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Abstract

Functional connectivity (FC) is widely used to study various psychiatric disorders, but
its consistency is often undermined by significant inter-subject variability. While these
differences can be reflected in behavioral characteristics, few studies have combined them
with FC. To this end, we propose a novel graph learning framework that enhances the
differentiation of psychiatric disorders by integrating FC and behavioral characteristics.
Additionally, we apply Grad-CAM to enhance model interpretability by identifying key
regions of interest involved in distinguishing individuals with psychiatric disorders from
healthy controls. Experiments with the Adolescent Brain Cognitive Development dataset
highlighted two critical insights: the thalamus and specific ROIs within the somatomo-
tor and cingulo-opercular networks play a critical role for identifying psychiatric disor-
ders. Additionally, visualization of latent representations demonstrated that individuals
with externalizing disorders, specifically Attention Deficit Hyperactivity Disorder and Op-
positional Defiant Disorder, can be distinguished from healthy controls. These findings
underscore the utility of our graph learning framework for identifying psychiatric disor-
ders and suggest its promise for improving diagnostic accuracy. Our code is available at
https://github.com/elleryyu/BEG-GAE.

Keywords: fMRI, adolescent psychiatric disorder, neurobehavior, graph autoencoder, in-
terpretability.

1. Introduction

Late childhood and early adolescence are critical stages for brain functional development,
often accompanied by the onset and development of multiple psychiatric problems, in-
cluding anxiety disorders (ANX) (Siegel and Dickstein, 2011), obsessive–compulsive dis-
order (OCD), oppositional defiant disorder (ODD) (Ghosh et al., 2017), conduct disorder
(CD) (Fairchild et al., 2019; Stein et al., 2019), and attention-deficit hyperactivity disorder
(ADHD) (Swanson et al., 1998; Sun et al., 2022), that affect cognitive development, social
functioning, and overall quality of life, potentially leading to long-term impairments and
heightened risk for persistent psychiatric disorders in adulthood (Costello et al., 2003). It
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is crucial to understand the underlying neurobehavioral mechanisms of these disorders at
early stages and to identify biomarkers that could potentially inform the development of
effective prevention and intervention strategies.

Functional magnetic resonance imaging (fMRI) offers a non-invasive, high-resolution
method for capturing brain activity by detecting fluctuations in blood-oxygenation-level-
dependent (BOLD) signals. Though BOLD signals provide substantial information about
neural activity, their temporal characteristics make it challenging to reveal synchronous
activity for inter-regional brain communication (Yan et al., 2022; Wang et al., 2024b). To
alleviate this issue, functional connectivity (FC) (Smitha et al., 2017), estimated as the
temporal association between different regions of interest (ROIs) derived from the fMRI
time-series data, has become a crucial tool for phenotype association study (Orlichenko
et al., 2022) and psychiatric disorders research (Zhou et al., 2020; Zhang et al., 2019).

Graph Neural Networks (GNNs) are powerful paradigms for embedding graph-structured
data, with the capability to integrate complex brain networks (Zhang et al., 2022; Wang
et al., 2023; Zhu et al., 2022). This capability is particularly valuable for neuroimaging stud-
ies, as it facilitates comprehensive analysis of brain structures and the functional interactions
between ROIs. Prior studies have demonstrated that population-level graph representations
are effective for tasks such as demographic classification, brain cognition (Qu et al., 2021a;
Xiao et al., 2020), and development (Xiao et al., 2022; Chen et al., 2024) studies. However,
psychiatric disorder classification is inherently more challenging than cognitive ability clas-
sification due to high inter-subject variability and FC heterogeneity (Langhammer et al.,
2024; Wang et al., 2024a), which often obscure condition-specific patterns. Incorporating
relationship at population level can capture a range of factors beyond individual FC, thereby
enabling the construction of a richer network of relationships among participants. By in-
tegrating this information, the model gains additional context that refines its capacity to
discern and classify distinct disorders. To this end, we propose Behavioral Edge Generation
Graph AutoEncoder (BEG-GAE), a novel GNN framework that integrates relevant be-
havioral characteristics with FC data to enhance the brain network representation and to
identify key brain regions underlying psychiatric disorders. In this approach, node features
are derived from FC data, while edge features encode behavioral characteristics, enabling
the model to capture subtle connectivity changes linked to psychiatric disorders. To further
enhance the interpretability of the model, we adopt the gradient-weighted class activation
mapping (Grad-CAM) (Selvaraju et al., 2017; Qu et al., 2021b) to highlight the ROIs that
are most critical for classification of psychiatric disorders.

