
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LGR2: LANGUAGE GUIDED REWARD RELABELING
FOR ACCELERATING HIERARCHICAL REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have shown remarkable abilities in logical rea-
soning, in-context learning, and code generation. However, translating natural
language instructions into effective robotic control policies remains a significant
challenge, especially for tasks requiring long-horizon planning and operating under
sparse reward conditions. Hierarchical Reinforcement Learning (HRL) provides
a natural framework to address this challenge in robotics; however, it typically
suffers from non-stationarity caused by the changing behavior of the lower-level
policy during training, destabilizing higher-level policy learning. We introduce
LGR2, a novel HRL framework that leverages LLMs to generate language-guided
reward functions for the higher-level policy. By decoupling high-level reward
generation from low-level policy changes, LGR2 fundamentally mitigates the
non-stationarity problem in off-policy HRL, enabling stable and efficient learn-
ing. To further enhance sample efficiency in sparse environments, we integrate
goal-conditioned hindsight experience relabeling. Extensive experiments across
simulated and real-world robotic navigation and manipulation tasks demonstrate
LGR2 outperforms both hierarchical and non-hierarchical baselines, achieving over
55% success rates on challenging tasks and robust transfer to real robots, without
additional fine-tuning.

1 INTRODUCTION

Robotic systems capable of understanding and executing natural language instructions hold great
promise for enabling intuitive human-robot interaction and flexible automation. Recent advances in
deep reinforcement learning (RL) have demonstrated remarkable success in learning complex robotic
behaviors from raw sensory inputs (Levine et al., 2015; Kalashnikov et al., 2018; Rajeswaran et al.,
2017). However, these methods often struggle with long-horizon tasks that require extensive planning
and precise multi-step coordination, particularly under sparse reward signals where meaningful
feedback is rare and delayed.

Hierarchical reinforcement learning (HRL) provides a principled framework to tackle these challenges
by decomposing tasks into temporally extended subgoals and learning nested policies (Sutton et al.,
1999; Dayan & Hinton, 1993; Vezhnevets et al., 2017). This temporal abstraction improves exploration
and credit assignment, essential for solving complex robotic control problems. Yet, conventional
HRL algorithms face a significant hurdle: non-stationarity. As the lower-level policy evolves, the
higher-level policy encounters shifting dynamics and reward distributions, destabilizing training and
impeding convergence (Levy et al., 2018; Nachum et al., 2018).

Recent advances in large-scale language models (LLMs) present an exciting opportunity to address
these challenges. LLMs excel at processing and generating meaningful representations from natural
language (Brown et al., 2020; Wei et al., 2022; Kojima et al., 2022), and have been increasingly
applied to robotics for tasks like instruction grounding and code generation (Liang et al., 2023b;
Ahn et al., 2022; Huang et al., 2022). Approaches that translate natural language commands into
reward functions (L2R) have shown promise (Yu et al., 2023; Sharma et al., 2022; Kwon et al., 2023).
However, prior L2R methods often target monolithic policies and lack the hierarchical structure
needed to efficiently solve long-horizon, sparse reward problems.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Lower
primitive

Environment

Higher
Policy

Maze

Bin Kitchen

Pick and Place
L2R

Higher Level
Replay Buffer

RL

Open the
microwave door.

Lower Level
Replay Buffer

RL

Figure 1: LGR2 overview (left): The higher-level policy predicts subgoals gt for the lower-level
policy, which executes primitive actions at on the environment. The lower-level replay buffer is
populated by environment interactions, and lower-level policy is optimized by RL. L2R is used to
translate human instructions to reward function parameters, which subsequently relabel the higher-
level replay buffer transitions. Finally, RL is used to optimize the higher-level policy.
Environments (right): maze navigation, pick and place, bin, and franka kitchen.

In this work, we propose LGR2, a novel HRL framework that harnesses LLMs to generate language-
guided reward functions for the higher-level policy. Unlike vanilla HRL approaches, LGR2 employs
a novel two-stage pipeline: first using LLMs as motion descriptors to convert natural language
instructions into structured, canonical task representations, and then employing reward coders to
generate symbolic, executable reward parameters that remain invariant to policy changes. By
translating natural language instructions into symbolic and semantically rich reward parameters,
LGR2 effectively decouples the high-level reward evaluation from the evolving lower-level behaviors,
substantially reducing non-stationarity while maintaining semantic alignment with human intentions.

Our approach fundamentally differs from prior language-to-reward (L2R) Yu et al. (2023) meth-
ods by introducing hierarchical temporal abstraction, enabling efficient decomposition of complex,
long-horizon tasks into manageable subgoals. Further, in order to address reward sparsity com-
mon in challenging environments, we incorporate goal-conditioned hindsight experience replay
(HER) Andrychowicz et al. (2017) to densify and enrich the high-level reward signal. This synergistic
integration of hierarchical decomposition and reward densification creates a robust framework to
stabilize HRL training.
Our key contributions are as follows:
1. We introduce LGR2, an end-to-end framework that uses LLM-based reward generation to guide hi-
erarchical policies to solve complex robotic tasks using natural language instructions, thus mitigating
the non-stationarity issue in HRL.
2. We demonstrate that the language-guided reward relabeling scheme effectively stabilizes the
higher-level policy training by achieving a stationary reward signal, thereby addressing key causes of
HRL instability.
3. We incorporate HER to combat sparse rewards, significantly improving sample efficiency and
generalization.
4. Through extensive experiments on challenging simulated and real-world robotic navigation and
manipulation tasks, we establish that LGR2 achieves more than 55% higher success rates over strong
hierarchical and flat baselines, and achieves robust zero-shot transfer to physical robots without
additional fine-tuning.

2 RELATED WORK

Hierarchical Reinforcement Learning. HRL has been extensively studied as a promising approach
to address the challenges of long-horizon tasks by decomposing complex behaviors into multiple
levels of temporal abstraction (Barto & Mahadevan, 2003; Sutton et al., 1999; Parr & Russell, 1998;
Dietterich, 1999). However, a fundamental challenge in off-policy HRL is non-stationarity that
destabilizes HRL training (Levy et al., 2018; Nachum et al., 2018). Existing solutions attempt to
alleviate this problem by simulating expert lower-level behaviors (Levy et al., 2018), relabeling replay

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

buffers (Nachum et al., 2018), or leveraging privileged information such as demonstrations (Gupta
et al., 2019; Singh & Namboodiri, 2023b;a) or preferences (Singh et al., 2024b;a). In contrast, our
work proposes LGR2, which uniquely harnesses LLMs to generate stable, language-guided reward
parameters for the higher-level policy. By decoupling high-level reward generation from evolving
low-level policies, LGR2 effectively mitigates non-stationarity in off-policy HRL, thereby enabling
more robust and efficient learning.

Language to Actions. Early work in language-conditioned robotics mapped structured natural
language commands to controllers using temporal logic (Kress-Gazit & Pappas, 2008) or motion
primitive parsing (Matuszek et al., 2012). More recent end-to-end models translate natural language
instructions into robot actions, especially for navigation (Ku et al., 2020), but often assume low-
dimensional discrete action spaces (e.g., moving between graph nodes) (Ku et al., 2020; Kamath
et al., 2023) and require extensive training data.

Latent language embeddings trained with behavioral cloning (Mees et al., 2023; Jang et al., 2022;
Lynch et al., 2022), offline RL (Ebert et al., 2021), goal-conditioned RL (Fu et al., 2019), or shared
autonomy (Karamcheti et al., 2021) have been employed to condition policies on natural language
commands. Despite their promise, these end-to-end models require vast data and struggle with
long-term planning. Recently, Yu et al. (2023) proposed a reward-based method where an optimal
controller generates low-level actions, reducing data needs. Our work extends this by incorporating
temporal abstraction through HRL, improving training efficiency and handling complex, long-horizon
tasks effectively.

