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ABSTRACT

With the rise of big models, the need for data has become increasingly crucial. How-
ever, costly manual annotations may hinder further advancements. In monocular
3D object detection, existing works have investigated weakly supervised algo-
rithms with the help of additional LiDAR sensors to generate 3D pseudo labels,
which cannot be applied to ordinary videos. In this paper, we propose a novel
paradigm called BA2-Det that utilizes global-to-local 3D reconstruction to super-
vise the monocular 3D object detector in a purely 2D manner. Specifically, we use
scene-level global reconstruction with global bundle adjustment (BA) to recover
3D structures from monocular videos. Then we develop the DoubleClustering
algorithm to obtain object clusters. By learning from the generated complete 3D
pseudo boxes in global BA, GBA-Learner can predict 3D pseudo boxes for other
occluded objects. Finally, we train an LBA-Learner with object-centric local BA
to generalize the 3D pseudo labels to moving objects. Experiments conducted
on the large-scale Waymo Open Dataset show that the performance of BA2-Det
is on par with the fully-supervised BA-Det trained with 10% videos, and even
surpasses some pioneering fully-supervised methods. Besides, as a pretraining
method, BA2-Det can achieve 20% relative improvement on KITTI dataset. We
also show the great potential of BA2-Det for detecting open-set 3D objects in
complex scenes. Anonymous project page: https://ba2det.site.

1 INTRODUCTION

3D object detection has gained increasing attention from researchers and has become a fundamental
task in real-world perception. Thanks to the efforts of researchers, 3D object detection using LiDAR
and RGBD input has been shown to be practical in both traffic scenes (Shi et al., 2020; Yin et al.,
2021; Fan et al., 2023) and indoor scenes (Qi et al., 2019; Liu et al., 2021a). Autonomous vehicles and
service robots increasingly rely on 3D object detection to perceive and understand their environment.
In recent years, detecting 3D objects from images has emerged as a growing area of research. Due to
the cheap cost of the camera sensor, monocular and multi-camera 3D object detection is assured of a
proper place in 3D perception. From the aspect of performance, camera-only 3D object detector is
also gradually catching up with LiDAR-based methods.

However, with heavy and expensive manual annotations, the development of camera-based 3D object
detection methods is potentially limited. The existing work has explored weakly supervised (Zakharov
et al., 2020; Peng et al., 2022c) algorithms with the help of LiDAR to unlock the potential of unlabeled
images. However, the camera-only 3D object label generation method has not been investigated
much. In this paper, we expect to explore camera-only 3D object detection without 3D annotations
and the auxiliary LiDAR data. Considering that 2D object detection and segmentation are nearly
free (Kirillov et al., 2023) to obtain, in this paper we assume that we can get the 2D object labels and
simplify the problem as 2D supervised monocular 3D object detection.

In this paper, we propose a novel paradigm for 2D supervised monocular 3D object detection, called
BA2-Det, by 3D reconstruction from global (scene-level) to local (object-level) using twice bundle
adjustment (BA) technique, as shown in Fig. 1. We face and address some core issues step-by-step
in this process. The first issue is: how to recover the 3D location of each object only from images.
Given a video taken by a moving camera, the whole scene can be recovered in 3D by solving global
BA (Schonberger & Frahm, 2016). Furthermore, with 2D bounding boxes in each frame, we group
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Figure 1: A brief introduction of BA2-Det. Compared with BA-Det, to learn detector without 3D
labels, our BA2-Det generates 3D pseudo labels from scene-level reconstruction using global BA.

the reconstructed foreground 3D points into object clusters. Specifically, to obtain more complete and
clean object clusters, we design a two-step clustering algorithm called DoubleClustering, including
intra-frame Local Point Clustering (LPC) and inter-frame Global Point Clustering (GPC).

After obtaining 3D object clusters, the next problem is: how to estimate the 3D bounding boxes from
the object clusters. A simple solution is to fit a tight 3D bounding box enclosing the object point
cluster. However, the estimated orientation is very unreliable since it is sensitive to the outlier points
in the cluster. We design a better orientation-optimized method by making sure more reconstructed
points are near the edge of the 3D bounding box. Additionally, the bounding box may only encompass
a portion of the object due to occlusion. So we learn the occluded object’s complete 3D bounding
box from other non-occluded 3D boxes with a PointNet-like (Qi et al., 2017) neural network, called
GBA-Learner, i.e., learning from the global BA.

However, many moving objects are not reconstructed in scene-level global 3D reconstruction. So the
last problem is: how to generalize the 3D pseudo labels to dynamic objects. Inspired by BA-Det (He
et al., 2023), equipped with object-centric local BA, we design a monocular 3D object detector
(LBA-Learner). We train LBA-Learner using iterative self-retraining from static objects. With the
generalization ability of the object detector and object-centric local BA, we can predict the 3D
bounding boxes for both static and moving objects.

In summary, our main contributions are as follows: (1) We propose a novel paradigm for 2D
supervised monocular 3D object detection, called BA2-Det, and integrate the generation of 3D
pseudo labels and the learning process of the monocular 3D object detector from the perspective of
global-to-local 3D reconstruction. (2) We aim to address three fundamental technical challenges in
learning the 3D object detector without 3D labels. To achieve this, we have developed three main
modules: DoubleClustering, GBA-Learner, and LBA-Learner. (3) We conducted experiments on
various datasets, including the KITTI dataset, the large-scale Waymo Open Dataset (WOD), and
open-set general scenes. The main results and ablation study show the high quality of pseudo labels.
These pseudo labels can be used either for the direct training of 3D detectors or for leveraging
large-scale data as pretraining to enhance the performance of fully supervised detection models. The
performance of BA2-Det is on par with the fully-supervised BA-Det trained with 10% videos and
even outperforms some pioneering fully-supervised methods. As a pretraining method, BA2-Det can
bring 20% relative improvement on KITTI dataset. We also show the great potential for detecting
open-set 3D objects in complex scenes.

