

000 001 002 003 004 005 ROBOVIEW-BIAS: BENCHMARKING VISUAL BIAS IN 006 EMBODIED AGENTS FOR ROBOTIC MANIPULATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 The safety and reliability of embodied agents rely on accurate and unbiased vi-
032 sual perception. However, existing benchmarks mainly emphasize generalization
033 and robustness under perturbations, while systematic quantification of visual bias
034 remains scarce. This gap limits a deeper understanding of how perception influ-
035 ences decision-making stability. To address this issue, we propose RoboView-
036 Bias, the first benchmark specifically designed to systematically quantify visual
037 bias in robotic manipulation, following a principle of factor isolation. Leverage-
038 ing a structured variant-generation framework and a perceptual-fairness validation
039 protocol, we create 2,127 task instances that enable robust measurement of biases
040 induced by individual visual factors and their interactions. Using this benchmark,
041 we systematically evaluate three representative embodied agents across two pre-
042 vailing paradigms and report three key findings: (i) all agents exhibit significant
043 visual biases, with camera viewpoint being the most critical factor; (ii) agents
044 achieve their highest success rates on highly saturated colors, indicating inherited
045 visual preferences from underlying VLMs; and (iii) visual biases show strong,
046 asymmetric coupling, with viewpoint strongly amplifying color-related bias. Fi-
047 nally, we demonstrate that a mitigation strategy based on a semantic grounding
048 layer substantially reduces visual bias by approximately 54.5% on MOKA. Our
049 results highlight that systematic analysis of visual bias is a prerequisite for devel-
050 oping safe and reliable general-purpose embodied agents. Our code is available at
051 <https://anonymous.4open.science/r/Roboview-Bias-CCFD-ee/>
052
053

1 INTRODUCTION

031 The safety and reliability of general-purpose robots depend on accurate and unbiased visual per-
032 ception, which is the primary channelLiu et al. (2025) through which embodied agentsMa et al.
033 (2024); Li et al. (2024b) perceive and act in the physical world. In hierarchical control, top-level
034 vision-language planners can be biased with respect to color, viewpoint, or scale. Such biases can
035 be amplified as high-level plans are broken into steps and constraints, destabilizing both planning
036 and execution.

037 Existing robot manipulation benchmarks primarily evaluate an algorithm’s generalization James
038 et al. (2020); Zhu et al. (2020); Heo et al. (2023); Pumacay et al. (2024); Luo et al. (2025) and
039 robustness Puig et al.; Xie et al. (2024); Li et al. (2024a) under new tasks and environment changes.
040 However, common metrics emphasize average success rates while overlooking variation and insta-
041 bility across visual attributes, thereby hiding failure risks under specific visual conditions. Specifi-
042 cally, they rarely independently isolate and quantify systematic biases from visual attributes, such as
043 color and camera viewpoint, under controlled conditions. They also lack sensitivity and interaction
044 metrics along the perception-to-decision pipeline, as well as fair and clear comparison sets.

045 We introduce RoboView-Bias, a benchmark to systematically quantify visual bias in robots using the
046 principle of factorial isolation. To generate evaluation instances, our structured variant-generation
047 framework (SVGF) partitions all variables into two disjoint sets. ① Dimensions of Visual Perturba-
048 tion (V), comprise the attributes under evaluation: 141 object colors, 9 camera orientations, 21 full
049 camera poses, and 9 distance scales. ② Dimensions of Task Context Generalization (D), includes
050 4 initial positions, 4 shapes, and 3 language instructions to ensure robust findings across diverse
051 4 initial positions, 4 shapes, and 3 language instructions to ensure robust findings across diverse
052 4 initial positions, 4 shapes, and 3 language instructions to ensure robust findings across diverse
053 4 initial positions, 4 shapes, and 3 language instructions to ensure robust findings across diverse

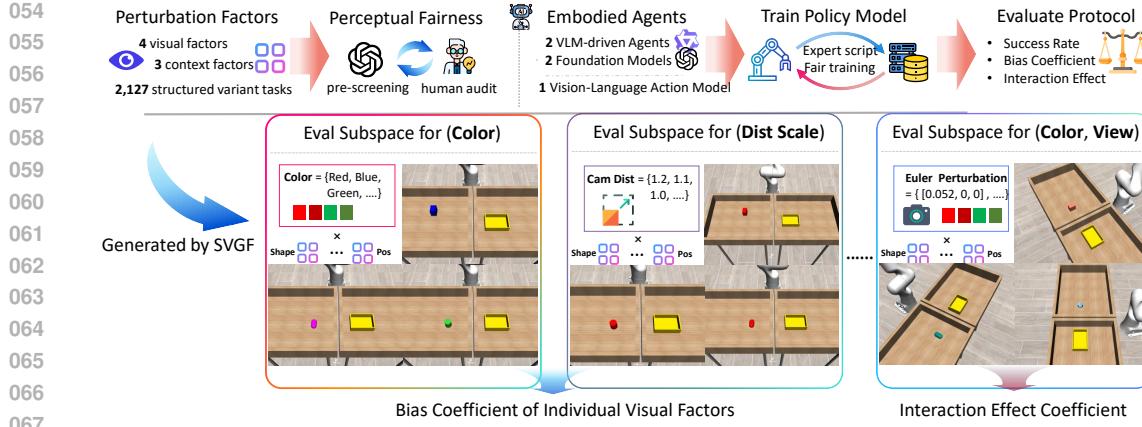


Figure 1: Overview of RoboView-Bias. We construct RoboView-Bias, a benchmark comprising 2,127 task instances, to systematically evaluate visual bias in robotic manipulation. Built upon a factor isolation principle, it enables systematically quantification of how individual visual factors and their interactions impact embodied agent performance and reliability.

task contexts. This methodology yields 2,127 instances and each instance is further validated for perceptual fairness, ensuring it is visually clear and solvable.

In the RoboView-Bias benchmark, we comprehensively evaluated two prevailing paradigms of embodied agents. The results show that these agents exhibit pronounced visual bias. In controlled trials where only the camera viewpoint (pose) varied while all other factors were fixed, success rates fluctuated sharply even across nearby viewpoints, identifying viewpoint as the most influential factor. Similarly, color-focused trials revealed a strong performance bias towards high-saturation hues over achromatic and low-saturation ones, with the extent of the bias varying by agents. In factorial (“color \times viewpoint”) experiments, analyses of the interaction effect showed that viewpoint changes substantially amplify color-induced performance variation, whereas the reverse effect is weaker. This reveals a strong, asymmetric coupling between the two factors and motivates joint evaluation and mitigation. Based on these observations, we propose the “Semantic Grounding and Perceptual Calibration” (SGL) strategy. We execute pre-training alignment instructions and visible evidence, employing color-invariant calibration to reduce visual bias on MOKA Liu et al. (2024a). This research advances the systematic measurement of visual bias, providing a foundation for bias diagnosis and mitigation to enhance embodied agent stability. Our contributions can be summarized in three key aspects:

- We present RoboView-Bias, a factor-isolated benchmark (color, camera viewpoint) that enables quantitative measurement of visual bias in embodied manipulation.
- We provide cross-paradigm evaluations (VLM-driven, VLA) with fine-grained bias profiles, revealing significant bias and strong, asymmetric color–viewpoint coupling along the perception–decision pipeline.
- We introduce SGL (Semantic Grounding Layer), which aligns commands with visible evidence before execution, reducing visual bias and improving agent stability.