Language to Code. Large language models such as LLaMA (Touvron et al., 2023), GPT-4 (OpenAI
et al., 2024), and Gemini (Team et al., 2024) have revolutionized code generation capabilities,
enabling applications ranging from competitive programming (Li et al., 2022) and drawing (Tian
et al., 2020) to policy synthesis for 2D tasks and complex instructions (Trivedi et al., 2022; Liang
et al., 2023a). We leverage these models’ coding and reasoning abilities to generate language-guided,
higher-level reward functions that facilitate learning in long-horizon robotic control tasks.

Language to Rewards. Translating natural language instructions into reward functions has been
explored in recent work (Sharma et al., 2022; Goyal et al., 2019; Nair et al., 2022; Bahdanau et al.,
2018; Hu & Sadigh, 2023; Kwon et al., 2023; Lin et al., 2022a). Many such methods rely on training
domain-specific reward models that map instructions to reward signals or constraints (Sharma et al.,
2022; Goyal et al., 2019; Nair et al., 2022). Although effective on certain tasks (e.g., object pushing,
drawer opening), these approaches necessitate large quantities of annotated language-reward data.

Recent advances explore using LLMs to infer user intents and assign rewards in interactive or
game-based settings (Kwon et al., 2023; Hu & Sadigh, 2023), yet applying LLMs for real-time
reward assignment during RL remains limited due to high query costs. AutoRL (Chiang et al.,
2018) introduced automated parameterization of reward functions but lacked a natural language
interface. Distinctively, our work leverages language to generate reward parameters that directly
relabel higher-level replay buffers in HRL, enabling efficient training without relying on massive
labeled datasets or expensive online LLM querying.

3 PROBLEM FORMULATION

Hierarchical Setup.

We model the robotic control task as a goal-conditioned Markov Decision Process (MDP) defined by
the tupleM = (S,A, p, r, γ,G), where S denotes the state space, A the action space, p(s′ | s, a) the
transition dynamics, r : S×A → R the reward function, G the goal space, and γ ∈ (0, 1) the discount
factor. The policy π maps states and goals to distributions over actions. In the goal-conditioned setup,
the policy is conditioned on both the current state st and a desired goal gt, such that at ∼ π(· | st, gt).
We adopt a two-level hierarchical reinforcement learning (HRL) framework, where a higher-level
policy πH : S → ∆(G) selects subgoals gt ∈ G ⊆ S every k environment steps, and a lower-level
policy πL : S × G → ∆(A) conditions on the current state and subgoal gt to execute k primitive
actions aimed at achieving gt.

At k-step intervals, the higher-level policy stores experience tuples Σt = (st, g
⋆, gt, r

H
t , st+k), where

st is the current state, g⋆ ∈ G the final user-specified goal, gt the subgoal chosen by the higher-level

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

policy, rHt =
∑k−1

i=0 r(st+i, at+i) the cumulative environment reward over the k lower-level steps,
and st+k the next state after executing these actions.

Similarly, the lower-level policy stores transitions in its replay buffer in the form: (st, gt, at, rLt , st+1),
where rLt is typically a reward encouraging progress towards the subgoal gt (e.g., rLt =
−1{∥st−gt∥>ε}). The hierarchical structure enables temporal abstraction, where the higher-level
policy focuses on strategic subgoal selection, and the lower-level policy handles execution details
over shorter time horizons.

Language to Rewards. Recent work has explored translating natural language instructions into
reward functions to guide RL (Sharma et al., 2022; Lin et al., 2022b; Kwon et al., 2023). These ap-
proaches typically rely on training domain-specific reward models that interpret language commands
and produce corresponding reward signals. Notably, Yu et al. (2023) introduce a modular reward
translator framework comprising two key components: a motion descriptor, which converts natural
language instructions into structured action descriptions, and a reward coder, which maps these
descriptions into concrete reward function parameters. This pipeline enables efficient interfacing
between high-level language commands and the low-level robotic control primitives, facilitating
end-to-end task specification without requiring task-specific reward engineering.

Challenges. Despite significant progress in using language to specify robotic objectives, several core
limitations persist in the context of complex, long-horizon tasks:

Limitations of Language-to-Reward (L2R) Approaches. Existing L2R methods face three principal
obstacles. First, learning a single-level policy for long-horizon tasks is fundamentally difficult due
to long-term credit assignment: sparse or delayed rewards make it hard for the agent to attribute
success or failure to specific actions taken many steps prior. Second, reward functions automatically
synthesized from natural language instructions are often highly sparse, providing insufficient learning
signal for the lower-level policy to make meaningful progress, especially in tasks requiring intricate
sequences of behaviors. Third, many prior approaches rely on either pre-defined or manually-
engineered libraries of control primitives to bridge the gap between abstract language instructions
and executable actions. This not only demands significant expert knowledge and engineering effort,
but also reduces scalability and adaptability to new tasks or environments.

Non-Stationarity in Off-Policy HRL. A further critical challenge arises in hierarchical reinforcement
learning, especially in off-policy settings: the problem of non-stationarity. As the lower-level
policy π

(m)
L evolves over the course of training (with m indexing training iteration), the conditional

distribution over next states st+k after executing a fixed high-level subgoal gt changes:

p(m)
gt (st+k | st) = Pr

(
st+k | st, gt, π(m)

L

)
.

Accordingly, the cumulative high-level reward over the k-step interval,

r
H(m)
t = rH(st, g

⋆, gt;π
(m)
L),

becomes non-stationary, as it depends on the continually adapting lower-level behavior. This drift
invalidates older transitions stored in the higher-level replay buffer, undermining the stability and
effectiveness of off-policy learning for the higher-level policy πH and substantially impeding conver-
gence. These intertwined challenges: (i) lack of temporal abstraction and compositionality in L2R
methods, (ii) reward sparsity, (iii) the inflexibility of manual skill libraries, and (iv) non-stationarity
in hierarchical RL, motivate the need for new frameworks that combine the semantic richness of
language guidance with scalable, stable hierarchical learning for complex robotic control.

4 METHODOLOGY

We address the non-stationarity problem in HRL by introducing language-guided reward relabeling,
which produces a stationary and semantically meaningful high-level reward function independent of
the evolving lower-level policy.

4.1 REWARD PARAMETER GENERATION

Given a natural language instruction L provided by the user, a Large Language Model (LLM) is
employed to generate a structured representation of the task and subsequently translate it into reward

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

function parameters. Inspired from L2R framework Yu et al. (2023), this is implemented via a
two-stage pipeline using a motion descriptor and a reward coder module. This established pipeline
operates as follows:

1. Motion Descriptor Module: Given a user’s natural language instruction L, this module uses
large language models (LLMs) to generate a structured task description d =Mdesc(L) in templated
natural language. This step transforms ambiguous instructions into clear, canonical representations
that facilitate downstream processing (Yu et al., 2023).

2. Reward Coder Module: Conditioned on the structured motion descriptor d, the reward coder
uses the LLM’s code generation capabilities to output parameters ϕ = Mcode(d) for a symbolic,
goal-conditioned reward function. The coder produces explicit, executable code (or interpretable
parameter sets) that define the reward evaluation logic for the specified skill.

