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Abstract

Functional connectivity (FC) is widely used to study various psychiatric disorders, but its
consistency is often undermined by significant inter-subject variability. While these differ-
ences can be reflected by behavioral characteristics, few studies have combined them with
FC. To this end, we propose a novel graph learning framework that enhances differentiation
of psychiatric disorders by integrating FC with behavioral characteristics. Additionally, we
apply Grad-CAM to enhance model interpretability by identifying key regions of interest
involved in distinguishing individuals with psychiatric disorders from healthy controls. Ex-
periments with the Adolescent Brain Cognitive Development dataset highlighted two criti-
cal insights: the thalamus and specific ROIs within the somatomotor and cingulo-opercular
networks are vital for identifying psychiatric disorders. Additionally, visualization of latent
representations indicated that individuals with externalizing disorders, specifically Opposi-
tional Defiant Disorder, are distinguishable from healthy controls. These findings highlight
the potential of our graph learning framework in discerning psychiatric disorders, offering
potential for enhanced diagnostic accuracy.

Keywords: fMRI, adolescent psychiatric disorder, neurobehavior, graph autoencoder, in-
terpretability.

1. Introduction

Late childhood and early adolescence are critical stages for brain functional development,
often accompanied by the onset and development of multiple psychiatric problems, in-
cluding anxiety disorders (ANX) (Siegel and Dickstein, 2011), obsessive–compulsive dis-
order (OCD), oppositional defiant disorder (ODD) (Ghosh et al., 2017), conduct disorder
(Cond) (Fairchild et al., 2019; Stein et al., 2019), and attention-deficit hyperactivity dis-
order (ADHD) (Swanson et al., 1998; Sun et al., 2022), that affect cognitive development,
social functioning, and overall quality of life, potentially leading to long-term impairments
and increased risk for persistent psychiatric disorders in adulthood (Costello et al., 2003).
It is crucial to understand the underlying neurobehavioral mechanisms of these disorders
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at early stages and to identify biomarkers that could potentially inform the development of
effective prevention and intervention strategies.

Functional magnetic resonance imaging (fMRI) offers a non-invasive, high-resolution
method for capturing brain activity by detecting fluctuations in blood-oxygenation-level-
dependent (BOLD) signals. Though BOLD signals provide substantial information about
neuroactivities, their temporal structures make it challenging to reveal synchronous activity
for interregional brain communication (Yan et al., 2022; Wang et al., 2024b). To alleviate
this issue, functional connectivity (FC) (Smitha et al., 2017), estimated as the temporal
association between different regions of interest (ROIs) derived from the fMRI time series
data, has become a crucial tool for phenotype association study (Orlichenko et al., 2022)
and psychiatric disorders research (Zhou et al., 2020; Zhang et al., 2019).

Graph Neural Networks (GNNs) are powerful tools for embedding graph-structured
data, which is essential for integrating complex brain networks (Zhang et al., 2022; Wang
et al., 2023; Zhu et al., 2022). This capability is particularly valuable for neuroimaging
studies, as it facilitates comprehensive analysis and visualization of brain structures and
the functional interactions between ROIs. Prior studies have demonstrated that repre-
sentations from population-level graphs in graph learning are effective for demographic
classifications, such as brain cognition (Qu et al., 2021a; Xiao et al., 2020) and develop-
ment (Xiao et al., 2022; Chen et al., 2024). However, psychiatric disorder classification is
inherently more challenging than intelligence classification due to high inter-subject vari-
ability and FC heterogeneity (Langhammer et al., 2024; Wang et al., 2024a), which often
obscure condition-specific patterns. Accordingly, FCP-GNN (Gu et al., 2024) leveraged
demographic information to construct edges and used FC as node features in a population
graph, effectively distinguishing autism spectrum disorder. However, their approach did
not incorporate behavioral characteristics and focused on a single type of psychiatric disor-
der, highlighting the necessity to enhance representations and broaden applications to the
classification of psychiatric disorders.

To this end, we proposeBehavioral EdgeGenerationGraphAutoEncoder (BEG-GAE),
a novel GNN framework that integrates relevant behavioral characteristics with FC data
to enhance the brain network representation underlying psychiatric disorders. In this ap-
proach, node features are derived from FC data, while edge features are informed by be-
havioral characteristics, enabling the model to capture subtle connectivity changes linked
to psychiatric disorders. To further enhance the interpretability of the model, we adopt
the gradient-weighted class activation mapping (Grad-CAM) (Selvaraju et al., 2017; Qu
et al., 2021b) to highlight the ROIs that are most critical to the classification of psychiatric
disorders.