2 RELATED WORK

2.1 EMBODIED AGENTS FOR ROBOTIC MANIPULATION

Recent advances in Multimodal Large Language Models Achiam et al. (2023); Dosovitskiy et al. (2020), particularly Vision-Language Models (e.g., OpenAI (2024); Bai et al. (2025); Liu et al. (2023); Dai et al. (2023)), and the development of diverse robotics datasets O’Neill et al. (2024); Bu et al. (2025) have inspired two dominant paradigms for instruction following Qin et al. (2024); Wen et al. (2024); Shi et al. (2025) embodied agents. The first involves end-to-end Vision-Language Action Models Driess et al. (2023); Kim et al. (2025); Zitkovich et al. (2023); Black et al., whose

control precision is often limited by action discretization Pearce et al. (2023), leading to recent explorations of diffusion models Chi et al. (2023) as policies or as diffusion decoders Li et al. (2024c); Wen et al. (2025). The second paradigm employs VLMs as high-level planners Huang et al. (2025); Liu et al. (2024a); Zhao et al. (2025); Huang et al. to guide traditional control modules, excelling in zero-shot generalization while their performance is often highly sensitive to implementation details and unbiased collaboration between each submodule. Both paradigms fundamentally rely on the visual perception of the underlying Vision-Language Models, they are vulnerable to inheriting and amplifying latent visual biases. Therefore, we introduce a systematic benchmark to diagnose and quantify these visual biases in embodied agents.

2.2 ROBOTIC MANIPULATION BENCHMARKS

The progress in the field of robot manipulation is closely related to the promotion of high-quality benchmarks. Early robotic manipulation benchmarks like RL-Bench James et al. (2020) and Robo-suite Zhu et al. (2020) established standardized evaluation protocols. Subsequent work aimed to assess broader capabilities: benchmarks such as FactorWorld Xie et al. (2024), and THE COLOSSEUM Pumacay et al. (2024) focused on robustness to systematic perturbations, while others like CALVIN Mees et al. (2022) and BEHAVIOR-1K Li et al. (2024a) targeted the challenges of long-horizon tasks. To address the lack of detailed quantitative analysis focused on vision in other benchmarks, we developed RoboView-Bias to assess whether an agent’s performance exhibits biases across different visual conditions, enabling a more fine-grained analysis of its perceptual robustness.

3 STRUCTURED VARIANT-GENERATION FRAMEWORK

Domain Randomization (DR) Rajeswaran et al. (2017); Pinto et al. (2017); Tan et al. (2018) aims to create a broad training distribution by independently and randomly sampling Brus & De Gruijter (1997); Olken & Rotem (1995) multiple perturbation parameters (such as color, size, and friction) in each iteration. However, its simultaneous sampling of multiple variables is at odds with factorized analysis, making it difficult to disentangle the independent influence of each factor. To enable systematic and attributable bias assessment, we introduce the structured variant-generation framework (SVGF). We reframe scene generation as a programmable generative grammar. A unified interface provides a consistent abstraction layer for all variable factors. Complex generation logic, such as color schemes or grid positions, is then programmatically encapsulated into independent, reusable sampler modules, enabling dynamic, code-level extensibility. A `RecursiveVariantTaskManager` recursively traverses and combines these modules to systematically generate and instantiate task sets.

Task Selection. We focus on only one fundamental task, grasping, for the following reasons: First, the vast combinatorial space of variations required for a robust evaluation, even for a single task, presents a substantial yet tractable challenge, making it a suitable starting point for a foundational study. Second, as a canonical manipulation skill, this simple task avoids unfair evaluations caused by some agents being better at specific tasks than others.

Visual Perturbation Factors. We adopt three types of visual input perturbations. To conduct color preference analysis, we use 141 named HTML colors to perform color perturbation on the robot-manipulated object. These colors are sourced from a recent W3C color name specification. To test viewpoint robustness, we apply 8 minor camera euler pose changes to the primary viewpoint, and designed three sets of circular overhead orbit camera poses, which are detailed in the Appendix A.1. All viewpoints ensure that key visual information is clearly visible. To introduce scale changes, we translate the camera from its initial pose backward along the line-of-sight direction to 8 discrete distance levels, each corresponding to a unique scale factor.

Task Context Perturbation Factors. To ensure the evaluation results have better robustness, we perform perturbations by diversifying the task context. We designed 4 initial positions for the manipulable object and provided 4 geometric shapes. In addition, for the same task goal, we designed 3 types of task instructions with identical semantics but different syntax.

Implementation of Perturbation Factors. To efficiently implement the dynamic configuration of the aforementioned perturbations, we built our system upon the recently released Roboverse simulation platform Geng et al. (2025). A key advantage of Roboverse is its unified interface that enables

162 seamless switching between simulators Authors (2024); Coumans & Bai (2016); Makoviychuk et al.
 163 (2021); Mittal et al. (2023); Rohmer et al. (2013); Todorov et al. (2012); Xiang et al. (2020), which
 164 we leveraged for the initial environment setup. However, for certain dynamic perturbation capabili-
 165 ties not natively supported by Roboverse, such as adjusting object shapes, we implemented them
 166 directly using the low-level API of the underlying MuJoCo Todorov et al. (2012) engine.
 167

168 4 PERCEPTUAL FAIRNESS VALIDATION

170 To ensure the core objective of the RoboView-Bias benchmark, which is to reliably quantify and at-
 171 tribute visual bias, we introduce a rigorous **Perceptual Fairness Validation** pipeline. This process
 172 is designed to eliminate confounding variables, such as object occlusion. Our approach contrasts
 173 with benchmarks focused on generalization, which may tolerate or even encourage partial observ-
 174 ability. To enhance scalability and conserve manual effort, we employ a two-stage validation process
 175 combining large-scale automated screening with expert human review.

176 **Stage 1: VLM-based Automated Pre-screening.** We first leverage GPT-4o as a visual evaluator
 177 to screen each generated task instance against a set of predefined clarity criteria detailed in Ap-
 178 pendix A.2. We established an iterative refinement loop: if more than 5% of instances are flagged
 179 as ambiguous, we manually intervene by adjusting parameters (e.g., object positions) or removing
 180 problematic disturbance factors. This cycle is repeated until the pass rate consistently exceeds 95%.

181 **Stage 2: Human Adjudication.** Following automated screening, all candidate instances undergo a
 182 final human review. This stage acts as a crucial quality gate. If the proportion of instances failing
 183 this review surpasses a predefined threshold, the entire generation process reverts to Stage 1 for
 184 iterative adjustment. This loop continues until a generated batch achieves a pass rate of over 95% in
 185 the human adjudication phase, ensuring the high-quality and perceptual fairness of the benchmark.

187 5 EVALUATION PROTOCOL

189 We propose a evaluation protocol, which first quantifies the performance impact of individual visual
 190 factors, then analyzes the interaction effects among those causing significant degradation.

192 5.1 FORMALIZING THE EVALUATION SPACE

194 All variable factors are partitioned into two mutually exclusive sets.

- 196 **Visual Perturbation Dimensions (V):** This set, $V = \{V_1, V_2, \dots, V_n\}$, comprises the
 197 core visual attributes whose impact we aim to evaluate.
- 198 **Task Context Dimensions (D):** This set, $D = \{D_1, D_2, \dots, D_m\}$, includes non-visual
 199 factors (e.g., $D_{\text{Initial Pose}}$) used to diversify task scenarios.

201 To ensure that other visual dimensions V_j (for $j \neq i$) remain constant while evaluating a specific
 202 dimension V_i , we assign a **baseline value** $b_k \in V_k$ for each $V_k \in V$. This value typically represents
 203 a standard or common visual setting (e.g., $b_{\text{color}} = \text{red}$). We denote the set of visual baselines by B .

205 5.2 THE GENERALIZATION CONTEXT SPACE

207 The Generalization Context Space (C_{Gen}) is a systematically constructed set of diverse and consis-
 208 tent task scenarios. Each element is a complete, executable task scenario where the value of the
 209 dimension under evaluation is left unspecified.

