LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning

Anonymous authorsPaper under double-blind review

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

025

026

027

028

029

031

032

034

037

038

040

041

042

043

044

046 047

048

051

052

ABSTRACT

Large language models (LLMs) have shown remarkable abilities in logical reasoning, in-context learning, and code generation. However, translating natural language instructions into effective robotic control policies remains a significant challenge, especially for tasks requiring long-horizon planning and operating under sparse reward conditions. Hierarchical Reinforcement Learning (HRL) provides a natural framework to address this challenge in robotics; however, it typically suffers from non-stationarity caused by the changing behavior of the lower-level policy during training, destabilizing higher-level policy learning. We introduce LGR2, a novel HRL framework that leverages LLMs to generate language-guided reward functions for the higher-level policy. By decoupling high-level reward generation from low-level policy changes, LGR2 fundamentally mitigates the non-stationarity problem in off-policy HRL, enabling stable and efficient learning. To further enhance sample efficiency in sparse environments, we integrate goal-conditioned hindsight experience relabeling. Extensive experiments across simulated and real-world robotic navigation and manipulation tasks demonstrate LGR2 outperforms both hierarchical and non-hierarchical baselines, achieving over 55% success rates on challenging tasks and robust transfer to real robots, without additional fine-tuning.

1 Introduction

Robotic systems capable of understanding and executing natural language instructions hold great promise for enabling intuitive human-robot interaction and flexible automation. Recent advances in deep reinforcement learning (RL) have demonstrated remarkable success in learning complex robotic behaviors from raw sensory inputs (Levine et al., 2015; Kalashnikov et al., 2018; Rajeswaran et al., 2017). However, these methods often struggle with long-horizon tasks that require extensive planning and precise multi-step coordination, particularly under sparse reward signals where meaningful feedback is rare and delayed.

Hierarchical reinforcement learning (HRL) provides a principled framework to tackle these challenges by decomposing tasks into temporally extended subgoals and learning nested policies (Sutton et al., 1999; Dayan & Hinton, 1993; Vezhnevets et al., 2017). This temporal abstraction improves exploration and credit assignment, essential for solving complex robotic control problems. Yet, conventional HRL algorithms face a significant hurdle: *non-stationarity*. As the lower-level policy evolves, the higher-level policy encounters shifting dynamics and reward distributions, destabilizing training and impeding convergence (Levy et al., 2018; Nachum et al., 2018).

Recent advances in large-scale language models (LLMs) present an exciting opportunity to address these challenges. LLMs excel at processing and generating meaningful representations from natural language (Brown et al., 2020; Wei et al., 2022; Kojima et al., 2022), and have been increasingly applied to robotics for tasks like instruction grounding and code generation (Liang et al., 2023b; Ahn et al., 2022; Huang et al., 2022). Approaches that translate natural language commands into reward functions (L2R) have shown promise (Yu et al., 2023; Sharma et al., 2022; Kwon et al., 2023). However, prior L2R methods often target monolithic policies and lack the hierarchical structure needed to efficiently solve long-horizon, sparse reward problems.

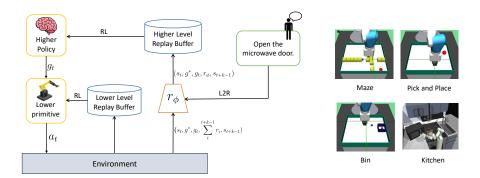


Figure 1: **LGR2 overview (left):** The higher-level policy predicts subgoals g_t for the lower-level policy, which executes primitive actions a_t on the environment. The lower-level replay buffer is populated by environment interactions, and lower-level policy is optimized by RL. L2R is used to translate human instructions to reward function parameters, which subsequently relabel the higher-level replay buffer transitions. Finally, RL is used to optimize the higher-level policy. **Environments (right):** maze navigation, pick and place, bin, and franka kitchen.

In this work, we propose **LGR2**, a novel HRL framework that harnesses LLMs to generate *language-guided reward functions* for the higher-level policy. Unlike vanilla HRL approaches, LGR2 employs a novel two-stage pipeline: first using LLMs as motion descriptors to convert natural language instructions into structured, canonical task representations, and then employing reward coders to generate symbolic, executable reward parameters that remain invariant to policy changes. By translating natural language instructions into symbolic and semantically rich reward parameters, LGR2 effectively decouples the high-level reward evaluation from the evolving lower-level behaviors, substantially reducing non-stationarity while maintaining semantic alignment with human intentions.

Our approach fundamentally differs from prior language-to-reward (L2R) Yu et al. (2023) methods by introducing hierarchical temporal abstraction, enabling efficient decomposition of complex, long-horizon tasks into manageable subgoals. Further, in order to address reward sparsity common in challenging environments, we incorporate goal-conditioned hindsight experience replay (HER) Andrychowicz et al. (2017) to densify and enrich the high-level reward signal. This synergistic integration of hierarchical decomposition and reward densification creates a robust framework to stabilize HRL training.

Our key contributions are as follows:

- 1. We introduce LGR2, an end-to-end framework that uses LLM-based reward generation to guide hierarchical policies to solve complex robotic tasks using natural language instructions, thus mitigating the non-stationarity issue in HRL.
- 2. We demonstrate that the language-guided reward relabeling scheme effectively stabilizes the higher-level policy training by achieving a stationary reward signal, thereby addressing key causes of HRL instability.
- 3. We incorporate HER to combat sparse rewards, significantly improving sample efficiency and generalization.
- 4. Through extensive experiments on challenging simulated and real-world robotic navigation and manipulation tasks, we establish that LGR2 achieves more than 55% higher success rates over strong hierarchical and flat baselines, and achieves robust zero-shot transfer to physical robots without additional fine-tuning.

2 Related Work

Hierarchical Reinforcement Learning. HRL has been extensively studied as a promising approach to address the challenges of long-horizon tasks by decomposing complex behaviors into multiple levels of temporal abstraction (Barto & Mahadevan, 2003; Sutton et al., 1999; Parr & Russell, 1998; Dietterich, 1999). However, a fundamental challenge in off-policy HRL is *non-stationarity* that destabilizes HRL training (Levy et al., 2018; Nachum et al., 2018). Existing solutions attempt to alleviate this problem by simulating expert lower-level behaviors (Levy et al., 2018), relabeling replay

buffers (Nachum et al., 2018), or leveraging privileged information such as demonstrations (Gupta et al., 2019; Singh & Namboodiri, 2023b;a) or preferences (Singh et al., 2024b;a). In contrast, our work proposes LGR2, which uniquely harnesses LLMs to generate stable, language-guided reward parameters for the higher-level policy. By decoupling high-level reward generation from evolving low-level policies, LGR2 effectively mitigates non-stationarity in off-policy HRL, thereby enabling more robust and efficient learning.

Language to Actions. Early work in language-conditioned robotics mapped structured natural language commands to controllers using temporal logic (Kress-Gazit & Pappas, 2008) or motion primitive parsing (Matuszek et al., 2012). More recent end-to-end models translate natural language instructions into robot actions, especially for navigation (Ku et al., 2020), but often assume low-dimensional discrete action spaces (e.g., moving between graph nodes) (Ku et al., 2020; Kamath et al., 2023) and require extensive training data.

Latent language embeddings trained with behavioral cloning (Mees et al., 2023; Jang et al., 2022; Lynch et al., 2022), offline RL (Ebert et al., 2021), goal-conditioned RL (Fu et al., 2019), or shared autonomy (Karamcheti et al., 2021) have been employed to condition policies on natural language commands. Despite their promise, these end-to-end models require vast data and struggle with long-term planning. Recently, Yu et al. (2023) proposed a reward-based method where an optimal controller generates low-level actions, reducing data needs. Our work extends this by incorporating temporal abstraction through HRL, improving training efficiency and handling complex, long-horizon tasks effectively.

Language to Code. Large language models such as LLaMA (Touvron et al., 2023), GPT-4 (OpenAI et al., 2024), and Gemini (Team et al., 2024) have revolutionized code generation capabilities, enabling applications ranging from competitive programming (Li et al., 2022) and drawing (Tian et al., 2020) to policy synthesis for 2D tasks and complex instructions (Trivedi et al., 2022; Liang et al., 2023a). We leverage these models' coding and reasoning abilities to generate language-guided, higher-level reward functions that facilitate learning in long-horizon robotic control tasks.