2. Methodology

As shown in Figure 1, the BEG-GAE consists of: 1) Node (i.e., subject) feature ex-
traction: For each subject in the population graph, the node features are defined as graph
embeddings generated from the subject’s FC using GAEFC ; 2) Edge generation: A
weighted adjacency matrix is constructed to capture subject similarities based on behav-
ioral characteristics; 3) Latent representation: Latent features are extracted from the
population graph using population graph GAE (GAEpop) to help distinguish psychiatric
disorders; 4) Performance evaluation and biomarker identification: Classification is
performed for both validation and feature analysis using logistic regression and Grad-CAM.
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Figure 1: Schematic diagram of the BEG-GAE.

2.1. Embedding Extraction using Graph Autoencoder

Latent features are derived from Graph Autoencoder (GAE) (Kipf and Welling, 2016). For
an input graph, all node features are concatenated into the feature matrix X ∈ Rn×d, where
n is the number of nodes and d is the feature dimensionality. During the encoding phase,
the graph convolutional layer processes X and produces a latent representation H:

H = σ
(
D̃−1

2 Ã D̃−1
2 XW

)
and Ã = A+ I,

where Ã is the adjacency matrix with self-loop (I is the identity matrix), D̃ is the degree
matrix of Ã, W is the learnable weight matrix, and σ(·) is the nonlinear activation function.

In the decoding step, the latent representation H is used to reconstruct an approxima-
tion X′ of the original feature matrix:

X ′ = σ
(
D̃−1

2 Ã D̃−1
2 HW ′),

where W ′ is the reconstruction weight matrix. The optimization objective minimizes the
Mean Squared Error (MSE) loss between X′

i and Xi, defined as:

LMSE =
1

nd

n∑
i=1

d∑
j=1

(Xij −X ′
ij)

2,

which encourages the model to learn embeddings that retain essential information of inputs.

2.2. Population Graph Generation

A population graph integrates all individuals, where each edge represents connections be-
tween a pair of subjects.The embeddings of each individual FC using GAEFC serve as the
node features in the population graph. We then construct edges of the population graph
based on the cosine similarity between behavioral score vectors associated with each sub-
ject. For subjects i and j with behavioral score vectors bi and bj , the cosine similarity is

computed as Sij =
b⊤i bj

∥bi∥∥bj∥ . Connections are only established when the similarity values ex-

ceed a predefined threshold, thus controlling the sparsity of the graph and ensuring that the
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edges accurately reflect substantive feature similarities. In addition, we explore alternative
approach of edge generation using a Euclidean distance-based approach for the population
graph, as presented in Table 8 in Appendix F. The results shows that embeddings derived
from graphs constructed with cosine similarity achieve performance levels comparable to
those built using Euclidean distance.

2.3. Model Interpretability with Grad-CAM

Grad-CAM is applied for model interpretability, leveraging the gradient information to
compute the importance of each node with respect to the predicted class scores. Specif-
ically, it computes the gradients of the predicted class score yc with respect to the node
embeddings hk of a graph convolutional layer. The gradient αc

k for each node embedding

k with respect to class c is calculated as αc
k = 1

Z

∑
i
∂yc

∂hk
i

, where Z is the number of nodes

in the layer, and ∂yc

∂hk
i

denotes the partial derivative of the score yc with respect to each

node i in the embedding hk. The Grad-CAM heatmap Lc is then generated, followed by a
ReLU activation to ensure only positive contributions are retained: Lc = ReLU

(∑
k α

c
kh

k
)
.

This method enables precise identification of ROIs’ contributions to the model decisions,
enhancing interpretability by visually identifying key features.