210 The construction of task configurations, denoted D_{context} , addresses the high computational cost of
 211 a full Cartesian product over all dimensions of the task context ($D_1 \times \dots \times D_m$). We employ a
 212 **Structured Union** approach, starting from a baseline configuration $G = (g_1, \dots, g_m)$ where each
 213 $g_k \in D_k$ is a default value. For each dimension D_k , we form a **Variation Subspace**, C_k^{gen} , by
 214 varying its values while holding all others at baseline.

$$C_k^{\text{gen}} = \{(g_1, \dots, g_{k-1}, d, g_{k+1}, \dots, g_m) \mid d \in D_k\} \quad (1)$$

216 The set of all task configurations is the union of these subspaces, which systematically generates a
 217 comprehensive set of scenarios:

$$218 \quad D_{\text{context}} = \bigcup_{k=1}^m C_k^{\text{gen}} \quad (2)$$

221 To evaluate a specific visual dimension V_i , we combine these task configurations with a set of fixed
 222 baseline values for all other visual dimensions, $B_{-i} = \{b_j \mid \forall j \in V, j \neq i\}$. The final Generaliza-
 223 tion Context Space for V_i is then:

$$224 \quad C_{\text{Gen}}(V_i) = \{d \cup B_{-i} \mid d \in D_{\text{context}}\} \quad (3)$$

226 This resulting set $C_{\text{Gen}}(V_i)$ serves as the controlled background environment for our bias evaluations.

227 5.3 EVALUATION TASK SUBSPACE

228 To evaluate a specific visual dimension V_i , we define the set of all experimental instances as its **Task**
 229 **Subspace**, $\mathcal{T}(V_i)$. This subspace is formed by the Cartesian product of the values in V_i and the
 230 corresponding generalization context space, $C_{\text{Gen}}(V_i)$:

$$231 \quad \mathcal{T}(V_i) = V_i \times C_{\text{Gen}}(V_i) = \{(v, c) \mid v \in V_i, c \in C_{\text{Gen}}(V_i)\}$$

233 Each task instance $(v, c) \in \mathcal{T}(V_i)$ is the basis for all subsequent metrics.

235 5.4 METRICS

237 **Average Success Rate.** The agent’s baseline performance is measured by the **Average Success Rate**
 238 (μ_{SR}) within a task subspace $\mathcal{T}(V_i)$. It is calculated as the mean of binary success outcomes over
 239 all instances.

$$240 \quad \mu_{SR}(\mathcal{T}(V_i)) = \frac{1}{|\mathcal{T}(V_i)|} \sum_{(v, c) \in \mathcal{T}(V_i)} SR(v, c)$$

242 **Bias Coefficient.** To quantify performance sensitivity to a visual dimension V_i , we introduce the
 243 Bias Coefficient ($CV_{SR}(V_i)$). This metric is based on the **Conditional Coefficient of Variation**
 244 (**CCV**) for a fixed context $c \in C_{\text{Gen}}(V_i)$. To improve numerical stability when the mean success rate
 245 is close to zero, we add a small bias term ϵ to the bottom term of the fraction.

$$247 \quad CV(V_i \mid c) = \frac{\sigma_{v \in V_i}[SR(v, c)]}{\mu_{v \in V_i}[SR(v, c)] + \epsilon} \quad (4)$$

249 The Bias Coefficient is then the expectation of the CCV over all contexts in $C_{\text{Gen}}(V_i)$.

$$251 \quad CV_{SR}(V_i) = \mathbb{E}_{c \in C_{\text{Gen}}(V_i)}[CV(V_i \mid c)] = \frac{1}{|C_{\text{Gen}}(V_i)|} \sum_{c \in C_{\text{Gen}}(V_i)} CV(V_i \mid c) \quad (5)$$

254 **Interaction Effect Coefficient (IEC).** To capture the coupling between biases, the $IEC(V_i; V_j)$
 255 measures how much the bias from a visual factor V_i is affected by changes in another factor V_j .

$$257 \quad IEC(V_i; V_j) = \mathbb{E}_{c \in C_{\text{Gen}}(V_i, V_j)} \left[\frac{\sigma_{v_j \in V_j}[CV(V_i \mid v_j, c)]}{\mu_{v_j \in V_j}[CV(V_i \mid v_j, c)]} \right] \quad (6)$$

260 6 EXPERIMENTS AND EVALUATION RESULTS

262 6.1 BASELINES

264 **VLM-driven Embodied Agents.** ① The first agent we evaluate is SimpleAgent (hereafter referred
 265 to as Simple), a minimalist embodied agent based on the embodied LLM prototype introduced in
 266 BadRobot Zhang et al. (2025). It consists of a single VLM coupled with a heuristic action policy.
 267 By design, this agent intentionally omits specialized perception grounding modules. This minimalist
 268 structure allows us to directly expose the inherent visual perception biases of the VLM when con-
 269 fronted with physical world tasks—biases that may be a potential source of error in more complex
 VLM-driven agents. ② The second agent, MOKA Liu et al. (2024a), connects a VLM’s 2D image

270 271 272 273 274 275 276 277 278 279	Embodied Agents	Color		Camera Pose		Camera Euler		Dist Scale		Average	
		SR	CV	SR	CV	SR	CV	SR	CV	SR	CV
MOKA(Qwen-VL-Max)	MOKA	22.92	139.25	38.10	91.68	56.16	49.2	68.89	35.16	46.52	78.82
MOKA(GPT-4o)	MOKA	23.92	134.54	68.23	40.28	71.72	28.38	70.51	28.67	58.60	57.97
Simple(Qwen-VL-Max)	Simple	47.83	107.25	38.10	96.4	12.93	197.23	34.55	92.61	33.35	123.37
Simple(GPT-4o)	Simple	23.00	137.23	1.56	175.11	0.00	N/A	1.41	178.12	6.49	N/A
π_0	π_0	53.87	37.63	30.22	84.87	57.78	36.81	44.24	52.90	46.53	53.05

280
281
282
283
284
285
286
287
288
289
Table 1: Performance Evaluation of Embodied Agents on Visual Perturbation Dimensions. The table reports the Average Success Rate (SR), corresponding to μ_{SR} , and the Bias Coefficient (CV), corresponding to CV_{SR} . Bold values indicate the best performance in each CV column.

285
286
287
288
289
predictions to 3D robot actions. It leverages advanced grounding models (e.g., Grounding DINO Liu et al. (2024b), SAM Kirillov et al. (2023)) and mark-based visual prompting to generate compact, point-based affordance representations. MOKA is designed to solve open-world manipulation tasks from free-form language instructions in a zero-shot manner. We replicated MOKA in simulation, where it performed our tasks effectively after merely adjusting its configuration parameters.

290
291
292
293
294
295
296
297
298
299
300
Vision-Language Action Models. The VLA model, π_0 , is built on a flow matching Lipman et al. (2022) architecture, a variant of diffusion models, to effectively model complex, continuous action distributions. It uses a pre-trained Vision Language Model (PaliGemma Beyer et al. (2024)) as its backbone and is trained on over 10,000 hours of cross-embodiment data. The model exhibits strong out-of-the-box performance and instruction-following capabilities. RoboView-Bias employs an expert algorithm to collect demonstration data via standardized script, ensuring training fairness. The collected data includes *rgb* and *depth* from four camera views (wrist, front, left, and right). During data collection, we apply domain randomization *exclusively* to Task Context Perturbation factors. Detailed configurations are available in the Appendix A.3.

6.2 EXPERIMENTAL SETUP

301
302
303
304
305
306
For each embodied agent, we first measure its Bias Coefficient for every visual perturbation across the generalization context space C_{Gen} . Each specific task instance for this analysis is run **5 times**. We then focus on two specific visual dimensions, color and camera pose, to measure their Interaction Effect Coefficient (IEC). Due to computational constraints, this IEC analysis is not performed on the entire C_{Gen} space. Instead, the evaluation is conducted within a fixed, representative context (c^*) using a default parameter configuration, and each task instance is run **10 times**. For MOKA and SimpleAgent, if not specifically labeled, the basic model uses Qwen-VL-Max.

6.3 INDIVIDUAL VISUAL BIAS

307
308
309
310
311
312
313
314
315
316
317
318
VLM-driven embodied agents commonly exhibit significant visual bias. When based on the Qwen-VL-Max model, the mean visual biases (CV) of MOKA and Simple are as high as 78.82% and 123.37%, respectively (see Table 1). As a minimalist prototype, SimpleAgent not only has the highest average visual bias but is also extremely sensitive to camera euler changes, with its bias coefficient surging to 197.23% after a slight adjustment in camera angles. In contrast, by integrating modules for grounded perception and low-level control, MOKA significantly reduces its overall visual bias, achieving a CV score more than 40 points lower than that of SimpleAgent. Notably, its bias remains extremely high in the color dimension, which can likely be attributed to error accumulation within its multi-module architecture. The choice of VLM critically impacts this bias: MOKA shows lower overall bias with GPT-4o compared to its Qwen-VL-Max version.

