
Transformer-Based Temporal Information Extraction and Application: A
Review

Anonymous ACL submission

Abstract

Temporal information extraction (IE) aims to001
extract structured temporal information from002
unstructured text, thereby uncovering the im-003
plicit timelines within. This technique is004
applied across domains such as healthcare,005
newswire, and intelligence analysis, aiding006
models in these areas to perform temporal rea-007
soning and enabling human users to grasp the008
temporal structure of text. Transformer-based009
pre-trained language models have produced rev-010
olutionary advancements in natural language011
processing, demonstrating exceptional perfor-012
mance across a multitude of tasks. Despite the013
achievements garnered by Transformer-based014
approaches in temporal IE, there is a lack of015
comprehensive reviews on these endeavors. In016
this paper, we aim to bridge this gap by system-017
atically summarizing and analyzing the body018
of work on temporal IE using Transformers019
while highlighting potential future research di-020
rections.021

1 Introduction022

Temporal information extraction (IE) is a critical023

task in natural language processing (NLP). Its ob-024

jective is to extract structured temporal information025

from unstructured text, thereby revealing the im-026

plicit timelines within the text. This not only helps027

improve temporal reasoning in other NLP tasks,028

such as timeline summarization and temporal ques-029

tion answering, but also helps human users in gain-030

ing a deeper understanding of the evolution of text031

content over time. For example, Figure 2 displays032

a snippet of George Washington’s Wikipedia page033

and the timeline of his position changes; relying034

solely on text-heavy documents to trace his position035

changes over different years is time-consuming and036

may lack accuracy as facts and temporal expres-037

sions are scattered throughout the text. In contrast,038

a timeline enables both NLP models and humans to039

understand the changes in these positions over time040

more succinctly and clearly. The application of this041

structured temporal information is not limited to 042

Wikipedia but is also widely used in other domains 043

such as healthcare (Styler IV et al., 2014). 044

The advent of the Transformer architecture 045

(Vaswani et al., 2017) has sparked a revolutionary 046

change in the field of NLP, particularly with the re- 047

cent Transformer-based generative large language 048

models (LLM), such as LLAMA3 (Dubey et al., 049

2024) and GPT-4 (Achiam et al., 2023), demon- 050

strating exceptional performance across many tasks. 051

Nevertheless, there has yet to be an in-depth study 052

that provides a comprehensive review or analy- 053

sis of the Transformer architecture’s application 054

in the field of temporal IE. Existing surveys (Lim 055

et al., 2019; Leeuwenberg and Moens, 2019; Al- 056

fattni et al., 2020; Olex and McInnes, 2021) focus 057

on rule-based systems or traditional machine learn- 058

ing models (e.g., support vector machines) which 059

are reliant on hand-crafted features. Only Olex 060

and McInnes (2021) touches on the application of 061

Transformer models, but they offer only a brief de- 062

scription of BERT-style models and focus largely 063

on the clinical domain. 064

To address this gap, we systematically review 065

the applications of Transformer-based models in 066

the field of temporal IE. Broadly, temporal IE 067

refers to any tasks involving the extraction of tem- 068

poral information from text. We focus on three 069

important tasks which are defined in the most 070

widely adopted temporal IE annotation framework, 071

TimeML (Pustejovsky, 2003): time expression 072

identification, time expression normalization, and 073

temporal relation extraction. Our contributions are 074

summarized as follows: (1) We systematically re- 075

view, summarize, and categorize the existing tem- 076

poral IE datasets, Transformer-based methods, and 077

applications. (2) We identify and highlight the re- 078

search gaps in the field of temporal IE and suggest 079

potential directions for future research. 080
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Congress created the Continental Army on June 14, 1775, and Samuel and John 
Adams nominated Washington to become its Commander-in-Chief. ... TLDR (hundred words) 

Washington bade farewell to his officers at Fraunces Tavern in December 1783 and 
resigned his commission days later.

Figure 1: A snippet from George Washington’s
Wikipedia page and the corresponding temporal graph.

