REWRITE baseline indicate that (a) per-query linguistic features reliably predict rewrite utility,
(b) online adaptation matters even without features, and (c) there is no universally beneficial fixed
policy on strong LLMs (Tables 1, 4).

2 RELATED WORKS

Societal Stakes and Gap of Closed-Source Models. LLM hallucinations erode trustworthiness
from a societal perspective (Dechert LLP, 2024). Recent conceptual analyses frame them as a new
epistemic failure mode requiring dedicated mitigation agendas (Yao et al., 2024). Complementing
these views, Kalai et al. (2025) argue that language models hallucinate because prevailing train-
ing and evaluation procedures reward guessing over acknowledging uncertainty. Reports on newer
advanced-reasoning models (e.g., O3, O4-MINI) indicate increased hallucination rates (OpenAI,
2025), and journalistic case studies document real-world legal exposure from fabricated outputs
(Times, 2025). As more LLM-agent systems proliferate (Watson et al., 2025b; 2023), the down-
stream cost of errors compounds. Yet, there remains a dearth of studies on hallucination mitigation
efforts for closed-source models–our work targets this underexplored gap (Huang et al., 2025b; Ton-
moy et al., 2024; Sahoo et al., 2025).

From Post-hoc Detection to Preemptive Query Shaping. Mitigation is indispensable for faithful
LLM interaction (Ji et al., 2023), and research has expanded from post-hoc detection and iterative
correction (Madaan et al., 2023) to preemptive grounding and query restructuring. Watson et al.
(2025a) estimate hallucination risk before generation via query perturbations. Ma et al. (2023)
propose Rewrite-Retrieve-Read for RAG pipelines, and manual, rule-based rewriting is widely used
(Liu & Mozafari, 2024; Mao et al., 2024; Chen et al., 2024a). A common limitation is reliance on
raw prompting or static heuristics rather than guided rewrites conditioned on the original query’s
contextual signals.

Linguistic Features as Actionable Context. Blevins et al. (2023) show that pretrained language
models can recover linguistic attributes in a few-shot setting. Building on this, we employ an LLM
to identify 17 key linguistic features per query (Table 10). Feature selection drew from both existing
LLM literature and traditional linguistics, prioritizing properties known to affect comprehension
for humans and models alike. These features serve as the context for our bandit policy, enabling
feature-conditioned query-rewriting rather than one-size-fits-all rules.

3 METHODOLOGY AND EVALUATION METRICS

Bandit Formulation. In the contextual multi-armed bandit framework (Lattimore & Szepesvári,
2020), a learner observes at round t a context vector xt ∈ X ⊂ Rd and selects an arm at ∈ A. Upon
that basis, Nature reveals a scalar reward rt = r(xt, at) ∈ [0, 1], where r : X × A → [0, 1]. The
goal of a bandit algorithm is to select arms that maximize the expected (cumulative) reward (Alg. 1;
Appx. D). In the stochastic bandit setting, the objective is to choose a policy π : X → ρ(A) that
maximizes the expected reward, i.e.,

max
π∈Π

E [ r(x, ã) ], ã ∼ π(x),

where ρ(A) is the probability simplex over K = |A| arms, and Π is the policy class.

Action Space. Let A = {a0, . . . , aK−1} denote the rewrite strategies (arms), where each ai ∈ A
represents a distinct style of query reformulation implemented via prompt instructions to an LLM:

▶ a0 PARAPHRASE: Rewrite the query to introduce lexical diversity while preserving semantic
meaning, testing whether alternative phrasings reduce hallucinations. Prior work has explored
how paraphrasing can improve factual consistency in LLMs (Deng et al., 2024; Witteveen &
Andrews, 2019).
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(a) ROC–AUC Pareto frontier on the
reward-weight simplex.

(b) Mean-reward ranks (1 = best)per rewrite arm / dataset under our
contextual bandit; color intensity indicates closeness to the top rank.

Figure 2: (a) Our chosen (α, β, γ) lies deep in the 1% optimal frontier. (b) Breakdown of per-dataset
arm performance: different datasets consistently favor different rewrite strategies

▶ a1 SIMPLIFY: Rewrite the query to eliminate nested clauses and complex syntax. This targets
hallucinations caused by long-range dependencies or overloaded details, borrowing ideas from
educational psychology where simpler, granular prompts enable a child to learn a new skill (Libby
et al., 2008). Recently, Van et al. (2021); Zhou et al. (2023) report that simplified prompts reduce
off-topic drift and ease reasoning.

▶ a2 DISAMBIGUATE: Rewrite the query by resolving vague references (ambiguous pronouns, tem-
poral expressions). Studies showcase LLMs’ inability to resolve ambiguous queries, leading to
subpar performance (Deng et al., 2023; Shahbazi et al., 2019). The information required to disam-
biguate is obtained by rephrasing and making implicit references explicit using only the original
query context, without relying on external knowledge.

▶ a3 EXPAND: Rewrite the query to add salient entities and attributes to enrich context (Yu et al.,
2023). Since transformers optimize next-token likelihood over attention-mediated context win-
dows (Vaswani et al., 2023), appending fine-grained query constraints effectively conditions the
model on a richer semantic prefix.

▶ a4 CLARIFY TERMS: Rewrite the query to define jargon and terms of art to reduce domain-
specific ambiguity (Clark & Gerrig, 1983; Rippeth et al., 2023). This is especially useful for
long-tail knowledge, where LLMs underperform on less-popular entities and benefit from added
context or lightweight retrieval (Mallen et al., 2023).

In our experiments, we instantiate all rewrite arms using gpt-4o-2024-11-20; stronger (or
weaker) rewriters can be substituted without changing the bandit formulation.

Contextual Attributes. For each query we extract a 17-dimensional binary feature vector f ∈
{0, 1}17 capturing linguistically motivated properties known to affect human and LLM comprehen-
sion (Table 10). These features serve as the context for our policy, giving contextual bandits the
opportunity to learn when to apply which rewrite.

Reward Model. Each rewritten query receives a bounded composite reward rt ∈ [0, 1] as a convex
combination of three complementary correctness signals:

rt = α sllm + β sfuzz + γ sbleu, α+ β + γ = 1, α, β, γ ≥ 0 (1)

▶ sllm ∈ {0, 1}: a binary correctness judgment by a GPT-4o-based assessor, calibrated on factuality
between generated and reference answers (Liu et al., 2023c; Adlakha et al., 2024).

▶ sfuzz ∈ [0, 1]: RapidFuzz token-set similarity capturing soft string overlap (Bachmann, 2024).
▶ sbleu ∈ [0, 1]: BLEU-1 (unigram precision) under a unit-cap ensuring lexical fidelity (Papineni

et al., 2002; Callison-Burch et al., 2006).

This triad mitigates individual failure modes inherent in any single metric (e.g. BLEU’s paraphrase
blindness or edit-distance oversensitivity) while remaining stable for learning. Following Wang
et al. (2023a), we leverage the strength of LLMs-as-judges; and as demonstrated by Test-Time RL
(Zuo et al., 2025), even noisy, self-supervised signals (e.g. pseudo-labels from majority-voted LLM
outputs) can effectively guide policy updates. We validate that our convex proxy rt aligns with
human labels via a 1,000 sample held-out set and report ROC-AUC in Figures 2a and 6.
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Validity of the Reward & Simplex Analysis. Across sample sizes (5–1000 samples), the reward at-
tains macro-average ROC–AUC 0.9729; by 150 samples the 95% CI lower bound exceeds 0.97, indi-
cating a stable and highly discriminative correctness proxy (Fig. 6b; Tab. 6a). We sweep (α′, β′, γ′)
over a simplex grid (α′ + β′ + γ′ = 1) and computed ROC–AUC on the human-labeled validation
set (Fig. 2a). Our best weights (α, β, γ) = (0.6, 0.3, 0.1) lie well within the top 1% Pareto frontier
(dark region) and is robust to ±0.2 perturbations on α. The Pareto frontier reveals the following:

▶ LLM-Judge Robustness (α): The ROC–AUC surface is nearly invariant when α varies by±0.2:
AUC shifts by < 0.5%, indicating tolerance to large α swings.

▶ Fuzzy-Match Sensitivity (β): Small increases in β rapidly exit the Pareto region, showing that
the fuzzy-match term must be tuned carefully to avoid degrading overall accuracy.