2 RELATED WORK

2.1 MONOCULAR 3D OBJECT DETECTION

Monocular 3D object detection (Chen et al., 2016; Brazil & Liu, 2019; Wang et al., 2019; Zhang
et al., 2021) has been explored for several years, thanks to the ability of the neural network that
can estimate relatively accurate depth from the monocular images. The existing monocular 3D
object detection methods can be divided into three categories: regressing 3D objects from the
image directly, regressing on the depth map or lifted 3D space, and regressing based on geometric
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constraints. CenterNet (Zhou et al., 2019) and FCOS3D (Wang et al., 2021c) are the representing
works to estimate the 3D objects with a 3D regression branch based on the 2D object detectors
CenterNet (Zhou et al., 2019) and FCOS (Tian et al., 2019), respectively. PL (Wang et al., 2019) and
PL++ (You et al., 2020) use the off-the-shelf dense depth estimator to project the scene in 3D space
and detect objects from pseudo-LiDAR. D4LCN (Ding et al., 2020) and PatchNet (Ma et al., 2020)
use the image-aligned depth map to extract features. E2E-PL (Qian et al., 2020) and CaDDN (Reading
et al., 2021) jointly learn the depth estimator and 3D object detector in an end-to-end manner. With
the geometric constraints, the 3D object depth can be estimated by solving Perspective-n-Point (PnP)
problem. MonoFlex (Zhang et al., 2021) solves PnP from the vertical lines of 3D bounding boxes.
AutoShape (Liu et al., 2021b) uses semantic points sampled on the CAD model. DCD (Li et al.,
2022b) uses arbitrary point pairs to construct dense constraints. Recently, there has been a surge
in the development of temporal 3D object detection from monocular images. DfM (Wang et al.,
2022a) and BA-Det (He et al., 2023) aggregate temporal information at the scene level and in an
object-centric manner, inspired by two-view and multi-view geometry theory, respectively.

2.2 DETECTING 3D OBJECTS WITHOUT 3D LABELS

Since the 3D object detection task makes great progress in the past few years, many researchers
begin to explore using fewer 3D labels or even without 3D labels to train a 3D object detector. For
LiDAR-based 3D object segmentation, clustering-based methods (Triebel et al., 2010; Campello
et al., 2013; Nunes et al., 2022) are the mainstream methods. LSMOL (Wang et al., 2022b) and
Najibi et al. (Najibi et al., 2022) combine image and LiDAR to segment 2D and 3D objects. However,
only class-agnostic segmentation can be achieved in these methods. MODEST (You et al., 2022)
is an unsupervised 3D mobile object detection method to predict 3D bounding box. Its key idea
is that mobile objects are ephemeral members of a scene. For image-based 3D object detection,
SDFLabel (Zakharov et al., 2020) is a pioneer work that can auto-label the 3D bounding boxes from
a pre-trained 2D detector and the corresponding LiDAR data by recovering the object shape with
signed distance fields (SDF). WeakM3D (Peng et al., 2022c) is also a weakly supervised method and
needs additional LiDAR data. Yang et al. (Yang et al., 2022) first explore the image-only weakly
supervised without LiDAR. However, box size and orientation cannot be estimated in this method
and can only be learned by ground truth in the semi-supervised setting. Unlike the above works, our
BA2-Det only uses images without LiDAR as an auxiliary modality and can estimate 3D bounding
boxes including center position, box size, and orientation.

3 PRELIMINARY: BA-DET

BA-Det (He et al., 2023) is a two-stage 3D object detector with a learnable object-centric global
optimization network. The BA-Det pipeline has two stages. The first stage is a single-frame monocular
3D object detector. The second stage is an object-centric temporal correspondence learning (OTCL)
module. This module uses feature-metric object bundle adjustment loss to learn temporal feature
correspondence. During inference, BA-Det uses object-centric bundle adjustment (OBA) to optimize
the object’s pose and 3D box size over time. It takes the first-stage object prediction and temporal
feature correspondence as input.

We notice that for the moving objects, 3D pseudo labels cannot be generated in the scene-level
global reconstruction. However, because BA-Det can handle both static and moving objects in an
object-centric style, we can design a training strategy that solves this problem. We first learn the 3D
object iteratively to refine the 3D bounding box using the first stage of BA-Det, and with the help
of object-centric bundle adjustment, the moving objects that do not learn well can be refined in the
second stage of BA-Det.

4 METHODOLOGY

Problem setup. In this paper, we present our BA2-Det for detecting 3D objects from monocular
images. The objects are represented as 7-DoF 3D bounding boxes with only yaw rotation considered.
Our detector does not require training with 3D ground truth or the use of LiDAR data as an auxiliary
modality. However, we use additional 2D labels to separate instances and obtain class labels for each
object. Note that during inference, we do not use any types of labels.
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Figure 2: Pipeline of BA2-Det. We take the video sequence as input. The Global BA stage is to
generate 3D pseudo labels from scene-level global reconstruction, including DoubleClustering and
GBA-Learner. Then Local BA is to learn a monocular 3D object detector in an iterative way.

Algorithm overview. We introduce our framework BA2-Det briefly and explain module designs.
In general, BA2-Det is a pipeline learning reconstructed 3D objects from scene-level global recon-
struction to object-centric local reconstruction. As shown in Fig. 2, BA2-Det mainly contains three
modules, DoubleClustering for obtaining 3D object clusters from scene reconstruction (Sec. 4.1),
GBA-Learner learning 3D object bounding boxes from clusters (Sec. 4.2), and LBA-Learner learning
a 3D object detector iteratively based on object-centric local reconstruction (Sec. 4.3).

4.1 DOUBLECLUSTERING: 3D OBJECT CLUSTERING FROM SCENE-LEVEL RECONSTRUCTION

Using the Structure-from-Motion (SfM) technique, it is possible to reconstruct a 3D scene from
ego-motion. Then from the reconstructed scene, with the help of 2D bounding boxes in each frame,
the 3D object cluster can be obtained by clustering the foreground points from the reconstructed
scene. So, in this section, we introduce an algorithm called DoubleClustering (Alg. 1) for extracting
3D object clusters from the 3D reconstructed scene.