2 Overview081

The goal of temporal IE is to extract structured082

temporal information from unstructured text, facili-083

tating its interpretation and processing by comput-084

ers, thereby achieving a transformation from text to085

structure. The final result of a temporal IE system086

is the construction of a directed acyclic graph, or087

a temporal graph, which represents the structured088

temporal information in the text. In the temporal089

graph, nodes represent time expressions and events090

(temporal entities), while edges depict the tempo-091

ral relations between these nodes, such as “before,”092

“after,” etc. For instance, Figure 1 illustrates a text093

snippet from George Washington’s Wikipedia page094

and its corresponding temporal graph.095

Constructing a temporal graph involves several096

sub-tasks: time expression identification, time ex-097

pression normalization, event extraction, and tem-098

poral relation extraction. The following is a brief099

introduction to these sub-tasks; see Appendix B for100

a discussion of common evaluation methods.101

Time Expression Identification and Normaliza-102

tion Time expression identification refers to iden-103

tifying specific time points, durations, or periods104

within the text, such as the explicitly dateable ex-105

pression “February 25, 2024,” or more ambigu-106

ous expressions like “three days ago” (Pustejovsky,107

2003). Time normalization involves converting108

identified expressions into a standardized format to109

improve their interpretability. For example, under110

the ISO-TimeML framework (Pustejovsky et al.,111

2010), “February 25, 2024” might be converted112

into the TIMEX3 format as “2024-02-25”.113

Event Trigger Extraction In temporal IE, event114

extraction differs from other NLP event extraction115

tasks; it simply marks the event trigger words that116

represent actions, such as “accident” in “about two117

weeks after the accident occurred”. We will not re-118

view event extraction works because, to our knowl-119

edge, there is currently no temporal IE research120

focused solely on event extraction. Furthermore, 121

most existing work on temporal IE assumes that 122

event triggers have already been identified. For a 123

comprehensive survey of event extraction, we refer 124

readers to (Li et al., 2022). 125

Temporal Relation Extraction The task of tem- 126

poral relation extraction aims to identify the tempo- 127

ral relations among given events and time expres- 128

sions. Common temporal relations include before, 129

after, and simultaneous. For example, in Figure 1, 130

the temporal relation between “June 14, 1775” and 131

the event “become” is marked as “after”. 132

3 Datasets 133

A clearly defined annotation framework is essen- 134

tial when constructing a dataset for temporal IE. It 135

needs to precisely define time expressions, events, 136

and their relations. We summarize all the datasets 137

in Table 1 of Appendix C. 138

3.1 TimeML Annotation Framework Datasets 139

An end-to-end temporal IE dataset encompasses 140

various tasks, including the identification and nor- 141

malization of time expressions and the extraction 142

of temporal relations. Most end-to-end temporal in- 143

formation datasets have been based on the TimeML 144

framework (Pustejovsky, 2003) or its derivatives, 145

such as ISO-TimeML (Pustejovsky et al., 2010). 146

We present datasets based on the TimeML frame- 147

work in the first section of Table 1. 148

TimeBank (Pustejovsky, 2003) was the first 149

dataset to adopt the TimeML framework, focusing 150

on the English news domain. Follow-up works in- 151

cluded the TempEval shared task series (Verhagen 152

et al., 2007, 2010; UzZaman et al., 2013), covering 153

multiple languages, including Chinese, English, 154

Italian, French, Korean, and Spanish. There are 155

also language-specific datasets like French Time- 156

Bank (Bittar et al., 2011), Spanish TimeBank (Ni- 157

eto et al., 2011), Portuguese TimeBank (Costa and 158

Branco, 2012), Japanese TimeBank (Asahara et al., 159

2013), Italian TimeBank (Bracchi et al., 2016), and 160

Korean TimeBank (Lim et al., 2018). Similarly, the 161

MeanTime dataset (Minard et al., 2016) offers data 162

in English, Italian, Spanish, and Dutch. Datasets 163

based on TimeML and its variants showcase lan- 164

guage diversity and also cover several different 165

domains: the Spanish TimeBank focuses on history 166

text, the Korean TimeBank is based on Wikipedia 167

content, and the Richer Event Description dataset 168
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(O’Gorman et al., 2016) provides data from both169

news and forum discussion domains.170

Additionally, efforts have been made to improve171

the temporal relation annotations in the original172

TimeBank. TimeBank-Dense (Chambers et al.,173

2014) addresses the sparsity of temporal relation174

annotations in TimeBank by requiring annotators175

to label all temporal relations within a given scope,176

thus increasing the number of temporal relations177

in the dataset. The TORDER dataset (Cheng and178

Miyao, 2018) annotates the same documents as179

TimeBank-Dense, introducing temporal relations180

automatically by anchoring times and events to ab-181

solute points, reducing the annotation burden. The182

MATRES dataset (Ning et al., 2018) focuses on183

events from TimeBank-Dense, anchoring events to184

different timelines and comparing their start times185

to enhance inter-annotator consistency.186

Several datasets have been developed specific to187

the clinical domain, of which the Thyme datasets188

(Bethard et al., 2015, 2016, 2017) are most notable.189

They are based on the Thyme-TimeML (Styler IV190

et al., 2014) annotation framework, which ad-191

justs and adds new temporal attributes from ISO-192

TimeML to suit medical texts. Like the TimeBank193

series, the Thyme dataset involves identifying and194

normalizing time expressions and extracting tem-195

poral relations, focusing on English. Another simi-196

lar dataset is i2b2-2012 (Sun et al., 2013), which197

adapts the TimeML framework for clinical texts.198

Besides end-to-end datasets, several others based199

on TimeML or its variants focus on specific tem-200

poral IE tasks. For instance, the AncientTimes201

dataset (Strötgen et al., 2014) covers a broad range202

of languages, concentrating on the identification203

and normalization of time expressions. The TD-204

Discourse dataset (Naik et al., 2019), based on205

TimeBank-Dense, expands the annotation window206

for temporal relations, focusing on their extraction.207

The German time expression (Strötgen et al., 2018)208

and German VTEs (May et al., 2021) datasets are209

dedicated to identifying and normalizing time ex-210

pressions in German. The PATE dataset (Zarcone211

et al., 2020) provides data aimed at time expres-212

sion identification and normalization for the virtual213

assistant domain.214

3.2 Other Annotation Framework Datasets215

Unlike datasets for temporal IE based on TimeML,216

other annotation frameworks typically focus on217

specific sub-tasks of temporal IE, such as time ex-218

pression identification and normalization or the 219

extraction of temporal relations. We present these 220

datasets in the second section of Table 1. 221

For time expression identification and normal- 222

ization, WikiWars (Mazur and Dale, 2010) and 223

SCATE (Laparra et al., 2018) are two major 224

datasets. WikiWars contains data from English and 225

German Wikipedia, annotated based on TIMEX2 226

(a precursor to TimeML’s TIMEX3) to mark ex- 227

plicit time expressions. The SCATE dataset, based 228

on English news and clinical documents, aims to 229

address limitations in TimeML that prevent express- 230

ing multiple calendar units, times relative to events, 231

and compositional time expressions. To achieve 232

this, SCATE represents time expressions as compo- 233

sitions of temporal operators. 234

For temporal relations, there are datasets based 235

on the temporal dependency tree/graph (Zhang and 236

Xue, 2018, 2019; Yao et al., 2020) and CaTeRS 237

(Mostafazadeh et al., 2016) frameworks. Unlike 238

the pairwise temporal relations considered in the 239

TimeML framework, temporal dependency tree as- 240

sumes that all time expressions and events in a 241

document have a reference time, allowing for the 242

representation of overall temporal relations through 243

a dependency tree. The subsequent temporal de- 244

pendency graph dataset (Yao et al., 2020) relaxed 245

this assumption by enabling each event in a docu- 246

ment to have a reference event, a reference time, or 247

both, thus forming a temporal graph structure. The 248

temporal dependency tree dataset covers news and 249

narrative domains in English and Chinese, while 250

the temporal dependency graph dataset focuses on 251

English news. Meanwhile, CaTeRS concentrates 252

on analyzing temporal relations between events in 253

English commonsense stories, with event defini- 254

tions based on ontologies, different from the verb-, 255

adjective-, or noun-based definitions in TimeML. 256

CaTeRS’ annotation of temporal relations is story- 257

wide, with a simplified set of relations. We present 258

additional timeline focused datasets at Appendix D. 259

3.3 Discussion and Research Gaps 260

Domain Bias Existing annotated datasets exhibit 261

significant domain biases. As demonstrated in Ta- 262

ble 1, among the 32 datasets we reviewed, 20 (or 263

63%) are predominantly focused on the newswire 264

domain. While temporal information is crucial for 265

understanding news content, an excessive concen- 266

tration in a single domain hampers the advance- 267

ment and generalizability of systems trained on 268
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these datasets, since the challenges and difficulties269