Formally, the language-conditioned reward function is defined as rϕ : S × G × G → R, where each
triple (s, g⋆, g) consists of the current environment state s ∈ S, the final user-specified goal g⋆ ∈ G,
and a candidate subgoal g ∈ G proposed by the higher-level policy. The higher level reward function
rH evaluates

rH = rϕ(s, g
⋆, g) = f(s, g⋆, g;ϕ),

where f is a parameterized function with fixed parameters ϕ generated by the LLM-based reward
coder. Note that the reward function rϕ depends exclusively on the current state and goal variables,
and is independent of the low-level policy. This decoupling effectively mitigates non-stationarity
in HRL by providing a stable, consistent reward signal. Consequently, reward assignment remains
stationary, semantically meaningful, and highly modular, which are essential for reliable and efficient
hierarchical learning in complex, long-horizon robotic control tasks.

4.2 RELABELING OF HIGH-LEVEL REWARDS

Each stored transition in the higher-level replay buffer,

Σt = (st, g
⋆, gt, r

H
t , st+k), (1)

is relabeled as:

Σ̃t = (st, g
⋆, gt, r

φ
t , st+k), (2)

where the language-guided reward is defined as rφt := rφ(st, g
⋆, gt).

Since rφ does not depend on the lower-level policy πL or the agent’s trajectories, it remains stationary
across training iterations. This removes reward drift prevalent in off-policy HRL, thereby stabilizing
the learning process for the higher-level policy. Consequently, the relabeled buffer DH = {Σ̃t} is
used for training the higher-level policy.

4.3 ADDRESSING REWARD SPARSITY WITH HER

In environments with sparse rewards, the high-level reward signal, rφ, can often can be too sparse
to produce a meaningful reward signal. To overcome this challenge, LGR2 incorporates goal-
conditioned hindsight experience replay (Andrychowicz et al., 2017) to densify the reward signal.

Concretely, for each relabeled high-level transition Σ̃t, we sample alternative goals ĝ from states
encountered within the same trajectory, i.e.,

ĝ ∈ {st+j | 0 ≤ j ≤ k}.

We then relabel the transition as

Σ̃HER
t =

(
st, ĝ, gt, rφ(st, ĝ, gt), st+k

)
,

which is added to the replay buffer DH . This hindsight relabeling increases the likelihood of
encountering positive rewards in the replay buffer, thereby enhancing sample efficiency. The boosted
frequency of informative reward signals encourages more effective exploration and leads to improved
training stability in sparse-reward, long-horizon tasks.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) Maze navigation (b) Pick and place (c) Bin (d) Kitchen

Figure 2: Success rate comparison This figure compares the success rate performances on four sparse maze
navigation and robotic manipulation environments. The solid line and shaded regions represent the mean and
standard deviation, across 5 seeds. We compare our approach LGR2 against multiple baselines. LGR2 shows
impressive performance and significantly outperforms the baselines.

4.4 TRAINING OBJECTIVES

Both the lower-level and higher-level policies are trained using the Soft Actor-Critic Haarnoja et al.
(2018) framework with separate critic networks, adapted to their respective roles in the hierarchical
setup.

Lower-Level Policy Loss The lower-level policy πL aims to achieve the subgoals issued by the
higher-level policy within k environment steps. Its training relies on a standard SAC critic update
based on the replay buffer DL:

JL = E(s,g,a,r,s′)∼DL

[(
r + γQL

θ̄ (s
′, g)−QL

θ (s, g, a)
)2]

, (3)

where s, s′ ∈ S are states, g ∈ G is the current goal or subgoal, a ∈ A is the action, r is the reward
signal for the lower-level policy, QL

θ is the current lower-level critic parameterized by θ, and QL
θ̄

is
the target critic network.

Higher-Level Policy Loss The higher-level policy πH is trained using relabeled, stationary rewards
derived from language-guided reward functions (rφ) and the higher-level replay buffer D̃H :

JH = E(s,g⋆,g,rφ,s′)∼D̃H

[(
rφ + γkQH

ω̄ (s′, g′)−QH
ω (s, g⋆, g)

)2]
, (4)

where s, s′ ∈ S , g⋆ ∈ G is the final goal, g ∈ G is the current subgoal, rφ is the stationary, language-
guided reward, QH

ω and QH
ω̄ are the current and target higher-level critics parameterized by ω and ω̄

respectively, and g′ ∼ πH(s′) is the next subgoal sampled from the higher-level policy.

The language-guided reward rφ is invariant with respect to the evolving lower-level policy, thus
enhancing training stability. We provide the algorithm in Supplementary Section 2.

5 EXPERIMENTS

In this section, we investigate the following questions:
1. How does LGR2 perform on complex, sparse-reward robotic navigation and manipulation tasks
compared to prior hierarchical and single-level baselines?
3. Can language-guided reward relabeling generate better rewards than alternative baselines?
4. Does language-guided reward relabeling outperform standard HRL with hindsight relabeling?
5. Can LGR2 mitigate non-stationarity in HRL?
6. What is the contribution of hindsight experience relabeling (HER) in improving performance?
7. Can LGR2 policies transfer to real-world robots?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Maze navigation (b) Pick and place (c) Bin (d) Kitchen

Figure 3: Comparison against HRL+HER This figure compares the cumulative rewards on four sparse maze
navigation and robotic manipulation environments. We compare our approach LGR2 against the hierarchical
baseline HIER-HER. LGR2 outperforms this baseline, which shows the efficacy of language-guided reward
generation in LGR2.

(a) Maze (b) Pick and place (c) Bin (d) Kitchen

Figure 4: Non-stationarity metric comparison This figure compares the average distance metric between the
subgoals predicted by the higher level policy and the states achieved by the lower level policy during training.
(The columns represent Initial: when training begins, Mid: half-way during training, Final: when training ends,
e.g. since maze navigation is trained for 3.8E5 timesteps, the values are Initial: iteration 1, Mid: iteration 1.9E5,
and Final: iteration 3.8E5). As can be seen, LGR2 consistently generates efficient and achievable subgoals,
thereby mitigating non-stationarity in HRL.

Implementation details. We evaluate LGR2 on four continuous sparse reward robotic tasks: maze
navigation, pick and place, bin, and franka kitchen (Gupta et al., 2019). In the maze task, intermediate
waypoints serve as subgoals; for more complex tasks like franka kitchen, full intermediate states are
used as subgoals. The appendix, implementation and environment details (supplementary Sections 4
and 6), additional hyper-parameters (supplementary Sections 5), code, and a qualitative video are
provided in the supplementary. The policy networks consist of three fully connected layers with 512
units each, trained using SAC (Haarnoja et al., 2018) and Adam optimizer (Kingma & Ba, 2014).
Refer to the supplementary for motion descriptor (Sec. 7), reward generator (Sec. 7), sample codes
(Sec. 8), and qualitative visualizations (Sec. 10). We carefully tune hyperparameters via grid search
across all baselines to ensure fair comparison. For challenging tasks such as pick and place and
kitchen, we incorporate a single demonstration and an imitation learning objective at the lower level;
no demonstrations are used for maze navigation to maintain consistent evaluation.

Sparse Rewards and Challenges of Goal-Conditioning. Although some tasks may appear simple,
all our evaluation environments feature inherently sparse reward structures, requiring agents to
engage in extensive exploration before encountering any positive feedback. This sparse reward
setting significantly amplifies the difficulty of the tasks. Additionally, we adopt a goal-conditioned RL
framework with randomly generated initial positions and final goals, further increasing the complexity
by demanding generalization across diverse objectives. These factors combined lead to markedly
challenging training conditions, which explain why most baseline methods perform poorly in our
experiments. The sparse and delayed nature of the rewards, coupled with high variability in goals,
makes efficient credit assignment and exploration extremely difficult for flat or naive hierarchical
policies. In contrast, our hierarchical approach benefits from temporal abstraction, and is able to
significantly outperform the baselines in most tasks.