319
320
321
322
323
The VLA model, π_0 , displays relatively balanced overall stability but still possesses a visual bias of 53.05%. The robustness of π_0 to color variations is far superior to that of the VLM-driven agents, with a bias rate of only 37.63%. It also maintains a low bias (36.81%) and a high success rate (57.78%) under slight perturbations of the camera’s euler angles. However, when the entire camera pose undergoes drastic changes, its bias rate significantly increases to 84.87%, revealing its limited generalization capability in spatial visual perception.

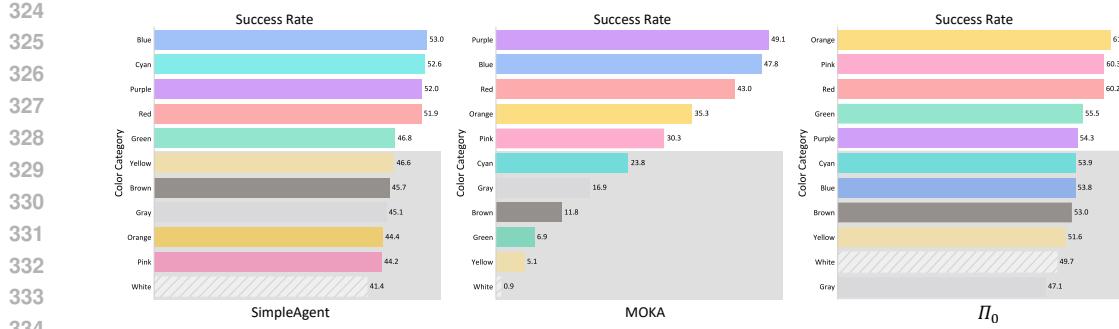


Figure 2: Average success rate for each embodied agent, grouped by color category. The rates are calculated over the entire color task subspace ($\mathcal{T}(V_{\text{color}})$).

In the color dimension, as shown in Figure 2, our analysis reveals a systematic color perception bias common to all evaluated agents. First, all agents demonstrate consistently lower success rates for achromatic or low-saturation colors, such as gray and white. In contrast, their performance is generally higher when handling salient, high-saturation colors like red. This finding indicates that the performance of current embodied agents relies heavily on salient color features, a general bias likely inherited from their underlying vision foundation models.

In the camera pose dimension, all agents are highly sensitive to changes in camera pose. As illustrated in Figure 3, their success rates fluctuate sharply with variations in camera pose. A key finding is that all agents have specific viewpoints that lead to complete task failure. Furthermore, they can also achieve higher success rates from perturbed viewpoints compared to their original poses. This phenomenon clearly indicates that the performance of current agents is tightly coupled with their observation perspective. This also provides a potential direction for future research: developing algorithms that can find the optimal viewing perspective or equip agents with active vision capabilities is of critical importance for enhancing their overall robustness and performance.

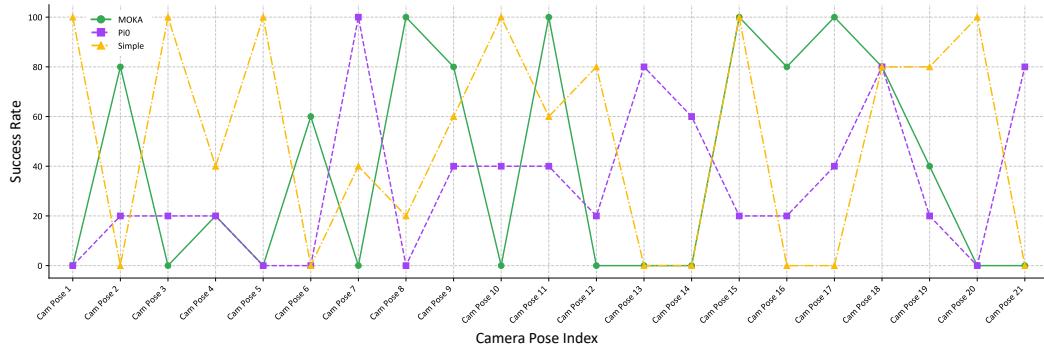


Figure 3: Success Rate of MOKA, π_0 , and SimpleAgent under various camera pose perturbations. The evaluation is conducted within a specific context from the task subspace $\mathcal{T}(V_{\text{camera pose}})$.

6.4 INTERACTION EFFECTS OF COLOR AND CAMERA POSE

As illustrated in Figure 4 and quantified in Table 2, our evaluation reveals a significant **asymmetric dependency** between camera pose and color. The heatmaps visually suggest this imbalance, showing that performance patterns are often more distinctly stratified by camera pose (rows) than by color (columns). This observation is numerically confirmed by the data: on average, the bias from camera pose ($CV_{SR}(P) = 125.25$) is substantially higher than from color ($CV_{SR}(C) = 113.93$). Furthermore, the interaction is lopsided, as the influence of pose on color bias ($IEC(C; P) = 57.06$) is nearly double the reverse effect ($IEC(P; C) = 29.50$). The agents show a tendency to be more sensitive to variations in camera pose than in color, which further highlights their limited 3D spatial perception. However, specific agents like MOKA exhibit a mutual dependency between these two

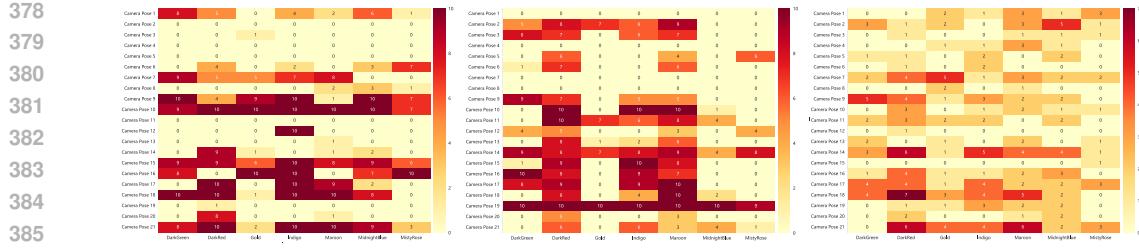


Figure 4: Heatmaps of success counts for the Simple (left), MOKA (middle), and π_o (right) agents. Each cell represents the performance for a unique combination of camera pose (row) and object color (column), visualizing the interaction between these two visual dimensions.

Embodied Agents	$CV_{SR}(C)$	$IEC(C; P)$	$CV_{SR}(P)$	$IEC(P; C)$
MOKA	100.11	42.39	138.83	50.96
Simple	<u>132.17</u>	<u>70.48</u>	132.64	18.17
π_o	109.52	58.32	104.27	19.37
Avg	113.93	57.06	125.25	29.50

Table 2: Evaluation in a task space with changing color (C) and camera pose (P). $CV_{SR}(V)$ is the performance bias from factor V . $IEC(V_i; V_j)$ measures how much the bias from V_i is affected by changes in V_j . Lower values are better. **Bold** is best, underlining is worst.

visual factors ($IEC(C; P) = 42.39$ and $IEC(P; C) = 50.96$). This finding highlights the necessity of analyzing their interaction effects to develop targeted improvements for different agents.

4.5 CASE STUDY: ANALYSIS OF THE MOST COLOR-BIASED EMBODIED AGENT

Of the three embodied agents we evaluated, MOKA exhibited the most significant color bias. To investigate its root cause, we analyzed two stages of its workflow.

1 During the high-level planning stage in MOKA, the VLM responsible for task decomposition exhibits significant descriptive preferences. It generates inconsistent descriptions for identical objects—for instance, describing the same block as “geometric object,” a “block,” or a “red block” (details in Appendix A.4). This descriptive inconsistency, particularly the arbitrary omission or inclusion of color attributes, directly impacts the performance of downstream modules. As shown in Figure 5, the most frequent colors in the VLM’s descriptions are gray, red, blue, and green. While the prevalence of gray may be due to misclassification from object shadows, we speculate that red, green, and blue appear frequently because they are among the most common colors.