encountered in temporal IE vary across different270

domains. Notably, the Clinical TempEval 2017271

shared task (Bethard et al., 2017) reveals that most272

tasks suffer an approximately 20-point drop in per-273

formance in a cross-domain setting, underscoring274

how domain shifts can significantly degrade model275

accuracy. For example, temporal information, espe-276

cially time expressions, in newswire texts tend to be277

explicitly stated, whereas in other domains, like his-278

torical Wikipedia entries, they might appear in sub-279

tler ways. Consider a statement from a page about280

George Washington that reads, “. . . 1798, one year281

after that, he stepped down from the presidency,”282

which would demand a more nuanced interpreta-283

tion for accurate time normalization. Cultivating284

datasets that represent a variety of domains is vital285

to driving innovation in temporal IE.286

Language Diversity Unlike the domain homo-287

geneity of the datasets, the existing datasets dis-288

play rich linguistic diversity, covering 15 differ-289

ent languages. The representation of time varies290

across languages, and even when semantically sim-291

ilar, the specific time intervals on the timeline can292

differ. For example, analysis in Shwartz (2022)293

shows that different cultures/languages have sig-294

nificant variations in the understanding of “night”295

and “evening” during the day. One instance is that296

Brazilian Portuguese speakers often use “evening”297

and “night” interchangeably to denote the same298

time period, possibly because the tropical climate299

in Brazil causes evening to transition quickly into300

night. However, this might not be applicable to301

other cultures or languages. Therefore, the lan-302

guage diversity in datasets is crucial for developing303

models capable of effectively extracting temporal304

information across different languages.305

Annotation and Dataset Framework Develop-306

ment Slows Down Aside from the original307

TimeML and some incremental modifications to it,308

no new end-to-end temporal IE annotation frame-309

works have been proposed. A significant issue with310

the existing TimeML-based annotation frameworks311

is the limited amount of information that the resul-312

tant temporal graphs can represent. For instance, in313

Figure 1, we only see trigger words for events, time314

expressions, and some temporal relations. When315

these temporal graphs are isolated from their origi-316

nal context and treated as stand-alone entities, they317

struggle to provide a comprehensive understand-318

ing of the textual information. This might explain 319

why, in the upcoming Section 6, we see no work 320

directly employing these extracted temporal graphs 321

for reasoning to accomplish specific tasks, such 322

as answering temporal questions. Instead, these 323

temporal graphs are used as auxiliary tools or addi- 324

tional knowledge to assist task-specific models in 325

temporal reasoning. 326

In addition to the stagnation in the innovation 327

of end-to-end annotation frameworks, there has 328

been a notable decline in dataset development ef- 329

forts in the field of temporal IE in recent years. 330

This trend may primarily stem from the intrinsic 331

complexity of the annotation process for tempo- 332

ral IE datasets. Such complexity accounts for the 333

low annotator agreement observed in many anno- 334

tation tasks (Cassidy et al., 2014). Furthermore, 335

as demonstrated by analysis in Su et al. (2021), 336

even Ph.D. students in relevant fields find it chal- 337

lenging to comprehend annotation guidelines and 338

annotate high-quality data within a short period. 339

These issues highlight the difficulties in developing 340

temporal IE datasets, suggesting that improvements 341

in the annotation framework might be necessary to 342

address these challenges. 343

4 Time Expression Methods 344

4.1 Methods Overview 345

In the realm of time expression identification, most 346

prior work (Almasian et al., 2021; Chen et al., 347

2019; Mirzababaei et al., 2022; Olex and McInnes, 348

2022; Laparra et al., 2021; Almasian et al., 2022; 349

Cao et al., 2022) leverages discriminative models 350

built upon transformer encoders like BERT (Devlin 351

et al., 2019). These approaches typically frame 352

time expression identification as a token classifi- 353

cation task, wherein a sequence of tokens is in- 354

put, processed through a base encoder model to 355

obtain contextualized representations, and these 356

representations are fed into a classifier (such as a 357

simple linear classification layer or a Conditional 358

Random Field layer) to identify time expressions 359

and their specific types. Almasian et al. (2021) 360

is the only work exploring a generative approach 361

for time expression identification, framing the task 362

as a sequence-to-sequence problem and employ- 363

ing a pair of transformer encoders to formulate an 364

encoder-decoder model—where one serves as the 365

encoder and the other as the decoder—to gener- 366

ate additional TIMEX3 tags for the input, thereby 367

recognizing time expressions and their types. 368
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Shwartz (2022) and Kim et al. (2020) focus369