Computational Overhead of LLM-Integrated Reward Generation. While LGR2 leverages LLMs
for expressive, flexible reward generation, the main computational cost, ie translating natural language

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Maze navigation (b) Pick and place (c) Bin (d) Kitchen

Figure 5: Hindsight Relabeling ablation This figure compares the performance of LGR2 with LGR2-No-HER
ablation (LGR2 without hindsight relabeling). The plots clearly demonstrate that HER is crucial for good
performance in all the tasks.

instructions into structured motion descriptors and reward-coder parameters via LLM calls, is incurred
once per task specification, before interaction and training. This offline design prevents LLM calls
from bottlenecking RL, as later reward evaluations are lightweight, involving only fast code execution.
Memory impact is minimal since only the reward code or parameters are stored, not full LLM outputs.
LGR2 maintains sample efficiency and is practical for both simulation and real robotic applications.

How does LGR2 perform on complex control tasks compared to prior baselines?
We compare LGR2 with prior baselines (Figure 2); curves show mean ± std over 5 seeds.
L2R. The L2R approach (Yu et al., 2023) translates natural language instructions into reward
parameters via a reward translator and originally uses an MPC controller (Howell et al., 2022). For
fair comparison, our baseline adopts the same translator but replaces MPC with a Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) agent. While this single-level setup achieves some progress in maze
tasks, it struggles in harder sparse-reward domains, whereas LGR2 consistently outperforms L2R by
leveraging hierarchical structure for temporal abstraction and subgoal decomposition (see Figure 2).
SAGA. We compare LGR2 with SAGA (Wang et al., 2023), a hierarchical method that uses a
state-conditioned discriminator to align subgoals with the low-level policy. While effective on maze
tasks, SAGA deteriorates on harder benchmarks, showing susceptibility to instability in long-horizon
settings. In contrast, LGR2 achieves stronger results by leveraging language-guided reward relabeling,
which provides a stationary, semantically meaningful signal that stabilizes hierarchical training.

RAPS. The RAPS baseline (Dalal et al., 2021) uses a library of predefined robot action primitives
controlled by the higher-level policy. While RAPS performs well on simpler maze tasks, it struggles
on all other harder tasks. This suggests methods relying on fixed primitives lack flexibility for
complex objectives. In contrast, LGR2 autonomously discovers effective subgoal decompositions
and adapts dynamically, achieving strong results on multi-step, long-horizon tasks.
HAC. HAC (Andrychowicz et al., 2017) attempts to mitigate non-stationarity by assuming an optimal
lower-level policy and enhances the higher-level replay buffer using subgoal relabeling. Despite this,
our experiments show LGR2 surpasses HAC (see Figure 2). We believe that this is because LGR2’s
language-guided reward relabeling generates stable, goal-aligned rewards for the higher-level policy
without requiring the unrealistic assumption of an optimal lower-level primitive, thus providing a
more practical and robust mechanism for addressing non-stationarity. HIRO (Nachum et al., 2018)
is another such baseline that addresses non-stationarity, however since HAC has been found to
outperform HIRO, we compared with HAC baseline.
HIER. The HIER baseline is a standard hierarchical SAC model where the higher-level reward is the
cumulative sum of environment rewards across k steps. LGR2 achieves much higher performance
than HIER, underscoring the critical role of language-guided reward generation in reducing non-
stationarity and resulting in stable hierarchical learning.
DAC. Finally, we also consider DAC baseline with access to a single demonstration. DAC fails to
show any significant progress, as seen in Figure 2, which shows that LGR2 outperforms single-level
baselines with access to privileged information like expert demonstrations.

Can language-guided reward relabeling achieve better rewards than alternative baselines?
To evaluate the effectiveness of language-guided reward relabeling in densifying rewards and promot-
ing exploration, we compare the average reward per episode achieved by LGR2 with two hierarchical
baselines: HAC and HIER. As shown in Supplementary Sec. 3 Figure 1, LGR2 consistently achieves
substantially higher average rewards throughout training, demonstrating its ability to generate richer

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

rewards. This reflects the benefit of using language-derived, relabeled high-level rewards, which
provide semantically meaningful feedback even in highly sparse environments. In contrast, HAC and
HIER both suffer from limited reward density, leading to slower learning and inefficient exploration.
These results underscore that our language-guided reward relabeling is key to producing informative
rewards and improve performance in complex, sparse-reward robotic tasks.

Does language-guided reward relabeling outperform standard HRL with hindsight relabeling?
We assess the isolated contribution of language-guided reward relabeling by comparing LGR2 with the
ablation HIER-HER, a hierarchical RL baseline that uses HER but relies solely on environment signals
for high-level rewards, with no language guidance. This setup retains all elements of LGR2 except
language-driven reward relabeling. As shown in Figure 3, LGR2 consistently outperforms HIER-HER
across all tasks, achieving greater learning efficiency and higher success rates in complex sparse-
reward environments. These improvements highlight that while HER effectively densifies feedback,
the core gains of LGR2 stem from the ability of language-guided relabeling to provide a stationary,
semantically aligned supervisory signal for the high-level policy. This stabilizes hierarchical learning
and leads to improved performance over baselines.

Can LGR2 mitigate non-stationarity in HRL?
We show LGR2’s ability to mitigate non-stationarity in HRL in Figure 4. To quantify this, we
compare LGR2 to the HIER baseline by measuring the average distance between subgoals predicted
by the higher-level policy and the final states reached by the lower-level policy at different training
stages (Initial: start of training, Mid: halfway point, Final: end of training). Lower distance values
indicate that the higher-level policy generates subgoals that are feasible and well-aligned with
the abilities of the evolving lower-level policy, leading to more consistent goal achievement and
reduced non-stationarity. As shown in Figure 4, LGR2 consistently achieves lower average distances
across training, validating that it produces achievable subgoals and robustly reduces non-stationarity
compared to the baseline.

What is the contribution of hindsight experience relabeling (HER) in improving performance?
Further, we analyse the importance of hindsight experience replay (HER) (Andrychowicz et al., 2017)
for densifying rewards in sparse reward tasks. To this end, we compare LGR2 with LGR2-No-HER
baseline, which is LGR2 baseline without HER. As seen in Figure 5, HER is crucial for good
performance, since language-guided rewards are too sparse to generate any meaningful reward signal.

Can LGR2 policies transfer to real-world robots?
We conducted real-world experiments on pick-and-place and bin tasks (supplementary Section 9),
using a RealSense D435 depth camera to track the robotic arm, block, and bin positions. The
robot was controlled via the manufacturer’s Python SDK at 20 Hz (∆t = 50 ms), with episodes
lasting about 40 seconds. Policies were trained in simulation and then deployed on the robot; due to
challenges in precise velocity control, we used small fixed velocities, achieving good performance.
Across 5 sets of 10 trials each, LGR2 attained average success rates of 60% and 50%, with variances
0.07 and 0.03 for pick-and-place and bin tasks, respectively. The best baseline, L2R, failed to show
significant progress. The supplementary also video depicts real-world evaluation.