2. Methodology

As shown in Figure 1, the BEG-GAE consists of four steps: 1) Node (i.e., subject)
feature extraction: For each subject, node embeddings are generated from individual
FC using a GAE (Kipf and Welling, 2016; Noman et al., 2024); 2) Edge generation: A
weighted adjacency matrix representing subject similarities is estimated based on behavioral
characteristics; 3) Latent space visualization: Extracting latent representations from the
integrated graph using another GAE to help distinguish psychiatric disorders; 4) Perfor-
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Figure 1: Schematic diagram for the BEG-GAE.

mance Evaluation and Feature Analysis: Performing classification for validation and
feature analysis using logistic regression and Grad-CAM.

2.1. Embedding Extraction using Graph Autoencoder

We extract node embeddings using a GAE. For an input graph, all node features are con-
catenated into the feature matrix X ∈ Rn×d, where n is the number of nodes and d is the
feature dimensionality. During the encoding phase, the graph convolutional layer processes
X and produces a latent representation H:

H = σ
(
D̃−1

2 Ã D̃−1
2 XW

)
and Ã = A+ I,

where Ã is the adjacency matrix with self-loop (I is the identity matrix), D̃ is the diagonal
matrix whose diagonal entries are the node degrees of Ã, W corresponds to the learnable
weight matrix, and σ(·) is the nonlinear activation function. The operation yields resulting
H, which amalgamates both the structural and attribute-based data from the graph.

In the decoding step, the latent representation H is used to reconstruct an approxima-
tion X′ of the original feature matrix:

X ′ = σ
(
D̃−1

2 Ã D̃−1
2 HW ′),

where W ′ is the reconstruction weight matrix. The optimization objective minimizes the
Mean Squared Error (MSE) loss between X′

i and Xi, defined as:

LMSE =
1

nd

n∑
i=1

d∑
j=1

(Xij −X ′
ij)

2

This optimization process is designed to encourage the model to learn embeddings H
that retain essential information from X, effectively capturing information for population-
level graph embeddings.

2.2. Population Graph Generation

A population graph integrates all samples, where each node represents a subject. In our
approach, we first construct an FC graph for each subject, with nodes representing ROIs.
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The features of these nodes capture the functional relationships between ROIs, derived from
the subject’s FC matrix. We then generate graph embeddings for each subject-specific FC
graph using a GAE during the node feature generation stage. These embeddings serve
as the node features in the population graph. Finally, we construct edges of the population
graph based on the cosine similarity between behavioral score vectors associated with each
subject. For subjects i and j with behavioral score vectors bi and bj , the cosine similarity is

computed as Sij =
b⊤i bj

∥bi∥∥bj∥ . To ensure the symmetry of the similarity matrix, each element is

defined as the maximum between corresponding elements across the matrix diagonal. Edges
are established between nodes when the similarity values exceed a predefined threshold, thus
controlling the sparsity of the graph and ensuring that the connections accurately reflect
substantive feature similarities.

2.3. Model Interpretability with Grad-CAM

Grad-CAM is applied for model interpretability, leveraging the gradient information flowing
to compute the importance of each node with respect to the predicted class scores. Specif-
ically, it computes the gradients of the predicted class score yc with respect to the node
embeddings hk of a graph convolutional layer. The gradient αc

k for each node embedding k

with respect to class c is calculated as αc
k = 1

Z

∑
i
∂yc

∂hk
i

, where Z is the number of nodes in

the layer, and ∂yc

∂hk
i

denotes the partial derivative of the score yc with respect to each node

i in the embedding hk.

The Grad-CAM heatmap Lc is then generated by aggregating the node embeddings
weighted by their calculated importance, followed by a ReLU activation to ensure only
positive contributions are retained: Lc = ReLU

(∑
k α

c
kh

k
)
. This method enables precise

tracking of ROIs’ contributions to the model decisions, enhancing interpretability by visually
identifying key influential features.

3. Experiment and Result

3.1. Datasets

We investigated subjects from the University of Pittsburgh site of the Adolescent Brain
Cognitive Development (ABCD) study, which is designed to explore brain development and
mental health for children aged 9–10. Resting-state fMRI (rs-fMRI) and behaviors related
to five primary psychiatric disorders were explored, including ANX, OCD, ADHD, ODD,
and Conduct Disorder. Participants with less prevalent conditions were excluded, resulting
in a final sample of 440 participants (188 female, 252 male, 334 healthy controls (HC), 106
all diagnosed disorders (DX), as shown in Figure 2).