on the normalization of time expressions and use370

transformer-based models. Shwartz (2022) aims to371

normalize time expressions from various cultural372

contexts (e.g., morning, noon, afternoon) into pre-373

cise hourly representations within a day. They train374

a BERT model with a masked language modeling375

task to predict specific times of day that are masked,376

given the time expressions. Kim et al. (2020) seeks377

to normalize time expressions in novels into spe-378

cific daily hours, fine-tuning the BERT model for379

a 24-class classification task to ascertain the corre-380

sponding times of day for given expressions.381

Lange et al. (2023) addresses both extraction382

and normalization of time expressions, adopt-383

ing a pipeline approach. Initially, they fine-tune384

the XLM-R model using the token classification385

method to extract time expressions, then denote386

identified expressions with TIMEX3 tags with387

masked time values, and finally fine-tune the XLM-388

R model with masked language modeling to predict389

the normalized masked time values.390

Several of the aforementioned works also uti-391

lize data augmentation techniques to improve the392

model’s multilingual performance (Lange et al.,393

2023; Mirzababaei et al., 2022; Almasian et al.,394

2022). For instance, Lange et al. (2023) employs395

the rule-based HeidelTime method (Strötgen and396

Gertz, 2010) to annotate time expressions and their397

normalizations across 87 languages, generating a398

semi-supervised dataset to facilitate model training.399

4.2 Discussion and Research Gaps400

Despite the significant achievements of Trans-401

former models in various NLP tasks, research in402

the area of time expression identification and nor-403

malization has remained relatively limited over the404

past few years. This is particularly true of time nor-405

malization, where the volume and depth of research406

are low, especially when compared to similar tasks407

such as named entity recognition, entity normaliza-408

tion, and entity linking. Furthermore, the method-409

ological diversity in existing works is notably con-410

strained, with most research relying on pre-trained411

Transformer models for simple token classification.412

While generative LLMs like GPT-4 or LLAMA3413

have demonstrated impressive performance in other414

NLP tasks, their potential in the identification and415

normalization of time expressions has barely been416

explored. This suggests a significant research gap417

exists; exploration of generative approaches may418

offer the potential for advancement in time expres- 419

sion identification and normalization. 420

5 Temporal Relation Methods 421

The task of temporal relation extraction typically 422

assumes that events and time expressions in the 423

text have already been identified, with the only 424

objective being to extract the temporal relations 425

between them. We summarize all the reviewed 426

temporal relation extraction works in Appendix E 427

Table 2. Discriminative methods typically employ 428

a pretrained discriminative language model like 429

BERT or RoBERTa (Liu et al., 2019) as the base 430

encoder model to derive contextualized representa- 431

tions of events or time expressions. Subsequently, 432

these representations are paired and input into a 433

classification layer for a multi-class classification 434

task, with each class representing a different tempo- 435

ral relation. Generative methods typically leverage 436

encoder-decoder models such as T5 (Raffel et al., 437

2020) or decoder-only models like GPT (Radford 438

et al., 2019) to generate a target sequence that en- 439

capsulates the temporal relation between the input 440

events and times. These methods often rely on post- 441

processing techniques to extract specific temporal 442

relations from the predicted target sequences. 443

5.1 Discriminative Methods Overview 444

Works on discriminative temporal relation extrac- 445

tion have mainly focused on integrating external 446

knowledge and improving model robustness. 447

5.1.1 Integrating External Knowledge 448

Commonsense Knowledge Commonsense 449

knowledge for temporal relations usually involves 450

typical sequences of events, such as eating typi- 451

cally occurring after cooking. Such commonsense 452

knowledge might be fundamental for humans, but 453

absent from the base encoder model. Ning et al. 454

(2019), Wang et al. (2020) and Tan et al. (2023) 455

integrated knowledge from external commonsense 456

knowledge graphs. Tan et al. (2023) employs a 457

complex Bayesian learning method to merge the 458

knowledge with the contextualized representations 459

from the base encoder, whereas Ning et al. (2019) 460

and Wang et al. (2020) simply concatenate the 461

vectorized representations of the commonsense 462

knowledge with those from the base encoder. 463

Syntactic and Semantic Knowledge Syntactic 464

and semantic knowledge, typically extracted using 465

off-the-shelf external tools or straightforward rules, 466
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enrich the base encoder models’ representations.467

For instance, Wang et al. (2022) utilizes SpaCy’s468

dependency parser to parse the syntactic depen-469

dency trees from the input text and neuralcoref to470

identify coreferential relationships among entities.471

Mathur et al. (2021) employs the discoursegraphs472

library to parse rhetorical dependency graphs from473

the text. To integrate this structured knowledge474

into the contextualized event or time expression475

representations, graph neural networks are often476

employed over syntactic or semantic pairwise rela-477

tions (Wang et al., 2022; Mathur et al., 2022; Zhou478

et al., 2022; Mathur et al., 2021). For example,479

Wang et al. (2022) first encodes an input sequence480

containing event pairs with the RoBERTa model to481

generate initial contextual representations, which482

are then enhanced with extracted syntactic and se-483

mantic knowledge using additional graph neural484

network layers. Another method is to prelearn485

or extract vectorized representations of the knowl-486

edge, which are later concatenated with the event or487

time expression representations (Ross et al., 2020;488

Wang et al., 2020; Han et al., 2019a; Ning et al.,489

2019; Han et al., 2019b; Yao et al., 2024a), as in490

Wang et al. (2020), where RoBERTa token embed-491

dings and one-hot vectors of part-of-speech tags492

are combined.493

Temporal-Specific Rules These rules are intrin-494

sic to temporal relations themselves, with symme-495

try and transitivity being the most common. For496

instance, if event A happens before event B, then497

symmetry can be used to infer that B happens after498

A. And if A precedes B and B precedes C, transitiv-499

ity can be used to infer that A precedes C. Detailed500

explanations of the symmetry and transitivity rules501

and a comprehensive transitivity table are provided502

in Ning et al. (2019). Recent works have incor-503

porated these rules during both training and infer-504

ence. During training, models employ various ap-505

proaches including box embedding (Hwang et al.,506

2022), hyperbolic embedding (Tan et al., 2021),507

loss function regularization (Zhou et al., 2021;508

Wang et al., 2020), contrastive objectives (Niu et al.,509

2024), logical expressions over event time points510

(Huang et al., 2023), and hierarchical logical con-511

ditions (Ning et al., 2024). For inference, methods512

include custom heuristics (Wang et al., 2022; Zhou513

et al., 2022, 2021; Liu et al., 2021), linear program-514

ming formulation (Wang et al., 2020; Han et al.,515

2019c), and structured prediction with support vec-516

tor machines (Han et al., 2019a).517

Label Distribution Knowledge of label distribu- 518

tion pertains to the frequency distribution of spe- 519

cific temporal relations in the training set. Wang 520

et al. (2023) and Han et al. (2020) integrate this dis- 521

tribution knowledge into their frameworks, using 522

it as a regularization term in the loss function or 523

for inference-time linear programming, aiming to 524

mitigate potential biases in model predictions. 525

5.1.2 Improving Model Robustness 526

Multitask Learning Wang et al. (2022), Lin et al. 527

(2020) and Cheng et al. (2020) categorize tempo- 528

ral relations and treat the extraction of different 529

types of temporal relations as independent tasks, 530

employing multitask learning to extract all types of 531

relations simultaneously. For instance, Wang et al. 532

(2022) delineates tasks into event-event, event-time, 533

and event-document creation time, undergoing mul- 534

titask training across these three tasks. Mathur et al. 535

(2022) applies multitask learning in their model 536

to concurrently predict temporal relations and de- 537

pendency links between nodes in a temporal de- 538

pendency tree. Similarly, Ballesteros et al. (2020) 539

implements multitask learning by integrating the 540

extraction of temporal relations with the extraction 541

of entity relations in the general domain. 542

Data Augmentation Wang et al. (2023) gener- 543

ates counterfactual instances from the training set 544

samples to mitigate model bias, while Tiesen and 545

Lishuang (2022) employs predefined templates to 546

create additional training examples. 547

Continued Pre-training of Base Encoder In 548

Zhao et al. (2021) and Han et al. (2021), heuristic 549

methods are used to identify temporal indicators 550

in a corpus of unlabeled data, further training the 551

base encoder using a masked language modeling 552

(MLM) approach to recover masked indicators. Lin 553

et al. (2019) focuses on the medical domain, using 554

MLM on electronic health records from MIMIC- 555

III to adapt the base encoder for domain-specific 556

training prior to temporal relation extraction. 557

Adversarial Training Kanashiro Pereira (2022) 558

and Pereira et al. (2021) introduce adversarial per- 559

turbations at different layers of the transformer en- 560

coder during training to enhance model robustness. 561

Self-training Cao et al. (2021) and Ballesteros 562

et al. (2020) initially train a temporal relation ex- 563

traction model on annotated datasets and then ap- 564

ply the model to unlabeled data to obtain model- 565

generated labels as pseudo labels. They subse- 566
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quently select pseudo-labeled examples as sliver ex-567