Language to Rewards. Translating natural language instructions into reward functions has been explored in recent work (Sharma et al., 2022; Goyal et al., 2019; Nair et al., 2022; Bahdanau et al., 2018; Hu & Sadigh, 2023; Kwon et al., 2023; Lin et al., 2022a). Many such methods rely on training domain-specific reward models that map instructions to reward signals or constraints (Sharma et al., 2022; Goyal et al., 2019; Nair et al., 2022). Although effective on certain tasks (e.g., object pushing, drawer opening), these approaches necessitate large quantities of annotated language-reward data.

Recent advances explore using LLMs to infer user intents and assign rewards in interactive or game-based settings (Kwon et al., 2023; Hu & Sadigh, 2023), yet applying LLMs for real-time reward assignment during RL remains limited due to high query costs. AutoRL (Chiang et al., 2018) introduced automated parameterization of reward functions but lacked a natural language interface. Distinctively, our work leverages language to generate reward parameters that directly relabel higher-level replay buffers in HRL, enabling efficient training without relying on massive labeled datasets or expensive online LLM querying.

3 PROBLEM FORMULATION

Hierarchical Setup.

We model the robotic control task as a goal-conditioned Markov Decision Process (MDP) defined by the tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, p, r, \gamma, \mathcal{G})$, where \mathcal{S} denotes the state space, \mathcal{A} the action space, $p(s' \mid s, a)$ the transition dynamics, $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ the reward function, \mathcal{G} the goal space, and $\gamma \in (0, 1)$ the discount factor. The policy π maps states and goals to distributions over actions. In the goal-conditioned setup, the policy is conditioned on both the current state s_t and a desired goal g_t , such that $a_t \sim \pi(\cdot \mid s_t, g_t)$.

We adopt a two-level hierarchical reinforcement learning (HRL) framework, where a higher-level policy $\pi_H: \mathcal{S} \to \Delta(\mathcal{G})$ selects subgoals $g_t \in \mathcal{G} \subseteq \mathcal{S}$ every k environment steps, and a lower-level policy $\pi_L: \mathcal{S} \times \mathcal{G} \to \Delta(\mathcal{A})$ conditions on the current state and subgoal g_t to execute k primitive actions aimed at achieving g_t .

At k-step intervals, the higher-level policy stores experience tuples $\Sigma_t = (s_t, g^*, g_t, r_t^H, s_{t+k})$, where s_t is the current state, $g^* \in \mathcal{G}$ the final user-specified goal, g_t the subgoal chosen by the higher-level

policy, $r_t^H = \sum_{i=0}^{k-1} r(s_{t+i}, a_{t+i})$ the cumulative environment reward over the k lower-level steps, and s_{t+k} the next state after executing these actions.

Similarly, the lower-level policy stores transitions in its replay buffer in the form: $(s_t, g_t, a_t, r_t^L, s_{t+1})$, where r_t^L is typically a reward encouraging progress towards the subgoal g_t (e.g., $r_t^L = -\mathbf{1}_{\{\|s_t - g_t\| > \varepsilon\}}$). The hierarchical structure enables temporal abstraction, where the higher-level policy focuses on strategic subgoal selection, and the lower-level policy handles execution details over shorter time horizons.

Language to Rewards. Recent work has explored translating natural language instructions into reward functions to guide RL (Sharma et al., 2022; Lin et al., 2022b; Kwon et al., 2023). These approaches typically rely on training domain-specific reward models that interpret language commands and produce corresponding reward signals. Notably, Yu et al. (2023) introduce a modular *reward translator* framework comprising two key components: a *motion descriptor*, which converts natural language instructions into structured action descriptions, and a *reward coder*, which maps these descriptions into concrete reward function parameters. This pipeline enables efficient interfacing between high-level language commands and the low-level robotic control primitives, facilitating end-to-end task specification without requiring task-specific reward engineering.

Challenges. Despite significant progress in using language to specify robotic objectives, several core limitations persist in the context of complex, long-horizon tasks:

Limitations of Language-to-Reward (L2R) Approaches. Existing L2R methods face three principal obstacles. First, learning a single-level policy for long-horizon tasks is fundamentally difficult due to long-term credit assignment: sparse or delayed rewards make it hard for the agent to attribute success or failure to specific actions taken many steps prior. Second, reward functions automatically synthesized from natural language instructions are often highly sparse, providing insufficient learning signal for the lower-level policy to make meaningful progress, especially in tasks requiring intricate sequences of behaviors. Third, many prior approaches rely on either pre-defined or manually-engineered libraries of control primitives to bridge the gap between abstract language instructions and executable actions. This not only demands significant expert knowledge and engineering effort, but also reduces scalability and adaptability to new tasks or environments.

Non-Stationarity in Off-Policy HRL. A further critical challenge arises in hierarchical reinforcement learning, especially in off-policy settings: the problem of *non-stationarity*. As the lower-level policy $\pi_L^{(m)}$ evolves over the course of training (with m indexing training iteration), the conditional distribution over next states s_{t+k} after executing a fixed high-level subgoal g_t changes:

$$p_{g_t}^{(m)}(s_{t+k} \mid s_t) = \Pr(s_{t+k} \mid s_t, g_t, \pi_L^{(m)}).$$

Accordingly, the cumulative high-level reward over the k-step interval,

$$r_t^{H(m)} = r^H(s_t, g^*, g_t; \pi_L^{(m)}),$$

becomes non-stationary, as it depends on the continually adapting lower-level behavior. This drift invalidates older transitions stored in the higher-level replay buffer, undermining the stability and effectiveness of off-policy learning for the higher-level policy π_H and substantially impeding convergence. These intertwined challenges: (i) lack of temporal abstraction and compositionality in L2R methods, (ii) reward sparsity, (iii) the inflexibility of manual skill libraries, and (iv) non-stationarity in hierarchical RL, motivate the need for new frameworks that combine the semantic richness of language guidance with scalable, stable hierarchical learning for complex robotic control.

4 METHODOLOGY

We address the non-stationarity problem in HRL by introducing *language-guided reward relabeling*, which produces a stationary and semantically meaningful high-level reward function independent of the evolving lower-level policy.

4.1 REWARD PARAMETER GENERATION

Given a natural language instruction \mathcal{L} provided by the user, a Large Language Model (LLM) is employed to generate a structured representation of the task and subsequently translate it into reward

function parameters. Inspired from L2R framework Yu et al. (2023), this is implemented via a two-stage pipeline using a motion descriptor and a reward coder module. This established pipeline operates as follows:

- 1. Motion Descriptor Module: Given a user's natural language instruction \mathcal{L} , this module uses large language models (LLMs) to generate a structured task description $d = \mathcal{M}_{desc}(\mathcal{L})$ in templated natural language. This step transforms ambiguous instructions into clear, canonical representations that facilitate downstream processing (Yu et al., 2023).
- **2. Reward Coder Module:** Conditioned on the structured motion descriptor d, the reward coder uses the LLM's code generation capabilities to output parameters $\phi = \mathcal{M}_{\text{code}}(d)$ for a symbolic, goal-conditioned reward function. The coder produces explicit, executable code (or interpretable parameter sets) that define the reward evaluation logic for the specified skill.

Formally, the language-conditioned reward function is defined as $r_{\phi}: \mathcal{S} \times \mathcal{G} \times \mathcal{G} \to \mathbb{R}$, where each triple (s, g^{\star}, g) consists of the current environment state $s \in \mathcal{S}$, the final user-specified goal $g^{\star} \in \mathcal{G}$, and a candidate subgoal $g \in \mathcal{G}$ proposed by the higher-level policy. The higher level reward function r^H evaluates

$$r^{H} = r_{\phi}(s, g^{\star}, g) = f(s, g^{\star}, g; \phi),$$

where f is a parameterized function with fixed parameters ϕ generated by the LLM-based reward coder. Note that the reward function r_{ϕ} depends exclusively on the current state and goal variables, and is independent of the low-level policy. This decoupling effectively mitigates non-stationarity in HRL by providing a stable, consistent reward signal. Consequently, reward assignment remains stationary, semantically meaningful, and highly modular, which are essential for reliable and efficient hierarchical learning in complex, long-horizon robotic control tasks.