▶ BLEU-Only Pitfall (γ): As γ increases, ROC–AUC steadily declines, bottoming at γ = 1 (pure-
BLEU), where the model over-emphasizes surface overlap at the expense of true correctness.

▶ Pareto-Optimal Region: The weights (0.6, 0.3, 0.1) sit deep in the high-AUC plateau, confirm-
ing it is a Pareto-optimal trade-off among semantic, fuzzy, and lexical signals.

▶ Reward Non-degeneracy (β, γ): Using only the LLM-Judge term (α = 1) yields a nearly binary
reward distribution that collapse onto two modes, which in turn hurts exploration-exploitation.
Adding the fuzzy and BLEU terms yields richer, more graded rewards that are sensitive to near
misses (Fig. 14)

Together, these experiments substantiate our reward design: the LLM-judge provides a forgiv-
ing anchor, fuzzy-match demands precise calibration, and BLEU contributes complementary lex-
ical oversight. We further evaluated reward robustness with out-of-family judges (gpt-5*,
gpt-4.1-2025-04-14, and gpt-4o*). Across 1,000 validation queries, inter-model agree-
ment on correctness labels is high (mean agreement ≈ 0.9, mean κ ≈ 0.79, MCC ≈ 0.80), indicat-
ing that our reward is stable across judge architectures (Table 6).

Choice of Algorithms. For linear contextual bandits, we fit a per-arm linear model x⊤
t θk and use

either a UCB method (LinUCB (Lai & Robbins, 1985) / LinUCB+KL (Garivier & Cappé, 2013)), an
FTRL regularized weight (McMahan, 2015), or Thompson sampling with posterior draws (Thomp-
son, 1933). For adversarial bandits, we consider two parameter-free methods: EXP3 (Auer et al.,
2002b) and FTPL (Kalai & Vempala, 2005; Suggala & Netrapalli, 2020). Update rules and regret
bounds are in App. D (Alg. 1). We discuss our decision to use bandits rather than full RL in App. B.

Evaluation Metrics. We report three complementary metrics for a balanced view of (1) how well
a policy explores vs. exploits, (2) how quickly it converges to good answers, and (3) how often it
beats the NO-REWRITE baseline in accuracy.

Metric 1: Exploration-Adjusted Reward. Let rt ∈ [0, 1] be the reward at pull t up to trajectory
length T . Define the empirical arm-frequency vector pt,k = 1

t

∑t
τ=1 1[aτ = k] and the normalized

Shannon entropy Ht =
(
−
∑K

k=1 pt,k log pt,k
)
/ logK ∈ [0, 1]. We define the exploration-adjusted

reward as:

Radj =

T∑
t=1

(
rt + λHt

)
,

with λ = 0.1 (chosen on validation), rewarding policies that achieve high per-pull rewards while
maintaining sufficient exploration.

Metric 2: Mean Cumulative Regret. At each pull the instantaneous regret is the gap between the
oracle reward (best achievable rewrite) and the observed reward. Let r∗t = maxa∈A r(xt, a) be the
per-round oracle (max) reward. Over R runs, the mean cumulative regret is:

Regret =
1

R

R∑
i=1

T∑
t=1

(
r∗t − r

(i)
t

)
Metric 3: Win Rate vs. Baseline. For N test queries, we compute the fraction of trials where a
policy’s reward rpolicyt strictly exceeds the no-rewrite baseline rbaset :

WinRate =
1

N

N∑
t=1

1
[
rpolicyt ≻ rbaset

]
× 100%.
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4 EXPERIMENTS

Pipeline. For each decision round t:

xt

Extr. feat.
ft∈{0,1}d

−−−−−−−→ ft

Select at

(rewrite strat.)−−−−−−−−→ x′
t = gat

(xt)
LLM−−−−→ yt

Eval.
rt∈[0,1]−−−−−−→ rt

Update Bandit
↫

1. Feature Extraction. For query xt, compute d-dimensional linguistic feature vector ft ∈ {0, 1}d.
2. Arm Selection. The bandit receives ft and selects a rewrite arm at ∈ A.
3. Query Rewriting. Apply the selected arm to obtain the candidate query x′

t = gat
(xt) .

4. LLM Inference. Issue x′
t to gpt-4o-2024-08-06, producing response yt.

5. Reward Evaluation. Compute scalar reward rt ∈ [0, 1] via the reward formulation.
6. Bandit Update. Update the internal state of the bandit based on (at, rt).

Dataset and Query Construction. We evaluate on D = 13 diverse QA benchmarks and S = 16
scenarios (see Table 3). For each scenario, we sample |Q| queries satisfying: (1) Original Answer-
ability: the query in the dataset (qi) is answered correctly by gpt-4o-2024-08-06; and (2)
Perturbation Validity: among five lexically perturbed but semantically invariant versions of each
dataset query, assessed by an LLM-as-judge and n-gram based metrics (Lin, 2004; Papineni et al.,
2002; Wang et al., 2023a), between one and three perturbations yield incorrect answers. Then, we
randomly choose xt from |Q| to train QueryBandits.

The importance of this query construction process deserves emphasis. Through our investigations,
we discovered that the ubiquity of benchmarks in Table 3 within pre-training and fine-tuning regimes
has engendered a potentially pernicious form of prompt memorization. In preliminary runs us-
ing canonical, unperturbed queries, contextual policies often converge almost exclusively to NO-
REWRITE, and rewriting rarely improved accuracy. By contrast, in our perturbed setup (lexically
diverse but semantically matched queries), contextual bandits diversify arm usage and achieve sub-
stantial gains (Figure 8). This behavior is consistent with prompt memorization on common bench-
marks rather than an intrinsic degradation effect of rewriting.

Experimental Configuration. We compare three non-contextual and six linear contextual bandits
against zero-shot prompting and a NO-REWRITE baseline. All reported metrics are averaged over all
dataset runs per algorithm. We compare M bandit algorithms and prompting strategies over K = 5
rewrite arms. Each algorithm runs for T = |QS | rounds on each of the S scenarios (Table 3).
Thus, Total Pulls = M × S × |QS | ≈ 252, 000, with M = 15, S = 16, and |QD| ≈ 1050.
We bootstrap samples with replacement for TRUTHFULQA to obtain approximately 1,050 queries.
Hyperparameters (learning rates, exploration coefficients, regularization constants) are tuned via
grid search on a held-out validation set.

Feature Extraction. We use gpt-4o-2024-11-20 with temperature τ = 0.0 and structured
outputs to tag the 17 binary linguistic features per query (Table 11). On 1,000 queries × 5 repeated
tagging runs, bitwise agreement across full 17-dimensional vectors is ∼ 99.3%, and per-feature
stability is 97.4%-99.7%, indicating that the contextual representation is nearly deterministic under
our setup. Because the bandit only observes the binary feature vector (and not the text), this residual
variance has minimal impact on downstream learning.

5 RESULTS

Hypothesis 1: Can QueryBandits reduce hallucination? Table 2 and Figure 3 compare Query-
Bandits against the NO REWRITE baseline and five static prompting strategies across 13 QA bench-
marks (16 scenarios, 1,050 queries/dataset). In aggregate, contextual Thompson Sampling (TS)
attains an 87.5% query-level win rate and 819.04 exploration-adjusted reward, compared to the
NO REWRITE baseline (729.20; ∆ = −89.84). At the scenario level (Table 1), the macro-average
accuracy improves from 0.681 (Baseline) to 0.766 (Contextual TS; +8.5 pp). Contextual TS also
wins 8/16 scenarios outright (Table 2). Together, these results indicate that contextual query rewrit-
ing materially reduces hallucination relative to no rewriting.

Hypothesis 2: Can QueryBandits outperform static rewriting? Static rewriting never tops a
dataset on accuracy (Table 1). Our best performing bandit, Contextual TS, consistently exceeds the
performance of static variants; for example, relative to PARAPHRASE and EXPAND, Contextual TS

7
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Figure 3: Cumulative Reward (averaged across all runs). Sorted by final performance, highlight-
ing gains achieved by contextual bandits over non-contextual learners and static rewrites.
Table 2: Left: Rewrite-policy Performance: final cumulative exploration-adjusted reward, mean
cumulative regret, and win rate vs. no-rewrite. Right: Who Wins Where: best accuracy per dataset
and gain over NO-REWRITE baseline (pp). TS = Thompson Sampling; (C) = Contextual.