amples based on the model’s uncertainty scores and568

confidence scores (probability scores for specific569

temporal relation predictions) to train the model.570

5.2 Generative Methods Overview571

Generative approaches in Temporal IE fall into two572

main categories: fine-tuned encoder-decoder mod-573

els and large language model (LLM) prompting574

methods. For fine-tuned generative models, Dli-575

gach et al. (2022) investigate BART (Lewis et al.,576

2020) and T5 (Raffel et al., 2020) architectures,577

finding that producing outputs for each temporal578

entity pair separately outperforms triplet format579

(entity, relation, entity). Recent work has also ex-580

plored LLM-based approaches. Yuan et al. (2023)581

and Huang et al. (2023) examine various prompt-582

ing strategies, with Huang et al. (2023) demon-583

strating that structured, logic-informed prompts584

significantly improve performance over standard585

prompting. Hu et al. (2025) formulates temporal re-586

lation extraction as a question-answering task with587

rationale generation that includes coreference and588

transitive chains. Meanwhile, Niu et al. (2024) inte-589

grates LLMs specifically to enhance commonsense590

reasoning in their hybrid system. Despite these591

advances, current findings indicate that prompting-592

only approaches still underperform compared to593

fine-tuned discriminative models.594

5.3 Discussion and Research Gaps595

Homogenization of Methods and Evaluations596

While numerous Transformer-based methods for597

temporal relation extraction have emerged, they598

tend to be algorithmically similar, utilizing discrim-599

inative base models like BERT to represent tempo-600

ral entities and incorporating additional knowledge601

into these representations. A common strategy in-602

volves using off-the-shelf IE tools to extract syn-603

tactic knowledge and enhance the base model’s604

representations with graph neural networks. The605

small gains in state-of-the-art performance from606

one model to the next probably represent addi-607

tional hyperparameter tuning more than substantial608

progress in understanding the relations between609

temporal entities in text.610

Most works also focus on only three datasets –611

MATRES, TimeBank-Dense, and TDDiscourse –612

which are predominantly in the newswire domain613

with only 274, 36, and 34 documents, respectively,614

and exhibit significant overlap. This limitation in615

datasets might lead to an incomplete assessment of616

the models’ generalization capabilities. Repeated 617

testing and fine-tuning on these small, overlapping 618

datasets could result in overfitting, failing to re- 619

flect the models’ effectiveness on broader and more 620

diverse datasets. Moreover, this singular domain- 621

focused evaluation approach could cause severe do- 622

main bias, leaving the applicability of these meth- 623

ods outside the news domain uncertain. 624

Generative LLMs: Progress and Challenges 625

Despite increasing interest in generative LLMs for 626

temporal relation extraction, a significant research 627

gap remains: current generative approaches con- 628

sistently underperform compared to fine-tuned dis- 629

criminative models (Yuan et al., 2023). Although 630

recent works have explored structured prompts 631

(Huang et al., 2023), question-answering frame- 632

works (Hu et al., 2025), and hybrid systems (Niu 633

et al., 2024), none have matched state-of-the-art 634

discriminative methods. Promising directions for 635

future research include: (1) specialized temporal 636

fine-tuning techniques for LLMs; (2) more effec- 637

tive methods to encode temporal rules and con- 638

straints in LLM prompts; and (3) improved evalua- 639

tion frameworks for generative outputs in temporal 640

tasks. 641

Increased Demand for Model Openness As 642

shown in the last column of Table 2, most temporal 643

relation extraction models are not publicly avail- 644

able, possibly due to the absence of code releases 645

or the need to re-train models on new datasets even 646

when code is provided. Re-training a model in- 647

volves significant replication work. This inaccessi- 648

bility directly impacts the practical application and 649

testing of these trained models in other temporal 650

reasoning tasks, thereby affecting the development 651

of the temporal relation extraction field. Given the 652

application-oriented nature of temporal relation ex- 653

traction tasks, only by understanding the specific 654

issues encountered in actual applications can we 655

propose strategies to address these real-world chal- 656

lenges. 657

6 Applications 658

6.1 Methods Overview 659

Temporal IE is often regarded as an “upstream” 660

system, akin to other general IE systems. These 661

systems aim to extract structured information to im- 662

prove the reasoning of “downstream” tasks, such 663

as temporal reasoning. A natural question is how 664
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the models from Sections 4 and 5 are used in down-665