4.2 Relabeling of High-Level Rewards

Each stored transition in the higher-level replay buffer,

$$\Sigma_t = (s_t, g^*, g_t, r_t^H, s_{t+k}), \tag{1}$$

is relabeled as:

$$\widetilde{\Sigma}_t = (s_t, g^*, g_t, r_t^{\varphi}, s_{t+k}), \tag{2}$$

where the *language-guided reward* is defined as $r_t^{\varphi} := r_{\varphi}(s_t, q^{\star}, g_t)$.

Since r_{φ} does not depend on the lower-level policy π_L or the agent's trajectories, it remains *stationary* across training iterations. This removes reward drift prevalent in off-policy HRL, thereby stabilizing the learning process for the higher-level policy. Consequently, the relabeled buffer $\mathcal{D}_H = \{\widetilde{\Sigma}_t\}$ is used for training the higher-level policy.

4.3 Addressing Reward Sparsity with HER

In environments with sparse rewards, the high-level reward signal, r_{φ} , can often can be too sparse to produce a meaningful reward signal. To overcome this challenge, **LGR2** incorporates goal-conditioned hindsight experience replay (Andrychowicz et al., 2017) to densify the reward signal.

Concretely, for each relabeled high-level transition $\tilde{\Sigma}_t$, we sample alternative goals \hat{g} from states encountered within the same trajectory, i.e.,

$$\hat{g} \in \{s_{t+j} \mid 0 \le j \le k\}.$$

We then relabel the transition as

$$\tilde{\Sigma}_t^{\text{HER}} = (s_t, \hat{g}, g_t, r_{\varphi}(s_t, \hat{g}, g_t), s_{t+k}),$$

which is added to the replay buffer \mathcal{D}^H . This hindsight relabeling increases the likelihood of encountering positive rewards in the replay buffer, thereby enhancing sample efficiency. The boosted frequency of informative reward signals encourages more effective exploration and leads to improved training stability in sparse-reward, long-horizon tasks.

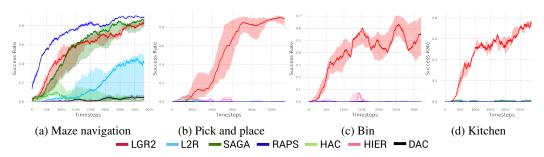


Figure 2: Success rate comparison This figure compares the success rate performances on four sparse maze navigation and robotic manipulation environments. The solid line and shaded regions represent the mean and standard deviation, across 5 seeds. We compare our approach LGR2 against multiple baselines. LGR2 shows impressive performance and significantly outperforms the baselines.

4.4 Training Objectives

Both the lower-level and higher-level policies are trained using the Soft Actor-Critic Haarnoja et al. (2018) framework with separate critic networks, adapted to their respective roles in the hierarchical setup.

Lower-Level Policy Loss The lower-level policy π_L aims to achieve the subgoals issued by the higher-level policy within k environment steps. Its training relies on a standard SAC critic update based on the replay buffer \mathcal{D}_L :

$$J_L = \mathbb{E}_{(s,g,a,r,s') \sim \mathcal{D}_L} \left[\left(r + \gamma Q_{\bar{\theta}}^L(s',g) - Q_{\theta}^L(s,g,a) \right)^2 \right], \tag{3}$$

where $s,s'\in\mathcal{S}$ are states, $g\in\mathcal{G}$ is the current goal or subgoal, $a\in\mathcal{A}$ is the action, r is the reward signal for the lower-level policy, Q_{θ}^L is the current lower-level critic parameterized by θ , and $Q_{\overline{\theta}}^L$ is the target critic network.

Higher-Level Policy Loss The higher-level policy π_H is trained using relabeled, stationary rewards derived from language-guided reward functions (r_{φ}) and the higher-level replay buffer $\tilde{\mathcal{D}}_H$:

$$J_H = \mathbb{E}_{(s,g^*,g,r_{\varphi},s')\sim \tilde{\mathcal{D}}_H} \left[\left(r_{\varphi} + \gamma^k Q_{\bar{\omega}}^H(s',g') - Q_{\omega}^H(s,g^*,g) \right)^2 \right], \tag{4}$$

where $s,s'\in\mathcal{S},$ $g^{\star}\in\mathcal{G}$ is the final goal, $g\in\mathcal{G}$ is the current subgoal, r_{φ} is the stationary, language-guided reward, Q^H_{ω} and $Q^H_{\bar{\omega}}$ are the current and target higher-level critics parameterized by ω and $\bar{\omega}$ respectively, and $g'\sim\pi_H(s')$ is the next subgoal sampled from the higher-level policy.

The language-guided reward r_{φ} is invariant with respect to the evolving lower-level policy, thus enhancing training stability. We provide the algorithm in Supplementary Section 2.

5 EXPERIMENTS

In this section, we investigate the following questions:

- 1. How does LGR2 perform on complex, sparse-reward robotic navigation and manipulation tasks compared to prior hierarchical and single-level baselines?
- 3. Can language-guided reward relabeling generate better rewards than alternative baselines?
- 4. Does language-guided reward relabeling outperform standard HRL with hindsight relabeling?
- 5. Can LGR2 mitigate non-stationarity in HRL?
- 6. What is the contribution of hindsight experience relabeling (HER) in improving performance?
- 7. Can LGR2 policies transfer to real-world robots?

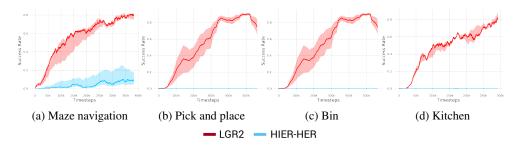


Figure 3: **Comparison against HRL+HER** This figure compares the cumulative rewards on four sparse maze navigation and robotic manipulation environments. We compare our approach LGR2 against the hierarchical baseline HIER-HER. LGR2 outperforms this baseline, which shows the efficacy of language-guided reward generation in LGR2.

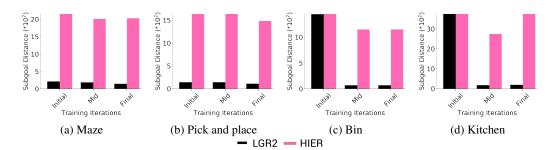


Figure 4: **Non-stationarity metric comparison** This figure compares the average distance metric between the subgoals predicted by the higher level policy and the states achieved by the lower level policy during training. (The columns represent Initial: when training begins, Mid: half-way during training, Final: when training ends, e.g. since maze navigation is trained for 3.8E5 timesteps, the values are Initial: iteration 1, Mid: iteration 1.9E5, and Final: iteration 3.8E5). As can be seen, LGR2 consistently generates efficient and achievable subgoals, thereby mitigating non-stationarity in HRL.

Implementation details. We evaluate LGR2 on four continuous sparse reward robotic tasks: maze navigation, pick and place, bin, and franka kitchen (Gupta et al., 2019). In the maze task, intermediate waypoints serve as subgoals; for more complex tasks like franka kitchen, full intermediate states are used as subgoals. The appendix, implementation and environment details (supplementary Sections 4 and 6), additional hyper-parameters (supplementary Sections 5), code, and a qualitative video are provided in the supplementary. The policy networks consist of three fully connected layers with 512 units each, trained using SAC (Haarnoja et al., 2018) and Adam optimizer (Kingma & Ba, 2014). Refer to the supplementary for motion descriptor (Sec. 7), reward generator (Sec. 7), sample codes (Sec. 8), and qualitative visualizations (Sec. 10). We carefully tune hyperparameters via grid search across all baselines to ensure fair comparison. For challenging tasks such as pick and place and kitchen, we incorporate a single demonstration and an imitation learning objective at the lower level; no demonstrations are used for maze navigation to maintain consistent evaluation.