6 CONCLUSION

Limitations and Future Work. While LGR2 mitigates reward-level non-stationarity through
language-guided relabeling, it does not address transition dynamics shifts from the evolving lower-
level policy. Future work could extend LGR2 to handle transition non-stationarity via predictive
models and automate prompt generation to reduce manual design effort and potential hallucinations.
Discussion. In this work, we introduced LGR2, a novel HRL framework that leverages language-
guided reward relabeling to address non-stationarity by deriving invariant reward functions from
natural language instructions. Combined with HER for reward densification, LGR2 enables efficient
learning on complex, long-horizon tasks without requiring extensive demonstrations. Our approach
consistently outperforms strong baselines across challenging simulated and real-world robotic tasks,
demonstrating the effectiveness of integrating large language models into HRL pipelines. This
work underscores the importance of harnessing semantic knowledge from natural language for
scalable robotic control. LGR2 represents a promising step toward robots that robustly interpret
and execute human instructions, with future research expected to further broaden the scope of
language-conditioned hierarchical policies.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work presents LGR2, a hierarchical reinforcement learning framework that integrates large
language models for generating reward functions in robotic navigation and manipulation tasks. We
recognize several ethical considerations associated with this research. First, our method relies on
LLMs to translate natural language instructions into reward parameters, which may inherit biases
from the training data of these models, potentially leading to unintended or unfair behaviors in robotic
systems, especially in diverse real-world applications. Second, the focus on robotic tasks such as
pick-and-place, bin manipulation, and kitchen environments could contribute to advancements in
automation, which may impact employment in manual labor sectors. While LGR2 aims to enhance
efficiency and stability in sparse-reward settings, we emphasize the need for careful assessment of its
societal effects, including equitable access to such technologies. Third, training hierarchical policies
requires substantial computational resources, contributing to energy consumption and environmental
footprint; we advocate for optimized implementations to minimize this impact. Fourth, all datasets and
environments used (e.g., maze navigation, Franka kitchen from D4RL) comply with their respective
licenses, and our approach does not introduce new privacy risks beyond standard RL practices. We
encourage ethical deployment with emphasis on transparency, bias mitigation, and human oversight.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide detailed documentation of our methods and experiments.
The full mathematical formulation of the language-guided reward generation, relabeling process,
and training objectives (including SAC adaptations) is presented in Section 4, with pseudocode in
Algorithm 1 and additional details in Appendix A.4. Hyperparameter configurations, such as learning
rates, batch sizes, network architectures (three fully connected layers with 512 units), and SAC
parameters (e.g., alpha=0.05, tau=0.8), are specified in Appendix Table 1. Experiments span four
robotic environments (maze navigation, pick-and-place, bin, Franka kitchen), with configurations,
state/action spaces, reward structures, and evaluation metrics (e.g., success rates, non-stationarity
distance) described in Section 5 and Appendix A.4. Prompts for LLM-based motion descriptors
and reward coders are fully provided in Appendix A.5, along with sample generated codes in
Appendix A.5. Baseline implementations (e.g., L2R, SAGA, RAPS, HAC, HIER, DAC) are detailed
in Section 5 for fair comparisons, including tuning via grid search. We intend to release the complete
codebase, including LLM integration, replay buffer management, and evaluation scripts, upon
publication. Statistical analyses, such as means and standard deviations over 5 seeds, are reported
with confidence intervals where applicable. Computational requirements (e.g., Intel Core i7, NVIDIA
GTX 1080, training timesteps) are outlined in Appendix A.3 to support replication on similar
hardware.

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel H Fong, Peter Welinder,
Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NIPS, 2017.

Dzmitry Bahdanau, Felix Hill, Jan Leike, Edward Hughes, Seyedarian Hosseini, Pushmeet
Kohli, and Edward Grefenstette. Learning to understand goal specifications by modelling
reward. In International Conference on Learning Representations, 2018. URL https:
//api.semanticscholar.org/CorpusID:52911374.

Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13:341–379, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, et al. Language models are few-shot learners. NeurIPS, 33:1877–1901, 2020.

10

https://api.semanticscholar.org/CorpusID:52911374
https://api.semanticscholar.org/CorpusID:52911374

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation
behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4:2007–2014, 2018.
URL https://api.semanticscholar.org/CorpusID:59600008.

Murtaza Dalal, Deepak Pathak, and Ruslan Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. CoRR, abs/2110.15360, 2021. URL https:
//arxiv.org/abs/2110.15360.

Peter Dayan and Geoffrey E. Hinton. Feudal reinforcement learning. In Advances in Neural
Information Processing Systems 5, [NIPS Conference], pp. 271–278, San Francisco, CA, USA,
1993. Morgan Kaufmann Publishers Inc. ISBN 1-55860-274-7.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decompo-
sition. CoRR, cs.LG/9905014, 1999. URL https://arxiv.org/abs/cs/9905014.

Frederik Ebert, Yanlai Yang, Karl Schmeckpeper, Bernadette Bucher, Georgios Georgakis, Kostas
Daniilidis, Chelsea Finn, and Sergey Levine. Bridge data: Boosting generalization of robotic skills
with cross-domain datasets, 2021.

Justin Fu, Anoop Korattikara Balan, Sergey Levine, and Sergio Guadarrama. From language to goals:
Inverse reinforcement learning for vision-based instruction following. ArXiv, abs/1902.07742,
2019. URL https://api.semanticscholar.org/CorpusID:67788344.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for
deep data-driven reinforcement learning. CoRR, abs/2004.07219, 2020. URL https://arxiv.
org/abs/2004.07219.

Prasoon Goyal, Scott Niekum, and Raymond J. Mooney. Using natural language for reward shaping
in reinforcement learning, 2019.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long horizon tasks via imitation and reinforcement learning. Conference on
Robot Learning (CoRL), 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018. URL http://arxiv.org/abs/1801.01290.

Taylor Howell, Nimrod Gileadi, Saran Tunyasuvunakool, Kevin Zakka, Tom Erez, and Yuval Tassa.
Predictive sampling: Real-time behaviour synthesis with mujoco. arXiv preprint arXiv:2212.00541,
2022.

Hengyuan Hu and Dorsa Sadigh. Language instructed reinforcement learning for human-ai coordina-
tion. In ICML, ICML’23. JMLR.org, 2023.

Wenlong Huang, Fei Xia, Tianhe Xiao, Ho Chan, Jonathan Liang, Pete Florence, Andy Zeng,
Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning
through planning with language models. arXiv preprint arXiv:2207.05608, 2022.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning, 2022.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt: Scal-
able deep reinforcement learning for vision-based robotic manipulation. CoRR, abs/1806.10293,
2018. URL http://arxiv.org/abs/1806.10293.

Aishwarya Kamath, Peter Anderson, Su Wang, Jing Yu Koh, Alexander Ku, Austin Waters, Yinfei
Yang, Jason Baldridge, and Zarana Parekh. A new path: Scaling vision-and-language navigation
with synthetic instructions and imitation learning, 2023.

Siddharth Karamcheti, Megha Srivastava, Percy Liang, and Dorsa Sadigh. Lila: Language-
informed latent actions. In Conference on Robot Learning, 2021. URL https://api.
semanticscholar.org/CorpusID:243832934.

11

https://api.semanticscholar.org/CorpusID:59600008
https://arxiv.org/abs/2110.15360
https://arxiv.org/abs/2110.15360
https://arxiv.org/abs/cs/9905014
https://api.semanticscholar.org/CorpusID:67788344
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2004.07219
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1806.10293
https://api.semanticscholar.org/CorpusID:243832934
https://api.semanticscholar.org/CorpusID:243832934

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL http:
//arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a conference
paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yusuke Matsuo, and Yutaka Iwasawa. Large
language models are zero-shot reasoners. In NeurIPS, pp. 22199–22213, 2022.

Hadas Kress-Gazit and George Pappas. Translating structured english to robot controllers. Ad-
vanced Robotics, 22:1343 – 1359, 2008. URL https://api.semanticscholar.org/
CorpusID:7457220.

Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. Room-across-room:
Multilingual vision-and-language navigation with dense spatiotemporal grounding, 2020.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. CoRR, abs/1504.00702, 2015. URL http://arxiv.org/abs/1504.
00702.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In International Conference on Learning Representations, 2018.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-9203. doi:
10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.abq1158.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control, 2023a.

Jonathan Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2023b.

Jessy Lin, Daniel Fried, Dan Klein, and Anca Dragan. Inferring rewards from language in context. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 8546–8560,
Dublin, Ireland, May 2022a. Association for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.585. URL https://aclanthology.org/2022.acl-long.585.