3. Experiment and Result

3.1. Datasets

We investigated subjects from the University of Utah (UTAH) site of the Adolescent Brain
Cognitive Development (ABCD) study, which is designed to explore brain development
and mental health for children aged 9–10. Resting-state fMRI (rs-fMRI) and behaviors
related to five primary psychiatric disorders were explored, including ANX, OCD, ADHD,
ODD, and CD. Participants with less prevalent conditions were excluded, resulting in a
final sample of 440 participants (188 female, 252 male, 334 healthy controls (HC), 106 all
diagnosed disorders (DX), as shown in Figure 2).

Preprocessed rs-fMRI data from the ABCD study were analyzed following the stan-
dardized ABCD pipeline,including motion correction, B0 distortion correction, and gradi-
ent nonlinearity adjustments (Hagler Jr et al., 2019). We extracted 379 ROIs using the
Glasser atlas (Glasser et al., 2016) for cortical parcellations and the Aseg atlas (Fischl
et al., 2002) for subcortical parcellations. Behavioral characteristics were evaluated using
the Child Behavior Checklist (CBCL) (Thompson et al., 2019), which measures children’s
behavioral and emotional functioning across various domains (e.g., withdrawal, somatic
complaints, attention problem). In our edge construction, we incorporated all available
syndrome scales.

3.2. Experimental Setup

To validate the effectiveness of various latent representations in distinguishing between HC
and disorder groups, we employed two principal experimental approaches: t-SNE visualiza-
tion (Van der Maaten and Hinton, 2008) and binary classification tasks. t-SNE visualization
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Figure 2: Diagnostic distribution by sex of subjects included in the analysis

was employed to demonstrate the separation of categories within the latent space. For quan-
titative evaluation, binary classification tasks were conducted using logistic regression with
L1 regularization (LASSO regression). Each classification task incorporated label balancing
and 5-fold cross-validation to ensure robust and unbiased evaluation. The performance of
the models was assessed using four metrics: accuracy, F1-scores, recall, and area under the
receiver operating characteristic curve (AUC). The classification tasks included HC vs. in-
ternalizing disorders (i.e., ANX, OCD), HC vs. externalizing disorders (i.e., ADHD, ODD,
CD), and HC vs. DX. Building on these evaluations, we employed pairwise t-tests to sta-
tistically assess model performance difference. Metrics derived from the BEG-GAE model
served as the baseline for comparison against other approaches.

In addition, we evaluated model generalizability via cross-site validation using two sites
of ABCD. The UTAH site (used in all experiments) and the Yale University (YALE) site
(used exclusively for cross-site validation) were selected, which have similar labels distribu-
tion of the whole dataset. Models were trained on one site and validated on the other, with
performance assessed using accuracy, F1-score, recall, and AUC.

Three baseline approaches were compared against the proposed method, progressing
from simple raw features to unsupervised learning, and finally to a graph-based approach.

• Functional Connectivity Only (Flattened FC): Utilizes raw flattened FC fea-
tures directly, without embedding.

• Multilayer Perceptron Autoencoder (AE+FC): Utilizes an MLP-based autoen-
coder to flattened FC matrices to learn latent embeddings.

• Graph Autoencoder (GAE+FC): Utilizes a Graph Autoencoder to flattened FC
matrices to capture the underlying graph structure of brain connectivity.
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(a)

(b) (c) (d)

Figure 3: Comparison of t-SNE Dimensionality Reduction Across Different Frameworks:
(a) BEG-GAE (ours); (b) GAE+FC; (c) MLP Autoencoder+FC; (d) Flattened FC.

3.3. Experimental Result

Distribution of Multilabel Embeddings: As shown in Figure 3, embeddings gener-
ated by other competing methods show minimal separation between psychiatric disorders
and HC, with significant overlap in the latent space. Figure 3(a) illustrates that external-
izing disorders (i.e., ADHD and ODD) are more densely clustered within the annotated
area compared to non-externalizing disorders. In contrast, a larger proportion of ANX and
OCD cases tend to lie in the region dominated by healthy controls. To quantify the qual-
ity of the generated embeddings, we computed the Calinski-Harabasz score (Caliński and
Harabasz, 1974), where a higher value indicates better clustering performance. Our embed-
dings showed significantly higher scores (in appendix D) than those from other frameworks,
indicating that ours learned embeddings that were more clustered according to the existence
of externalizing disorders.