Algorithm Ctx? radj ↑ Cum. Regret ↓ Win% ↑
Bandit Algorithms

TS (C) ✓ 819.04 135.84 87.5
LinUCB+KL ✓ 818.79 136.00 87.0
LinUCB ✓ 818.60 136.12 86.9
Linear ϵ-FTRL ✓ 799.57 155.30 85.0
EXP3 (NC) ✗ 797.47 157.31 86.5
Linear EXP3 ✓ 781.05 173.60 83.8
TS (NC) ✗ 754.66 200.18 81.7
Linear FTPL ✓ 738.07 216.54 76.3
FTPL (NC) ✗ 716.05 238.85 62.8

Static Prompts

Paraphrase – 732.39 222.56 44.9
Simplify – 730.13 224.42 50.1
Disambiguate – 713.65 241.25 42.4
Clarify Terms – 711.65 243.35 38.2
Expand – 639.25 315.71 27.2

No-Rewrite (B) – 729.20 225.85 –

Dataset Winner Algo. Acc. (%) ↑ ∆ (pp) ↑
Winners: TS (Contextual)

ARC-Easy TS (C) 89.5 +8.7
BoolQA TS (C) 67.3 +12.6
OpenBookQA TS (C) 79.3 +5.8
SciQ (Abstract) TS (C) 80.6 +9.4
SciQ (MC) TS (C) 86.7 +9.2
SQuAD (Abstract) TS (C) 63.6 +10.5
SQuAD (Extract) TS (C) 75.9 +8.9
WikiQA TS (C) 59.0 +9.2

Winners: LinUCB family

ARC-Challenge LinUCB (+KL) 88.8 +7.2
HotpotQA LinUCB 76.4 +10.6
MathQA LinUCB 78.7 +8.7
MMLU LinUCB 83.7 +9.3
PIQA LinUCB+KL 79.1 +7.4
TriviaQA LinUCB+KL 75.9 +7.7
TruthfulQA LinUCB+KL 59.5 +9.9
TruthfulQA (MC) LinUCB 88.8 +8.1

achieves much higher aggregate reward (819.04 vs. 732.39 and 639.25) and substantially higher ac-
curacy, with typical gains of +6–12 pp over the baseline across scenarios (Table 2; e.g., +12.6 on
BoolQA, +10.6 on HotpotQA). In 13/15 runs, non-contextual bandits effectively collapse to a single
rewrite per dataset, behaving similarly to static policies. In contrast, contextual policies maintain
more diverse selections conditioned on feature patterns (Fig. 7). These gains confirm that adapting
the rewrite to each query’s linguistic fingerprint outperforms any one-size-fits-all prompt. By fram-
ing rewrite selection as an online decision problem and leveraging per-query context, QueryBan-
dits allocate exploration where uncertainty is high and exploitation where features reliably predict
hallucination risk–yielding up to double the hallucination reduction of any static strategy, with no
additional model fine-tuning.

Hypothesis 3: Do linear contextual bandits outperform algorithms oblivious to context? Cru-
cially, ablating the 17-dimensional feature vector drops Thompson Sampling’s performance from
87.5% to 81.7% query-level win rate and from 819.04 to 754.66 reward (−5.8 pp, –64.38 reward).
On accuracy, contextual methods dominate: Thompson Sampling wins 8/16 scenarios, while the
contextual linear family (LinUCB/LinUCB+KL) takes the rest (tie-split: LinUCB 4.5, LinUCB+KL
3.5); see Table 1. Non-contextual bandits never top accuracy on any dataset. On regret (Table 4),
wins spread to simpler methods–NO REWRITE (BASELINE) (3 scenarios), PARAPHRASE (3.5),
SIMPLIFY (2), and Non-Contextual TS (3.5)–while contextual methods rarely minimize instanta-
neous regret (only LinFTPL wins once). This pattern aligns with exploration–exploitation: con-
textual learners accept small exploration costs (slightly higher regret early) to deliver higher final
accuracy. While EXP3 is a strong non-contextual baseline, contextual TS stochastically dominates
both EXP3 and static policies in per-query reward (Figs. 15–18). This confirms that the gains we
observe stem from genuine contextual adaptation rather than noise. Furthermore, these performance
gaps confirm that linguistic features carry associative signals about hallucination risk.
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Figure 4: Contextual Per-Feature Variance by
Arm. For each arm, we compute the variance
of each binary linguistic feature over all queries
on which that arm was chosen. High variance
means the bandit frequently switches the arm on
that feature’s presence.

Figure 5: Contextual Feature Contribution
Strength. These are the averaged θ weights (di-
rect contributions) per feature to the expected
reward under each arm. Positive weights indi-
cate features that boost that arm’s reward; nega-
tive weights indicate features that penalize it.

Hypothesis 4: Is there an association between query features and reward? Arms exhibit distinct
sensitivities to the 17 linguistic features (Figures 4–5). The same feature can flip importance across
arms; e.g., (Domain) Specialization is highly predictive for EXPAND but weak for SIMPLIFY. A
plausible mechanism is that domain-specific questions need added qualifiers/entities (EXPAND) to
ground retrieval and reasoning, whereas aggressive pruning (SIMPLIFY) risks excising critical se-
mantics. These arm–feature associations are correlational rather than causal, but they are consistent
with the observed accuracy/regret trade-offs.

Hypothesis 5: Is there a single rewrite strategy that maximizes reward for all types of queries?
No. The learned per-arm weights (Figure 5) show distinct feature fingerprints. For instance, SIM-
PLIFY excels with pragmatic cues (safe pruning) but struggles on superlatives (removing compar-
ative meaning). Appendix Table 8 details these inversions. The diversity of winning arms across
scenarios (Table 2) and the split of contextual winners (Contextual TS vs. LinUCB family) further
support that no single rewrite strategy is universally optimal.

Hypothesis 6: Does QueryBandits improve closed-source model performance? As shown in
Table 5, methods such as DoLa and TruthX improve open-source backbones (e.g., Llama-2-7B-
Chat), but their best reported MC1 (TruthX: 54.2%; DoLa: 32.2%) is far below strong closed-source
backbones (GPT-4o: 80.7%) (Zhang et al., 2024a; Chuang et al., 2024). By contrast, QueryBandits
operates entirely at the input layer and lifts GPT-4o to 88.8% (+8.1 pp). Since DoLa/TruthX modify
internal representations or decoding, they are not directly applicable to closed models, and gains on
weaker models need not transfer additively at higher baselines.

6 CONCLUSION

We introduce QUERYBANDITS, a plug-and-play online learning policy that selects among K rewrite
strategies to minimize a query’s hallucinatory trajectory using lightweight linguistic features as
context. Across 13 QA benchmarks (16 scenarios), contextual learners dominate: Contextual TS
and the LinUCB family win nearly all benchmarks, yielding a macro-average accuracy of 0.766 vs.
0.681 for NO-REWRITE, with typical gains of∼6–12 pp (Table 1). Non-contextual bandits generally
beat static prompts, while static prompts are on par with the baseline, indicating that (i) per-query
features predict rewrite utility, (ii) online adaptation matters even without features, and (iii) no single
fixed rewrite is universally beneficial on strong LLMs.
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Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Mach. Learn., 47(2–3):235–256, May 2002a. ISSN 0885-6125. doi: 10.1023/A:
1013689704352. URL https://doi.org/10.1023/A:1013689704352.
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A APPENDIX

A.1 LIMITATIONS

Current limitations in our work are as follows: our current contextual bandit framework treats each
of the 17 features as independent, but does not capture higher-order interactions. This can provide an
exciting avenue of future research in terms of measuring whether the combination of features jointly
exacerbates hallucination. Likewise, we would like to highlight that the feature-arm regression
weights do not stipulate a causal relationship - highly sophisticated causal relationships are difficult
to formulate within LLMs due to the inherent difficulties of interpreting a neural network’s internal
layers; thus, in this paper, we focus on providing empirical studies and the conclusions we can draw
from them. Finally, even with our rigorous studies to find the ROC-AUC Pareto-frontier, our reward
model leverages LLM-as-judge, which may reflect the LLM’s bias. Overall, these limitations posit
potential directions by which the research community can further pursue and ultimately help expand
our understanding of these powerful, albeit hallucinatory models.