Jessy Lin, Daniel Fried, Dan Klein, and Anca Dragan. Inferring rewards from language in context.
arXiv preprint arXiv:2204.02515, 2022b.

Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch, Travis
Armstrong, and Pete Florence. Interactive language: Talking to robots in real time, 2022.

Cynthia Matuszek, Evan V. Herbst, Luke Zettlemoyer, and Dieter Fox. Learning to parse natural
language commands to a robot control system. In International Symposium on Experimental
Robotics, 2012. URL https://api.semanticscholar.org/CorpusID:1658890.

Oier Mees, Jessica Borja-Diaz, and Wolfram Burgard. Grounding language with visual affordances
over unstructured data, 2023.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

12

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:7457220
https://api.semanticscholar.org/CorpusID:7457220
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1504.00702
http://dx.doi.org/10.1126/science.abq1158
https://aclanthology.org/2022.acl-long.585
https://api.semanticscholar.org/CorpusID:1658890

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Suraj Nair, Eric Mitchell, Kevin Chen, brian ichter, Silvio Savarese, and Chelsea Finn. Learning
language-conditioned robot behavior from offline data and crowd-sourced annotation. In Aleksan-
dra Faust, David Hsu, and Gerhard Neumann (eds.), Proceedings of the 5th Conference on Robot
Learning, volume 164 of Proceedings of Machine Learning Research, pp. 1303–1315. PMLR,
08–11 Nov 2022. URL https://proceedings.mlr.press/v164/nair22a.html.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, and
Igor Babuschkin et al. Gpt-4 technical report, 2024.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan,
M. Kearns, and S. Solla (eds.), Advances in Neural Information Processing Systems, volume 10.
MIT Press, 1998.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Pratyusha Sharma, Balakumar Sundaralingam, Valts Blukis, Chris Paxton, Tucker Hermans, Antonio
Torralba, Jacob Andreas, and Dieter Fox. Correcting robot plans with natural language feedback.
arXiv preprint arXiv:2204.05186, 2022.

Utsav Singh and Vinay P Namboodiri. Crisp: Curriculum inducing primitive informed subgoal
prediction. arXiv preprint arXiv:2304.03535, 2023a.

Utsav Singh and Vinay P Namboodiri. Pear: Primitive enabled adaptive relabeling for boosting
hierarchical reinforcement learning. arXiv preprint arXiv:2306.06394, 2023b.

Utsav Singh, Souradip Chakraborty, Wesley A Suttle, Brian M Sadler, Anit Kumar Sahu, Mubarak
Shah, Vinay P Namboodiri, and Amrit Singh Bedi. Hierarchical preference optimization: Learning
to achieve goals via feasible subgoals prediction. arXiv preprint arXiv:2411.00361, 2024a.

Utsav Singh, Wesley A Suttle, Brian M Sadler, Vinay P Namboodiri, and Amrit Singh Bedi. Piper:
Primitive-informed preference-based hierarchical reinforcement learning via hindsight relabeling.
arXiv preprint arXiv:2404.13423, 2024b.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, and Katie Millican et al. Gemini: A family of
highly capable multimodal models, 2024.

Lucas Tian, Kevin Ellis, Marta Kryven, and Josh Tenenbaum. Learning abstract structure for drawing
by efficient motor program induction. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 2686–
2697. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J. Lim. Learning to synthesize programs as
interpretable and generalizable policies, 2022.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. CoRR,
abs/1703.01161, 2017.

13

https://proceedings.mlr.press/v164/nair22a.html
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1c104b9c0accfca52ef21728eaf01453-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Vivienne Huiling Wang, Joni Pajarinen, Tinghuai Wang, and Joni-Kristian Kämäräinen. State-
conditioned adversarial subgoal generation. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 10184–10191, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc Le, Denny
Zhou, and et al. Chain of thought prompting elicits reasoning in large language models. NeurIPS,
35:24824–24837, 2022.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language to rewards
for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 2

3 Problem Formulation 3

4 Methodology 4

4.1 Reward Parameter Generation . 4

4.2 Relabeling of High-Level Rewards . 5

4.3 Addressing Reward Sparsity with HER . 5

4.4 Training Objectives . 6

5 Experiments 6

6 Conclusion 9

A Appendix 15

A.1 Broader Impact Statement . 15

A.2 LGR2 Algorithm . 15

A.3 Implementation details . 16

A.4 Environment details . 16

A.4.1 Maze navigation environment . 17

A.4.2 Pick and place and bin environments . 17

A.4.3 Franka kitchen environment . 17

A.5 Full Prompts . 18

A.6 Sample Codes . 23

A.7 Qualitative visualizations . 25

A APPENDIX

A.1 BROADER IMPACT STATEMENT

Our proposed approach and algorithm are not aimed at delivering immediate technological break-
throughs. Instead, our work makes a conceptual contribution by addressing fundamental aspects
of Hierarchical Reinforcement Learning (HRL). By leveraging language-guided instructions, we
establish a novel framework with the potential to significantly propel research in HRL and related
areas. This conceptual foundation lays the groundwork for future studies and may catalyze further
advancements in the field.

A.2 LGR2 ALGORITHM

The detailed LGR2 pseudocode is provided here:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 LGR2

1: Initialize higher level replay buffer DH = {} and lower level replay buffer DL = {}
2: for i = 1 . . . N do
3: // Collect transitions using πH and store in DH

4: // Collect transitions using πL and store in DL

5: for each timestep t do
6: dH ← dH ∪ {(st, g∗, gt, rHt , st+k−1)}
7: dL ← dL ∪ {(st, gt, at, rLt , st+1)}
8: DH ← DH ∪ dH

9: DL ← DL ∪ dL

10: // Sample and relabel higher-level trajectories
11: for i = 1 . . .M do
12: σ = {(st, g∗, gt, rHt , st+k−1)}n−1

t=1 ∼ DH

13: // Relabel the reward by language-guided rϕ
14: // Store the transition in DH

15: DH ← DH ∪ {(st, g∗, gt, rϕ, st+k−1)}n−1
t=1

16: // Sample a set of additional goals for HER (Ĝ)
17: for ĝ ∈ Ĝ do
18: // Relabel g by ĝ and rϕ by r̂ϕ in σ such that
19: σ̂ = {(st, ĝ, gt, r̂ϕ, st+k−1)}n−1

t=1

20: Store in replay buffer DH ← DH ∪ σ̂

21: // Policy Learning
22: for each gradient step do
23: Sample {(σj)}mj=1 from DH

24: Sample {(δj)}mj=1 from DL

25: Optimize higher policy πH using SAC
26: Optimize lower policy πL using SAC

A.3 IMPLEMENTATION DETAILS

We conduct our experiments on two systems, each equipped with an Intel Core i7 processor, 48GB of
RAM, and an Nvidia GeForce GTX 1080 GPU. We also report the number of timesteps required for
running the experiments.

In our setup, both the actor and critic networks are implemented as three-layer, fully connected neural
networks, each with 512 neurons per layer.

For the maze navigation task, a 7-degree-of-freedom (7-DoF) robotic arm moves through a four-room
maze with its closed gripper fixed at table height, navigating to reach the goal position. In the
pick-and-place task, the same 7-DoF robotic arm identifies a square block, picks it up, and delivers
it to the goal position. In the bin environment, the gripper must pick up the block and place it in a
designated bin. Lastly, in the kitchen task, a 9-DoF Franka robot performs a predefined complex
action—opening a microwave door—to complete the task.

To ensure fair comparisons, we maintain consistency across all baselines by keeping key parameters
unchanged wherever possible. These include the neural network layer width, the number of layers,
the choice of optimizer, and the SAC implementation parameters.