Binary Classification: As shown in Table 1, BEG-GAE outperformed all other ap-
proaches. This indicates that combining behavioral scores with FC yields a more com-
prehensive representation, enhancing the discriminative capacity of our model, effectively
differentiating HCs from those with psychiatric disorders. Additionally, the model achieved
better performance in distinguishing the externalizing group from HC compared to the
internalizing versus HC classification. Notably, t-tests conducted on the performance met-
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HC vs. Internalizing Disorders

Framework Accuracy p-value F1 p-value Recall p-value AUC p-value

Flattened FC 0.52 (0.03) 0.08 0.54 (0.04) 0.38 0.57 (0.09) 0.76 0.54 (0.05) 0.72
AE+FC 0.52 (0.16) 0.44 0.50 (0.21) 0.58 0.51 (0.24) 0.80 0.60 (0.17) 0.83
GAE+FC 0.56 (0.09) 0.33 0.56 (0.10) 0.66 0.58 (0.14) 0.50 0.57 (0.13) 0.96
BEG-GAE (Ours) 0.62 (0.09) - 0.59 (0.11) - 0.56 (0.13) - 0.57 (0.12) -

HC vs. Externalizing Disorders

Framework Accuracy p-value F1 p-value Recall p-value AUC p-value

Flattened FC 0.56 (0.08) 0.001 0.55 (0.11) 0.002 0.54 (0.12) 0.035 0.61 (0.09) 0.0009
AE+FC 0.52 (0.05) 0.0008 0.53 (0.03) 0.004 0.54 (0.07) 0.05 0.55 (0.07) 0.001
GAE+FC 0.55 (0.13) 0.04 0.56 (0.11) 0.04 0.56 (0.10) 0.08 0.51 (0.19) 0.02
BEG-GAE (Ours) 0.79 (0.07) - 0.78 (0.08) - 0.79 (0.13) - 0.82 (0.09) -

HC vs. DX

Framework Accuracy p-value F1 p-value Recall p-value AUC p-value

Flattened FC 0.53 (0.05) 0.001 0.52 (0.08) 0.005 0.52 (0.14) 0.021 0.53 (0.05) 0.004
AE+FC 0.55 (0.09) 0.05 0.55 (0.08) 0.028 0.57 (0.11) 0.019 0.57 (0.10) 0.077
GAE+FC 0.50 (0.03) 0.001 0.48 (0.07) 0.001 0.47 (0.11) 0.003 0.56 (0.02) 0.01
BEG-GAE (Ours) 0.73 (0.06) - 0.74 (0.06) - 0.78 (0.10) - 0.75 (0.07) -

* The mean and standard deviation (in parentheses) are reported.

Table 1: Classification Performance Comparison

rics revealed statistically significant differences for performance comparisons between our
method and competing approaches, except for the HC versus internalizing disorders classifi-
cation, where the results were not significant. We discuss implications of the non-significant
t-test results in the discussion section. Additionally, we extend the baseline model by incor-
porating both FC data and CBCL scores as inputs to the framework. The results presented
in Table 2 in Appendix A indicate that the embeddings generated by the BEG-GAE model
achieve marginally better performance than those produced by the AE and demonstrate
comparable performance to those generated by the GAE.

Cross-site Validation: As shown in Table 6 and Table 7 (in Appendix E), the BEG-
GAE model trained on the UTAH site performed similarly when validated on YALE site
as the model trained on YALE site did on its own subjects, demonstrating the model’s
generalizability across sites.

Identifying Key ROIs Relevant to Psychiatric Disorders: As shown in Figure
4, Grad-CAM analysis identifies several ROIs that help differentiate between HC and DX
groups. Notably, the thalamus stands out for its role in sensory relay and regulation of
consciousness, which has been linked to ADHD (Ivanov et al., 2010). Additionally, regions
within the somatomotor network, essential for voluntary motor control and coordination,
and the cingulo-opercular network, crucial for cognitive control and emotional regulation,
show strong associations with psychiatric disorders, with particularly notable links to ADHD
(Norman et al., 2021; Wang et al., 2022). These findings suggest that these networks and
regions potentially play a significant role in understanding psychiatric disorders.
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Figure 4: Grad-CAM–identified regions of interest (ROIs) related to psychiatric disorders.
Left: Cortical regions; Right: Subcortical regions. Node importance values ranging from 0
to 1, representing each ROI’s importance in distinguishing psychiatric disorders. In each
figure, non-target regions are shaded in gray.