Sparse Rewards and Challenges of Goal-Conditioning. Although some tasks may appear simple, all our evaluation environments feature inherently sparse reward structures, requiring agents to engage in extensive exploration before encountering any positive feedback. This sparse reward setting significantly amplifies the difficulty of the tasks. Additionally, we adopt a goal-conditioned RL framework with randomly generated initial positions and final goals, further increasing the complexity by demanding generalization across diverse objectives. These factors combined lead to markedly challenging training conditions, which explain why most baseline methods perform poorly in our experiments. The sparse and delayed nature of the rewards, coupled with high variability in goals, makes efficient credit assignment and exploration extremely difficult for flat or naive hierarchical policies. In contrast, our hierarchical approach benefits from temporal abstraction, and is able to significantly outperform the baselines in most tasks.

Computational Overhead of LLM-Integrated Reward Generation. While LGR2 leverages LLMs for expressive, flexible reward generation, the main computational cost, ie translating natural language

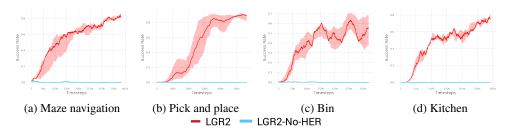


Figure 5: **Hindsight Relabeling ablation** This figure compares the performance of LGR2 with LGR2-No-HER ablation (LGR2 without hindsight relabeling). The plots clearly demonstrate that HER is crucial for good performance in all the tasks.

instructions into structured motion descriptors and reward-coder parameters via LLM calls, is incurred *once per task specification*, before interaction and training. This offline design prevents LLM calls from bottlenecking RL, as later reward evaluations are lightweight, involving only fast code execution. Memory impact is minimal since only the reward code or parameters are stored, not full LLM outputs. LGR2 maintains sample efficiency and is practical for both simulation and real robotic applications.

How does LGR2 perform on complex control tasks compared to prior baselines?

We compare LGR2 with prior baselines (Figure 2); curves show mean \pm std over 5 seeds.

L2R. The L2R approach (Yu et al., 2023) translates natural language instructions into reward parameters via a reward translator and originally uses an MPC controller (Howell et al., 2022). For fair comparison, our baseline adopts the same translator but replaces MPC with a Soft Actor-Critic (SAC) (Haarnoja et al., 2018) agent. While this single-level setup achieves some progress in maze tasks, it struggles in harder sparse-reward domains, whereas LGR2 consistently outperforms L2R by leveraging hierarchical structure for temporal abstraction and subgoal decomposition (see Figure 2). **SAGA.** We compare LGR2 with SAGA (Wang et al., 2023), a hierarchical method that uses a state-conditioned discriminator to align subgoals with the low-level policy. While effective on maze tasks, SAGA deteriorates on harder benchmarks, showing susceptibility to instability in long-horizon settings. In contrast, LGR2 achieves stronger results by leveraging language-guided reward relabeling, which provides a stationary, semantically meaningful signal that stabilizes hierarchical training.

RAPS. The RAPS baseline (Dalal et al., 2021) uses a library of predefined robot action primitives controlled by the higher-level policy. While RAPS performs well on simpler maze tasks, it struggles on all other harder tasks. This suggests methods relying on fixed primitives lack flexibility for complex objectives. In contrast, LGR2 autonomously discovers effective subgoal decompositions and adapts dynamically, achieving strong results on multi-step, long-horizon tasks.

HAC. HAC (Andrychowicz et al., 2017) attempts to mitigate non-stationarity by assuming an optimal lower-level policy and enhances the higher-level replay buffer using subgoal relabeling. Despite this, our experiments show LGR2 surpasses HAC (see Figure 2). We believe that this is because LGR2's language-guided reward relabeling generates stable, goal-aligned rewards for the higher-level policy without requiring the unrealistic assumption of an optimal lower-level primitive, thus providing a more practical and robust mechanism for addressing non-stationarity. HIRO (Nachum et al., 2018) is another such baseline that addresses non-stationarity, however since HAC has been found to outperform HIRO, we compared with HAC baseline.

HIER. The HIER baseline is a standard hierarchical SAC model where the higher-level reward is the cumulative sum of environment rewards across k steps. LGR2 achieves much higher performance than HIER, underscoring the critical role of language-guided reward generation in reducing non-stationarity and resulting in stable hierarchical learning.

DAC. Finally, we also consider DAC baseline with access to a single demonstration. DAC fails to show any significant progress, as seen in Figure 2, which shows that LGR2 outperforms single-level baselines with access to privileged information like expert demonstrations.

Can language-guided reward relabeling achieve better rewards than alternative baselines?

To evaluate the effectiveness of language-guided reward relabeling in densifying rewards and promoting exploration, we compare the *average reward per episode* achieved by LGR2 with two hierarchical baselines: HAC and HIER. As shown in Supplementary Sec. 3 Figure 1, LGR2 consistently achieves substantially higher average rewards throughout training, demonstrating its ability to generate richer

rewards. This reflects the benefit of using language-derived, relabeled high-level rewards, which provide semantically meaningful feedback even in highly sparse environments. In contrast, HAC and HIER both suffer from limited reward density, leading to slower learning and inefficient exploration. These results underscore that our language-guided reward relabeling is key to producing informative rewards and improve performance in complex, sparse-reward robotic tasks.

Does language-guided reward relabeling outperform standard HRL with hindsight relabeling? We assess the isolated contribution of language-guided reward relabeling by comparing LGR2 with the ablation *HIER-HER*, a hierarchical RL baseline that uses HER but relies solely on environment signals for high-level rewards, with no language guidance. This setup retains all elements of LGR2 except language-driven reward relabeling. As shown in Figure 3, LGR2 consistently outperforms HIER-HER across all tasks, achieving greater learning efficiency and higher success rates in complex sparsereward environments. These improvements highlight that while HER effectively densifies feedback, the core gains of LGR2 stem from the ability of language-guided relabeling to provide a stationary, semantically aligned supervisory signal for the high-level policy. This stabilizes hierarchical learning and leads to improved performance over baselines.

Can LGR2 mitigate non-stationarity in HRL?

We show LGR2's ability to mitigate non-stationarity in HRL in Figure 4. To quantify this, we compare LGR2 to the *HIER* baseline by measuring the average distance between subgoals predicted by the higher-level policy and the final states reached by the lower-level policy at different training stages (Initial: start of training, Mid: halfway point, Final: end of training). Lower distance values indicate that the higher-level policy generates subgoals that are feasible and well-aligned with the abilities of the evolving lower-level policy, leading to more consistent goal achievement and reduced non-stationarity. As shown in Figure 4, LGR2 consistently achieves lower average distances across training, validating that it produces achievable subgoals and robustly reduces non-stationarity compared to the baseline.

What is the contribution of hindsight experience relabeling (HER) in improving performance? Further, we analyse the importance of hindsight experience replay (HER) (Andrychowicz et al., 2017) for densifying rewards in sparse reward tasks. To this end, we compare LGR2 with LGR2-No-HER baseline, which is LGR2 baseline without HER. As seen in Figure 5, HER is crucial for good performance, since language-guided rewards are too sparse to generate any meaningful reward signal.

Can LGR2 policies transfer to real-world robots?

We conducted real-world experiments on pick-and-place and bin tasks (supplementary Section 9), using a RealSense D435 depth camera to track the robotic arm, block, and bin positions. The robot was controlled via the manufacturer's Python SDK at 20 Hz ($\Delta t = 50$ ms), with episodes lasting about 40 seconds. Policies were trained in simulation and then deployed on the robot; due to challenges in precise velocity control, we used small fixed velocities, achieving good performance. Across 5 sets of 10 trials each, LGR2 attained average success rates of 60% and 50%, with variances 0.07 and 0.03 for pick-and-place and bin tasks, respectively. The best baseline, L2R, failed to show significant progress. The supplementary also video depicts real-world evaluation.

6 CONCLUSION

Limitations and Future Work. While LGR2 mitigates reward-level non-stationarity through language-guided relabeling, it does not address transition dynamics shifts from the evolving lower-level policy. Future work could extend LGR2 to handle transition non-stationarity via predictive models and automate prompt generation to reduce manual design effort and potential hallucinations. Discussion. In this work, we introduced LGR2, a novel HRL framework that leverages language-guided reward relabeling to address non-stationarity by deriving invariant reward functions from natural language instructions. Combined with HER for reward densification, LGR2 enables efficient learning on complex, long-horizon tasks without requiring extensive demonstrations. Our approach consistently outperforms strong baselines across challenging simulated and real-world robotic tasks, demonstrating the effectiveness of integrating large language models into HRL pipelines. This work underscores the importance of harnessing semantic knowledge from natural language for scalable robotic control. LGR2 represents a promising step toward robots that robustly interpret and execute human instructions, with future research expected to further broaden the scope of language-conditioned hierarchical policies.