We also provide the hyperparameter configuration in Table 1

A.4 ENVIRONMENT DETAILS

In this section, we provide the environment and implementation details for all the tasks:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 1: Hyperparameter Configuration

Parameter Value Description
activation tanh activation for hierarchical policies
layers 3 number of layers in the critic/actor networks
hidden 512 number of neurons in each hidden layer
Q_lr 0.001 critic learning rate
pi_lr 0.001 actor learning rate
buffer_size int(1E7) for experience replay
tau 0.8 polyak averaging coefficient
clip_obs 200 clip observation
n_cycles 1 per epoch
n_batches 10 training batches per cycle
batch_size 1024 batch size hyper-parameter
random_eps 0.2 percentage of time a random action is taken
alpha 0.05 weightage parameter for SAC
noise_eps 0.05 std of gaussian noise added to not-completely-random actions
norm_eps 0.01 epsilon used for observation normalization
norm_clip 5 normalized observations are cropped to this value
adam_beta1 0.9 beta 1 for Adam optimizer
adam_beta2 0.999 beta 2 for Adam optimizer

A.4.1 MAZE NAVIGATION ENVIRONMENT

In this environment, a 7-DOF robotic arm gripper navigates through randomly generated four-room
mazes to reach the goal position. The gripper remains closed and fixed at table height, with the
positions of walls and gates randomly determined. The table is divided into a rectangular W ×H grid,
and the vertical and horizontal wall positions, WP and HP , are randomly selected from (1,W − 2)
and (1, H − 2), respectively. In the constructed four-room environment, the four gate positions are
randomly chosen from (1,WP − 1), (WP + 1,W − 2), (1, HP − 1), and (HP + 1, H − 2).

In the maze environment, the state is represented as the vector [dx,M], where dx denotes the current
gripper position and M is the sparse maze array. The higher-level policy input is a concatenated
vector [dx,M, g], where g is the target goal position. The lower-level policy input is a concatenated
vector [dx,M, sg], where sg is the sub-goal provided by the higher-level policy. M is a discrete 2D
one-hot vector array, with 1 indicating the presence of a wall block. The lower primitive action a is a
4-dimensional vector, with each dimension ai ∈ [0, 1]. The first three dimensions provide offsets to
be scaled and added to the gripper position for movement. The last dimension controls the gripper,
with 0 indicating a closed gripper and 1 indicating an open gripper.

A.4.2 PICK AND PLACE AND BIN ENVIRONMENTS

In this section, we describe the environment details for the pick and place and bin tasks. The state
is represented as the vector [dx, o, q, e], where dx is the current gripper position, o is the position
of the block object on the table, q is the relative position of the block with respect to the gripper,
and e includes the linear and angular velocities of both the gripper and the block object. The higher-
level policy input is a concatenated vector [dx, o, q, e, g], where g is the target goal position. The
lower-level policy input is a concatenated vector [dx, o, q, e, sg], where sg is the sub-goal provided
by the higher-level policy. In our experiments, the sizes of dx, o, q, and e are set to 3, 3, 3, and 11,
respectively. The lower primitive action a is a 4-dimensional vector with each dimension ai ∈ [0, 1].
The first three dimensions provide gripper position offsets, and the last dimension controls the gripper.
During training, the positions of the block object and the goal are randomly generated (the block is
always initialized on the table, and the goal is always above the table at a fixed height).

A.4.3 FRANKA KITCHEN ENVIRONMENT

For this environment please refer to the D4RL environment Fu et al. (2020). In this environment, the
franka robot has to perform a complex multi-stage task in order to achieve the final goal.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.5 FULL PROMPTS

In this section, we provide detailed prompts for motion description and reward translator for all the
environments.

A.4.1. Maze Navigation Environment

We now present the motion descriptor and reward generator prompts for the maze naviga-
tion environment.

Motion Descriptor Prompt for Maze Navigation environment

We want you to generate a random position for an object within the table following the descrip-
tion and rules.

[Description]

1. There is a table which can be represented as a matrix of (num_1, num_2).
2. Generate walls within the table by choosing a random row and random column and

blocking all of (num_1+num_2) cells.
3. Generate four random cells from the (num_1+num_2) marked as walls. Remove the

blocks from these cells and mark them as gates.
4. Generate final position for the object like CHOICE:[cuboid,apple,ball] with the (x,y)

co-ordinates between (num_4,num_5) and height is at table height in the bottom right
room and bottom right corner.

Rules

1. The robot is a 7-DOF robotic arm gripper.
2. The height of the table is table_height=0.42 cm.
3. If you see num_1 replace it with an integer within 10 and 20.
4. If you see num_2 replace it with an integer within 10 and 20.
5. If you see phrases like CHOICE: [choice1, choice2, ...], it means you should replace

the entire phrase with one of the choices listed.
6. Please remember that the final position cannot coincide with gates, walls or starting

position location.
7. The starting position of the location is (1,3)

Reward Generator Prompt for Maze Navigation maze environment

We have a description of a robot’s motion and we want you to turn that into the corresponding
program with following functions:

def reset_environment()

def set_Gripper_Pos(x_pos, y_pos, z_pos)

x_pos: position of x-coordinate of the gripper of robot arm.

y_pos: position of y-coordinate of the gripper of robot arm.

z_pos: position of z-coordinate (height) of the gripper of robot arm.

generate_maze()

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

do_simulation()

Example answer code:

import numpy as np reset_environment()

This is a new task so reset environment else we do not need it.

set_Gripper_Pos(3.0,2.0,0.56)

set_Gripper_Pos(4.45,3.56,0.48)

set_Gripper_Pos(6.85,7.36,0.64)

generate_maze()

generate maze with all the constraints

do_simulation()

run the simulation

A.4.2. Pick and Place Environment

We now present the motion descriptor and reward generator prompts for the pick and place
environment.

Motion Descriptor Prompt for Pick and Place Environment

We want you to generate a random position for an object within the table following the descrip-
tion and rules.

[Description]

1. There is a table which can be represented as a matrix of (num_1, num_2) and height
(num_3).

2. Generate final position for the object like CHOICE:[cuboid,apple,ball] with the (x,y)
co-ordinates between (num_4,num_5) and height (num_6).

Rules:

1. The robot is a 7-DOF robotic arm gripper.
2. The height of the table is table_height=0.42 cm.
3. The max height the arm can reach is max_height=0.66 cm.
4. If you see num_1 replace it with an integer within 10 and 20.
5. If you see num_2 replace it with an integer within 10 and 20.
6. If you see num_3 replace it with 0.42.
7. If you see phrases like CHOICE: [choice1, choice2, ...], it means you should replace

the entire phrase with one of the choices listed.
8. Please remember that there is an object on the table.
9. The block is light enough for the robot to pick up and hold in the air for a long time,

like 4 seconds.

Reward Generator Prompt for Pick and Place Environment

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

We have a description of a robot’s motion and we want you to turn that into the corresponding
program with following functions:

def reset_environment()

def set_Gripper_Pos(x_pos, y_pos, z_pos)

x_pos: position of x-coordinate of the gripper of robot arm.

y_pos: position of y-coordinate of the gripper of robot arm.

z_pos: position of z-coordinate (height) of the gripper of robot arm.

def generate_Object_Pos()

def do_simulation()

Example answer code:

import numpy as np

reset_environment()

This is a new task so reset environment else we do not need it.

set_Gripper_Pos(3.0,2.0,0.56)

set_Gripper_Pos(4.45,3.56,0.48)

set_Gripper_Pos(6.85,7.36,0.64)

do_simulation()

run the simulation

A.4.3. Bin Environment

We now present the motion descriptor and reward generator prompts for the bin environ-
ment.