4. Discussion

4.1. Challenges in Differentiating Internalizing Disorders from Healthy
Control

The substantial overlap between the ANX group and healthy controls (HC), as illustrated
in Figure 3(a), is indicative of the poor classification performance observed in distinguishing
HC from internalizing disorders. This overlap may also explain why our model failed to
capture the involvement of fronto-parietal network regions, which are commonly associated
with anxiety disorders (Ma et al., 2019).

To further investigate these issues, we conducted a detailed examination of our dataset.
We discovered a notable imbalance within the anxiety disorder group, which comprised 42
subjects, 36 of whom were diagnosed with Specific Phobia (SPH)—a subtype of ANX that
exhibits significant variability in neural signals (Ipser et al., 2013) and is challenging to
differentiate from HC. This imbalance likely contributed to the suboptimal classification
outcomes for internalizing disorders.

To address this issue, subjects diagnosed exclusively with Specific Phobia were excluded
from the analysis. As shown in Table 3 in Appendix B, this exclusion improved the clas-
sification performance for Internalizing vs. HC, with the remaining 6 ANX subjects being
correctly classified.

4.2. Limitations and Future Directions

Though we conducted cross-site validation and employed alternative sampling strategies
for classification (See Appendix C) to identify our model exhibits relative generalizability,
a larger sample size will further improve the generalizability of our model. While pooling
data from multiple sites can increase sample size and improve statistical power, it introduces
additional variability that risks obscuring the biological or functional patterns of interest.
In future research, we plan to apply site-effect removal techniques, such as ComBat (Yu
et al., 2018), to harmonize multi-site data and mitigate scanner-related variability. This
approach will allow us to utilize more samples across different sites, thereby facilitating more
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generalizable findings and broader applicability, and enabling the identification of specific
brain regions that differentiate distinct psychiatric disorders from HC.

Multimodal fusion, as demonstrated in prior research, has been shown to enhance the
richness and interpretability of learned representations across applications such as intelli-
gence (Qu et al., 2024), sex classification (Patel et al., 2024), and brain cognition (Hu et al.,
2021). However, this study is centered on FC, which provides valuable insights into neu-
ral interactions but overlooks other critical dimensions of brain organization. To address
this limitation, future work will incorporate additional modalities, such as structural MRI
(sMRI) and diffusion tensor imaging (DTI). By integrating these modalities with fMRI,
the resulting graph representations are expected to capture complementary and diverse fea-
tures of brain organization, thereby enriching the representation space and advancing our
understanding of complex neural patterns.

5. Conclusion

We introduce BEG-GAE, an innovative framework that combines resting-state fMRI data
with behavioral characteristics to advance the representation of psychiatric disorders. Our
findings reveal that the BEG-GAE model generates representations that surpass tradi-
tional methods, including Autoencoders, Graph Autoencoders (GAEs), and raw functional
connectivity features. Additionally, our analysis identifies key brain regions, particularly
within the somatomotor and cingulo-opercular networks, as critical for classifying psychi-
atric disorders. These results underscore the potential of BEG-GAE to improve psychiatric
diagnostics in late childhood and early adolescence by elucidating the intricate associations
between brain connectivity and psychiatric disorders.
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Appendix A. Classification Performance Comparison with Different
Input for Embeddings Extraction

Framework Accuracy F1 Recall AUC

HC vs. Internalizing Disorders

Raw Features 0.62 (0.05) 0.63 (0.07) 0.65 (0.12) 0.69 (0.03)
AE 0.59 (0.10) 0.59 (0.11) 0.59 (0.15) 0.58 (0.10)
GAE 0.73 (0.04) 0.70 (0.06) 0.64 (0.12) 0.79 (0.08)
BEG-GAE 0.62 (0.09) 0.59 (0.11) 0.56 (0.13) 0.57 (0.12)