ETHICS STATEMENT

This work presents LGR2, a hierarchical reinforcement learning framework that integrates large language models for generating reward functions in robotic navigation and manipulation tasks. We recognize several ethical considerations associated with this research. First, our method relies on LLMs to translate natural language instructions into reward parameters, which may inherit biases from the training data of these models, potentially leading to unintended or unfair behaviors in robotic systems, especially in diverse real-world applications. Second, the focus on robotic tasks such as pick-and-place, bin manipulation, and kitchen environments could contribute to advancements in automation, which may impact employment in manual labor sectors. While LGR2 aims to enhance efficiency and stability in sparse-reward settings, we emphasize the need for careful assessment of its societal effects, including equitable access to such technologies. Third, training hierarchical policies requires substantial computational resources, contributing to energy consumption and environmental footprint; we advocate for optimized implementations to minimize this impact. Fourth, all datasets and environments used (e.g., maze navigation, Franka kitchen from D4RL) comply with their respective licenses, and our approach does not introduce new privacy risks beyond standard RL practices. We encourage ethical deployment with emphasis on transparency, bias mitigation, and human oversight.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed documentation of our methods and experiments. The full mathematical formulation of the language-guided reward generation, relabeling process, and training objectives (including SAC adaptations) is presented in Section 4, with pseudocode in Algorithm 1 and additional details in Appendix A.4. Hyperparameter configurations, such as learning rates, batch sizes, network architectures (three fully connected layers with 512 units), and SAC parameters (e.g., alpha=0.05, tau=0.8), are specified in Appendix Table 1. Experiments span four robotic environments (maze navigation, pick-and-place, bin, Franka kitchen), with configurations, state/action spaces, reward structures, and evaluation metrics (e.g., success rates, non-stationarity distance) described in Section 5 and Appendix A.4. Prompts for LLM-based motion descriptors and reward coders are fully provided in Appendix A.5, along with sample generated codes in Appendix A.5. Baseline implementations (e.g., L2R, SAGA, RAPS, HAC, HIER, DAC) are detailed in Section 5 for fair comparisons, including tuning via grid search. We intend to release the complete codebase, including LLM integration, replay buffer management, and evaluation scripts, upon publication. Statistical analyses, such as means and standard deviations over 5 seeds, are reported with confidence intervals where applicable. Computational requirements (e.g., Intel Core i7, NVIDIA GTX 1080, training timesteps) are outlined in Appendix A.3 to support replication on similar hardware.

REFERENCES

- Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances. *arXiv preprint arXiv:2204.01691*, 2022.
- Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel H Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In *NIPS*, 2017.
- Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Seyedarian Hosseini, Pushmeet Kohli, and Edward Grefenstette. Learning to understand goal specifications by modelling reward. In *International Conference on Learning Representations*, 2018. URL https://api.semanticscholar.org/CorpusID:52911374.
- Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. *Discrete Event Dynamic Systems*, 13:341–379, 2003.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan, et al. Language models are few-shot learners. *NeurIPS*, 33:1877–1901, 2020.

- Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation behaviors end-to-end with autorl. *IEEE Robotics and Automation Letters*, 4:2007–2014, 2018. URL https://api.semanticscholar.org/CorpusID:59600008.
 - Murtaza Dalal, Deepak Pathak, and Ruslan Salakhutdinov. Accelerating robotic reinforcement learning via parameterized action primitives. *CoRR*, abs/2110.15360, 2021. URL https://arxiv.org/abs/2110.15360.
 - Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In *Advances in Neural Information Processing Systems 5, [NIPS Conference]*, pp. 271–278, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc. ISBN 1-55860-274-7.
 - Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition. *CoRR*, cs.LG/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.
 - Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic skills with cross-domain datasets, 2021.
 - Justin Fu, Anoop Korattikara Balan, Sergey Levine, and Sergio Guadarrama. From language to goals: Inverse reinforcement learning for vision-based instruction following. *ArXiv*, abs/1902.07742, 2019. URL https://api.semanticscholar.org/CorpusID:67788344.
 - Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep data-driven reinforcement learning. *CoRR*, abs/2004.07219, 2020. URL https://arxiv. org/abs/2004.07219.
 - Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Using natural language for reward shaping in reinforcement learning, 2019.
 - Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy learning: Solving long horizon tasks via imitation and reinforcement learning. *Conference on Robot Learning (CoRL)*, 2019.
 - Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. *CoRR*, abs/1801.01290, 2018. URL http://arxiv.org/abs/1801.01290.
 - Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yuval Tassa. Predictive sampling: Real-time behaviour synthesis with mujoco. *arXiv preprint arXiv:2212.00541*, 2022.
 - Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordination. In *ICML*, ICML'23. JMLR.org, 2023.
 - Wenlong Huang, Fei Xia, Tianhe Xiao, Ho Chan, Jonathan Liang, Pete Florence, Andy Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through planning with language models. *arXiv preprint arXiv:2207.05608*, 2022.
 - Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine, and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning, 2022.
 - Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. *CoRR*, abs/1806.10293, 2018. URL http://arxiv.org/abs/1806.10293.
 - Aishwarya Kamath, Peter Anderson, Su Wang, Jing Yu Koh, Alexander Ku, Austin Waters, Yinfei Yang, Jason Baldridge, and Zarana Parekh. A new path: Scaling vision-and-language navigation with synthetic instructions and imitation learning, 2023.
 - Siddharth Karamcheti, Megha Srivastava, Percy Liang, and Dorsa Sadigh. Lila: Language-informed latent actions. In *Conference on Robot Learning*, 2021. URL https://api.semanticscholar.org/CorpusID:243832934.

- Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.
- Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yusuke Matsuo, and Yutaka Iwasawa. Large language models are zero-shot reasoners. In *NeurIPS*, pp. 22199–22213, 2022.
- Hadas Kress-Gazit and George Pappas. Translating structured english to robot controllers. *Advanced Robotics*, 22:1343 1359, 2008. URL https://api.semanticscholar.org/CorpusID:7457220.
- Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room: Multilingual vision-and-language navigation with dense spatiotemporal grounding, 2020.
- Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language models. *arXiv preprint arXiv:2303.00001*, 2023.
- Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor policies. *CoRR*, abs/1504.00702, 2015. URL http://arxiv.org/abs/1504.00702.
- Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies with hindsight. In *International Conference on Learning Representations*, 2018.
- Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien de Masson d'Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with alphacode. *Science*, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.
- Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. Code as policies: Language model programs for embodied control, 2023a.
- Jonathan Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and Andy Zeng. Code as policies: Language model programs for embodied control. *arXiv* preprint arXiv:2209.07753, 2023b.
- Jessy Lin, Daniel Fried, Dan Klein, and Anca Dragan. Inferring rewards from language in context. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8546–8560, Dublin, Ireland, May 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022. acl-long.585. URL https://aclanthology.org/2022.acl-long.585.
- Jessy Lin, Daniel Fried, Dan Klein, and Anca Dragan. Inferring rewards from language in context. *arXiv preprint arXiv:2204.02515*, 2022b.
- Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis Armstrong, and Pete Florence. Interactive language: Talking to robots in real time, 2022.
- Cynthia Matuszek, Evan V. Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to parse natural language commands to a robot control system. In *International Symposium on Experimental Robotics*, 2012. URL https://api.semanticscholar.org/CorpusID:1658890.
- Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding language with visual affordances over unstructured data, 2023.
- Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement learning. *Advances in neural information processing systems*, 31, 2018.