Firstly, let’s revisit scene reconstruction with SfM. We denote the video sequence as V = {It|t =
1, 2 · · · , T}, keypoints as pi

t = [ui, vi]
⊤, (i = 1, 2, · · · , n) and local feature as Ft = {f it}. In this

paper, the keypoint extraction and local feature matching network are based on SuperPoint (DeTone
et al., 2018) and SuperGlue (Sarlin et al., 2020). Given camera intrinsic parameter K and the camera
extrinsic parameter Tt = [Rt|tt] in t-th frame, 3D keypoint Pi in the global frame can be optimized
by solving bundle adjustment with projection error

{P∗
i }ni=1 = argmin

{Pi}n
i=1

1

2

n∑
i=1

T∑
t=1

||pt
i −Π(Tt,Pi,K)||2, (1)

where Π(·) is the function projecting the 3D points in the world frame to the image. However, when
the ego moves slowly, the disparity is small and the observation noise can affect reconstruction.
Therefore, when the camera moves slowly, we disregard the video sequence and do not reconstruct
the scene.

After the scene reconstruction, we choose the 3D points that can be projected in the 2D bounding
boxes, and perform the Local Point Clustering (LPC) in each frame via the Connected Component
(CC) algorithm to choose the largest cluster for each object Bt

j :

Pt
j = {Pi}mi=1 = LPC({P∗

i |Π(Tt,P
∗
i ,K) ∈ bt

j}), (2)
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Algorithm 1 Generating 3D object clusters (DoubleClustering)

Input: video clip V , camera intrinsic {K}, camera pose {Tt}, 2D bounding box with id {Bt
j}

nd
j=1

Output: 3D object cluster {P∗
j }

nd
j=1

1: {P∗
i }ni=1 ← SfM(V, {K}, {Tt});

2: P ← ∅;
3: for j ∈ [1, nd] do ▷ LPC for each object in each frame
4: for t ∈ [1, T ] do
5: Pt

j ← LPC({P∗
i },Bt

j);
6: P ← P ∪ Pt

j ;

7: {Pj′}
n′
d

j′=1 ← GPC(P); ▷ GPC from P to generate n′
d clusters

8: {P∗
j }

nd
j=1 ← Match({Pj′}, {Bt

j}); ▷ Match objects to the point clusters
9: return {P∗

j }
nd
j=1

where we denote bt
j as the region in the 2D box Bt

j . The distance threshold in CC algorithm is δ1.

Besides, we cluster the 3D points in the global scene by CC with distance threshold δ2, called Global
Point Clustering (GPC):

{Pj′}
n′
d

j′=1 = GPC(
⋃
t,j

Pt
j), (3)

where n′
d is the total object clusters. We ignore clusters with point numbers lower than threshold

θ. Finally, we choose the object cluster with the highest number of projected points in it as the
corresponding cluster P∗

j for the 2D bounding box Bt
j .

4.2 GBA-LEARNER: GENERATING 3D OBJECT LABELS FROM 3D OBJECT CLUSTERS

We now obtain object clusters and then we need to generate the 3D pseudo box from the object points
in each cluster. To further learn and refine 3D object labels, we design a PointNet-based network
called GBA-Learner. Given the object cluster P∗

j in the global frame, we first fit a tight 3D bounding
box. A straightforward solution would be to find the minimum enclosing rectangle in the bird’s-eye
view (BEV) and calculate the box’s height using points along the z-axis. However, this method
is not effective enough in estimating orientation due to its susceptibility to noise points. Utilizing
the assumption that the reconstructed points are mainly located on the object’s surface and taking
inspiration from Zhang et al. (Zhang et al., 2017), we optimize the orientation ry by minimizing the
total distance between the points and their closest edge. Subsequently, we adjust the width and length
of the bird’s-eye view bounding box to achieve minimal area:

r∗y,B
∗
bev = argmin

ry∈[0,π),Bbev∈R2

m∑
i=1

min
l∈[1,4]

d(Pi,R(ry)B
l
bev), (4)

where Pi is the 3D points in the object cluster, and R(ry)B
l
bev is the edge of rotated BEV bounding

box with angle ry, we use l2 distance as distance function d(·). The results in Table 3 and Table 14
also validate the effectiveness of our box fitting method, especially on the orientation metrics.

However, not all fitted 3D boxes are satisfactory because some objects may be occluded or affected
by outliers, resulting in sizes that differ from the ground truth. Therefore, we design a neural network
Gθ to learn and refine the initial 3D bounding box from well-reconstructed objects. This network
takes the object cluster as input and normalizes the coordinates of 3D points using the center of
the 3D pseudo box. It consists of a PointNet backbone and a head to predict 7DoF 3D bounding
box [cx, cy, cz, w, h, l, ry]. To simulate the occlusion-induced partial object points, we perform data
augmentation by cutting off regions from the well-reconstructed object. Note that we only consider
the length between [σ0, σ1] as the well-reconstructed object and take these 3D pseudo boxes to
supervise Gθ. The more details in training Gθ is in Sec. B in Appendix.

Note that we can only generate 3D object labels for the static object with Gθ because the moving
objects cannot be reconstructed in the scene-level global reconstruction. So we still need a neural
network to generalize to the moving objects by learning from static objects and to refine the 3D
bounding boxes with object-centric local reconstruction.
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4.3 LBA-LEARNER: 3D OBJECT DETECTION WITH OBJECT-CENTRIC RECONSTRUCTION

As the size and orientation-optimized 3D pseudo labels are generated, in this section, we train a
3D object detector called LBA-Learner. By using the object-centric LBA-Learner, we can achieve
better generalization for moving objects and improve object temporal consistency. LBA-Learner Nθ

is based on BA-Det (He et al., 2023). The detector learning contains initial training and iterative
self-retraining.

The initial training stage is to learn a 3D object detector with generated 3D pseudo labels, which is
different from fully supervised methods and the iterative self-retraining stage. There are two main
differences: the distance distribution of the labels and some unlabeled 3D objects (usually moving
objects). Firstly, 3D pseudo labels have a wider distance distribution due to the ability of scene-level
global reconstruction to recover 3D object points from an entire video. However, the ground truth
labeled on LiDAR is usually near due to the limited scanning range. We discuss this problem with
experiments in Sec. 5.5 (Table 6). Secondly, regarding the issue of unlabeled 3D objects, we assign
labels using 2D ground truth (GT) labels and disregard their 3D losses if there are no 3D pseudo
labels. This ensures that the unlabeled objects are not considered negative samples. This strategy
will keep the recall and enhance the refinement of the 3D position during the iterative self-retraining
stage. The verification experiments are in Sec. 5.4 (Table 3).