stream tasks to help temporal reasoning.666

Despite a wealth of research on Transformer-667

based temporal IE systems in recent years, there668

has been scant application of these systems’ out-669

puts in temporal reasoning tasks. Only a few tem-670

poral reasoning tasks, such as timeline extraction,671

timeline summarization and temporal question an-672

swering, leverage the results of temporal IE. Time-673

line extraction is a direct product of temporal IE,674

where the extracted events and time expressions,675

along with their temporal relations, naturally form676

a chronologically ordered timeline following the677

traditional TimeML paradigm. For example, the678

recent Chemotherapy Timeline Extraction shared679

task (Yao et al., 2024b) focuses on constructing680

patient-level treatment timelines from electronic681

health records, with most participating systems us-682

ing fine-tuned Transformer models for event and683

time expression extraction, followed by temporal684

relation classification. The timeline summariza-685

tion task aims to chronologically order and label686

key dates of events within a collection of news687

documents, while temporal question answering re-688

lies on unstructured context documents to answer689

temporal-related questions. Both tasks require rea-690

soning about time and events to generate outcomes.691

One approach to utilizing temporal IE systems692

is to explicitly construct temporal graphs to assist693

with temporal reasoning. Some works use only694

simple temporal graphs containing only time ex-695

pressions extracted by rules (Su et al., 2023) or696

transformers (Yang et al., 2023; Xiong et al., 2024)697

and normalized by rules. Other works use com-698

plete temporal graphs constructed by a complete699

temporal IE pipeline, including time expression700

identification, normalization, and temporal rela-701

tion extraction, with Mathur et al. (2022) using702

Transformer-based relation extraction, and Li et al.703

(2021) using LSTM-based relation extraction and704

rules for the other components. As for the usage705

of the constructed temporal graph, they can be in-706

put into models directly in text form (Su et al.,707

2023; Yang et al., 2023; Xiong et al., 2024) or708

encoded into the hidden states of a Transformer709

model through an attention fusion mechanism or710

graph neural networks (Li et al., 2021; Mathur et al.,711

2022; Su et al., 2023).712

Some works only preprocess the input with a713

specific temporal IE component rather than build-714

ing a temporal graph. For instance, Bedi et al.715

(2021) employs the rule-based HeidelTime (Ströt- 716

gen and Gertz, 2010) for extracting and normaliz- 717

ing time expressions in texts for constructing the in- 718

put of a temporal question generation model; while 719

Cole et al. (2023) uses the rule-based SUTime 720

(Chang and Manning, 2012) to process the entire 721

Wikipedia, supporting the temporal pre-training of 722

the Transformer model. 723

6.2 Discussion and Research Gaps 724

Although there is considerable work on 725

transformer-based temporal IE, especially in 726

temporal relation extraction tasks, these methods 727

have not been widely applied to downstream tasks. 728

For example, there are many Transformer-based 729

works that have been trained on the MATRES 730

dataset, but none have been utilized in downstream 731

tasks. This may be attributed to most temporal 732

IE models not being publicly available, as shown 733

in Table 2. Replicating these models can be 734

both complex and time-consuming, requiring 735

substantial effort. Furthermore, existing models 736

exhibit domain bias. For example, in temporal 737

relation extraction tasks, most research relies 738

on the TimeBank-Dense and MATRES datasets, 739

which primarily contain data from the newswire 740

domain. Hence, the generalization capabilities of 741

these models in other domains might be limited. 742

7 Conclusion 743

In this paper, we provide an overview of three clas- 744

sic tasks in the field of temporal IE: time expression 745

identification, time expression normalization, and 746

temporal relation extraction. We discuss datasets, 747

Transformer-based methods, and their applications 748

within these areas. We found that although Trans- 749

former models have demonstrated outstanding per- 750

formance on many NLP tasks, there remain sig- 751

nificant research gaps in the domain of temporal 752

IE. We hope this survey will offer a comprehensive 753

review and insights to researchers in the field, in- 754

spiring further research to address these existing 755

gaps. We expand on the research opportunities 756

arising from these gaps in Appendix F. 757

Limitations 758

In this review, we focus exclusively on transformer- 759

based temporal IE methods, without including rule- 760

based approaches. We also center our discussion 761

on the most common temporal IE tasks rather than 762

addressing every possible subtask. 763
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Fact: George Washington Position Held

Member of …
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Chancellor

George Washington... on June 14, 1775, …become its

Commander-in-Chief. ... in December 1783 and resigned his 

commission days later. In 1788, ... re-establish the position 

of Chancellor, and elected Washington to the office on 

January 18. ... on December 14, 1799. ... He started as the 

president …in 1789, …, two years after 1795, he stepped 

down his presidency position.

Wikipedia: George Washington

Figure 2: A snippet from George Washington’s
Wikipedia page and a timeline regarding his positions.

Yichao Zhou, Yu Yan, Rujun Han, J Harry Caufield,1438
Kai-Wei Chang, Yizhou Sun, Peipei Ping, and Wei1439
Wang. 2021. Clinical temporal relation extraction1440
with probabilistic soft logic regularization and global1441
inference. In Proceedings of the AAAI Conference1442
on Artificial Intelligence, volume 35, pages 14647–1443
14655.1444

A Timeline Examples1445

We present in Figure 2 a snippet from George Wash-1446

ington’s Wikipedia page alongside the correspond-1447

ing timeline of his position changes.1448

B Evaluation Metrics1449

In temporal IE, the evaluation method from1450

TEMPEVAL-3 (UzZaman et al., 2013) is the most1451

widely adopted standard. This evaluation method1452

calculates the standard precision (P), recall (R),1453

and F1 score (F) between the system predictions1454

(System) and the gold annotations (Reference) as1455

follows:1456

P =
|System ∩ Reference|

|System|
(1)1457

1458

R =
|System ∩ Reference|

|Reference|
(2)1459

1460

F = 2 · P ·R
P +R

(3)1461

In time expression identification, “System”1462

refers to the time expressions identified by the1463

system, while “Reference” refers to the annotated1464

gold time expressions. In time expression nor-1465

malization, “System” and “Reference” refer to the1466

system-normalized time expressions and the gold1467

annotated normalized expressions, respectively. If1468

calculating the end-to-end time expression normal- 1469

ization score, “System” only involves the correctly 1470

identified time expressions. 1471

For the temporal relation extraction task, the 1472

TEMPEVAL-3 evaluation method calculates the 1473

temporal awareness scores. This is achieved by 1474

performing a graph closure operation on the gold 1475

temporal graph based on temporal transitivity rules 1476

(to incorporate all potential temporal relations) and 1477

reducing the predicted temporal relation graph (to 1478

remove duplicate relations). These steps are com- 1479

pleted before calculating the standard scores. Here, 1480

“System” denotes the temporal relations predicted 1481

by the system, while “Reference” is the gold anno- 1482

tated temporal relations. 1483

C Datasets Summary 1484

We summarize the temporal IE datasets in Table 1. 1485

The first section is based on the most widely used 1486

TimeML annotation framework, while the second 1487

section covers those that adopt all other annotation 1488

frameworks. 1489

D Timeline-focused Datasets 1490

A notable trend in temporal IE dataset development 1491

is the emergence of timeline-focused annotation 1492

frameworks that offer more comprehensive and co- 1493

herent temporal representations compared to tradi- 1494

tional approaches. For timeline-centric annotation, 1495

Rogers et al. (2019) propose NarrativeTIME, which 1496

enables dense, full-coverage temporal relation an- 1497

notation. Unlike the pairwise TLINK annotation 1498

in TimeML, NarrativeTIME constructs coherent 1499

narrative timelines, supports underspecification via 1500

event types and timeline branches, and achieves 1501

significantly higher annotation density. Similarly, 1502

Liu and Zhang (2025) introduce ETimeline, a large- 1503

scale bilingual (English/Chinese) timeline dataset 1504

comprising over 600 timelines and 13,878 anno- 1505

tated event entries, spanning diverse domains from 1506

March 2020 to April 2024. Created using an LLM- 1507

assisted annotation approach, ETimeline represents 1508

a significant resource for cross-lingual timeline con- 1509

struction and temporal reasoning across news do- 1510

mains. 1511

E Temporal Relation Extraction Methods 1512

Summary 1513

We summarize the temporal relation extraction 1514

methods we review in Table 2. 1515
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Name Framework Domain Lang Tasks

TimeML-Based

TimeBank (Pustejovsky, 2003) TimeML Newswire EN I, N, R
TempEval-1 (Verhagen et al., 2007) TimeML Newswire EN I, N, R
TempEval-2 (Verhagen et al., 2010) TimeML Newswire ZH, EN, IT,

FR, KR, ES
I, N, R

Spanish TimeBank (Nieto et al., 2011) TimeML Historiography ES I, N
French TimeBank (Bittar et al., 2011) ISO-TimeML Newswire FR I, N, R
Portuguese TimeBank (Costa and Branco, 2012) TimeML Newswire PT I, N, R
i2b2-2012 (Sun et al., 2013) Thyme-TimeML Clinical EN I, N, R
TempEval-3 (UzZaman et al., 2013) TimeML Newswire EN, ES I, N, R
TimeBank-Dense (Chambers et al., 2014) TimeML Newswire EN I, N, R
Japanese TimeBank (Asahara et al., 2013) ISO-TimeML Publication, Library,

Special purpose
JA I, N, R

AncientTimes (Strötgen et al., 2014) TimeML Wikipedia EN, DE, NL,
ES, FR, IT,
AR, VI