- Suraj Nair, Eric Mitchell, Kevin Chen, brian ichter, Silvio Savarese, and Chelsea Finn. Learning language-conditioned robot behavior from offline data and crowd-sourced annotation. In Aleksandra Faust, David Hsu, and Gerhard Neumann (eds.), *Proceedings of the 5th Conference on Robot Learning*, volume 164 of *Proceedings of Machine Learning Research*, pp. 1303–1315. PMLR, 08–11 Nov 2022. URL https://proceedings.mlr.press/v164/nair22a.html.
- OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, and Igor Babuschkin et al. Gpt-4 technical report, 2024.
- Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan, M. Kearns, and S. Solla (eds.), *Advances in Neural Information Processing Systems*, volume 10. MIT Press, 1998.
- Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and demonstrations. *arXiv* preprint arXiv:1709.10087, 2017.
- Pratyusha Sharma, Balakumar Sundaralingam, Valts Blukis, Chris Paxton, Tucker Hermans, Antonio Torralba, Jacob Andreas, and Dieter Fox. Correcting robot plans with natural language feedback. *arXiv preprint arXiv:2204.05186*, 2022.
- Utsav Singh and Vinay P Namboodiri. Crisp: Curriculum inducing primitive informed subgoal prediction. *arXiv preprint arXiv:2304.03535*, 2023a.
- Utsav Singh and Vinay P Namboodiri. Pear: Primitive enabled adaptive relabeling for boosting hierarchical reinforcement learning. *arXiv preprint arXiv:2306.06394*, 2023b.
- Utsav Singh, Souradip Chakraborty, Wesley A Suttle, Brian M Sadler, Anit Kumar Sahu, Mubarak Shah, Vinay P Namboodiri, and Amrit Singh Bedi. Hierarchical preference optimization: Learning to achieve goals via feasible subgoals prediction. *arXiv preprint arXiv:2411.00361*, 2024a.
- Utsav Singh, Wesley A Suttle, Brian M Sadler, Vinay P Namboodiri, and Amrit Singh Bedi. Piper: Primitive-informed preference-based hierarchical reinforcement learning via hindsight relabeling. *arXiv preprint arXiv:2404.13423*, 2024b.
- Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. *Artificial Intelligence*, 112(1):181–211, 1999. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.sciencedirect.com/science/article/pii/S0004370299000521.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, and Katie Millican et al. Gemini: A family of highly capable multimodal models, 2024.
- Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenenbaum. Learning abstract structure for drawing by efficient motor program induction. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 2686–2697. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023.
- Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J. Lim. Learning to synthesize programs as interpretable and generalizable policies, 2022.
- Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. *CoRR*, abs/1703.01161, 2017.

Vivienne Huiling Wang, Joni Pajarinen, Tinghuai Wang, and Joni-Kristian Kämäräinen. State-conditioned adversarial subgoal generation. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 10184–10191, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc Le, Denny Zhou, and et al. Chain of thought prompting elicits reasoning in large language models. *NeurIPS*, 35:24824–24837, 2022.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to rewards for robotic skill synthesis. *arXiv preprint arXiv:2306.08647*, 2023.

CONTENTS Introduction **Related Work Problem Formulation** Methodology 4.2 4.3 4.4 **Experiments** Conclusion A Appendix APPENDIX BROADER IMPACT STATEMENT Our proposed approach and algorithm are not aimed at delivering immediate technological break-throughs. Instead, our work makes a conceptual contribution by addressing fundamental aspects of Hierarchical Reinforcement Learning (HRL). By leveraging language-guided instructions, we establish a novel framework with the potential to significantly propel research in HRL and related areas. This conceptual foundation lays the groundwork for future studies and may catalyze further advancements in the field.

A.2 LGR2 ALGORITHM

The detailed LGR2 pseudocode is provided here:

Algorithm 1 LGR2

810

838 839 840

841 842

843

844

845

846

847 848

849

850

851

852

853 854

855

856

858 859

862 863

```
811
               1: Initialize higher level replay buffer \mathcal{D}^H = \{\} and lower level replay buffer \mathcal{D}^L = \{\}
812
               2: for i = 1 ... N do
813
                         // Collect transitions using \pi^H and store in \mathcal{D}^H
814
                         // Collect transitions using \pi^L and store in \mathcal{D}^L
               4:
815
                         {f for} each timestep t {f do}
               5:
                               d^{H} \leftarrow d^{H} \cup \{(s_{t}, g^{*}, g_{t}, r_{t}^{H}, s_{t+k-1})\} 
d^{L} \leftarrow d^{L} \cup \{(s_{t}, g_{t}, a_{t}, r_{t}^{L}, s_{t+1})\}
816
               6:
817
               7:
818
                         \mathcal{D}^H \leftarrow \mathcal{D}^H \cup d^H
               8:
819
                         \mathcal{D}^L \leftarrow \mathcal{D}^L \cup d^L
               9:
820
              10:
                         // Sample and relabel higher-level trajectories
821
             11:
                         for i = 1 \dots M do
                               \sigma = \{(s_t, g^*, g_t, r_t^H, s_{t+k-1})\}_{t=1}^{n-1} \sim \mathcal{D}^H
822
             12:
                               // Relabel the reward by language-guided r_{\phi}
823
             13:
                               // Store the transition in \mathcal{D}^H
             14:
824
                               \mathcal{D}^H \leftarrow \mathcal{D}^H \cup \{(s_t, g^*, g_t, r_\phi, s_{t+k-1})\}_{t=1}^{n-1}
             15:
825
                         // Sample a set of additional goals for HER (\widehat{G})
             16:
827
                         for \widehat{q} \in G do
             17:
828
                               // Relabel g by \widehat{g} and r_{\phi} by \widehat{r}_{\phi} in \sigma such that
             18:
829
                               \widehat{\sigma} = \{(s_t, \widehat{g}, g_t, \widehat{r}_{\phi}, s_{t+k-1})\}_{t=1}^{n-1}
             19:
                               Store in replay buffer \mathcal{D}^H \leftarrow \mathcal{D}^H \cup \widehat{\sigma}
830
             20:
831
             21:
                         // Policy Learning
832
             22:
                         for each gradient step do
                               Sample \{(\sigma_j)\}_{j=1}^{m} from \mathcal{D}^H
833
             23:
834
                                Sample \{(\delta_j)\}_{j=1}^m from \mathcal{D}^L
             24:
835
             25:
                                Optimize higher policy \pi^H using SAC
836
                                Optimize lower policy \pi^L using SAC
             26:
837
```

A.3 IMPLEMENTATION DETAILS

We conduct our experiments on two systems, each equipped with an Intel Core i7 processor, 48GB of RAM, and an Nvidia GeForce GTX 1080 GPU. We also report the number of timesteps required for running the experiments.

In our setup, both the actor and critic networks are implemented as three-layer, fully connected neural networks, each with 512 neurons per layer.

For the maze navigation task, a 7-degree-of-freedom (7-DoF) robotic arm moves through a four-room maze with its closed gripper fixed at table height, navigating to reach the goal position. In the pick-and-place task, the same 7-DoF robotic arm identifies a square block, picks it up, and delivers it to the goal position. In the bin environment, the gripper must pick up the block and place it in a designated bin. Lastly, in the kitchen task, a 9-DoF Franka robot performs a predefined complex action—opening a microwave door—to complete the task.

To ensure fair comparisons, we maintain consistency across all baselines by keeping key parameters unchanged wherever possible. These include the neural network layer width, the number of layers, the choice of optimizer, and the SAC implementation parameters.

We also provide the hyperparameter configuration in Table 1

A.4 ENVIRONMENT DETAILS

In this section, we provide the environment and implementation details for all the tasks:

864 865

866

873 874 875

878 879

883

885 886

888

894

895

897 899 900

901 902 903

904

905

906

907

913 914 915

916

917

912

Table 1: Hyperparameter Configuration

Parameter	Value	Description
activation	tanh	activation for hierarchical policies
layers	3	number of layers in the critic/actor networks
hidden	512	number of neurons in each hidden layer
Q_lr	0.001	critic learning rate
pi_lr	0.001	actor learning rate
buffer_size	int(1E7)	for experience replay
tau	0.8	polyak averaging coefficient
clip_obs	200	clip observation
n_cycles	1	per epoch
n_batches	10	training batches per cycle
batch_size	1024	batch size hyper-parameter
random_eps	0.2	percentage of time a random action is taken
alpha	0.05	weightage parameter for SAC
noise_eps	0.05	std of gaussian noise added to not-completely-random actions
norm_eps	0.01	epsilon used for observation normalization
norm_clip	5	normalized observations are cropped to this value
adam_beta1	0.9	beta 1 for Adam optimizer
adam_beta2	0.999	beta 2 for Adam optimizer

A.4.1MAZE NAVIGATION ENVIRONMENT

In this environment, a 7-DOF robotic arm gripper navigates through randomly generated four-room mazes to reach the goal position. The gripper remains closed and fixed at table height, with the positions of walls and gates randomly determined. The table is divided into a rectangular $W \times H$ grid, and the vertical and horizontal wall positions, W_P and H_P , are randomly selected from (1, W-2)and (1, H-2), respectively. In the constructed four-room environment, the four gate positions are randomly chosen from $(1, W_P - 1)$, $(W_P + 1, W - 2)$, $(1, H_P - 1)$, and $(H_P + 1, H - 2)$.