2 A perceptual deviation exists between the color understanding of the VLM and the perception of Grounding DINO during the visual grounding stage. To quantify this, we conducted an experiment where we replaced the original color descriptions of the VLM with similar colors from the color space to create new labels. A significant perceptual deviation was confirmed if the localization confidence score of the new label was substantially higher (threshold = 0.03) than that of the original. The results (Figure 6) show this occurred in 17.78% of cases, confirming a significant perceptual difference between the two modules.

In summary, the severe color bias ultimately exhibited by the system stems from the compounding and cumulative amplification of semantic bias at the planning stage and visual bias at the perception stage. Therefore, for complex modular embodied systems like MOKA, eliminating such internal biases between modules and ensuring alignment from high-level semantics to low-level vision is the core premise for achieving robust generalization in the open world.

4.6 MITIGATING BIAS VIA SEMANTIC GROUNDING: A PROPOSED APPROACH

While standardized instructions are intuitive for humans, they can be semantically ambiguous for embodied agents. In the MOKA system, we identify this ambiguity as a key source of perfor-

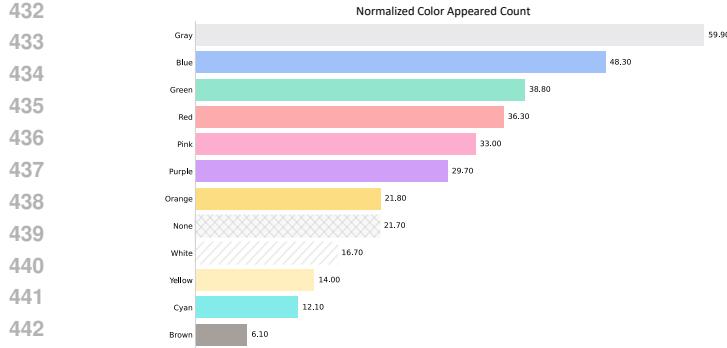


Figure 5: Normalized count of colors appearing in the subtask descriptions generated by the VLM (qwen-vl) in MOKA during the high-level planning stage.

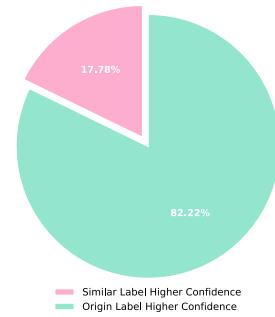


Figure 6: Quantifying the perceptual deviation between the VLM (qwen-vl) and Grounding DINO.

mance bias, a problem often overlooked in robotics. Such ambiguity can degrade the performance of downstream policy models by creating uncertainty in task execution. To address this, we propose a **Semantic Grounding Layer (SGL)**. The core idea is to resolve semantic ambiguity by grounding the language instruction in its visual context before execution. The SGL operates in three stages:

- 1 **Scene Parsing and Action Decomposition:** Given an instruction I_{orig} and a visual scene V , a VLM first identifies all relevant objects and their attributes while extracting the core action.
- 2 **Ambiguity Detection and Attribute Selection:** To perform perceptual calibration, the layer uses heuristic rules to detect potential ambiguities across various dimensions (details in Appendix A.5).
- 3 **Instruction Refinement:** Finally, the SGL synthesizes a refined instruction by combining the action with the selected attributes. For instance, an ambiguous instruction like “stack the cube” is transformed into the clear, executable command “put the small red cube on the larger cube.”

To validate our approach, we integrated the SGL into each evaluated agent and re-assessed their performance on our bias benchmarks, using both object color and the task instruction as perturbation factors. As shown in Figure 7, SGL mitigated the visual bias in MOKA by 54.5%. The improvements for SimpleAgent and π_0 were less pronounced. We attribute this to the simplistic and monolithic nature of the current task scenarios, and the method’s efficacy in complex environments requires further study.

7 CONCLUSION AND FUTURE WORK

This paper introduces RoboView-Bias, the first benchmark for systematically quantifying visual bias in embodied manipulation agents. By constructing a highly structured benchmark and comprehensively evaluating agents from the two dominant paradigms, we reveal pervasive visual biases, especially a strong sensitivity to camera pose and coupling effects among different visual factors. Finally, based on an in-depth analysis of the sources of bias, we propose a Semantic Anchoring Layer as a potential method for mitigating visual bias. We hope this work will encourage further research into the visual perception stability of embodied agents.

Limitations. Despite our best efforts, we acknowledge several limitations and would like to explore the following directions in future work: first, expanding the benchmark’s scope to include more diverse visual factors (e.g., material properties, lighting) and manipulation tasks (e.g., pushing); second, evaluating a broader and more architecturally diverse set of VLA models to understand the influence of architecture on bias; third, investigating the sim-to-real gap for bias assessment by correlating simulated findings with real-world performance.

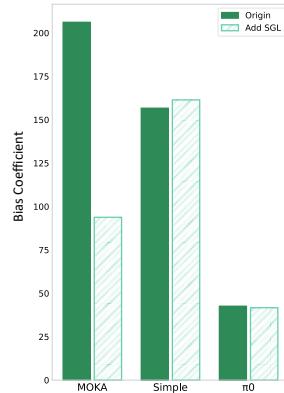


Figure 7: Comparison of the Bias Coefficient for each agent before (Origin) and after integrating the Semantic Grounding Layer (SGL).

486 8 ETHICAL CONSIDERATIONS
487

488 Our research aims to identify and quantify visual biases in embodied agents, a critical step toward
489 ensuring the safety, fairness, and reliability of future robotic systems. All of our experiments and
490 evaluations are conducted within a fully controlled simulation environment (Roboverse). This ap-
491 proach allows us to systematically analyze and diagnose biases that could lead to failure, without
492 posing any physical risk to people or property in the real world. Crucially, we not only identify the
493 problem but also propose and validate a mitigation strategy, the Semantic Grounding Layer (SGL),
494 to address the potential negative impacts of these biases. We believe this work contributes to the
495 development of more robust and trustworthy general-purpose robots and encourages the community
496 to focus on and address potential biases in AI systems.

497 9 REPRODUCIBILITY STATEMENT
498

500 To ensure the reproducibility of our work, we have provided the source code, which is available at an
501 anonymized link. Our evaluation protocol is defined in detail in **Section 5**, which includes the com-
502 plete task space setup and metric design. To guarantee the validity of our evaluation, we designed
503 and implemented a rigorous Perceptual Fairness Validation pipeline (**Section 4**) and have provided
504 the full prompts used for automated screening in **Appendix A.2**. Furthermore, we introduce the
505 architecture and principles of our proposed bias mitigation method, the Semantic Grounding Layer
506 (SGL), in **Section 6.6**, with its specific implementation details further elaborated in **Appendix A.5**.

507 508 REFERENCES
509

- 510 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
511 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
512 report. *arXiv preprint arXiv:2303.08774*, 2023.
- 513 Genesis Authors. Genesis: A universal and generative physics engine for robotics and beyond. *URL*
514 <https://github.com/Genesis-Embodied-AI/Genesis>, 2024.
- 516 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
517 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
518 2025.
- 520 Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
521 Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschanen, Emanuele Bugliarello, et al.
522 Paligemma: A versatile 3b vlm for transfer. *arXiv preprint arXiv:2407.07726*, 2024.
- 523 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
524 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π 0: A vision-language-action flow
525 model for general robot control. *corr, abs/2410.24164*, 2024. doi: 10.48550. *arXiv preprint*
526 *ARXIV.2410.24164*.
- 528 DJ Brus and JJ De Grujter. Random sampling or geostatistical modelling? choosing between
529 design-based and model-based sampling strategies for soil (with discussion). *Geoderma*, 80(1-2):
530 1–44, 1997.
- 531 Qingwen Bu, Jisong Cai, Li Chen, Xiuqi Cui, Yan Ding, Siyuan Feng, Shenyuan Gao, Xindong
532 He, Xuan Hu, Xu Huang, et al. Agibot world colosseo: A large-scale manipulation platform for
533 scalable and intelligent embodied systems. *arXiv preprint arXiv:2503.06669*, 2025.
- 535 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
536 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter-
537 national Journal of Robotics Research*, pp. 02783649241273668, 2023.
- 538 Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
539 robotics and machine learning, 2016.