A.2 ETHICS & SOCIETAL IMPACT.

Our method alters inputs rather than model weights; it can reduce factually incorrect outputs but does
not eliminate them. Failure modes include reward misspecification and domain shift. We report
error analyses and release prompts to facilitate auditing and replication, as part of the appendix.
Furthermore, we discuss the societal impact of hallucinations in the related works.

A.3 REPRODUCIBILITY STATEMENT.

We aim to make our results fully reproducible. The main paper specifies the learning setup and
algorithms (Algorithm 1; §3–§4), including the five rewrite arms with exact system-prompt tem-
plates (Table 9), the feature set used by the contextual policies (Table 11, Table 10), and the reward
definition with its components and weights (§3, Table 6a, Figure 2). Evaluation datasets, splits, pre-
processing, dataset-specific details, and licenses are detailed in §4 and Table 3; decoding/API con-
figurations are documented here. For all experiments, we apply OpenAI’s gpt-4o-2024-08-06
with API parameters: temperature=0.2, top-p=1.0, frequency/presence penalties=0. We report statis-
tical uncertainty (95% CIs) and paired significance tests, and provide ablations/sensitivity analyses
through the paper that support our claims.

B DISCUSSION ON RL AND BANDIT METHODS

Remark 1 Why bandits vs. full RL? Within LLMs, for each input query, the transformer attends over
the fixed context window and computes a softmax over the vocabulary to maximize token likelihood
(Radford et al., 2019). Consequently, hallucinations occur at the moment of generation for that
single query, making hallucination a per-query phenomenon (Huang et al., 2025a). Indeed, recent
PPO variants for LLMs, such as GRPO (Shao et al., 2024) and ReMax (Li et al., 2024c), remove
the critic via grouped Monte Carlo or baseline-adjusted returns, highlighting critic-free policies that
our bandit formulations naturally generalize. Therefore, a full-episodic RL problem, which must
solve a Markov decision process with long-horizon credit assignment and nonstationary transition
dynamics (Sutton & Barto, 2018), can be practically suboptimal. Moreover, many of these methods
rely on estimating a fixed average reward or state-action value Q(s, a), which can obscure per-query
idiosyncrasies; if the optimal rewrite arm varies sharply with linguistic context, a mere empirical
average will yield suboptimal policies.

Remark 2 Link between Algorithm Choices and RL Methods. Several algorithms we investigate
in QueryBandits have analogues in RL: posterior sampling (PSRL) (Osband et al., 2013) as an
analogue for Thompson sampling (Thompson, 1933); follow-the-regularized leader (FTRL) and its
variants (Shalev-Shwartz et al., 2012), originating from proximal-gradient methods (Rockafellar,
1976) whose use in RL as proximal policy optimization (PPO) (Schulman et al., 2017) is well-
established. Other PPO-style advances like DAPO (Yu et al., 2025) improve exploration-exploitation
via dynamic sampling and reward filtering, and VAPO (Yue et al., 2025) demonstrates stable Long-
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CoT training with an explicit value model–illustrating the spectrum from model-based to model-free
approaches that contextual bandits sit within.

C TRUTHFULQA METRICS AND EVALUATION SETUP

TruthfulQA (Lin et al., 2022) offers several evaluation modes:

▶ MC1 (single-true): Given a multiple-choice question with four or five options, select the single
true option. The model’s choice is the option with the highest completion log probability; the
score is accuracy over questions.

▶ MC2 (multi-true): Given a multiple-choice question with multiple reference answers labeled
true or false, the score is the normalized total probability assigned to the set of true answers.

▶ Generation: Given a free-form question, generate a 1–2-sentence answer that maximizes truth-
fulness while maintaining informativeness. Metrics include GPT-judge and GPT-info (fine-
tuned evaluators), BLEURT, ROUGE, and BLEU. A similarity-based score is computed as
maxtrue sim − maxfalse sim.

In the main paper we focus on MC1 for comparability across methods, as this regime aligns naturally
with notions of correctness and equivalence. Zhang et al. (2024a) evaluate the generation setting
using two fine-tuned GPT-3 classifiers (GPT-judge and GPT-info) to label responses for truthfulness
and informativeness (binary classification). These labels are not accuracy and therefore are not
directly comparable to our generative evaluation.

D SUMMARY OF BANDITS

▶ Non-Contextual Adversarial
– EXP3 (Auer et al., 2002b) Maintains weights wk, samples at ∝ wk, updates wat

←
wat

exp
(

γ rt
K pat

)
.

– FTPL (Kalai & Vempala, 2005; Suggala & Netrapalli, 2020) Adds Gumbel noise
ξk ∼ Gumbel(0, 1/η) (Gumbel, 1941) to cumulative rewards, selects at =
argmax(cum rewardk + ξk), then increments the chosen arm’s reward.

▶ Contextual Stochastic
– LinUCB (Lai & Robbins, 1985) Selects at = argmax

k

(
x⊤
t θ̂k + α

√
x⊤
t A

−1
k xt

)
, updates

Ak←Ak + xtx
⊤
t , bk←bk + rtxt.

– KL-UCB (LinUCB-KL) (Garivier & Cappé, 2013) Replaces the UCB term with a KL-
divergence-based confidence bound.

– Thompson Sampling Maintains Gaussian posterior N (µk,Σk); samples θ̃k, picks at =

argmaxx⊤
t θ̃k, updates the posterior.

▶ Contextual Adversarial
– FTRL (McMahan, 2015) Selects arm maximizing x⊤

t wk − λ∥wk∥1, with an ℓ1 regularizer.
– ϵ-greedy FTRL ...
– LinearEXP3 (Neu & Olkhovskaya, 2020) Contextual extension of EXP3, sampling arms based

on exponentiated linear scores.
– LinearFTPL (Hannan, 1957) Contextual adaptation of FTPL, applying Gumbel perturbations

to linear reward estimates.

D.1 LINUCB

The estimated parameter is:
θ̂a = A−1

a ba. (2)
Given a query feature vector x, the upper confidence bound (UCB) for arm a is:

UCBa(x) = x⊤θ̂a + α
√
x⊤A−1

a x, (3)

where α controls the exploration–exploitation trade-off. The arm selected is:

a∗ = argmax
a∈A

UCBa(x). (4)
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Algorithm 1 General Bandit + Rewrite Loop

Require: arms A, context xt, algorithm algo ∈ {EXP3, FTPL, LinUCB, KL, FTRL, Thompson},
hyperparameters

1: for t = 1 to T do
2: observe xt

3: for each arm k ∈ A do
4: sk ← Score(algo, k, xt)
5: end for
6: select at = argmaxk∈A sk
7: apply rewrite at to query and observe reward rt
8: Update(algo, at, xt, rt)
9: end for

Table 3: Datasets. Overview of datasets, including domain, license, number of examples, associated
scenarios, etc. These datasets span a diverse range of question types, domains, and reasoning skills,
supporting robust evaluation. E = Extractive, M = Multiple Choice, A = Abstractive.

Dataset Scenario Domain License Count Citation

SQuADv2 E, A Wikipedia CC BY-SA 4.0 86K Rajpurkar et al. (2016; 2018)
TruthfulQA M, A General Knowledge Apache-2.0 807 Lin et al. (2022)
SciQ M, A Science CC BY-NC 3.0 13K Johannes Welbl (2017)
MMLU M Various MIT 15K Hendrycks et al. (2021)
PIQA M Physical Commonsense AFL-3.0 17K Bisk et al. (2020)
BoolQ M Yes/No Questions CC BY-SA 3.0 13K Clark et al. (2019); Wang et al. (2019)
OpenBookQA M Science Reasoning Apache-2.0 6K Mihaylov et al. (2018)
MathQA M Mathematics Apache-2.0 8K Amini et al. (2019)
ARC-Easy M Science CC BY-SA 4.0 5K Clark et al. (2018)
ARC-Challenge M Science CC BY-SA 4.0 2.6K Clark et al. (2018)
WikiQA A Wikipedia QA Other 1.5K Yang et al. (2015)
HotpotQA A Multi-hop Reasoning CC BY-SA 4.0 72K Yang et al. (2018)
TriviaQA A Trivia Apache-2.0 88K Joshi et al. (2017)

Upon observing reward r, update:

Aa ← Aa + xx⊤, ba ← ba + r x. (5)

D.2 LINUCB+KL BANDIT STRATEGY

The algorithm is initialized with parameters: number of arms narms, dimension d, regularization
parameter λ, exploration parameter α, noise variance σnoise, and KL-bound constant c. Each arm a
maintains a matrix Aa and a vector ba, initialized as λId and 0d, respectively.