Besides, another significant distinction between our BA2-Det and fully-supervised monocular 3D
object detector is how to supervise the orientation estimation. The orientation of the 3D pseudo label
may have a deviation of 180◦, as it can be difficult to distinguish whether the object is facing forward
or backward. MultiBin Loss (Mousavian et al., 2017) is a common practice in fully supervised
methods. We use it with modification to alleviate this problem. We calculate two losses using the
original pseudo label and the 180◦-reversed one, selecting the minimum as the final orientation loss.
Experiment results are in Table 14. As for the other losses, we mainly follow BA-Det (He et al.,
2023).

Because the 3D pseudo labels are not precise enough and the camera-based 3D object detector is
hard to learn, we iteratively self-retrain the detector with predictions as the updated pseudo labels.
We design two retraining strategies: keeping the initial 3D pseudo labels and supplementing the high
score predictions iteratively

D(l)(X,Y ) = N
(l)
θ (D̃(X,Y ) ∪ D(l−1)(X,Y )), (5)

or using 3D pseudo labels for initial training and updating labels with predictions from last iteration{
D(0)(X,Y ) = N

(0)
θ (D̃(X,Y )),

D(l)(X,Y ) = N
(l)
θ (D(l−1)(X,Y )),

(6)

where D̃(X,Y ) is the dataset with generated pseudo labels, D(l)(X,Y ) is the dataset with predicted
labels, (l) means the l-th self-training iteration. Note that we do not keep the last network parameters
for each self-retraining iteration and train the network Nθ for the same κ epochs. We finally choose
the second retraining strategy for better performance (Table 5 in Sec. 5.5).

5 EXPERIMENTS

5.1 DATASETS AND METRICS

Waymo open dataset (WOD). To verify our proposed BA2-Det, we conduct our ablation studies
and comparison experiments with other methods on the large-scale autonomous driving dataset,
Waymo Open Dataset (WOD) (Sun et al., 2020). WOD is the mainstream 3D object detection
benchmark, containing 1150 video sequences, 798 for training, 202 for validation, and 150 for testing.
Only objects within 75m that can be scanned by LiDAR have 3D labels. To keep the same experiment
settings as other methods, we mainly report the results on WOD v1.2. The evaluation metrics for
camera-based 3D object detection are 3D AP and LET-3D AP (Hung et al., 2022). 3D AP is a
common metric for both camera and LiDAR-based 3D object detection. LET-3D AP is specifically
designed for camera-only 3D object detection. Because the camera-based 3D object detector has
a natural weakness in depth estimation, LET-3D AP is much looser for longitudinal localization
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Table 1: The main results on WOD val set. ‘3D Sup.’ means the ratio of video sequences with 3D
labels. †: trained with 1/3 frames. *: without object-centric BA refinement.

Method 3D Sup. 3D AP5 3D APH5 3D AP50 3D APH50 LET APL50 LET AP50 LET APH50

PatchNet (Ma et al., 2020) 100%† - - 2.92 2.74 - - -
M3D-RPN (Brazil & Liu, 2019) 100%† - - 3.79 3.63 - - -
PCT (Wang et al., 2021a) 100%† - - 4.20 4.15 - - -
MonoJSG (Lian et al., 2022) 100%† - - 5.65 5.47 - - -
GUPNet (Lu et al., 2021) 100%† - - 10.02 9.94 - - -
MonoFlex (Zhang et al., 2021) 100% 70.33 69.41 34.70 34.43 50.63 67.30 66.50
BA-Det (He et al., 2023) 100% 72.96 71.78 40.93 40.51 54.45 68.32 67.36

MonoFlex (Zhang et al., 2021) 10% 53.68 52.30 15.44 15.22 28.21 44.21 43.23
BA-Det (He et al., 2023) 10% 57.29 55.27 19.70 19.27 32.53 46.91 45.52

SfM+BA-Det (Baseline) 0% 27.84 8.80 2.89 0.75 7.34 10.75 3.31
BA2-Det* (Ours) 0%† 55.24 40.87 6.24 5.37 16.61 27.94 21.32
BA2-Det* (Ours) 0% 56.33 42.05 6.97 6.00 17.87 29.62 22.8
BA2-Det (Ours) 0% 60.01 44.81 10.39 8.98 22.24 32.60 23.86

and uses Longitudinal Error Tolerant IoU (LET-IoU) instead of the original IoU as the criterion.
Following the existing camera-based 3D object detection methods, we mainly report the results of the
VEHICLE class on the FRONT camera. For 3D AP and 3D APH, we choose a loose IoU threshold
of 0.05 and a common one of 0.5, called AP5 and AP50. For LET-3D metrics, we report the results
under the official IoU threshold of 0.5.

KITTI dataset. KITTI object detection benchmark consists of 7481 images for training and 7518
images for testing. Unlike WOD, it is not organized as long video sequences. The main evaluation
metric is 3D AP on three difficulty levels, easy, moderate, and hard. Besides the object detection
benchmark, KITTI also provides the raw dataset without 3D object labels. We train BA2-Det on
KITTI raw dataset.

5.2 IMPLEMENTATION DETAILS

Architecture. The main 3D object detector architecture we used follows BA-Det (He et al., 2023).
We use a DLA-34 (Yu et al., 2018) as the backbone without an FPN neck, and the head is with 2
layers of 3×3 convolutions and MLP. The resolution of the input images is 1920×1280. If the input
size is smaller than it, we will use zero padding to complete the image.

Label generation and model training. The scene reconstruction is based on hloc (Sarlin et al.,
2019) framework1. The distance threshold δ1 and δ2 in DoubleClustering are 0.5 and 0.7. We keep
the object cluster for more than θ = 100 points. The size threshold σ0 = 3m and σ1 = 10m. Our
implementation is based on the PyTorch (Paszke et al., 2019) framework. We train our model on 8
NVIDIA RTX 4090 GPUs. Adam (Kingma & Ba, 2014) optimizer is applied with β1 = 0.9 and
β2 = 0.999. The learning rate is 8×10−5 and weight decay is 10−5. We train 1 epoch for network
Gθ and κ = 12 epochs for the 3D object detector Nθ. The loss weights are the same as BA-Det. The
self-retrain iteration number for Nθ is 2. As shown in Table 6, we choose labels in the wider depth
range [0.5m, 200m] for initial training and regular range [0.5m, 75m] for iterative self-retraining.