Preprocessed rs-fMRI data from the ABCD study were analyzed following the stan-
dardized ABCD pipeline,including motion correction, B0 distortion correction, and gra-
dient nonlinearity adjustments (Hagler Jr et al., 2019). We extracted 379 ROIs using the
Glasser atlas (Glasser et al., 2016) for cortical parcellations and the Aseg atlas (Fischl et al.,
2002) for subcortical parcellations. Behavioral characteristics were assessed using the Child
Behavior Checklist (CBCL) (Thompson et al., 2019), which includes syndrome scales that
evaluate the overall symptoms associated with each of the five primary psychiatric disorders.
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Figure 2: Diagnostic distribution by sex of subjects included in the analysis

3.2. Experimental Setup

To validate the effectiveness of various latent representations in distinguishing between HC
and disorder groups, we employed two principal experimental approaches: t-SNE visualiza-
tion (Van der Maaten and Hinton, 2008) and binary classification tasks. t-SNE visualization
was employed to qualitatively demonstrate the separation of categories within the latent
space, revealing clustering tendencies and distribution patterns among different groups. For
quantitative evaluation, binary classification tasks were conducted using logistic regression
with L1 regularization. Each classification task incorporated label balancing and 5-fold
cross-validation to ensure robust and unbiased evaluation. The performance of the models
was assessed using four metrics: accuracy, F1-scores, recall, and area under the receiver
operating characteristic curve (AUC). The classification tasks included HC vs. internaliz-
ing disorders (i.e., ANX, OCD), HC vs. externalizing disorders (i.e., ADHD, ODD, Cond),
and HC vs. DX. Building on these evaluations, we employed pairwise t-tests on the metrics
from each cross-validation fold to statistically assess model performance. Metrics derived
from the BEG-GAE model served as the baseline for comparison against other latent rep-
resentations, allowing us to determine whether the observed differences were statistically
significant.

To facilitate these experimental assessments, three baseline methods were compared
against the proposed method, progressing from simple raw features to unsupervised learning,
and finally to a graph-based approach.

• Functional Connectivity Only (Flattened FC): Utilizes raw flattened FC fea-
tures directly, without embedding.
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(a)

(b) (c) (d)

Figure 3: Comparison of t-SNE Dimensionality Reduction Across Different Frameworks:
(a) BEG-GAE (ours); (b) GAE+FC; (c) MLP Autoencoder+FC; (d) Flattened FC.

• Multilayer Perceptron Autoencoder (AE+FC): Utilizes an MLP-based autoen-
coder to flattened FC matrices to learn latent embeddings.

• Graph Autoencoder (GAE+FC): Utilizes a Graph Autoencoder to flattened FC
matrices to capture the underlying graph structure of brain connectivity.

3.3. Experimental Result

Distribution of Multilabel Embeddings: As shown in Figure 3, embeddings generated
by other competing methods show minimal separation between psychiatric disorders and
HC, with significant overlap in the latent space. BEG-GAE, through none of the five condi-
tions, exhibit highly concentrated distributions. However, we observe that ODD—including
cases of comorbidity with ADHD and Cond—tends to deviate more from the primary distri-
bution. In contrast, ANX and OCD are more frequently aligned with the main distribution
pattern.

Binary Classification: As shown in Table 1, BEG-GAE outperformed all other la-
tent representations across all classification tasks. This indicates that combining behavioral
scores with FC yields a more comprehensive representation, enhancing the discriminative
capacity of our model, effectively differentiating HCs from those with psychiatric disorders.
Additionally, the model achieved better performance in distinguishing the externalizing
group from HC compared to the internalizing versus HC classification. Notably, t-tests
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HC vs. Internalizing Disorders

Framework Accuracy p-value F1 p-value Recall p-value AUC p-value

Flattened FC 0.52 (0.03) 0.08 0.54 (0.04) 0.38 0.57 (0.09) 0.76 0.54 (0.05) 0.72
AE+FC 0.52 (0.16) 0.44 0.50 (0.21) 0.58 0.51 (0.24) 0.80 0.60 (0.17) 0.83
GAE+FC 0.56 (0.09) 0.33 0.56 (0.10) 0.66 0.58 (0.14) 0.50 0.57 (0.13) 0.96
BEG-GAE (Ours) 0.62 (0.09) - 0.59 (0.11) - 0.56 (0.13) - 0.57 (0.12) -

HC vs. Externalizing Disorders

Framework Accuracy p-value F1 p-value Recall p-value AUC p-value

Flattened FC 0.56 (0.08) 0.001 0.55 (0.11) 0.002 0.54 (0.12) 0.035 0.61 (0.09) 0.0009
AE+FC 0.52 (0.05) 0.0008 0.53 (0.03) 0.004 0.54 (0.07) 0.05 0.55 (0.07) 0.001
GAE+FC 0.55 (0.13) 0.04 0.56 (0.11) 0.04 0.56 (0.10) 0.08 0.51 (0.19) 0.02
BEG-GAE (Ours) 0.79 (0.07) - 0.78 (0.08) - 0.79 (0.13) - 0.82 (0.09) -