The select arm method computes the score for each arm a using the following formulation:

θa = A−1
a ba

µa = x⊤θa

vara = x⊤A−1
a x

na = max(1, counts[a])

raw bounda =
log(t) + c log(log(t+ 1))

na

bounda = max(raw bounda, 0.0)

bonusa =
√
2 · vara · bounda

scorea = µa + bonusa

where x is the context vector, t is the time step, and counts[a] is the number of times arm a has been
selected. The arm with the highest score is selected for exploration.
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Table 4: Instantaneous Regret. Each cell reports mean per-step regret; bold marks the minimum
per scenario. “Wins” counts per-family minima with ties split (0.5 each). “Macro-avg” is the un-
weighted average over scenarios. Static prompts sometimes win on regret by avoiding exploration,
whereas contextual methods typically incur slightly higher immediate regret while delivering higher
final accuracy (see Table 1), reflecting the exploration–exploitation tradeoff. NoRw = No-Rewrite

Base Static Prompts Non-Contextual Contextual Linear

Dataset NoRw Para Simpl Disamb Clarify Expand EXP3 FTPL ϵ-FTRL TS LinUCB LinUCB+KL LinEXP3 LinFTPL TS

ARC-Challenge 0.095 0.098 0.097 0.124 0.111 0.180 0.123 0.125 0.106 0.109 0.118 0.121 0.107 0.102 0.121
ARC-Easy 0.103 0.104 0.102 0.115 0.118 0.163 0.111 0.172 0.124 0.096 0.115 0.121 0.098 0.107 0.115
BoolQA 0.219 0.202 0.192 0.199 0.197 0.212 0.202 0.185 0.198 0.208 0.211 0.197 0.191 0.186 0.186
HotpotQA 0.198 0.203 0.199 0.191 0.206 0.201 0.197 0.199 0.188 0.197 0.191 0.197 0.192 0.196 0.194
MathQA 0.096 0.103 0.118 0.111 0.106 0.104 0.115 0.108 0.107 0.109 0.106 0.111 0.110 0.110 0.108
MMLU 0.134 0.130 0.153 0.142 0.150 0.168 0.139 0.143 0.146 0.143 0.139 0.145 0.144 0.168 0.139
OpenBookQA 0.160 0.159 0.157 0.218 0.228 0.341 0.223 0.169 0.177 0.159 0.200 0.198 0.243 0.221 0.188
PIQA 0.172 0.174 0.161 0.252 0.236 0.340 0.213 0.259 0.192 0.174 0.197 0.193 0.173 0.152 0.186
SciQ (Abstract) 0.147 0.135 0.158 0.153 0.155 0.179 0.150 0.176 0.149 0.137 0.156 0.155 0.174 0.176 0.150
SciQ (MC) 0.140 0.137 0.143 0.148 0.166 0.211 0.159 0.155 0.155 0.137 0.155 0.154 0.165 0.140 0.141
SQuAD (Abstract) 0.183 0.155 0.174 0.175 0.184 0.208 0.185 0.180 0.191 0.198 0.180 0.186 0.183 0.176 0.176
SQuAD (Extract) 0.139 0.129 0.128 0.165 0.169 0.244 0.166 0.130 0.148 0.168 0.165 0.154 0.147 0.133 0.141
TriviaQA 0.131 0.145 0.151 0.162 0.167 0.160 0.153 0.150 0.154 0.148 0.155 0.153 0.148 0.157 0.155
TruthfulQA 0.151 0.159 0.141 0.166 0.180 0.206 0.173 0.167 0.138 0.155 0.161 0.150 0.171 0.180 0.155
TruthfulQA (MC) 0.099 0.115 0.073 0.153 0.165 0.227 0.146 0.202 0.139 0.084 0.114 0.142 0.123 0.159 0.151
WikiQA 0.137 0.140 0.139 0.163 0.150 0.165 0.150 0.135 0.153 0.126 0.162 0.156 0.141 0.159 0.141

Macro-avg 0.144 0.140 0.148 0.160 0.163 0.216 0.166 0.159 0.157 0.155 0.160 0.159 0.160 0.156 0.160
Wins 3.0 3.5 3.0 – – – – 1.0 2.0 2.5 – – – 1.0 –

# Groups Mean ROC–AUC 95% CI

5 0.9524 [0.9165, 0.9884]
10 0.9720 [0.9549, 0.9891]
15 0.9709 [0.9581, 0.9836]
25 0.9747 [0.9674, 0.9821]
50 0.9695 [0.9633, 0.9756]
75 0.9745 [0.9688, 0.9801]

100 0.9709 [0.9626, 0.9792]
150 0.9767 [0.9716, 0.9819]
200 0.9710 [0.9653, 0.9767]
300 0.9734 [0.9709, 0.9758]
400 0.9741 [0.9713, 0.9769]
500 0.9736 [0.9703, 0.9769]
600 0.9732 [0.9701, 0.9763]
700 0.9721 [0.9695, 0.9748]
800 0.9719 [0.9699, 0.9738]
900 0.9725 [0.9716, 0.9734]

1000 0.9737 [0.9721, 0.9753]

Macro-avg 0.9729 –

(a) Validity of the exploration-adjusted reward
radj as a correctness proxy. Mean ROC–AUC
and 95% Confidence Intervals (±1.96 SE); 10
resamples per n. By ∼150 groups, the CI
lower bound exceeds 0.97.

(b) Mean ROC-AUC vs. sample size n, with 95% CIs.

(c) Distribution of rt for correct vs. wrong (normalized den-
sity). Our reward presents a clear separation between our
human validated labels. Per dataset reward distributions are
located in Figure 14.

Figure 6: Summary of reward validity. Left: (a) numerical ROC–AUC and CIs across sample
sizes. Right: (b) power curve; (c) class-conditional reward histogram of rt vs. human labels.

The update method updates the matrix Aa and vector ba for the selected arm a based on the
received reward rt:

Aa ← Aa + xx⊤

ba ← ba + rtx

counts[a]← counts[a] + 1

This strategy leverages the KL-bound to dynamically adjust exploration bonuses, enhancing the
LinUCB algorithm’s ability to balance exploration and exploitation in a contextual setting.
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Table 5: TruthfulQA MC1 comparison. ∆ reports absolute percentage–point change vs our
No–Rewrite baseline (80.7%). QueryBandits achieves the best score (LinUCB 88.8%, +8.1 pp) and
strong Non–Contextual TS (88.7%, +8.0 pp); Contextual TS also improves (+4.5 pp). Closed GPT
baselines cluster near ∼81%, while open–model interventions reported on Llama–2–7B remain far
below the GPT–4o baseline (e.g., TruthX 54.22%, −26.5 pp). Results across families highlight that
context–aware linear bandits (LinUCB) are most effective on MC1, with TS (Non–Contextual) close
but lacking per–query adaptation.