5.3 MAIN RESULTS

As shown in Table 1, we show the main results compared with fully-supervised BA-Det, a simple
solution combining SfM and BA-Det, and some other fully supervised methods. Especially, to make
a clear understanding of our results, we also compare the results of BA-Det trained with fewer data.
We find that with a loose IoU threshold (0.05), our BA2-Det can outperform fully-supervised BA-Det
with 10% data by 2.7 AP and is close to the 100% data (with a ~12 AP gap). As for the 0.5 IoU
threshold, we can beat some other fully-supervised methods, such as PCT and MonoJSG. Compared
with our baseline method, using SfM (Schonberger & Frahm, 2016) and clustering to fit 3D labels
and learning a BA-Det, our BA2-Det have huge gains on all metrics.

We also conduct additional experiments on KITTI to compare with other SOTA methods. We report
3D object detection results on test set. Note that (1) there is no long video for 3D reconstruction on

1https://github.com/cvg/Hierarchical-Localization
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Table 2: The results on test set of KITTI detection benchmark.The main evaluation metric is 3D
APIoU=0.7|R40

on three difficulty levels, easy, moderate, and hard.

Method Reference Extra Data Easy Moderate Hard

PatchNet (Ma et al., 2020) ECCV 2020 KITTI Raw image+depth 15.68 11.12 10.17
MonoDTR (Huang et al., 2022) CVPR 2022 - 21.99 15.39 12.73
DCD (Li et al., 2022a) ECCV 2022 CAD models 23.81 15.90 13.21
MonoJSG (Lian et al., 2022) CVPR 2022 - 24.69 16.14 13.64
DID-M3D (Peng et al., 2022b) ECCV 2022 - 24.40 16.29 13.75
MonoDETR (Zhang et al., 2023) ICCV 2023 - 25.00 16.47 13.58
MonoATT (Zhou et al., 2023) CVPR 2023 - 24.72 17.37 15.00
MonoNeRD (Xu et al., 2023) ICCV 2023 - 22.75 17.13 15.63
LPCG-Monoflex (Peng et al., 2022a) ECCV 2022 KITTI Raw image+LiDAR 25.56 17.80 15.38
CMKD (Hong et al., 2022) ECCV 2022 KITTI Raw image+LiDAR 28.55 18.69 16.77
MonoXiver (Liu et al., 2023) ICCV 2023 - 25.24 19.04 16.39

MonoFlex (Zhang et al., 2021) CVPR 2021 - 19.94 13.89 12.07
BA2-Det+MonoFlex (Ours) - KITTI Raw image 23.45 16.30 (+2.41) 13.50

Table 3: The ablation study about each component of BA2-Det.

Nθ w/ 3D Nθ w/ 2D Gθ ry w/ d Iter. OBA 3D AP5 3D APH5 LET APL50 LET AP50

✓ 20.97 6.70 4.27 7.28
✓ 28.40 11.34 5.02 8.62
✓ ✓ 33.75 11.94 9.63 16.80
✓ ✓ ✓ 41.17 28.73 12.23 21.41
✓ ✓ ✓ ✓ 56.33 42.05 17.87 29.62
✓ ✓ ✓ ✓ ✓ 60.01 44.81 22.24 32.60

KITTI object detection dataset, and we have to generate 3D pseudo boxes on KITTI raw dataset; (2)
there are hardly any comparable methods available for 2D supervised 3D detection. So, we report
the results taking BA2-Det as the pretraining approach. We pretrain BA2-Det on KITTI raw dataset
without any labels (We use the 2D object detector Mask R-CNN trained on COCO) and finetune
the monocular 3D object detector MonoFlex with 3D ground truth on KITTI detection training set.
We only use a single frame during inference for a fair comparison. The results have been shown in
Table 2. BA2-Det can have 2.4 AP gain (about 20% relative improvement) on the moderate level.

5.4 ABLATION STUDY

We conduct the ablation study on WOD val set. The results are shown in Table 3. ‘Nθ w/ 3D’ and
‘Nθ w/ 2D’ mean we assign labels based on 3D or 2D labels (Sec. 4.3). We finally choose to assign
labels with 2D labels and ignore the 3D loss if the 3D labels cannot be generated, which is 7.4
AP higher than only assigning labels when the 3D label exists. Gθ is the GBA-Learner, learning a
complete 3D box from the partially reconstructed object, that can obtain a 5.4 AP gain. ‘ry w/ d’
is the orientation optimization method minimizing the distances from points to the edge (Sec. 4.2),
improving 16.8 APH by refining the orientation and box size. iterative self-retraining (Iter.) has
the greatest gain of 15.2 AP. More experiments and discussions about iterative self-retraining are
in Sec. 5.5. With object-centric bundle adjustment (OBA), the 3D bounding boxes are refined in
temporal, which improves 3.7 AP.

5.5 DISCUSSIONS

Table 4: Discussion about self-retraining itera-
tions.

Iter. 3D AP5 3D APH5 LET APL50 LET AP50

0 41.17 28.73 12.23 21.41
1 51.81 38.66 17.42 28.57
2 56.33 42.05 17.87 29.62
3 56.70 42.27 16.87 28.06
4 57.12 42.42 16.64 27.73

Self-retraining iteration. We discuss the
number of iterations required for the self-
retraining stage. In Table 4, we conduct the
experiments of a maximum of 4 iterations. The
first iteration can bring the greatest benefit of
10.7 AP and the benefits are progressively de-
creased. After the second iteration, the perfor-
mance is near the highest performance, which
shows fast convergence of the self-retraining
stage.

8
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Table 5: Ablation study of self-retraining strategy.