HC vs. Externalizing Disorders

Raw Features 0.69 (0.04) 0.67 (0.05) 0.64 (0.09) 0.81 (0.08)
AE 0.57 (0.07) 0.58 (0.08) 0.59 (0.11) 0.59 (0.10)
GAE 0.80 (0.10) 0.80 (0.11) 0.77 (0.11) 0.87 (0.08)
BEG-GAE 0.79 (0.07) 0.78 (0.08) 0.79 (0.13) 0.82 (0.09)

HC vs. DX

Raw Features 0.67 (0.04) 0.67 (0.06) 0.67 (0.09) 0.75 (0.02)
AE 0.70 (0.04) 0.72 (0.04) 0.76 (0.10) 0.76 (0.03)
GAE 0.74 (0.02) 0.75 (0.02) 0.79 (0.05) 0.81 (0.05)
BEG-GAE 0.73 (0.06) 0.74 (0.06) 0.78 (0.10) 0.75 (0.07)

Table 2: Classification Performance: BEG-GAE vs. Baseline Models with Additional CBCL
Scores. The mean and standard deviation (in parentheses) are reported.

Appendix B. Subgroup Analysis

In the current dataset, there are 42 subjects with ANX, 36 of whom are diagnosed with Specific
Phobia, which has led to poor classification performance in internalizing disorders.

To address this issue, we excluded subjects with Specific Phobia only. As shown in Table 3, the
classification result for Internalizing vs. HC is improved, indicating that subjects with only Specific
Phobia negatively impact classification results.

Classification Task Accuracy F1-score Recall AUC

Internalizing vs. HC (Include Specific Phobia) 0.62 (0.09) 0.59 (0.11) 0.56 (0.13) 0.57 (0.12)
Internalizing vs HC (Exclude Specific Phobia) 0.66 (0.14) 0.64 (0.14) 0.60 (0.14) 0.67 (0.16)
Externalizing vs HC 0.79 (0.07) 0.78 (0.08) 0.79 (0.13) 0.82 (0.09)
HC vs DX 0.73 (0.04) 0.74 (0.04) 0.75 (0.10) 0.74 (0.05)
HC vs OCD 0.65 (0.06) 0.67 (0.07) 0.73 (0.13) 0.63 (0.17)
HC vs ADHD 0.80 (0.09) 0.79 (0.09) 0.79 (0.08) 0.80 (0.15)
HC vs ODD 0.81 (0.08) 0.80 (0.09) 0.82 (0.15) 0.84 (0.07)
HC vs CD 0.73 (0.28) 0.78 (0.23) 0.90 (0.20) 0.87 (0.19)

Table 3: Logistic Regression Results for Subgroup Comparisons.

Appendix C. Impact of Sampling Strategies on HC vs. DX Classification
Performance

Although we employed label balancing strategies for LASSO regression in the Binary Classification
task described in Section 3, it remains crucial to evaluate whether the imbalance in data across
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categories affected the results. To further investigate this, we re-evaluated the HC vs. DX classifica-
tion by applying Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002) and
Weighted Cross Entropy (WCE) (Aurelio et al., 2019) in addition to downsampling. These exper-
iments were conducted under the same experimental settings as the original Binary Classification
task. As shown in Table 4, BEG-GAE demonstrates stable performance across different sampling
methods, whereas AE and GAE exhibit greater variability.

Framework Sampling Strategies Accuracy F1-score Recall AUC

AE+FC SMOTE 0.73 (0.06) 0.71 (0.06) 0.66 (0.04) 0.75 (0.05)
AE+FC WCE 0.59 (0.05) 0.71 (0.04) 0.64 (0.05) 0.57 (0.08)
AE+FC Label balancing 0.55 (0.09) 0.55 (0.08) 0.57 (0.11) 0.57 (0.10)
GAE+FC SMOTE 0.67 (0.03) 0.64 (0.02) 0.59 (0.03) 0.71 (0.02)
GAE+FC WCE 0.57 (0.04) 0.67 (0.04) 0.59 (0.05) 0.59 (0.04)
GAE+FC Label balancing 0.50 (0.03) 0.48 (0.07) 0.47 (0.11) 0.56 (0.02)
BEG-GAE SMOTE 0.76 (0.02) 0.76 (0.03) 0.76 (0.07) 0.81 (0.03)
BEG-GAE WCE 0.75 (0.06) 0.82 (0.05) 0.77 (0.06) 0.75 (0.09)
BEG-GAE Label balancing 0.73 (0.06) 0.74 (0.06) 0.78 (0.10) 0.75 (0.07)