In the maze environment, the state is represented as the vector [dx, M], where dx denotes the current gripper position and M is the sparse maze array. The higher-level policy input is a concatenated vector [dx, M, g], where g is the target goal position. The lower-level policy input is a concatenated vector $[dx, M, s_q]$, where s_q is the sub-goal provided by the higher-level policy. M is a discrete 2D one-hot vector array, with 1 indicating the presence of a wall block. The lower primitive action a is a 4-dimensional vector, with each dimension $a_i \in [0,1]$. The first three dimensions provide offsets to be scaled and added to the gripper position for movement. The last dimension controls the gripper, with 0 indicating a closed gripper and 1 indicating an open gripper.

A.4.2 PICK AND PLACE AND BIN ENVIRONMENTS

In this section, we describe the environment details for the pick and place and bin tasks. The state is represented as the vector [dx, o, q, e], where dx is the current gripper position, o is the position of the block object on the table, q is the relative position of the block with respect to the gripper, and e includes the linear and angular velocities of both the gripper and the block object. The higherlevel policy input is a concatenated vector [dx, o, q, e, g], where g is the target goal position. The lower-level policy input is a concatenated vector $[dx, o, q, e, s_q]$, where s_q is the sub-goal provided by the higher-level policy. In our experiments, the sizes of dx, o, q, and e are set to 3, 3, 3, and 11, respectively. The lower primitive action a is a 4-dimensional vector with each dimension $a_i \in [0, 1]$. The first three dimensions provide gripper position offsets, and the last dimension controls the gripper. During training, the positions of the block object and the goal are randomly generated (the block is always initialized on the table, and the goal is always above the table at a fixed height).

A.4.3 Franka Kitchen environment

For this environment please refer to the D4RL environment Fu et al. (2020). In this environment, the franka robot has to perform a complex multi-stage task in order to achieve the final goal.

A.5 FULL PROMPTS

In this section, we provide detailed prompts for motion description and reward translator for all the environments.

A.4.1. Maze Navigation Environment

We now present the motion descriptor and reward generator prompts for the maze navigation environment.

Motion Descriptor Prompt for Maze Navigation environment

We want you to generate a random position for an object within the table following the description and rules.

[Description]

- 1. There is a table which can be represented as a matrix of (num_1, num_2).
- 2. Generate walls within the table by choosing a random row and random column and blocking all of (num_1+num_2) cells.
- 3. Generate four random cells from the (num_1+num_2) marked as walls. Remove the blocks from these cells and mark them as gates.
- 4. Generate final position for the object like CHOICE:[cuboid,apple,ball] with the (x,y) co-ordinates between (num_4,num_5) and height is at table height in the bottom right room and bottom right corner.

Rules

- 1. The robot is a 7-DOF robotic arm gripper.
- 2. The height of the table is table_height=0.42 cm.
- 3. If you see num_1 replace it with an integer within 10 and 20.
- 4. If you see num_2 replace it with an integer within 10 and 20.
- 5. If you see phrases like CHOICE: [choice1, choice2, ...], it means you should replace the entire phrase with one of the choices listed.
- Please remember that the final position cannot coincide with gates, walls or starting position location.
- 7. The starting position of the location is (1,3)

Reward Generator Prompt for Maze Navigation maze environment

We have a description of a robot's motion and we want you to turn that into the corresponding program with following functions:

```
def reset_environment()
```

def set_Gripper_Pos(x_pos, y_pos, z_pos)

x_pos: position of x-coordinate of the gripper of robot arm.

y_pos: position of y-coordinate of the gripper of robot arm.

z_pos: position of z-coordinate (height) of the gripper of robot arm.

generate_maze()

do_simulation() Example answer code: import numpy as np reset_environment() # This is a new task so reset environment else we do not need it. set_Gripper_Pos(3.0,2.0,0.56) set_Gripper_Pos(4.45,3.56,0.48) set_Gripper_Pos(6.85,7.36,0.64) generate_maze() # generate maze with all the constraints do_simulation() # run the simulation

A.4.2. Pick and Place Environment

We now present the motion descriptor and reward generator prompts for the pick and place environment.

Motion Descriptor Prompt for Pick and Place Environment

We want you to generate a random position for an object within the table following the description and rules.

[Description]

- 1. There is a table which can be represented as a matrix of (num_1, num_2) and height (num_3).
- 2. Generate final position for the object like CHOICE:[cuboid,apple,ball] with the (x,y) co-ordinates between (num_4,num_5) and height (num_6).

Rules:

- 1. The robot is a 7-DOF robotic arm gripper.
- 2. The height of the table is table height=0.42 cm.
- 3. The max height the arm can reach is max_height=0.66 cm.
- 4. If you see num_1 replace it with an integer within 10 and 20.
- 5. If you see num_2 replace it with an integer within 10 and 20.
- 6. If you see num_3 replace it with 0.42.
- 7. If you see phrases like CHOICE: [choice1, choice2, ...], it means you should replace the entire phrase with one of the choices listed.
- 8. Please remember that there is an object on the table.
- 9. The block is light enough for the robot to pick up and hold in the air for a long time, like 4 seconds.

Reward Generator Prompt for Pick and Place Environment

```
1026
           We have a description of a robot's motion and we want you to turn that into the corresponding
1027
           program with following functions:
1028
           def reset_environment()
1029
1030
           def set_Gripper_Pos(x_pos, y_pos, z_pos)
1031
           x_pos: position of x-coordinate of the gripper of robot arm.
1032
1033
           y_pos: position of y-coordinate of the gripper of robot arm.
1034
           z_pos: position of z-coordinate (height) of the gripper of robot arm.
1035
           def generate_Object_Pos()
1036
1037
           def do_simulation()
           Example answer code:
1039
1040
           import numpy as np
1041
           reset_environment()
1042
           # This is a new task so reset environment else we do not need it.
1043
1044
           set_Gripper_Pos(3.0,2.0,0.56)
           set_Gripper_Pos(4.45,3.56,0.48)
1046
1047
           set_Gripper_Pos(6.85,7.36,0.64)
1048
           do_simulation()
1049
1050
           # run the simulation
1051
```

A.4.3. Bin Environment

1052 1053

1054 1055

1056

1057

1058 1059

1061

1062 1063

1064

1067

1068

1069

10701071

1074 1075

1078 1079 We now present the motion descriptor and reward generator prompts for the bin environment.

Motion descriptor prompt for Bin environment

We want you to generate a random position for a bin and an object within the bin following the description and rules. [Description]

- 1. There is a table which can be represented as a matrix of (num_1, num_2) and height (num_3).
- 2. There is a bin on the table.
- 3. Generate a random position for the bin within the table.
- 4. Generate a final position (x,y) for placing the object like CHOICE:[cuboid,apple,ball] within the bin

[Rules]

- 1. The robot is a 7-DOF robotic arm gripper.
- 2. The height of the table is table_height=0.42 cm.
- 3. The max height the arm can reach is max_height=0.66 cm.
- 4. If you see num 1 replace it with an integer within 10 and 20.
- 5. If you see num_2 replace it with an integer within 10 and 20.

- 6. If you see num_3 replace it with 0.42.
- 1081 1082 1083
- 7. The bin has to be completely within the table. No part of the bin can be outside of the table.
- 1083 1084 8. 7
 - 8. The height, width and length of the table are $0.1\ \mathrm{cm}$, respectively.
- 9. The final position of the object should be continuous and at the centre of the bin.
 - 10. If you see phrases like CHOICE: [choice1, choice2, ...], then you should be replacing the entire phrase with one of the choices listed.
 - 11. Please remember that there is always a bin on the table.
 - 12. The object is light enough for the robot to pick up and hold in the air for a long time, like 4 seconds.