Strategy 3D AP5 3D APH5 LET APL50 LET AP50

w/o iter. 41.17 28.73 12.23 21.41

Eq. 5 39.71↓ 1.5 29.79↑ 1.0 12.75↑ 0.5 21.08↓ 0.3
Eq. 6 51.81↑ 10.6 38.66↑ 9.9 17.42↑ 5.2 28.57↑ 7.2

Retraining strategy. In Sec. 4.3,
we propose two self-retraining strate-
gies (Eq. 5 and Eq. 6). In Table 5, we
show the experiment results to retain
1 iteration. The latter is better than
the former strategy. The combination
of pseudo-labels and predictions may
introduce two inconsistent data distri-
butions, causing poor results. The results in Table 3 and Table 4 also indicate the importance of the
chosen self-retraining strategy.

Table 6: Experiments on different depth thresholds.

Iter. Depth (m) 3D AP5 3D APH5 LET APL50 LET AP50

0 [0.5, 75] 22.24 7.66 4.83 8.56
0 all, [0.5, 200] 33.75 11.94 9.63 16.80
1 [0.5, 75] 42.07 15.00 12.32 20.48
1 all, [0.5, 200] 40.60 14.49 12.18 20.05

Depth threshold settings. By uti-
lizing reconstruction, we can gener-
ate labels for objects that are farther
away, and thus the depth distribution
is different from ground truth, shown
in Fig. 3. According to experiments
(Table 6), we find that when we ini-
tially train the object detector, we
need these farther objects, and for iteratively self-retraining, we can only train with the same depth
ranges as the ground truth (0-75m).

Table 7: Genralization ability of 3D localization on WOD training set. ‘w/o p.l.’: objects without
pseudo label, ‘w/ p.l.’: objects with pseudo label.

Ratio δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓
w/o p.l. 52.2% 0.991 0.994 0.995 0.055 0.324 2.773 0.100
w/ p.l. 47.8% 0.995 0.996 0.997 0.049 0.117 1.726 0.077

All 100% 0.992 0.995 0.996 0.053 0.266 2.524 0.094
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Figure 3: Depth distributions of ground
truth and pseudo labels.

Generalization to unlabeled objects. In Table 7,
we validate the performance of generalizing 3D loca-
tion for unlabeled objects. The metrics follow depth
estimation but on the object level. We find that only
47.8% objects can be generated 3D pseudo labels di-
rectly. The others are either heavily occluded or mov-
ing. The small gap between labeled and unlabeled
objects in performance shows the generalization of
LBA-Learner module to unlabeled moving objects.

Open-set 3D object detection. We demonstrate the
capability to detect open-set 3D objects in complex
scenes using SAM (Kirillov et al., 2023) instead of
relying on 2D ground truth (Fig. 6 in appendix).

3D Tracking results, more ablation studies, discussions, and qualitative results. Please refer to
Section B and Section C in the appendix. We show the qualitative of 3D object detection and tracking
in Figure 7 in the appendix. For video demos, please refer to https://ba2det.site.

6 CONCLUSION

In this paper, we propose BA2-Det, a novel paradigm for 2D supervised monocular 3D object
detection. The key idea of BA2-Det is to generate 3D pseudo labels and learn a 3D object detector
from scene-level global reconstruction and object-centric local reconstruction. Specifically, the
pipeline of BA2-Det contains three parts: DoubleClustering algorithm to cluster object clusters from
the reconstructed 3D scene, 3D object label generation with GBA-Learner, and 3D object detector
LBA-Learner generalizing the pseudo labels to unlabeled dynamic objects. Experiments on the large-
scale Waymo Open Dataset show that the performance of BA2-Det is on par with the fully-supervised
BA-Det trained with 10% videos and even outperforms some pioneering fully-supervised methods.
As a pretraining method, BA2-Det can bring 20% relative improvement on KITTI dataset. We also
show the potential of BA2-Det for detecting open-set 3D objects in complex scenes.

9
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A APPENDIX

In the appendix, we provide additional quantitative and qualitative experiment results. Especially,

• In Sec. B, we provide more quantitative experiment results, including more ablation studies,
discussions and 3D multiple object tracking (MOT) results.

• In Sec. C, we show some qualitative results about the 2D supervised monocular 3D object
detection, open-set 3D object detection, and multiple object tracking.

• In Sec. E and Sec. F, we also discuss the limitation of the proposed BA2-Det and future
work, and reproducibility statements to better reproduce our work.

B ADDITIONAL EXPERIMENTS

B.1 3D TRACKING RESULTS

Table 8: Comparisons with SOTA methods on WOD for 3D MOT.

Fully Sup. MOTA50 ↑ Mismatch50 ↓ MOTA30 ↑ Mismatch30 ↓
QD-3DT (Hu et al., 2022) ✓ 0.0308 0.00550 0.1867 0.01340
CC-3DT (Fischer et al., 2022) ✓ 0.0480 0.00180 0.2032 0.00690

SfM+BA-Det+Immortal (Wang et al., 2021b) 0.0011 <0.00001 0.0652 0.00038
BA2-Det (Ours) 0.0352 0.00002 0.1522 0.00008

In Table 8, we show additional 3D MOT results on WOD. We compare the proposed BA2-Det with
other SOTA monocular 3D MOT methods on WOD. All results are reported in Vehicle LEVEL 2
difficulty. 50 and 30 in the metrics are for the IoU threshold of 0.5 and 0.3. Note that the SOTA
methods are both fully supervised, learning with 3D ground truth. Our BA2-Det is a 2D supervised 3D
multiple object tracking method. Even though, BA2-Det is also comparable to these fully supervised
ones. Especially for MOTA50 metric, we outperform QD-3DT (Hu et al., 2022). For Mismatch,
we only have less than 1/100 identity switches compared with the SOTA methods. Compared with
the baseline method, using SfM to generate pseudo labels, BA-Det as the 3D object detector, and
ImmortalTracker to track 3D objects, our method BA2-Det improves the performance by a large
margin.

B.2 ADDITIONAL ABLATION STUDIES AND DISCUSSIONS

Detailed results in different depth ranges. The detailed results in different depth ranges are shown
in Table 9. Compared with the baseline, we have a more significant gain for the objects far off.

Table 9: The detailed results in different depth ranges (meters) on WOD val set.