Table 4: HC vs. DX Classification Performance Using Different Sampling Strategies

Appendix D. Clustering Evaluation for Generated Embeddings

To further evaluate clustering performance, we compute the Calinski-Harabasz (CH) scores and
analyze the clustering results for HC and DX groups using the same embeddings as those presented
in the t-SNE visualization. Specifically, as shown in the CH Scores (Cluster 0: HC; Cluster
1: DX) column of Table 5, the clusters generated by BEG-GAE demonstrate superior structure
compared to those derived from baseline embeddings.

Framework CH Scores CH Scores after SMOTE

BEG-GAE 3.64 12.10
Flattened FC 1.14 N/A
AE+FC 2.04 6.22
GAE+FC 0.39 1.79

Table 5: Calinski-Harabasz Score for the UTAH site when we use HC as Cluster 0 and DX
as Cluster 1.
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Appendix E. Cross-Site Validation for Assessing Model Generalizability

Framework Accuracy F1 Recall AUC
Site A Site B Site A Site B Site A Site B Site A Site B

HC vs. Internalizing Disorders

Flattened FC 0.52 (0.03) 0.45 (0.08) 0.54 (0.04) 0.47 (0.12) 0.57 (0.09) 0.51 (0.17) 0.54 (0.05) 0.43 (0.08)
AE+FC 0.52 (0.16) 0.52 (0.06) 0.50 (0.21) 0.50 (0.13) 0.51 (0.24) 0.53 (0.25) 0.60 (0.17) 0.47 (0.06)
GAE+FC 0.56 (0.09) 0.43 (0.10) 0.56 (0.10) 0.44 (0.12) 0.58 (0.14) 0.46 (0.15) 0.57 (0.13) 0.45 (0.15)
BEG-GAE 0.62 (0.09) 0.69 (0.09) 0.59 (0.11) 0.65 (0.11) 0.56 (0.13) 0.59 (0.15) 0.57 (0.12) 0.70 (0.13)

HC vs. Externalizing Disorders

Flattened FC 0.56 (0.08) 0.46 (0.08) 0.55 (0.11) 0.48 (0.16) 0.54 (0.12) 0.54 (0.27) 0.61 (0.09) 0.44 (0.15)
AE+FC 0.52 (0.05) 0.31 (0.07) 0.53 (0.03) 0.32 (0.06) 0.54 (0.07) 0.33 (0.07) 0.55 (0.07) 0.27 (0.10)
GAE+FC 0.55 (0.13) 0.46 (0.13) 0.56 (0.11) 0.48 (0.15) 0.56 (0.10) 0.51 (0.18) 0.51 (0.19) 0.43 (0.11)
BEG-GAE 0.79 (0.07) 0.83 (0.10) 0.78 (0.08) 0.85 (0.07) 0.79 (0.13) 0.89 (0.09) 0.82 (0.09) 0.82 (0.11)

HC vs. DX

Flattened FC 0.53 (0.05) 0.43 (0.10) 0.52 (0.08) 0.43 (0.12) 0.52 (0.14) 0.44 (0.14) 0.53 (0.05) 0.37 (0.10)
AE+FC 0.55 (0.09) 0.48 (0.13) 0.55 (0.08) 0.47 (0.20) 0.57 (0.11) 0.50 (0.23) 0.57 (0.10) 0.41 (0.15)
GAE+FC 0.50 (0.03) 0.41 (0.04) 0.48 (0.07) 0.38 (0.04) 0.47 (0.11) 0.36 (0.06) 0.56 (0.02) 0.39 (0.05)
BEG-GAE 0.73 (0.06) 0.78 (0.08) 0.74 (0.06) 0.79 (0.07) 0.78 (0.10) 0.84 (0.07) 0.75 (0.07) 0.83 (0.06)