HC vs. DX

Framework Accuracy p-value F1 p-value Recall p-value AUC p-value

Flattened FC 0.53 (0.05) 0.001 0.52 (0.08) 0.005 0.52 (0.14) 0.021 0.53 (0.05) 0.004
AE+FC 0.55 (0.09) 0.05 0.55 (0.08) 0.028 0.57 (0.11) 0.019 0.57 (0.10) 0.077
GAE+FC 0.50 (0.03) 0.001 0.48 (0.07) 0.001 0.47 (0.11) 0.003 0.56 (0.02) 0.01
BEG-GAE (Ours) 0.73 (0.06) - 0.74 (0.06) - 0.78 (0.10) - 0.75 (0.07) -

* The mean and standard deviation (in parentheses) are reported.

Table 1: Classification Performance Comparison

conducted on the performance metrics revealed statistically significant differences for per-
formance comparisons between our method and competing approaches, except for the HC
versus internalizing disorders classification, where the results were not significant. We will
further discuss the implications of the non-significant t-test results for the HC versus inter-
nalizing disorders group in the discussion section.

Identifying Key ROIs Relevant to Psychiatric Disorders: As shown in Fig-
ure 4, Grad-CAM analysis identifies several ROIs that help differentiate between HC and
DX groups. Notably, the thalamus stands out for its role in sensory relay and regula-
tion of consciousness. Additionally, regions within the somatomotor network, essential for
voluntary motor control and coordination, and the cingulo-opercular network, crucial for
cognitive control and emotional regulation, show strong associations with psychiatric dis-
orders. These findings suggest that these networks and regions may play a significant role
in understanding psychiatric disorders.

4. Discussion

4.1. Challenges in Differentiating Internalizing Disorders from Healthy
Control

Our models for internalizing disorders, particularly ANX, demonstrated limited perfor-
mance, consistent with prior research (Ipser et al., 2013) indicating that individuals with
Specific Phobia—a subtype of ANX—exhibit significant variability in their neural signals.
The young age of our cohort (9–10 years) introduces an additional challenge, as anxiety
disorders typically evolve and manifest differently over time, complicating early detection
efforts. As illustrated in Figure 3(a), the ANX group largely overlaps with healthy controls,
further obstructing the identification of distinct diagnostic patterns. The classification out-
comes, coupled with non-significant t-test results, suggest that individual variability and
cohort-specific factors obscure the disorder-specific features we aimed to detect. Addi-
tionally, although fronto-parietal network regions are frequently implicated in psychiatric
disorders, our model failed to identify these regions. Given their strong association with
ANX (Ma et al., 2019), it is possible that their effects are more subtle or context-dependent,
making them particularly challenging to isolate within our dataset.
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Figure 4: Grad-CAM–identified regions of interest (ROIs) related to psychiatric disorders.
Left: Cortical regions; Right: Subcortical regions. Node importance values ranging from 0
to 1, representing each ROI’s importance in distinguishing psychiatric disorders.

4.2. Limitations and Future Directions

This study exclusively focuses on data from a single site. While pooling data from mul-
tiple sites can increase sample size and improve statistical power, it introduces additional
variability that risks obscuring the biological or functional patterns of interest. In future
research, we plan to apply site-effect removal techniques, such as ComBat (Yu et al., 2018),
to harmonize multi-site data and mitigate scanner-related variability. These approaches will
allow us to utilize more samples from the dataset, facilitating more generalizable findings
and broader applicability.

Multimodal fusion, as demonstrated in prior research, has been shown to enhance the
richness and interpretability of learned representations across applications such as intelli-
gence (Qu et al., 2024), sex classification (Patel et al., 2024), and brain cognition (Hu et al.,
2021). However, this study is centered on FC, which provides valuable insights into neu-
ral interactions but overlooks other critical dimensions of brain organization. To address
this limitation, future work will incorporate additional modalities, such as structural MRI
(sMRI) and diffusion tensor imaging (DTI). By integrating these modalities with fMRI,
the resulting graph representations are expected to capture complementary and diverse fea-
tures of brain organization, thereby enriching the representation space and advancing our
understanding of complex neural patterns.

5. Conclusion

We introduce BEG-GAE, an innovative framework that combines resting-state fMRI data
with behavioral characteristics to advance the representation of psychiatric disorders. Our
findings reveal that the BEG-GAE model generates representations that surpass tradi-
tional methods, including Autoencoders, Graph Autoencoders (GAEs), and raw functional
connectivity features. Additionally, our analysis identifies key brain regions, particularly
within the somatomotor and cingulo-opercular networks, as critical for classifying psychi-
atric disorders. These results underscore the potential of BEG-GAE to improve psychiatric
diagnostics in late childhood and early adolescence by elucidating the intricate associations
between brain connectivity and psychiatric disorders.
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