Method 3D Sup. 3D AP5 3D APH5 LET APL50 LET AP50
0-30 30-50 50-∞ 0-30 30-50 50-∞ 0-30 30-50 50-∞ 0-30 30-50 50-∞

BA-Det 100% 87.80 72.52 48.45 86.91 71.52 46.98 66.15 57.97 36.44 82.74 69.58 45.77
BA-Det 10% 73.25 54.00 34.50 71.38 52.22 32.53 38.31 35.57 22.40 56.98 47.28 31.11

SfM+BA-Det 0% 46.87 25.88 9.09 14.26 8.86 2.84 11.35 7.74 2.60 17.59 10.12 3.48
BA2-Det (Ours) 0% 77.38 54.95 33.74 64.54 37.57 21.64 25.00 23.97 14.63 39.24 31.73 20.30

Robustness across various levels of reconstruction quality. Due to variations in reconstruction
quality being primarily caused by differences in descriptors and matching algorithms, we simulate
a scenario where there is a 25% decrease in the number of matched points due to failed matching.
The results are presented in Table 10. The results show that our method is robust to the worse
reconstruction quality.
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Table 10: Results with worse reconstruction. We simulate worse point matching case.

3D AP5 3D APH5 LET APL50 LET AP50

75% points 37.02 26.20 9.75 17.19
100% points 41.17 28.73 12.23 21.41

Robustness across various levels of 2D annotation quality. We discuss two kinds of worse 2D
annotation qualities. The first is the influence of box numbers. We randomly drop 5% 2D bounding
boxes and add 5% false positives. The second is for the 2D bounding box position. We add a
maximum of 20% position error to the 4 corner points of the 2D bounding box. The results are shown
in Table 11. Our method is relatively robust to the 2D box quality. Note that 2D object detection is a
very stable and reliable technology. The 2D object detector is usually no worse than this simulation
experiment. (For vehicles, >80 AP under 0.7 IoU threshold.)

Table 11: Results using worse 2D annotations.

3D AP5 3D APH5 LET APL50 LET AP50

GT box 41.17 28.73 12.23 21.41
Add FP + FN 36.96 26.24 9.34 16.51
Inaccurate box position 31.34 21.88 8.45 14.81

Necessity of Local Point Clustering (LPC). LPC has two main roles: (1) provide semantic
labels (class and ID) for reconstructed 3D points; (2) remove background points in the 2D box
(2D box is not tight enough for the object boundary). If only using GPC to remove background
points, the background points in frame A may be close to the foreground points in frame B (because
there are more points, points are near to each other globally), and thus the clustering is not easy.
Besides, without LPC, there will be more points to be clustered in GPC, which takes more memory
and time. We conduct an additional ablation study (Table 12), i.e., we compare with using all
points in 2D bounding box for GPC. The experiment also shows the effectiveness of our design of
DoubleClustering.

Table 12: Ablation study on DoubleClustering algorithm.

3D AP5 3D APH5 LET APL50 LET AP50

GPC 32.21 22.30 8.24 14.97
LPC+GPC 41.17 28.73 12.23 21.41

Learning process details for GBA-Learner. As mentioned in Section 4.2, we use the length of
pseudo 3D bounding boxes to determine whether the object is well-reconstructed. This is a very
simple yet effective metric, because we only need to find a good 3D box instead of its 3D surface in
the object detection task. As mentioned in Section 4.2, GBA-Learner can improve box size estimation
accuracy. Here, we report size prediction error, as the average absolute relative error of length, width
and height in Table 13.

Besides, in training GBA-Learner, we do not simulate too large objects because we set a very
loose length threshold. A vehicle whose length is too big (>10m) is very rare. According to the
statistical results of GT (Fig. 4), it shows that less than 1% of objects have a length greater than 10m.
We suppose that when the pseudo label is longer than 10m, it is likely that multiple objects have
been incorrectly clustered into one cluster, resulting in a false positive. So we ignore this kind of
cluster instead of learning a 3D box from it. As for the small pseudo box, we think it is a partially
reconstructed object, and we can learn a full 3D box for it.

Orientation error. Our designs of orientation optimization (Sec. 4.2) and orientation loss can help
orientation esitmation. Besides APH metric, we also report more detailed orientation metrics. As
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Figure 4: Statistical results of GT object length distribution.

Table 13: Ablation study of GBA-Learner. We also report results under the size prediction error
metric.

3D AP5 3D APH5 LET APL50 LET AP50 Avg. Abs. Rel.

w/o Gθ 28.40 11.34 5.02 8.62 0.076
w/ Gθ 33.75 11.94 9.63 16.80 0.063

for the orientation metrics, we report the average absolute relative error of orientation, defined as
min(|θ̃ − θ|, 2π − |θ̃ − θ|)/π, where θ̃ and θ are the predicted heading and the ground truth heading.
In Table 14, we discuss the main factors to influence the orientation estimation, (1) minimizing the
sum of distance (ry w/ d) and (2) orientation loss.

Table 14: Impact of orientation optimization and loss design for orientation estimation.

3D AP5 3D APH5 ry Abs. Rel.

minAreaRectangle + MultiBin loss 33.75 11.94 0.205
ry w/ d + MultiBin loss 38.39 24.33 0.099
ry w/ d + Orientation loss 41.17 28.73 0.072

Moving object filtering in pseudo label generation. The points on moving objects are mostly
ignored in SfM. To further alleviate the effect of these points, as mentioned in Sec. 4.1 and Sec. 5.2,
we filter the object that has few points. We only keep the object cluster for more than θ = 100 points.
These objects may be dynamic objects that are not reconstructed well. The influence of this operation
is ablated in Table 15.

Pedestrian and cyclist categories. Although we report the results of VEHICLE class in main
paper, we would like to discuss the potential of BA2-Det for other categories as well. Other categories
such as pedestrians and bicycles are primarily dynamic objects that would be affected by the moving
object filtering operation in global scene reconstruction.

- As for 3D pseudo-label generation, "the points on moving objects are mostly ignored". That means
3D pseudo labels are rarely generated for pedestrians and cyclists due to their movement. (However,
when they are static, such as waiting for a red light, the pseudo label can still be generated.) This is
the natural shortage of SfM.