Motion descriptor prompt for Bin environment

We want you to generate a random position for a bin and an object within the bin following the
description and rules. [Description]

1. There is a table which can be represented as a matrix of (num_1, num_2) and height
(num_3).

2. There is a bin on the table.
3. Generate a random position for the bin within the table.
4. Generate a final position (x,y) for placing the object like CHOICE:[cuboid,apple,ball]

within the bin

[Rules]

1. The robot is a 7-DOF robotic arm gripper.
2. The height of the table is table_height=0.42 cm.
3. The max height the arm can reach is max_height=0.66 cm.
4. If you see num_1 replace it with an integer within 10 and 20.
5. If you see num_2 replace it with an integer within 10 and 20.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

6. If you see num_3 replace it with 0.42.
7. The bin has to be completely within the table. No part of the bin can be outside of the

table.
8. The height, width and length of the table are 0.1 cm, respectively.
9. The final position of the object should be continuous and at the centre of the bin.

10. If you see phrases like CHOICE: [choice1, choice2, ...], then you should be replacing
the entire phrase with one of the choices listed.

11. Please remember that there is always a bin on the table.
12. The object is light enough for the robot to pick up and hold in the air for a long time,

like 4 seconds.

Reward generator prompt for Bin environment

We have a description of a robot’s motion and we want you to turn that into the corresponding
program with following functions:

def reset_environment()

def set_Gripper_Pos(x_pos, y_pos, z_pos)

x_pos: position of x-coordinate of the gripper of robot arm.

y_pos: position of y-coordinate of the gripper of robot arm.

z_pos: position of z-coordinate (height) of the gripper of robot arm.

def generate_Bin()

def do_simulation()

Example answer code:

import numpy as np

reset_environment()

This is a new task so reset environment else we do not need it.

set_Gripper_Pos(3.0,2.0,0.56)

set_Gripper_Pos(4.45,3.56,0.48)

set_Gripper_Pos(6.85,7.36,0.64)

generate_Bin()

generate bin with all the constraints

do_simulation()

run the simulation

A.4.4. Franka Kitchen Environment

We now present the motion descriptor and reward generator prompts for the franka kitchen
environment.

Motion descriptor prompt for Franka kitchen environment

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We want you to generate a random position for the door of a microwave and gas-knob following
the description and rules.

[Description]

1. There is a microwave and gas knob.
2. Open the microwave door to a certain point num_1.
3. Turn the gas knob to co-ordinates (num_2, num_3).

[Rules]

1. The robot is a 7-DOF robotic arm gripper.
2. The height of the table is table_height=0.42 cm.
3. The max height the arm can reach is max_height=0.66 cm.
4. If you see num_1 replace it with a continuous number -0.75.
5. If you see num_2 replace it with a continuous number -0.88.
6. If you see num_2 replace it with a continuous number -0.01.

Reward generator prompt for Franka kitchen environment

We have a description of a robot’s motion and we want you to turn that into the corresponding
program with following functions:

def reset_environment()

def set_microwave_Pos(joint_1_Pos)

joint_1_Pos: Position of joint to determine whether microwave door is open or not.

def set_gas_Knob_Pos(joint_1_Pos, joint_2_Pos)

joint_1_Pos: x co-ordinate of the gas knob.

joint_2_pos: y co-ordinate of the gas knob.

def do_simulation()

Example answer code:

import numpy as np

reset_environment()

This is a new task so reset environment else we do not need it.

set_microwave_Pos(-0.75)

set_microwave_Pos(-0.55)

set_gas_Knob_Pos(-0.88, -0.01)

set_gas_Knob_Pos(-0.75, -0.1)

do_simulation()

run the simulation

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.6 SAMPLE CODES

In this section, we show sampled responses for all four environments mentioned in this paper for a
better understanding of the LGR2 method. We sample 2-3 responses for each method to show both
successful and failed results.

A.5.1. Maze Navigation Environment

Sample Code for Maze Navigation environment

Here, we provide the sample code for the Maze Navigation environment generated by GPT-
3.5.

import numpy as np

def reset_environment():

print("Environment reset.")

def set_Gripper_Pos(x_pos, y_pos, z_pos):

print(f"Setting gripper position to x: x_pos, y: y_pos, z: z_pos.")

def generate_maze():

print("Generating maze...")

def do_simulation():

print("Running simulation...")

reset_environment()

Set the gripper positions for linear motion

set_Gripper_Pos(3.0, 2.0, 0.56)

set_Gripper_Pos(4.45, 3.56, 0.48)

set_Gripper_Pos(6.85, 7.36, 0.64)

Generate maze

generate_maze()

Run simulation

do_simulation()

A.5.2. Pick and Place Environment

Sample Code for Pick and Place environment

Here, we provide the sample code for the Pick and Place environment generated by GPT-
3.5.

import numpy as np

def reset_environment():

print("Environment reset.")

def set_Gripper_Pos(x_pos, y_pos, z_pos):

print(f"Setting gripper position to x: x_pos, y: y_pos, z: z_pos.")

def generate_Object_Pos(): print("Generating object position.")

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

def do_simulation():

print("Simulation started.")

reset_environment()

set_Gripper_Pos(3.0, 2.0, 0.56)

set_Gripper_Pos(4.45, 3.56, 0.48)

set_Gripper_Pos(6.85, 7.36, 0.64)

generate_Object_Pos()

do_simulation()

A.5.3. Bin Environment

Sample Code for Bin environment

Here, we provide the sample code for the Bin environment generated by GPT-3.5.

import numpy as np

def reset_environment():

print("Environment reset.")

def set_Gripper_Pos(x_pos, y_pos, z_pos):

print(f"Setting gripper position to x: x_pos, y: y_pos, z: z_pos.")

def generate_Bin():

print("Generating bin with all constraints.")

def do_simulation():

print("Simulation started.")

reset_environment()

set_Gripper_Pos(3.0, 2.0, 0.56)

set_Gripper_Pos(4.45, 3.56, 0.48)

set_Gripper_Pos(6.85, 7.36, 0.64)

generate_Bin()

do_simulation()

A.5.4. Franka Kitchen Environment

Sample Code for Franka kitchen environment

Here, we provide the sample code for the Franka kitchen environment generated by GPT-
3.5.

import numpy as np

def reset_environment():

print(“Environment reset”)

def set_microwave_Pos(joint_1_Pos):

print(f"Setting microwave door position to joint_1_Pos.")

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

def set_gas_Knob_Pos(joint_1_Pos, joint_2_Pos):

print(f"Setting gas knob position to x: joint_1_Pos, y: joint_2_Pos.")

def do_simulation():

print("Simulation started.")

reset_environment()

set_microwave_Pos(-0.75)

set_microwave_Pos(-0.55)

set_gas_Knob_Pos(-0.88, -0.01)

set_gas_Knob_Pos(-0.75, -0.1)

do_simulation()

A.7 QUALITATIVE VISUALIZATIONS

We provide qualitative visualizations for all the environments:

Figure 6: Successful visualization: The visualization is a successful attempt at performing maze
navigation task

Figure 7: Successful visualization: The visualization is a successful attempt at performing pick and
place task.

Figure 8: Successful visualization: The visualization is a successful attempt at performing bin task.

Figure 9: Successful visualization: The visualization is a successful attempt at performing kitchen
task.

25

	Introduction
	Related Work
	Problem Formulation
	Methodology
	Reward Parameter Generation
	Relabeling of High-Level Rewards
	Addressing Reward Sparsity with HER
	Training Objectives

	Experiments
	Conclusion
	Appendix
	Broader Impact Statement
	LGR2 Algorithm
	Implementation details
	Environment details
	Maze navigation environment
	Pick and place and bin environments
	Franka kitchen environment

	Full Prompts
	Sample Codes
	Qualitative visualizations