- 540 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
 541 Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
 542 with instruction tuning. *Advances in neural information processing systems*, 36:49250–49267,
 543 2023.
- 544 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 545 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 546 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
 547 *arXiv:2010.11929*, 2020.
- 548 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
 549 Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied mul-
 550 timodal language model. 2023.
- 552 Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Charlie Tianyue
 553 Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, et al. Roboverse: Towards a unified plat-
 554 form, dataset and benchmark for scalable and generalizable robot learning. *arXiv preprint*
 555 *arXiv:2504.18904*, 2025.
- 556 Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J Lim. Furniturebench: Reproducible real-
 557 world benchmark for long-horizon complex manipulation. *The International Journal of Robotics*
 558 *Research*, pp. 02783649241304789, 2023.
- 560 Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General robotic
 561 manipulation through spatial constraints of parts with foundation models. In *First Workshop on*
 562 *Vision-Language Models for Navigation and Manipulation at ICRA 2024*.
- 563 Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal
 564 reasoning of relational keypoint constraints for robotic manipulation. In *Conference on Robot*
 565 *Learning*, pp. 4573–4602. PMLR, 2025.
- 567 Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J Davison. Rlbench: The robot
 568 learning benchmark & learning environment. *IEEE Robotics and Automation Letters*, 5(2):3019–
 569 3026, 2020.
- 570 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 571 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
 572 vision-language-action model. In *Conference on Robot Learning*, pp. 2679–2713. PMLR, 2025.
- 574 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 575 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 576 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.
- 577 Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martín-
 578 Martín, Chen Wang, Gabrael Levine, Wensi Ai, Benjamin Martinez, et al. Behavior-1k: A human-
 579 centered, embodied ai benchmark with 1,000 everyday activities and realistic simulation. *arXiv*
 580 *preprint arXiv:2403.09227*, 2024a.
- 582 Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, Yu Zhou, Sanjana Srivastava, Cem Gokmen,
 583 Tony Lee, Erran Li Li, Ruohan Zhang, et al. Embodied agent interface: Benchmarking llms for
 584 embodied decision making. *Advances in Neural Information Processing Systems*, 37:100428–
 585 100534, 2024b.
- 586 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 587 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for syn-
 588 ergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024c.
- 589 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 590 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
- 592 Fangchen Liu, Kuan Fang, Pieter Abbeel, and Sergey Levine. Moka: Open-vocabulary robotic ma-
 593 nipulation through mark-based visual prompting. In *First Workshop on Vision-Language Models*
 594 *for Navigation and Manipulation at ICRA 2024*, 2024a.

- 594 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances*
 595 *in neural information processing systems*, 36:34892–34916, 2023.
 596
- 597 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 598 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 599 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 600 2024b.
- 601 Yang Liu, Weixing Chen, Yongjie Bai, Xiaodan Liang, Guanbin Li, Wen Gao, and Liang Lin. Align-
 602 ing cyber space with physical world: A comprehensive survey on embodied ai. *IEEE/ASME*
 603 *Transactions on Mechatronics*, 2025.
- 604 Jianlan Luo, Charles Xu, Fangchen Liu, Liam Tan, Zipeng Lin, Jeffrey Wu, Pieter Abbeel, and
 605 Sergey Levine. Fmb: a functional manipulation benchmark for generalizable robotic learning.
 606 *The International Journal of Robotics Research*, 44(4):592–606, 2025.
- 607
- 608 Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-
 609 language-action models for embodied ai. *arXiv preprint arXiv:2405.14093*, 2024.
- 610 Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
 611 David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
 612 gpu based physics simulation for robot learning. In *NeurIPS Datasets and Benchmarks*, 2021.
- 613
- 614 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 615 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics*
 616 *and Automation Letters*, 7(3):7327–7334, 2022.
- 617 Mayank Mittal, Calvin Yu, Qinxi Yu, Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
 618 Ritzvik Singh, Yunrong Guo, Hammad Mazhar, et al. Orbit: A unified simulation framework for
 619 interactive robot learning environments. *IEEE Robotics Autom. Lett.*, 2023.
- 620 Frank Olken and Doron Rotem. Random sampling from databases: a survey. *Statistics and Com-*
 621 *puting*, 5(1):25–42, 1995.
- 622
- 623 OpenAI. GPT-4o system card, 2024.
- 624
- 625 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 626 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 627 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In *2024 IEEE*
 628 *International Conference on Robotics and Automation (ICRA)*, pp. 6892–6903. IEEE, 2024.
- 629
- 630 Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu, Ser-
 631 gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
 632 behaviour with diffusion models. *arXiv preprint arXiv:2301.10677*, 2023.
- 633
- 634 Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
 635 ment learning. In *International conference on machine learning*, pp. 2817–2826. PMLR, 2017.
- 636
- 637 Xavier Puig, Eric Undersander, Andrew Szot, Mikael Dallaire Cote, Tsung-Yen Yang, Ruslan Part-
 638 sey, Ruta Desai, Alexander Clegg, Michal Hlavac, So Yeon Min, et al. Habitat 3.0: A co-habitat
 639 for humans, avatars, and robots. In *The Twelfth International Conference on Learning Represen-*
 640 *tations*.
- 641
- 642 Wilbert Pumacay, Ishika Singh, Jiafei Duan, Ranjay Krishna, Jesse Thomason, and Dieter Fox. The
 643 colosseum: A benchmark for evaluating generalization for robotic manipulation. *arXiv preprint*
 644 *arXiv:2402.08191*, 2024.
- 645
- 646 Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
 647 Wu, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
 648 large language models. *arXiv preprint arXiv:2401.03601*, 2024.
- 649
- 650 Aravind Rajeswaran, Sarvejeet Ghotra, Balaraman Ravindran, and Sergey Levine. Epopt: Learning
 651 robust neural network policies using model ensembles. In *International Conference on Learning*
 652 *Representations*, 2017.

- 648 Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and scalable robot simulation
 649 framework. In *2013 IEEE/RSJ international conference on intelligent robots and systems*, pp.
 650 1321–1326. IEEE, 2013.
- 651 Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming Ke, Karl Pertsch, Quan Vuong, James
 652 Tanner, Anna Walling, Haohuan Wang, Niccolò Fusai, et al. Hi robot: Open-ended instruction
 653 following with hierarchical vision-language-action models. *arXiv preprint arXiv:2502.19417*,
 654 2025.
- 655 Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez, and
 656 Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. *arXiv preprint*
 657 *arXiv:1804.10332*, 2018.
- 658 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 659 In *2012 IEEE/RSJ international conference on intelligent robots and systems*, pp. 5026–5033.
 660 IEEE, 2012.
- 661 Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin Hu,
 662 Wendy Gao, Jiaxing Xu, et al. Benchmarking complex instruction-following with multiple con-
 663 straints composition. *Advances in Neural Information Processing Systems*, 37:137610–137645,
 664 2024.
- 665 Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Zhibin Tang, Kun Wu, Zhiyuan Xu, Ning Liu,
 666 Ran Cheng, Chaomin Shen, et al. Tinyvla: Towards fast, data-efficient vision-language-action
 667 models for robotic manipulation. *IEEE Robotics and Automation Letters*, 2025.
- 668 Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
 669 Jiang, Yifu Yuan, He Wang, et al. Sapien: A simulated part-based interactive environment. In
 670 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 11097–
 671 11107, 2020.
- 672 Annie Xie, Lisa Lee, Ted Xiao, and Chelsea Finn. Decomposing the generalization gap in imitation
 673 learning for visual robotic manipulation. In *2024 IEEE International Conference on Robotics and*
 674 *Automation (ICRA)*, pp. 3153–3160. IEEE, 2024.
- 675 Hangtao Zhang, Chenyu Zhu, Xianlong Wang, Ziqi Zhou, Changgan Yin, Minghui Li, Lulu Xue,
 676 Yichen Wang, Shengshan Hu, Aishan Liu, et al. Badrobot: Jailbreaking embodied llm agents
 677 in the physical world. In *The Thirteenth International Conference on Learning Representations*,
 678 2025.
- 679 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
 680 Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
 681 language-action models. In *Proceedings of the Computer Vision and Pattern Recognition Confer-*
 682 *ence*, pp. 1702–1713, 2025.
- 683 Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush Nasiri-
 684 any, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot
 685 learning. *arXiv preprint arXiv:2009.12293*, 2020.
- 686 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 687 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 688 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.
- 689