- Although lacking 3D pseudo labels, we can utilize the "generalization ability of depth from other
objects" of the monocular 3D object detector. The other objects are mainly vehicles that are learned
with 3D pseudo labels. We can generalize the depth of pedestrians/cyclists from the learned depth of
vehicles. This generalization ability is because (1) Depth is the class-agnostic attribute of the object,
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Table 15: Ablation study on few-point object filtering.

3D AP5 3D APH5 LET APL50 LET AP50

ALL 36.03 24.92 9.27 16.38
Filter <100 points 41.17 28.73 12.23 21.41

Table 16: Additional results on Pedestrian and Cyclist categories. The middle columns show the
object-level depth estimation results and the rightmost column shows the object-level orientation
estimation results.

Category δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ ry Abs. Rel.

Car 0.993 0.995 0.996 0.093 0.558 3.367 0.198 0.0805
Pedestrian 0.981 0.992 0.994 0.055 0.292 3.086 0.104 0.0804
Cyclist 0.848 0.950 0.962 0.120 0.804 4.491 0.168 0.3737

and the network learns depth from the whole image. During the inference stage, the network can
leverage the learned depth information of other vehicles in the same image to predict the depth of
pedestrians and cyclists. (2) We train monocular 3D object detector with 2D assignment strategy.
That means we will predict depth for all 2D objects, both vehicles and pedestrians/cyclists.

We show the object-level depth and orientation estimation accuracy in Table 16. As we can see, the
average depth accuracy for pedestrians is no worse than vehicles. The training samples for the cyclist
are too rare, and thus slightly affect the performance of the cyclist.

C QUALITATIVE RESULTS

We show some qualitative results about 3D object detection and tracking (BA2-Det), open-set 3D
object detection, and 2D MOT with auxiliary 3D representation (BA2-Det). For more qualitative
results and video demos, please refer to the project page: https://ba2det.site.

C.1 3D OBJECT DETECTION AND MOT RESULTS ON WOD

In Fig. 7, we show the qualitative results of BA-Det (trained with 10% labeled videos), the baseline
method, and the proposed BA2-Det. Our method can achieve comparable performance with fully
supervised BA-Det, and even better in some near cases. Compared with the baseline, a very obvious
phenomenon is that our recall can be much better than the baseline method, mainly due to the iterative
self-retraining design. The illustrations also show a typical failure case of BA2-Det that on a distance
of about 75m, there are some false positives. This is because the 3D pseudo labels can be 0-200m
and thus somewhat affects the training process. If the annotations include some farther objects, this
problem may be alleviated.

C.2 OPEN-SET 3D OBJECT DETECTION WITH SAM

In Fig. 6, we also show the ability to detect open-set 3D objects in complex scenes with SAM (Kirillov
et al., 2023) instead of 2D ground truth. We click the objects to generate the 2D masks in SAM.
Please refer to the detailed video demos from https://ba2det.site.

D DISCUSSION ABOUT NERF-FROM-IMAGE (PAVLLO ET AL., 2023)

We try nerf-from-image in our complex dataset WOD. However, only for object reconstruction, the
performance is not as good as it shows in clean datasets CUB Birds and Pascal3D+ Cars. We analyze
and discuss why it doesn’t work on WOD in the following. In this section, we show the qualitative
results.

• The main problem is for the small objects, i.e., for the objects far from the camera. Since
nerf-from-image is designed for object-centric datasets, in which objects are near the camera
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(a) BA-Det (10% labeled videos). (b) SfM + BA-Det (Baseline). (c) BA2-Det (Ours).

Figure 5: Qualitative results of 3D object detection and tracking shown in BEV. Black boxes are
the ground truth, cyan boxes are the tracking results with id, green boxes are the detection results
with scores, red boxes are the false positives.

(a) Input image examples. (b) Detected 3D boxes from the video.

Figure 6: Open-set 3D object detection from a video sequence. For the video demos for 3D box
generation, please refer to https://ba2det.site.
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(a) Successful cases for Nerf-from-image reconstruction.

(b) Failure cases for Nerf-from-image reconstruction. The reasons are occlusion, the distant object, at night.

Figure 7: Qualitative results of Nerf-from-image reconstruction.

(<10m). However, for WOD, most objects are in [30m,60m]. Please refer to Fig. 3 in
the main paper. We find that if the box is less than 80 * 160 pixels, nerf-from-image
cannot recognize the object, even if we resize the image to 4x and higher resolution. In
WOD, objects less than 80 * 160 pixels are more than 90% of all objects. That means
nerf-from-image is an unavailable method on WOD.

• Another problem is occlusion. Nerf-from-image will fail to find the main object in the 2D
box.

• Nerf-from-image also fails at night. The object cannot be recognized.

However, our method will not fail in these cases, because our 3D reconstruction is a temporal method.
Objects are also easier to be separated in reconstructed point clouds. In summary, we show that even
if combined with a 2D detector, nerf-from-image is not a comparable method with our proposed
method.

E LIMITATIONS AND FUTURE WORK

Although we no longer need 3D annotations in the proposed BA2-Det, it still depends on the 2D
annotations. We try to further decrease the dependency on 2D labels and show the ability of open-set
3D object detection in Sec. C.2. However, it is a preliminary exploration. We expect not to use 2D
labels anymore finally. And we will continue to work in this direction.
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F REPRODUCIBILITY STATEMENTS

We will release the training and inference codes to help reproduce our work and the documents will be
clearly written. 3D pseudo labeling tools that are based on open-source packages COLMAP (Schon-
berger & Frahm, 2016)2 and hloc (Sarlin et al., 2019)3 will be released. Limited by the license of
WOD, the checkpoint of the model trained on WOD cannot be publicly available. However, we
will provide it by email if needed. The details of the proposed method BA2-Det, including the
implementation details, and network architecture are mentioned in Sec. 4.1, Sec. 4.2, Sec. 4.3, and
Sec. 5.2 in the main paper. The data and 2D annotations of WOD4 are publicly available. The
open-set 3D object detection depends on SAM (Kirillov et al., 2023) to generate 2D instance masks,
which is also an open-source model.

2https://github.com/colmap/colmap
3https://github.com/cvg/Hierarchical-Localization
4https://waymo.com/open/
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