I, N

THYME-2015 (Bethard et al., 2015) Thyme-TimeML Clinical EN I, N, R
THYME-2016 (Bethard et al., 2016) Thyme-TimeML Clinical EN I, N, R
Richer Event Description (O’Gorman et al., 2016) Thyme-TimeML Newswire, Forum

Discussions
EN I, N, R

Italian TimeBank (Bracchi et al., 2016) TimeML Newswire IT I, N, R
MeanTime (Minard et al., 2016) ISO-TimeML Newswire EN, IT, ES,

NL
I, N, R

THYME-2017 (Bethard et al., 2017) Thyme-TimeML Clinical EN I, N, R
Event StoryLine (Caselli and Vossen, 2017) TimeML Story EN I, N, R
MATRES (Ning et al., 2018) TimeML Newswire EN I, R
Korean TimeBank (Lim et al., 2018) TimeML Wikipedia KR I, N, R
German Temporal Expression (Strötgen et al., 2018) TimeML Newswire DE I, N
TDDiscourse (Naik et al., 2019) TimeML Newswire EN R
PATE (Zarcone et al., 2020) TimeML Voice Assistant EN I, N
German VTEs (May et al., 2021) ISO-TimeML Newswire DE I, N

Other Annotation Framework-based

WikiWars (Mazur and Dale, 2010) TIMEX2 Wikipedia EN, DE I, N
SCATE (Bethard and Parker, 2016; Laparra et al., 2018) SCATE Newswire, Clinical EN I, N
CaTeRS (Mostafazadeh et al., 2016) CaTeRS Commonsense Sto-

ries
EN R

TORDER (Cheng and Miyao, 2018) TORDER Newswire EN R
Temporal Dependency Tree (Zhang and Xue, 2018, 2019) Temporal Depen-

dency Tree
Newswire, Narra-
tives

ZH R

Temporal Dependency Graph (Yao et al., 2020) Temporal Depen-
dency Graph

Newswire EN R

Table 1: Overview of datasets and their schemas, domains, languages (EN: English, DE: German, NL: Dutch, ES:
Spanish, FR: French, IT: Italian, AR: Arabic, VI: Vietnamese, JA: Japanese, PT: Portuguese, ZH: Chinese, KR:
Korean), and tasks (I: identification, N: time expression normalization, R: temporal relation extraction).

F Discussion on Future Directions1516

In the previous sections, we have identified the1517

following research opportunities in the field of tem-1518

poral IE:1519

• Enrich annotation frameworks (Section 3.3),1520

e.g., representing event arguments or expand-1521

ing formal semantic systems like SCATE.1522

• Improve dataset diversity (Section 3.3), e.g.,1523

annotating more domains beyond newswire.1524

• Explore generative approaches (Sections 4.21525

and 5.3), e.g., new input-output formulations,1526

new fine-tuning strategies.1527

• Develop public tools and benchmarks (Sec-1528

tions 4.2 and 5.3), e.g., publish temporal IE 1529

models and datasets to the public repositories 1530

• Explore new applications (Section 6.2), e.g., 1531

the utility of extracted timelines when visual- 1532

ized for human-computer interaction. 1533

F.1 Enrich Annotation Frameworks and 1534

Improve the Domain Diversity of Datasets 1535

Current annotation frameworks, such as TimeML, 1536

often produce temporal graphs composed of tem- 1537

poral relations and temporal entities, as illustrated 1538

in Figure 1. However, these temporal graphs are 1539

challenging to interpret independently or use di- 1540

rectly for temporal reasoning without extensive 1541
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Work Approach Base Model Evaluation Datasets Knowl. Robust Avail.

Lin et al. (2019) Discr. BERT THYME % ! %

Han et al. (2019a) Discr. BERT TimeBank-Dense, MATRES ! % %

Ning et al. (2019) Discr. BERT TimeBank-Dense, MATRES ! % %

Han et al. (2019c) Discr. BERT TimeBank-Dense, MATRES ! ! %

Han et al. (2019b) Discr. BERT Richer Event Description,
CaTeRS

! ! %

Lin et al. (2020) Discr. BERT THYME % ! %

Cheng et al. (2020) Discr. BERT Japanese-Timebank, TimeBank-
Dense

! ! %

Ross et al. (2020) Discr. BERT Temporal Dependency Tree ! % %

Ballesteros et al. (2020) Discr. RoBERTa MATRES % ! %

Han et al. (2020) Discr. RoBERTa i2b2-2012, TimeBank-Dense ! ! %

Wang et al. (2020) Discr. RoBERTa MATRES ! % %

Zhao et al. (2021) Discr. RoBERTa MATRES % ! !

Zhou et al. (2021) Discr. BERT i2b2-2012, TimeBank-Dense ! % %

Cao et al. (2021) Discr. RoBERTa MATRES, TimeBank-Dense % ! %

Tan et al. (2021) Discr. RoBERTa MATRES ! % %

Mathur et al. (2021) Discr. BERT TimeBank-Dense, MATRES,
TDDiscourse

! % %

Liu et al. (2021) Discr. BERT TimeBank-Dense, TDDiscourse ! % %

Wen and Ji (2021) Discr. RoBERTa MATRES ! % %

Pereira et al. (2021) Discr. RoBERTa MATRES, TimeML % ! %

Han et al. (2021) Discr. RoBERTa/BERT TimeBank-Dense, MATRES,
Richer Event Description

% ! !

Kanashiro Pereira (2022) Discr. RoBERTa MATRES, TimeML % ! %

Wang et al. (2022) Discr. RoBERTa TimeBank-Dense, TDDiscourse ! ! %

Mathur et al. (2022) Discr. BERT Temporal Dependency Tree ! ! %

Hwang et al. (2022) Discr. RoBERTa MATRES, Event StoryLine ! % %

Dligach et al. (2022) Gen BART/T5 THYME % % %

Wang et al. (2023) Discr. BigBird MATRES, TDDiscourse ! ! %

Zhang et al. (2022) Discr. BERT MATRES, TimeBank-Dense ! % %

Tiesen and Lishuang (2022) Discr. BERT TimeBank-Dense, MATRES % ! %

Zhou et al. (2022) (RSGT) Discr. RoBERTa TimeBank-Dense, MATRES ! % %

Man et al. (2022) Discr. RoBERTa MATRES, TDDiscourse ! % %

Yuan et al. (2023) Gen ChatGPT TimeBank-Dense, MATRES,
TDDiscourse

% % %

Tan et al. (2023) Discr. BART MATRES, imeBank-Dense ! % !