Method Backbone MC1 (%) ∆ (pp) Source Notes

QueryBandits (ours)

Best (Dataset): LinUCB GPT–4o 88.8 +8.1 Closed –
Best (Overall): Contextual TS GPT–4o 85.2 +4.5 Closed –
Best (Non–Contextual): TS GPT–4o 88.7 +8.0 Closed –
Best Static: Simplify GPT–4o 83.4 +2.7 Closed No learning
Worst Static: Expand GPT–4o 67.9 -12.8 Closed
No–Rewrite (Baseline) GPT–4o 80.7 0.0 Closed Baseline for ∆

Closed models (reference points)

GPT–4o GPT–4o 81.4 +0.7 Closed OpenAI et al. (2024)
GPT–4 GPT–4 81.3 +0.6 Closed
GPT–4o mini GPT–4o mini 66.5 -14.2 Closed
GPT–3.5 Turbo GPT–3.5 Turbo 53.6 -27.1 Closed

Open models: base / finetuned

Llama–2–7B–Chat (base) Llama–2–7B–Chat 34.64 -46.1 Open Lin et al. (2022)
Supervised Finetuning Llama–2–7B–Chat 24.20 -56.5 Open Zhang et al. (2024a)

Contrastive decoding (open models)

Contrastive Decoding (CD) Llama–2–7B–Chat 24.40 -56.3 Open Li et al. (2023)
Decoding by Contrasting Layers (DoLa) Llama–2–7B–Chat 32.20 -48.5 Open Chuang et al. (2024)
Self-Highlighted Hesitation (SH2) Llama–2–7B–Chat 33.90 -46.8 Open Kai et al. (2024)
Induce-then-Contrast Decoding (ICD) Llama–2–7B–Chat 46.32 -34.4 Open Zhang et al. (2024b)

Representation editing (open models)

Contrast-Consistent Search (CCS) Llama–2–7B–Chat 26.20 -54.5 Open Burns et al. (2023)
Inference Time Intervention (ITI) Llama–2–7B–Chat 34.64 -46.1 Open Li et al. (2024a)
Truth Forest (TrFr) Llama–2–7B–Chat 36.70 -44.0 Open Chen et al. (2024b)
TruthX Llama–2–7B–Chat 54.22 -26.5 Open Zhang et al. (2024a)

Legacy references (TruthfulQA paper, MC)

GPT–3 175B GPT–3 175B 21.0 -59.7 Closed Lin et al. (2022)
GPT–J 6B GPT–J 6B 20.0 -60.7 Open
GPT–2 1.5B GPT–2 1.5B 22.0 -58.7 Open
UnifiedQA 3B UnifiedQA 3B 19.0 -61.7 Open

Table 6: Inter-model agreement on the LLM-as-judge labels over 1,000 validation queries. Val-
ues reported are fraction of exact label agreement, Cohen’s κ, and Matthews correlation coefficient
(MCC).

Model A Model B % Agree Cohen’s κ MCC

gpt-5-2025-08-07 gpt-5-mini-2025-08-07 0.960 0.916 0.916
gpt-4.1-2025-04-14 gpt-4o-2024-11-20 0.925 0.826 0.826
gpt-4o-2024-11-20 gpt-5-2025-08-07 0.909 0.802 0.810
gpt-4.1-2025-04-14 gpt-5-2025-08-07 0.906 0.794 0.807
gpt-4o-2024-11-20 gpt-5-mini-2025-08-07 0.903 0.790 0.801
gpt-4.1-2025-04-14 gpt-5-mini-2025-08-07 0.900 0.782 0.798
gpt-5-mini-2025-08-07 gpt-5-nano-2025-08-07 0.886 0.770 0.783
gpt-5-2025-08-07 gpt-5-nano-2025-08-07 0.882 0.762 0.778
gpt-4o-2024-11-20 gpt-5-nano-2025-08-07 0.823 0.642 0.680
gpt-4.1-2025-04-14 gpt-5-nano-2025-08-07 0.814 0.623 0.669
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(a) Arm Diversity for Contextual Bandits, as a Fraction
of Trials.

(b) Arm Diversity for Non-Contextual Bandits, as a
Fraction of Trials.

Figure 7: For Non-Contextual bandits, almost every dataset is dominated by a single arm with the
highest global reward (typically 40%-60% of the trials). The remaining 40-60% is split among the
other four arms as noise, the non-contextual policy has no way to ”know” when within a dataset a
different arm might do better. In contrast, Contextual bandits show a more even mix: the top arm
is only ∼25-30%, with two or three other arms contributing sizable shares (15-25% each). The
contextual policy reads the features and diversifies its choices within each dataset.

(a) Soft Rank Heatmap for all Bandits, including arm NO
REWRITE.

(b) Arm Diversity when including NO
REWRITE.

Figure 8: Impact of the No-Rewrite Arm. Note that these experiments are conducted on the origi-
nal query ”as-is” in the benchmark dataset, with no perturbations. Upon enabling the NO REWRITE
option, our contextual bandit rapidly converges to this arm, which then achieves the highest reward
on several datasets. We attribute this behavior to the LLM’s tendency to memorize benchmark ques-
tions.

D.3 FTRL

The algorithm is initialized with the following parameters: number of arms narms, dimension d,
learning rate α, exploration parameter β, and regularization parameters l1 and l2. The cumulative
gradient vectors for each arm are stored in za, initialized as zero vectors of dimension d.

The weight vector wa for each arm a is computed as:

wi =

{
− zi−sign(zi)·l1

β+
√

ni
α +l2

if |zi| > l1

0 otherwise

where zi is the cumulative gradient for the i-th feature of arm a, and ni is the cumulative squared
gradient for the i-th feature. The arm with the highest score, calculated as the dot product of the
weight vector w and the context vector, is selected:

at = arg max
a∈{1,...,narms}

(
d∑

i=1

wi · xi

)
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(a) Contextual Model Feature Variance. (b) Non-Contextual Model Feature Variance.

Figure 9: Comparison of Feature Variance between (a) our contextual bandits and (b) its non-
contextual counterparts. Polysemy, Constraints and Entities show the most variation. Presuppo-
sition, Excessive Details, and Grounding have the least.

(a) Contextual Model KL Distance. (b) Non-Contextual Model KL Distance.

Figure 10: Comparison of Inter-Arm Context Distances (Symmetric KL) between (a) our contextual
bandits and (b) its non-contextual counterparts. Arm pairs such as EXPAND and PARAPHRASE in
the non-contextual bandit setting exhibit high KL distances at 1.01. One interpretation is that the
context-clouds barely overlap from dataset to dataset (Figure 7b).

Upon receiving a reward rt for the selected arm at, the algorithm updates the cumulative gradient
vector z and the squared gradient sum n for the selected arm:

εerror = ⟨w,x⟩ − rt

g = εerror · x

σ =

√
ni + g2i −

√
ni

α
zi ← zi + gi − σ · wi

ni ← ni + g2i

This formulation allows the FTRL algorithm to adaptively adjust the exploration-exploitation trade-
off by incorporating both the cumulative reward and the uncertainty in the form of regularization
terms, which are scaled by the learning rate α and exploration parameter β.
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(a) Contextual Model Raw Feature Strength. (b) Non-Contextual Model Raw Feature Strength.

Figure 11: Comparison of Raw feature-level regression coefficients between (a) our contextual ban-
dits and (b) its non-contextual counterparts. Each cell shows how enables a raw view into how
specific linguistic feature changes the expected reward under each rewrite strategy.

D.4 ε-GREEDY FOLLOW-THE-REGULARIZED-LEADER (FTRL) BANDIT POLICY

At each round t = 1, 2, . . . , T , we observe a contextual feature vector xt ∈ Rd and must choose
an arm at ∈ {1, . . . ,K}. For each arm k, the algorithm maintains a weight vector wk,t ∈ Rd

summarizing past feedback for that arm. We write

Hk,t−1 = {(xs, rs) : s < t, as = k}
for the history of rounds in which arm k was selected, where rs ∈ [0, 1] is the observed reward.
Given xt and the current weights {wk,t}Kk=1, FTRL defines a score for each arm via a linear model

r̂k,t = x⊤
t wk,t.

We then apply an ε-greedy rule with exploration parameter εt ∈ [0, 1]:

▶ With probability 1− εt, choose the greedy arm

at = arg max
k∈{1,...,K}

r̂k,t.

▶ With probability εt, choose a uniformly random arm from {1, . . . ,K}.
In our experiments we use a fixed ε (ε = 0.10), but standard decaying schedules such as εt =
min{1, c/

√
t} are also compatible with the framework. After selecting at and observing reward

rt ∈ [0, 1], we update only the parameters associated with the chosen arm. Let

gt = − rt xt

denote the (linear) loss gradient for arm at. FTRL defines the next iterate wat,t+1 as the solution of
a regularized cumulative optimization problem:

wat,t+1 = arg min
w∈Rd

 ∑
s≤t:as=at

g⊤s w + λΩ(w)

 , (6)

where Ω is a convex regularizer and λ > 0 is a regularization coefficient. In our implementation
we use an ℓ2-regularizer, Ω(w) = 1

2∥w∥
2
2, which yields a closed-form solution equivalent to online

ridge regression over past rewards for that arm:

wat,t+1 =

λI +
∑

s≤t:as=at

xsx
⊤
s

−1 ∑
s≤t:as=at

rsxs

 .
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Weights for all other arms k ̸= at remain unchanged, i.e., wk,t+1 = wk,t. This ε-greedy FTRL
variant thus behaves like a linear contextual bandit with a ridge-regularized FTRL learner for each
arm, combined with a simple ε-greedy exploration mechanism. In practice, we do not recompute the
closed-form solution from scratch; instead, we maintain sufficient statistics for each arm and update
them incrementally.