Table 6: Cross-Site Classification Performance: BEG-GAE trained on UTAH site (Site A)
and validated on YALE site (Site B)

Framework Accuracy F1 Recall AUC
Site A Site B Site A Site B Site A Site B Site A Site B

HC vs. Internalizing Disorders

AE+FC 0.46 (0.06) 0.56 (0.06) 0.44 (0.08) 0.58 (0.05) 0.43 (0.11) 0.61 (0.08) 0.45 (0.06) 0.53 (0.10)
GAE+FC 0.57 (0.06) 0.50 (0.17) 0.57 (0.06) 0.49 (0.17) 0.57 (0.12) 0.48 (0.18) 0.55 (0.06) 0.51 (0.11)
BEG-GAE 0.62 (0.07) 0.68 (0.05) 0.61 (0.06) 0.61 (0.11) 0.59 (0.03) 0.53 (0.17) 0.61 (0.07) 0.66 (0.09)

HC vs. Externalizing Disorders

AE+FC 0.51 (0.04) 0.54 (0.15) 0.54 (0.04) 0.57 (0.14) 0.58 (0.08) 0.63 (0.17) 0.52 (0.10) 0.54 (0.15)
GAE+FC 0.51 (0.05) 0.47 (0.16) 0.50 (0.07) 0.45 (0.22) 0.51 (0.12) 0.48 (0.29) 0.53 (0.08) 0.41 (0.12)
BEG-GAE 0.73 (0.07) 0.87 (0.05) 0.72 (0.08) 0.87 (0.04) 0.72 (0.13) 0.85 (0.08) 0.72 (0.08) 0.87 (0.08)

HC vs. DX

AE+FC 0.61 (0.03) 0.44 (0.12) 0.61 (0.05) 0.44 (0.12) 0.61 (0.10) 0.44 (0.11) 0.62 (0.15) 0.48 (0.13)
GAE+FC 0.57 (0.07) 0.41 (0.12) 0.56 (0.09) 0.39 (0.11) 0.56 (0.11) 0.37 (0.09) 0.59 (0.04) 0.41 (0.11)
BEG-GAE 0.68 (0.05) 0.77 (0.07) 0.70 (0.07) 0.78 (0.06) 0.76 (0.13) 0.80 (0.07) 0.68 (0.08) 0.75 (0.08)

Table 7: Cross-Site Classification Performance: BEG-GAE trained on Site B and validated
on Site A
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Appendix F. Population Graph Edge Generation in BEG-GAE

In Section 2.2, we introduced edge generation using cosine similarity, setting a predefined threshold
of 0.55 to ensure connectivity while maintaining sparsity. Additionally, we explored constructing
edges based on Euclidean distance to form a Nearest Neighbor graph. We evaluated the classification
performance of the extracted embeddings in this two different method of edge generation. As shown
in Table 8, the results show that embeddings extracted from graphs built using cosine similarity
achieve a performance level comparable to those constructed with Euclidean distance.

Task Measurement Create Accuracy F1 Recall AUC

HC vs. Internalizing Euclidean Distance Nearest Neighbors 0.63 (0.11) 0.62 (0.10) 0.62 (0.13) 0.69 (0.12)
HC vs. Internalizing Cosine Similarity Thresholding 0.62 (0.09) 0.59 (0.11) 0.56 (0.13) 0.57 (0.12)
HC vs. Externalizing Euclidean Distance Nearest Neighbors 0.79 (0.05) 0.81 (0.04) 0.85 (0.08) 0.83 (0.07)
HC vs. Externalizing Cosine Similarity Thresholding 0.79 (0.07) 0.78 (0.08) 0.79 (0.13) 0.82 (0.09)
HC vs. DX Euclidean Distance Nearest Neighbors 0.71 (0.08) 0.70 (0.12) 0.71 (0.18) 0.77 (0.06)
HC vs. DX Cosine Similarity Thresholding 0.73 (0.06) 0.74 (0.06) 0.78 (0.10) 0.75 (0.07)

Table 8: Performance Comparison of Population Graph Edge Generation in BEG-GAE
using Different Measurements and Construction Methods
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