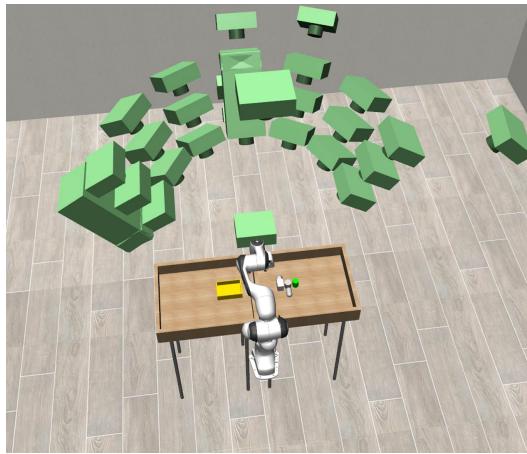
690 A APPENDIX

691 A.1 CAMERA SETTINGS

692 We deployed a diverse set of cameras within the simulation environment, as illustrated in Figure 8.
 693 Our camera setup includes:

- 700 1. **Four manually positioned cameras:** These provide a broad view of the workspace and
 701 robot arm from different angles: left top, right top, front, and a wrist camera.

- 702 2. **Twenty-one orbital cameras:** Three sets of seven cameras are arranged in concentric
 703 rings, providing a top-down, panoramic view in front of the robot arm.
 704
 705 3. **Nine camera poses (Euler angles):** In addition to the original camera, we introduced
 706 eight minor disturbances to the Euler angles of the manually positioned front and left top
 707 cameras. Specifically, we applied these eight variations by rotating the yaw and pitch from
 708 -6° to 6°, resulting in nine distinct perspectives.
 709
 710 4. **Nine camera positions (Translations):** In addition to the original camera position, the
 711 positions of the front and left top cameras were shifted eight times, in increments of 0.05
 712 units, to simulate disturbances of the dist scale. This resulted in a total of nine distinct
 713 positions.



728 Figure 8: The camera setup in the simulation environment.
 729
 730

731 A.2 PROMPTS USED TO VALIDATE PERCEPTUAL FAIRNESS AND EXAMPLE RESULTS 732

733 Our automated pre-screening leverages a Visual-Language Model (VLM), specifically GPT-4o, to
 734 act as a visual evaluator. The model’s primary task is to assess each generated image for clarity
 735 and adherence to specific criteria. This process helps us filter out ambiguous or confusing instances
 736 at a large scale before human review. The prompt template (Figure 9) is used to guide the VLM’s
 737 evaluation. It is designed to be highly specific to minimize misinterpretations and ensure a consistent
 738 assessment.

739
 740 You are an expert image analyst acting as aJSON API. Your task is
 741 to analyze the provided image and **return** a single, valid JSON
 742 object. **Do** not output any text before or after the JSON object
 743 .
 744 **1. Conditions to Check:**
 745 - Is there a small solid geometry object in the image?
 746 - Is there a yellow box in the image?
 747 - Can a person clearly identify both the geometry object and the
 748 yellow box?
 749 **2. Rule **for** the Final Answer:**
 750 - **If** ALL THREE conditions are true, the 'final_answer' value is "
 751 yes".
 752 - **If** ANY condition is false, the 'final_answer' value is "no".
 753 **3. Required JSON Output **Format:****
 754 Your entire output must be a single JSON object **with** these two
 755 keys:
 756 - 'analysis': A **string** containing a brief explanation of your
 757 reasoning.

```
756 - 'final_answer': A string that is either "yes" or "no".
757 ---
758 **Example 1 (All conditions met):**
759 {
760     "analysis": "The image clearly shows a small blue pyramid and a
761                 yellow box, and both are identifiable.",
762     "final_answer": "yes"
763 }
764 **Example 2 (One condition fails):**
765 {
766     "analysis": "The image contains a small pyramid, but the box is
767                 red, not yellow.",
768     "final_answer": "no"
769 }
770 ---
771 Now, analyze the image I provide and respond only with a valid
772 JSON object as specified.
```

Figure 9: Prompts used to validate perceptual fairness through GPT-4o.

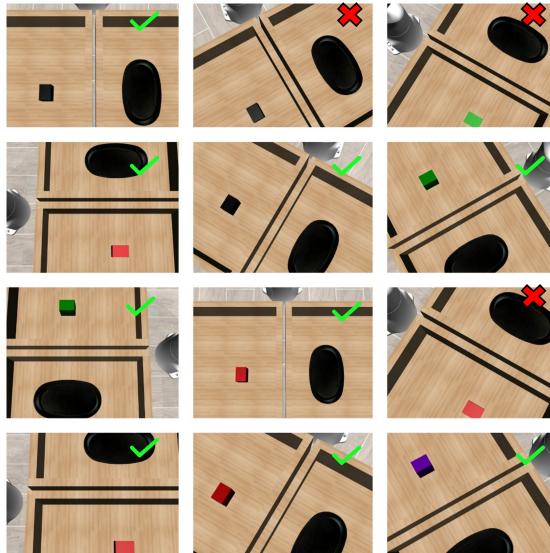
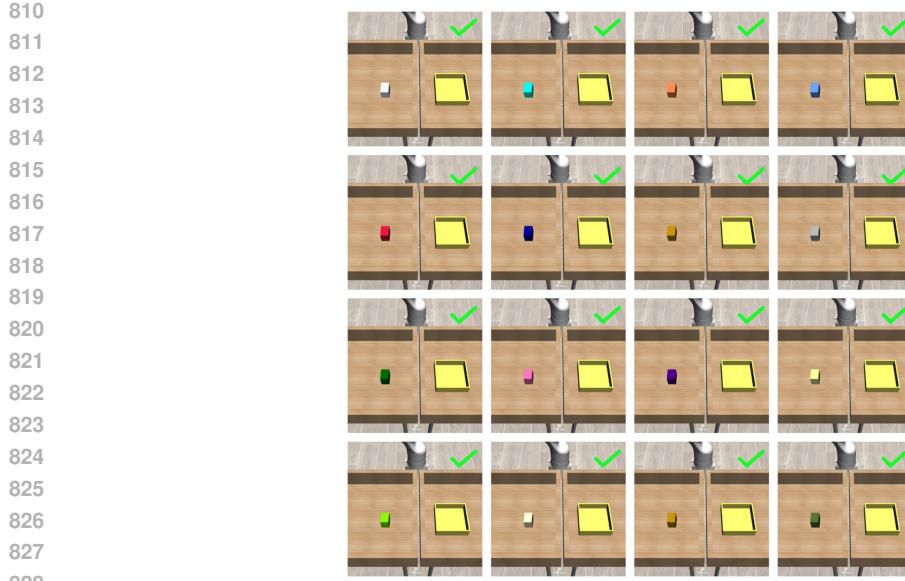
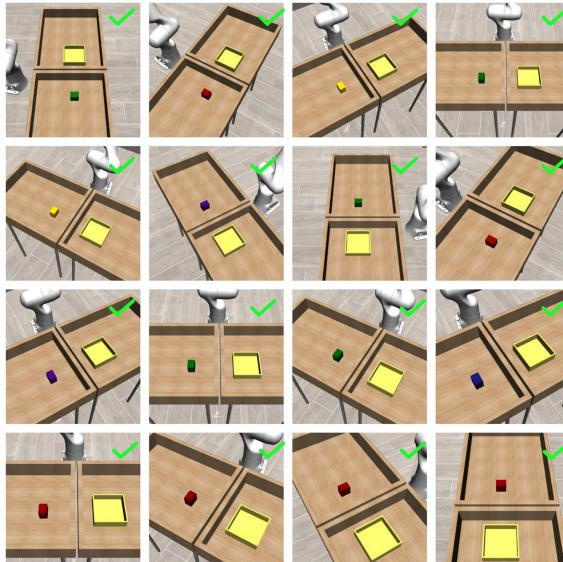


Figure 10: Perceptual Fairness Validation Results (Case 1) Using GPT-4o.