Table 2: Overview of research on temporal relation extraction. “Knowl.” represents the inclusion of external
knowledge. “Robust" refers to the application of methods to enhance model robustness. “Avail.” indicates whether
the model is publicly available. Symbols!and%indicate the presence or absence of a feature, respectively.

context. One future direction could be to integrate1542

richer content into end-to-end temporal IE anno-1543

tation frameworks. One example is incorporating1544

entity relation extraction and full event extraction1545

(including triggers and arguments) from the gen-1546

eral domain to construct a more complete temporal1547

graph. This concept has begun to emerge in the1548

literature, as seen in Li et al. (2021). Yet, that work1549

mainly integrates existing temporal IE tools with1550

general domain IE tools without proposing a well-1551

defined annotation framework. Another example is1552

to develop user-friendly frameworks like SCATE,1553

which, unlike TimeML, outputs temporal intervals1554

that can be directly mapped onto a timeline given a 1555

temporal expression. However, SCATE primarily 1556

focuses on the normalization of time expressions. 1557

Expanding its scope to include the normalization 1558

of a broader range of temporal content, such as 1559

events and sentences, could significantly widen its 1560

applicability. 1561

Furthermore, future efforts could focus on ex- 1562

panding the domains covered by existing datasets 1563

to mitigate the domain bias present in current 1564

datasets. For example, the Thyme datasets rep- 1565

resent an adaptation of TimeML to better suit the 1566

medical field’s representation of temporal relations 1567

17



between events and times. Yet, such efforts to adapt1568

and improve annotation frameworks for additional1569

fields are still scarce. Therefore, adapting existing1570

annotation frameworks to a broader range of do-1571

mains to enhance the domain diversity of datasets1572

represents a potential future research direction.1573

F.2 Improve the Application of Generative1574

LLMs1575

The application of generative LLMs in the field1576

of time expression identification, normalization,1577

and temporal relation extraction remains underex-1578

plored. Given the proven capabilities of LLMs like1579

ChatGPT and LLAMA3 across various tasks, it is1580

logical to probe their potential within the realm of1581

temporal IE. Whether it involves leveraging new1582

prompting methods or fine-tuning strategies for1583

specific tasks, there is ample room for innovation.1584

However, it is important to emphasize that while1585

these models excel in generating unstructured text1586

when applied to temporal IE, it is imperative to spe-1587

cially design suitable input-output formats. Such1588

designs are intended to enable generative LLMs,1589

which are typically used for producing unstructured1590

text, to also effectively output structured temporal1591

information.1592

F.3 Develop Public Toolkits and Evaluation1593

Benchmarks1594

We believe that one key reason transformer-based1595

temporal IE models have not been widely adopted1596

might be the absence of a publicly available code1597

repository that facilitates easier access to models1598

and data. For example, HuggingFace 1 provides1599

language model heads or pipelines suitable for var-1600

ious tasks, allowing users to easily download and1601

deploy trained models on any dataset directly from1602

the HuggingFace Hub. A future research direction1603

should involve establishing such a repository or1604

pushing models/datasets to HuggingFace Hub for1605

the temporal IE tasks to enhance the reproducibility1606

and applicability of research. Another important1607

direction is to create a public and test-set concealed1608

benchmark for a more equitable comparison of1609

existing work. In most existing works, although1610

metrics such as F1 scores, precision, and recall1611

are commonly computed, the specific implementa-1612

tions can vary. For instance, in Kanashiro Pereira1613

(2022), only the “before” and “after” relationships1614

are evaluated for relation extraction performance,1615

1https://huggingface.co/

whereas Zhang et al. (2022) includes all temporal 1616

relationships except “vague” in their evaluation. 1617

F.4 Explore More Application Directions 1618

In reviewing the application of temporal IE sys- 1619

tems, we observe that current research primarily 1620

focuses on aiding “models” in temporal reason- 1621

ing to enhance their performance in other tasks. 1622

Future research in temporal IE should not only con- 1623

tinue to support model performance improvement 1624

but should also pay more attention to serving hu- 1625

mans and enhancing its practical value. A promis- 1626

ing application direction is visualizing timelines in 1627

human-computer interaction (HCI) scenarios. The 1628

visualization results of existing temporal graphs 1629

are often challenging for human users to interpret. 1630

For instance, visualizing the temporal graph of any 1631

document in the TimeBank-Dense dataset might 1632

result in a graph densely populated with points and 1633

lines, offering little help for users to comprehend 1634

the progression of events within the text. 1635

User studies, such as those conducted by Di Bar- 1636

tolomeo et al. (2020), have revealed the impor- 1637

tance of visualization forms of timelines for user 1638

understanding. Consequently, temporal IE research 1639

should also consider incorporating user research 1640

on temporal graphs to guide the design of temporal 1641

IE methods, such as how to represent standardized 1642

time expressions, identify which types of tempo- 1643

ral relations most effectively facilitate time under- 1644

standing, and determine the best ways to present 1645

this information. By addressing these problems, 1646

the extraction and representation of temporal in- 1647

formation can be more closely aligned with user 1648

needs, enhancing its application value in HCI. 1649

G Comparison with Previous Surveys 1650

Our survey offers several key advancements over 1651

previous reviews in the field of temporal informa- 1652

tion extraction. Prior surveys such as Lim et al. 1653

(2019) and Leeuwenberg and Moens (2019) pro- 1654

vide only brief mentions of standard datasets like 1655

TimeBank and TempEval, and largely predate the 1656

Transformer era. More recent reviews in the clin- 1657

ical domain—such as Alfattni et al. (2020) and 1658

Olex and McInnes (2021)—present more detailed 1659

dataset descriptions but are limited to clinical texts 1660

and do not cover resources from other domains. 1661

In contrast, our survey compiles and categorizes 1662

32 datasets across multiple domains (newswire, 1663

clinical, Wikipedia, narratives) and 15 languages, 1664

18
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structured by annotation framework (TimeML-1665

based vs. alternative schemas such as SCATE, tem-1666

poral dependency trees, or CaTeRS). We provide1667

a systematic analysis of dataset diversity, domain1668

bias, language coverage, and annotation schema.1669

Notably, we quantitatively analyze dataset bias,1670

identifying that 63% of current datasets come from1671

the newswire domain, and highlight underexplored1672

areas such as the low representation of historical1673

and non-news domains.1674

Our work specifically focuses on the Trans-1675

former era, providing in-depth analysis of how1676

these architectures are applied to temporal IE tasks,1677

examination of fine-tuning strategies, and discus-1678

sion of how pre-trained language models capture1679

temporal information. We also offer a broader1680

scope in terms of domain and language coverage1681

compared to previous works that focus on specific1682

domains or primarily discuss English-language re-1683

sources.1684

This broader treatment of datasets and methods1685

is intentional. Since Transformer-based approaches1686

often depend heavily on annotated corpora for fine-1687

tuning or benchmarking, a full understanding of1688

available datasets and their annotation assumptions1689

is crucial to contextualizing methodological ad-1690

vances in temporal information extraction.1691
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