D.5 LINEAR EXP3

The algorithm is initialized with parameters: number of arms narms, dimension d, exploration pa-
rameter γ, and learning rate η. Each arm a maintains a parameter vector θa, initialized as 0d.

We compute the probability distribution over arms using the following formulation:

logitsa = θ⊤a x

logits = logits−max(logits)
exp logitsa = exp(logitsa)

base probsa =
exp logitsa∑narms
a=1 exp logitsa

probsa = (1− γ) · base probsa +
γ

narms

where x is the context vector. The arm is selected based on the probability distribution probs.

The update method updates the parameter vector θa for the selected arm a using the estimated
reward r̂t:

r̂t =
rt
pa

θa ← θa + η · r̂t · x

where pa is the probability of selecting arm a, and rt is the received reward. This strategy leverages
exponential weighting and exploration bonuses to balance exploration and exploitation in a linear
contextual setting.

D.6 LINEAR FTPL

The algorithm is initialized with parameters: number of arms narms, dimension d, and learning rate
η. Each arm a maintains a parameter vector θa, initialized as 0d.

The select arm method computes the perturbed scores for each arm using the following formu-
lation:

linear scorea = θ⊤a x

noisea ∼ Gumbel(0,
1

η
)

scorea = linear scorea + noisea

where x is the context vector. The arm with the highest perturbed score is selected:

at = arg max
a∈{1,...,narms}

scorea

θa ← θa + rt · x

This strategy leverages random perturbations from a Gumbel distribution to balance exploration and
exploitation, allowing the algorithm to explore suboptimal arms while exploiting the accumulated
knowledge of their performance in a linear contextual setting.
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Stage Median Tokens Mean Tokens

Original query (input) 16 19.3
Feature-tagger output 110 110.0
Rewrite input 26 29.3
Rewrite output 18 28.1
Answer input 64 91.3
Answer output 70 157.8
Judge (input + output) 162 252.3

Total 493 688

Table 7: Token-level breakdown per query for QueryBandits. The total corresponds to a per-
query cost of approximately $0.00035 at gpt-40-2024-11-20 pricing.

(a) Contextual Model Relative Feature Strength. (b) Non-Contextual Model Relative Feature Strength.

Figure 12: Comparison of Min-Max Normalized feature-level regression coefficients between (a)
our contextual bandits and (b) its non-contextual counterparts. Each cell shows how enables a
relative view into how specific linguistic feature changes the expected reward under each rewrite
strategy. Table 8 highlights contextual bandit trends.

D.7 THOMPSON SAMPLING

For a given x, sample θ̃a ∼ N (µa,Σa) and select the arm maximizing:

a∗ = argmax
a∈A

x⊤θ̃a. (7)

Standard Bayesian linear regression updates are then used to update µa and Σa based on the observed
reward r.

Σ−1
a ← Σ−1

a +
1

σ2
xx⊤,

µa ← Σa

(
Σ−1

a µa +
1

σ2
x r
)
.

(8)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 8: Top Drivers (f+
max) and Reducers (f−

max) of Rewrite Strategies per Linguistic Features
For each rewrite arm, we list the feature whose normalized coefficient was highest (100 %) and
lowest (0 %), alongside a brief rationale for its positive or negative impact on downstream reward.

Arm a f+
max Interpretation f−

max Interpretation

DISAMBIGUATE Subordination
(100 %)

Long or nested clauses benefit from
targeted disambiguation, which isolates
and clarifies the core semantic relation.

Polysemy (0 %) Highly polysemous terms lead
disambiguation to pick the wrong
sense, degrading downstream reward.

SIMPLIFY Pragmatics (100 %) Pragmatic cues (e.g. discourse markers,
politeness) guide safe simplification
without loss of meaning.

Superlative (0 %) Stripping superlative constructions
removes essential comparative context,
hurting reward.

EXPAND Constraints
(100 %)

Queries already rich in constraints
(time, location, numeric bounds) gain
precision when expanded with further
qualifiers.

Ambiguity (0 %) Underspecified queries offer no detail
to expand, so further addition of terms
only introduces noise.

PARAPHRASE Answerability
(100 %)

Paraphrasing queries that are already
answerable refreshes wording while
preserving solvability, boosting LLM
performance.

Presupposition
(0 %)

Altering queries with strong
presuppositions can break implied
assumptions, reducing effective
reward.

CLARIFY TERMS Rarity (100 %) Defining rare or domain-specific terms
anchors the LLM’s understanding of
technical queries.

Subordination
(0 %)

Clarifications in convoluted sentences
can introduce further parsing difficulty,
impeding reward.

(a) Contextual Model Feature Uplift. (b) Non-Contextual Model Feature Uplift.

Figure 13: Reward Uplift by Contextual Feature and Strategy. Feature Uplift measures how
much the presence of a binary feature changes the expected reward for a given rewrite arm, formally
∆(fi, a) = E[rt | arm = a, fi = 1] − E[rt | arm = a, fi = 0]. (a) Under the contextual bandit, the
strongest positive uplifts come from Answerability (≈ +17 uniformly) and Grounding (+15–18),
while Ambiguity (≈ –15 to –18) and Subjectivity (≈ –10 to –14) impose the largest hits across all
arms. Mid-range features like Presupposition and Constraints deliver modest boosts (≈ 5), and
Excessive Details and Anaphora slightly hurt performance (≈ –5 to –7). (b) The non-contextual
bandit amplifies these trends: Answerability and Grounding remain the top drivers (≈ +18–20),
but Ambiguity becomes even more detrimental (≈ –17 to –18), and Mismatch drops to nearly –16
under some arms. Notably, the non-contextual model shows a stronger negative effect for Excessive
Details (up to –12) and Entities (≈ –6) than the linear one, suggesting it more sharply penalizes
noisy contexts. Together, these heatmaps reveal which linguistic signals each rewrite strategy lever-
ages (or struggles with), and how context vs. context-blind policies weigh them differently.
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(a) ARC-Challenge (b) ARC-Easy (c) BoolQA

(d) HotpotQA (e) MathQA (f) MMLU

(g) OpenBookQA (h) PIQA (i) SciQ (Abstract)

(j) SciQ (MC) (k) SQuAD (Abstract) (l) SQuAD (Extract)

(m) TriviaQA (n) TruthfulQA (MC) (o) TruthfulQA

(p) WikiQA

Figure 14: Per-dataset distributions of rt (normalized density).
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(a) Baseline: Reward–Difference Distribution (b) Baseline: Dominance CDF

(c) Paraphrase: Reward–Difference Distribution (d) Paraphrase: Dominance CDF

(e) Simplify: Reward–Difference Distribution (f) Simplify: Dominance CDF

(g) Disambiguate: Reward–Diff. Distribution (h) Disambiguate: Dominance CDF

Figure 15: Anchored reward–difference distributions (left column) and dominance CDFs (right col-
umn) for the baseline policy (Baseline) and core static rewrite strategies (Paraphrase, Simplify,
Disambiguate). Each row fixes an anchor policy and compares its per-query reward against all
competitors.
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(a) Clarify: Reward–Difference Distribution (b) Clarify: Dominance CDF

(c) Expand: Reward–Difference Distribution (d) Expand: Dominance CDF

(e) EXP3: Reward–Difference Distribution (f) EXP3: Dominance CDF

(g) FTPL: Reward–Difference Distribution (h) FTPL: Dominance CDF

Figure 16: Anchored reward–difference distributions (left) and dominance CDFs (right) for the
remaining static rewrite strategies (Clarify, Expand) and simple non-contextual bandits (EXP3,
FTPL).
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(a) ϵ-FTRL: Reward–Difference Distribution (b) ϵ-FTRL: Dominance CDF

(c) TS (NC): Reward–Difference Distribution (d) TS (NC): Dominance CDF

(e) LinUCB: Reward–Difference Distribution (f) LinUCB: Dominance CDF

(g) LinUCB+KL: Reward–Difference Distribu-
tion

(h) LinUCB+KL: Dominance CDF

Figure 17: Anchored reward–difference distributions (left) and dominance CDFs (right) for ad-
vanced non-contextual bandits (ϵ-FTRL, TS (NC)) and core contextual bandits (LinUCB, Lin-
UCB+KL).
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(a) LinEXP3: Reward–Difference Distribution (b) LinEXP3: Dominance CDF

(c) LinFTPL: Reward–Difference Distribution (d) LinFTPL: Dominance CDF

(e) TS (Contextual): Reward–Difference Distri-
bution

(f) TS (Contextual): Dominance CDF

Figure 18: Anchored reward–difference distributions (left) and dominance CDFs (right) for the
remaining contextual bandit policies (LinEXP3, LinFTPL, TS (Contextual)).