Figures 10, 11, and 12 illustrate several examples of successful and failed evaluation outcomes. Initially, certain camera viewpoints were unevaluable because they failed to capture the three-dimensional nature of the blocks, making them appear as flat 2D shapes. This perceptual ambiguity made a definitive evaluation impossible. In such cases, we iteratively adjusted the viewpoints manually until a definitive evaluation was possible.

A.3 TRAINING DETAILS

To generate our training data, we first create task instances by applying domain randomization over the task context perturbation factors. We then leverage a standard script to collect a total of 350 demonstration trajectories. We fine-tune the publicly available π_0 -droid checkpoint released by openpi. The model takes RGB images from two manually configured camera views as input: a gripper camera and a top-left camera. The entire fine-tuning process was conducted on a single NVIDIA A100 GPU for 10,000 iterations with a batch size of 16. We employed a cosine annealing learning rate schedule, where the learning rate decayed from an initial value of 5×10^{-5} to a final value of 2.5×10^{-5} .

829 Figure 11: Perceptual Fairness Validation Results (Case 2) Using GPT-4o.
830850 Figure 12: Perceptual Fairness Validation Results (Case 3) Using GPT-4o.
851
852

853 A.4 SHAPE DESCRIPTOR BIAS IN MOKA'S HIGH-LEVEL PLANNING

854 We analyzed the shape descriptors generated by the VLM that feeds into MOKA's high-level planner
855 and found a significant vocabulary imbalance, as shown in Figure 13. The model heavily favors a few
856 common terms, with `cube` (30.0%), `cylinder` (23.9%), and the generic word `object` (22.4%)
857 collectively comprising over 75% of its vocabulary. This pattern indicates that the VLM simplifies
858 diverse geometries into a few familiar categories—a bias likely inherited from its training data that
859 directly affects downstream planning.

860 A.5 IMPLEMENTATION DETAILS OF SEMANTIC GROUNDING LAYER

861 In the parsing stage of the SGL, we first considered the characteristics of our experimental environ-
862 ment. As the visual scenes are relatively simple and controlled, we found that we could achieve
863 effective and stable scene parsing by simply designing a structured prompt to guide the VLM. The

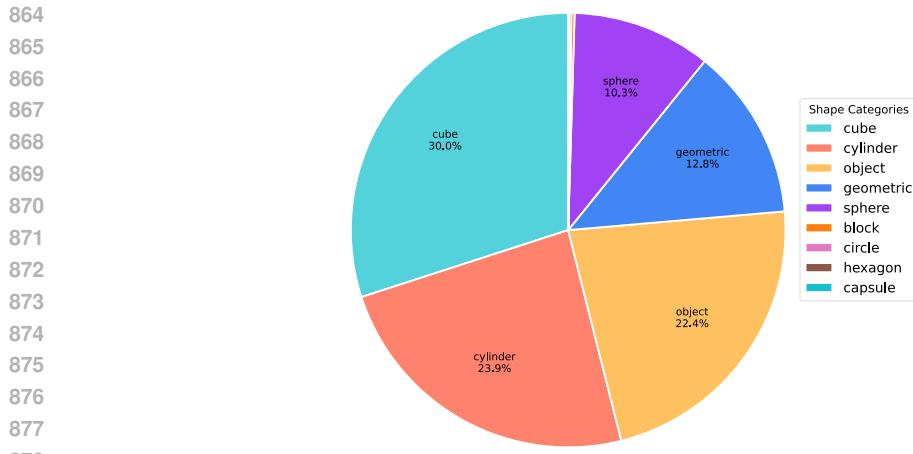


Figure 13: The frequency distribution of shape descriptors generated by the VLM during MOKA’s planning phase.

core of this prompt is shown in Figure 14, is to leverage human prior knowledge to instruct the VLM. It directs the model to identify key objects and extract a set of attributes, including their category, color, size, position, and physical state. This direct approach has proven sufficient for the scope of our current tasks. To enable generalization to more diverse environments in the future, we suggest constructing a library of perceptual priors for different scene types, which would allow the SGL to adapt its parsing strategy dynamically. Following the initial scene parsing by the VLM, the SGL performs ambiguity detection and attribute selection using a set of simple heuristic rules. This approach is particularly effective for our current, controlled scenes. The process begins by identifying a potential ambiguity, which occurs when multiple objects share a common category (e.g., geometry). To resolve the ambiguity, the system evaluates object attributes based on a fixed priority (color > state > size > position) and selects the most discriminating attribute value to use as a prefix. This generates a precise description, such as “left red cube”.

```

896 You are an expert vision assistant for a robot. Your task is to
897 analyze a visual scene and a user instruction to identify all
898 relevant objects and their properties. Your final output must
899 be a single, valid JSON list.
900
901 The user's instruction is: "{instruction}"
902
903 ---
904 ### **1. Object Identification Rules**
905 Based on the instruction and the scene, you must identify:
906 - **One 'manipulation object'**: The primary object to be moved or
907     interacted with.
908 - **Zero or one 'receiver object'**: The object that receives the
909     manipulation object (e.g., a box, a table).
910 - **'n' other objects**: Any other clearly visible objects in the
911     scene.
912
913 ### **2. Required Object Attributes**
914 Each object in the output list must have the following attributes:
915
916 - **"ID"**: A unique integer identifier for the object.
917 - **"object_type"**: A string, must be one of: 'manipulation
918     object', 'receiver object', or 'other object'.
919 - **"name"**: A short, essential noun for the object (e.g., 'box',
920     'cube', 'pyramid').
921 - **"category"**: A list of common categories. You must carefully
922     consider shared properties. For example:

```

```

918     - A cube and a pyramid are both “geometry”.
919     - A cube and a box can both be “rectangular shape”.
920     - If multiple objects share a category, you MUST include that
921         shared category for all of them.
922     - “color”: The object’s color. For ambiguous colors, combine
923         the names (e.g., “purple blue”, “gray white”).
924     - “size”: A string, must be one of: “small”, “normal”, or
925         “big”, judged relative to other objects in the scene.
926     - “position”: The object’s location if obvious (“left”, “right”,
927         “top”, “bottom”). Otherwise, use “normal”.
928     - “state”: The object’s physical structure, must be one of: “solid”
929         or “hollow”.
930
931     ---
932     ## 3. Example
933     Instruction: “Put the small geometry into the box”
934     Scene: A small, solid red cube on the left; a normal, hollow
935         yellow box on the right; and a normal, solid blue pyramid in
936         the middle.
937
938     Expected Output (Format Reference Only):
939     [
940         {
941             "ID": 1,
942             "object_type": "manipulation_object",
943             "name": "cube",
944             "category": ["cube", "geometry", "rectangular_shape"],
945             "state": "solid",
946             "color": "red",
947             "size": "small",
948             "position": "left"
949         },
950         {
951             "ID": 2,
952             "object_type": "receiver_object",
953             "name": "box",
954             "category": ["box", "container", "rectangular_shape"],
955             "state": "hollow",
956             "color": "yellow",
957             "size": "normal",
958             "position": "right"
959         },
960         {
961             "ID": 3,
962             "object_type": "other_object",
963             "name": "pyramid",
964             "category": ["pyramid", "geometry"],
965             "state": "solid",
966             "color": "blue",
967             "size": "normal",
968             "position": "middle"
969         }
970     ]
971
972     Note: You must only refer to the format of the example
973         output. The content of your response must be based on the
974         actual image and instruction provided to you.
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

```

Figure 14: Prompts for analyzing scenes based on prior knowledge of human scenarios.

972 **B THE USE OF LARGE LANGUAGE MODELS**
973974 As part of our commitment to producing a clear and well-written manuscript, we utilized a large
975 language model (LLM) to refine and polish portions of the narrative. The LLM’s role was strictly
976 limited to improving the language and readability of our existing text. All scientific claims, experi-
977 mental designs, results, and conclusions were conceived and articulated by the authors.978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025