1093

1087

1088

1089

1090

1091

Reward generator prompt for Bin environment

1095

1099

1100 1101

1102

1103

1104 1105

1106

11071108

1109

1110

1111 1112

1113

1114 1115

1116

11171118

1121 1122

1123

```
We have a description of a robot's motion and we want you to turn that into the corresponding program with following functions:

def reset_environment()

def set_Gripper_Pos(x_pos, y_pos, z_pos)

x_pos: position of x-coordinate of the gripper of robot arm.
```

y_pos: position of y-coordinate of the gripper of robot arm.

z_pos: position of z-coordinate (height) of the gripper of robot arm.

def generate_Bin()
def do_simulation()

Example answer code:

import numpy as np

reset_environment()

This is a new task so reset environment else we do not need it.

set_Gripper_Pos(3.0,2.0,0.56)

set_Gripper_Pos(4.45,3.56,0.48)

set_Gripper_Pos(6.85,7.36,0.64)

generate_Bin()

generate bin with all the constraints

do_simulation()

run the simulation

112411251126

A.4.4. Franka Kitchen Environment

112711281129

We now present the motion descriptor and reward generator prompts for the franka kitchen environment.

113011311132

Motion descriptor prompt for Franka kitchen environment

We want you to generate a random position for the door of a microwave and gas-knob following the description and rules.

[Description]

- 1. There is a microwave and gas knob.
- 2. Open the microwave door to a certain point num_1.
- 3. Turn the gas knob to co-ordinates (num_2, num_3).

[Rules]

- 1. The robot is a 7-DOF robotic arm gripper.
- 2. The height of the table is table_height=0.42 cm.
- 3. The max height the arm can reach is max_height=0.66 cm.
- 4. If you see num_1 replace it with a continuous number -0.75.
- 5. If you see num_2 replace it with a continuous number -0.88.
- 6. If you see num_2 replace it with a continuous number -0.01.

Reward generator prompt for Franka kitchen environment

```
1162
           We have a description of a robot's motion and we want you to turn that into the corresponding
1163
          program with following functions:
1164
1165
           def reset_environment()
1166
           def set_microwave_Pos(joint_1_Pos)
1167
          joint_1_Pos: Position of joint to determine whether microwave door is open or not.
1168
1169
           def set_gas_Knob_Pos(joint_1_Pos, joint_2_Pos)
1170
          joint_1_Pos: x co-ordinate of the gas knob.
1171
1172
          joint_2_pos: y co-ordinate of the gas knob.
1173
           def do simulation()
1174
           Example answer code:
1175
1176
           import numpy as np
1177
          reset_environment()
1178
1179
           # This is a new task so reset environment else we do not need it.
1180
           set_microwave_Pos(-0.75)
1181
1182
           set_microwave_Pos(-0.55)
1183
           set_gas_Knob_Pos(-0.88, -0.01)
1184
           set_gas_Knob_Pos(-0.75, -0.1)
1185
1186
           do_simulation()
1187
           # run the simulation
```

```
A.6 SAMPLE CODES
```

11891190

1191

11921193

1194 1195

1196 1197

1198

1226

1227 1228

1229 1230

1231

1232

In this section, we show sampled responses for all four environments mentioned in this paper for a better understanding of the LGR2 method. We sample 2-3 responses for each method to show both successful and failed results.

A.5.1. Maze Navigation Environment

Sample Code for Maze Navigation environment

Here, we provide the sample code for the Maze Navigation environment generated by GPT-3.5.

```
1199
           import numpy as np
1200
1201
           def reset_environment():
1202
             print("Environment reset.")
1203
           def set_Gripper_Pos(x_pos, y_pos, z_pos):
1204
1205
             print(f"Setting gripper position to x: x_pos, y: y_pos, z: z_pos.")
1206
           def generate_maze():
1207
1208
           print("Generating maze...")
1209
           def do_simulation():
1210
1211
             print("Running simulation...")
1212
           reset_environment()
1213
           # Set the gripper positions for linear motion
1214
1215
           set_Gripper_Pos(3.0, 2.0, 0.56)
1216
           set_Gripper_Pos(4.45, 3.56, 0.48)
1217
1218
           set_Gripper_Pos(6.85, 7.36, 0.64)
1219
           # Generate maze
           generate_maze()
1221
           # Run simulation
1223
           do_simulation()
1224
1225
```

A.5.2. Pick and Place Environment

Sample Code for Pick and Place environment

Here, we provide the sample code for the Pick and Place environment generated by GPT-3.5.

```
import numpy as np

def reset_environment():

print("Environment reset.")

def set_Gripper_Pos(x_pos, y_pos, z_pos):

print(f"Setting gripper position to x: x_pos, y: y_pos, z: z_pos.")

def generate_Object_Pos(): print("Generating object position.")
```

```
1242
           def do_simulation():
1243
             print("Simulation started.")
1244
1245
           reset_environment()
1246
           set_Gripper_Pos(3.0, 2.0, 0.56)
1247
1248
           set_Gripper_Pos(4.45, 3.56, 0.48)
1249
           set_Gripper_Pos(6.85, 7.36, 0.64)
1250
           generate_Object_Pos()
1251
1252
           do_simulation()
1253
```

A.5.3. Bin Environment

Sample Code for Bin environment

Here, we provide the sample code for the Bin environment generated by GPT-3.5.

```
1259
1260
           import numpy as np
1261
           def reset_environment():
1262
             print("Environment reset.")
1263
1264
           def set_Gripper_Pos(x_pos, y_pos, z_pos):
1265
              print(f"Setting gripper position to x: x_pos, y: y_pos, z: z_pos.")
1266
1267
           def generate_Bin():
1268
             print("Generating bin with all constraints.")
1269
1270
           def do simulation():
1271
             print("Simulation started.")
1272
           reset environment()
1273
1274
           set_Gripper_Pos(3.0, 2.0, 0.56)
1275
           set_Gripper_Pos(4.45, 3.56, 0.48)
1276
1277
           set_Gripper_Pos(6.85, 7.36, 0.64)
1278
           generate_Bin()
1279
           do_simulation()
1280
1281
```

A.5.4. Franka Kitchen Environment

Sample Code for Franka kitchen environment

Here, we provide the sample code for the Franka kitchen environment generated by GPT-3.5.

```
import numpy as np
def reset_environment():
  print("Environment reset")
def set_microwave_Pos(joint_1_Pos):
  print(f"Setting microwave door position to joint_1_Pos.")
```

```
1296
           def set_gas_Knob_Pos(joint_1_Pos, joint_2_Pos):
1297
             print(f"Setting gas knob position to x: joint_1_Pos, y: joint_2_Pos.")
1298
1299
          def do_simulation():
1300
             print("Simulation started.")
1301
1302
          reset_environment()
1303
           set_microwave_Pos(-0.75)
1304
          set_microwave_Pos(-0.55)
1305
1306
          set_gas_Knob_Pos(-0.88, -0.01)
1307
          set_gas_Knob_Pos(-0.75, -0.1)
1308
1309
           do_simulation()
1310
```

A.7 QUALITATIVE VISUALIZATIONS

 We provide qualitative visualizations for all the environments:

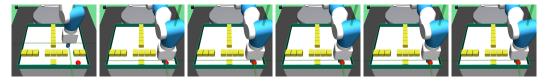


Figure 6: **Successful visualization**: The visualization is a successful attempt at performing maze navigation task

Figure 7: **Successful visualization**: The visualization is a successful attempt at performing pick and place task.

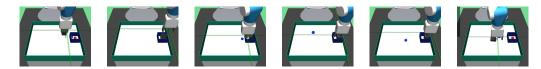


Figure 8: Successful visualization: The visualization is a successful attempt at performing bin task.

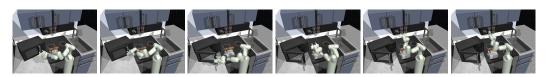


Figure 9: **Successful visualization**: The visualization is a successful attempt at performing kitchen task.