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Figure 19: Pairwise Normalized Coefficient Differences for Contextual Bandits. Each cell shows
the min–max–normalized difference in regression weight for a given linguistic feature (rows) be-
tween two rewrite arms (columns), e.g. “Paraphrase vs Disambiguate,” “Simplify vs Expand,” etc.
Cells labeled “Win” (blue) indicate the feature favors the first arm in the matchup, while “Loss” (red)
indicates it favors the second. Values are expressed as a percentage of the feature’s full coefficient
range.
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Table 9: System prompt templates for rewrite arms. Replace {original query} with the input
at runtime. Each template must output only the rewritten query (no explanations).

ID Arm System prompt template

a0 PARAPHRASE You are a rewriting module. You will be given a user query:
{original query}. Rephrase it to improve clarity and introduce lexi-
cal diversity while strictly preserving semantic meaning, entities (includ-
ing casing/accents), numbers, units, and constraints. Do not add or re-
move information. Output only the rewritten query.

a1 SIMPLIFY You are a rewriting module. You will be given a user query:
{original query}. Simplify it by removing nested clauses and com-
plex syntax. Use short, concrete phrasing (S–V–O order), keep all enti-
ties, numbers, units, and constraints, and avoid changing intent. Do not
invent details. Output only the simplified query.

a2 DISAMBIGUATE You are a rewriting module. You will be given a user query:
{original query}. Resolve vague references by replacing ambigu-
ous pronouns (e.g., it/they/this) and temporal expressions with explicit,
context-grounded referents and normalized dates. If a referent cannot be
determined from the query alone, insert a bracketed placeholder (e.g.,
[ENTITY], [DATE]) rather than guessing. Preserve the original intent.
Output only the disambiguated query.

a3 EXPAND You are a rewriting module. You will be given a user query:
{original query}. Expand it by making implicit context explicit
and adding salient, non-speculative attributes (e.g., scope, timeframe, lo-
cation, units) that are entailed by the query. If crucial specifics are miss-
ing, insert neutral bracketed placeholders (e.g., [TIMEFRAME], [LO-
CATION]) instead of fabricating facts. Preserve the original intent and
constraints. Output only the expanded query.

a4 CLARIFY TERMS You are a rewriting module. You will be given a user query:
{original query}. Identify domain-specific jargon or terms of art
and add concise parenthetical glosses (e.g., “term (brief definition)”)
where the meaning is standard and unambiguous. If uncertain, use a
bracketed clarification placeholder (e.g., [DEFINE: TERM]) rather than
guessing. Do not alter intent, entities, or constraints. Output only the
clarified query.
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Table 10: Binary linguistic feature vector f ∈ {0, 1}17 identified as challenging from a linguistics
and LLM perspective. Features are grouped by type and grounded in prior work. For more specific
examples, see Table 11.

Feature Description Citation

Structural Features

Anaphora Contains anaphoric references (e.g., it, this) Schuster (1988); Chen et al.
(2018)

Subordination Contains multiple subordinate clauses (multi-clause
structure)

Jeong et al. (2024); Blevins
et al. (2023)

Scenario-Based Features

Mismatch Question–task mismatch (e.g., open-ended query against
retrieval-style task)

Gao et al. (2024); Kamath
et al. (2024)

Presupposition Assumptions within the query are implicitly regarded as
truthful

Karttunen (2016); Levinson
(1983)

Pragmatics Requests phrased indirectly (e.g., can you pass me the salt) Sravanthi et al. (2024);
Levinson (1983)

Lexical Features

Rarity Presence of rare words with poor representation Schick & Schütze (2019);
Khassanov et al. (2019)

Negation Presence of negation (e.g., not, never) Hossain & Blanco (2022);
Truong et al. (2023)

Superlative Presence of forms (e.g., best, largest) with implicit
comparison sets

Pyatkin et al. (2024); Farkas &
Kiss (2000)

Polysemy Presence of words with multiple, related meanings Ansell et al. (2021); Haber &
Poesio (2024)

Stylistic Complexity

Answerability Absence of speculative, sarcastic, or rhetorical phrasing Qiao et al. (2023); Belfathi
et al. (2023)

Excessive Presence of excessive details/instructions that overload
context; verbosity

Li et al. (2024b); Liu et al.
(2023b)

Subjectivity Query requires LLM to reflect creatively and engender a
personal opinion

Durmus et al. (2024); Lv et al.
(2024)

Ambiguity Presence of ambiguous phrasing that opens multiple
interpretations

Brown et al. (2020); Liu et al.
(2023a)

Semantic Grounding

Grounding Presence of a clear intent/goal statement Clarke et al. (2009); Wei et al.
(2023)

Constraints Presence of temporal/spatial/task-specific constraints Jiang et al. (2024); Lewis et al.
(2021)

Entities Presence of verifiable entities Lee et al. (2023); Wang et al.
(2023b)

Specialization Query requires domain-specific knowledge for
understanding

Watson et al. (2025b); Cho
et al. (2024); Zeng et al.
(2024)
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Table 11: Detailed Summary and Examples of Feature Categories, Definitions, and Examples (See
Table 10). These definitions and examples become the prompts to create the binary context vector
for our bandits.

Feature Definition Example

St
ru

ct
ur

al Anaphora Presence of pronouns or references re-
quiring external context.

”What about that one?” (Unclear
reference)

Subordination Measures the presence of multiple sub-
ordinate clauses

”While I was walking home, I
saw a cat that looked just like my
friend’s.”

Sc
en

ar
io

-B
as

ed

Mismatch Mismatch between the query’s intended
output and its actual structure.

”Find me this paragraph in this
document” (When document isn’t
given, this query cannot be an-
swered)

Presupposition Unstated assumptions embedded in the
query.

”Who is the musician that devel-
oped neural networks?” (Assumes
such a musician exists)

Pragmatics Captures context-dependent meanings
beyond literal interpretation.

”Can you pass the salt?” (A request,
not a literal ability)

L
ex

ic
al

Rarity Use of rare or niche terminology. ”What are the ramifications of
quantum decoherence?” (Uses low-
frequency terms)

Negation Presence of negation words (not,
never).

”Is it not possible to do this?”

Superlatives Detection of superlative expressions
(biggest, fastest).

”What is the fastest algorithm?”

Polysemy Presence of ambiguous words with
multiple related meanings.

”Explain how a bank operates.”
(Ambiguity: financial institution
vs. riverbank)

St
yl

is
tic

Answerability Assesses whether the query has a veri-
fiable answer.

”What is the exact number of galax-
ies?” (Unanswerable)

Excessive Evaluates whether a query is over-
loaded with information, potentially
distracting the model.

”Can you explain how convolu-
tional neural networks work, in-
cluding all mathematical formu-
las?”

Subjectivity Query requires the degree of opinion or
personal bias

”What is the best programming lan-
guage?”

Ambiguity Highly ambiguous context, task, and
wording

”Tell me about history.” (Too broad)

Se
m

an
tic

Grounding Evaluates how clearly the query’s pur-
pose is expressed.

”How does reinforcement learn-
ing optimize control in robotics?”
(Clear intent)

Constraints Identifies explicit constraints (time, lo-
cation, conditions) provided in the
query.

”What was the inflation rate in the
US in 2023?”

Entities Checks for the inclusion of verifiable
named entities.

”Who founded OpenAI?”

Specialization Determines whether the query belongs
to a specialized domain (e.g., finance,
law).

”What are the legal implications of
the GDPR ruling?”
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