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Abstract
Standard federated learning (FL) algorithms typi-
cally require multiple rounds of communication
between the server and the clients, which has sev-
eral drawbacks including requiring constant net-
work connectivity, repeated investment of com-
putation resources and susceptibility to privacy
attacks. One-Shot FL is a new paradigm that aims
to address this challenge by enabling the server to
train a global model in a single round of commu-
nication. In this work, we present FedFisher, a
novel algorithm for one-shot FL that makes use of
the Fisher information matrices computed at the
local models of clients, motivated by a Bayesian
perspective of FL. First, we theoretically ana-
lyze FedFisher for two-layer overparameter-
ized ReLU neural networks and show that the
error of our one-shot FedFisher global model
becomes vanishingly small as the width of the
neural networks and amount of local training at
clients increases. Next we propose practical vari-
ants of FedFisher using the diagonal Fisher
and K-FAC approximation for the full Fisher and
highlight their communication and compute ef-
ficiency for FL. Finally, we conduct extensive
experiments on various datasets, which show that
these variants of FedFisher consistently im-
prove over several competing baselines.

1. Introduction
Data collection and storage is becoming increasingly decen-
tralized, both due to the proliferation of smart devices as
well as privacy concerns stemming from transferring and
storing data at a centralized location. Federated Learning
(FL) is a framework that is designed to learn the parameters
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w ∈ Rd of a model f(w, ·) on decentralized data that is
distributed across a network of clients under the supervision
of a central server (1; 2; 3). Our focus is particularly on the
case where f(w, ·) is a neural network as is usually the case
in practice. Formally, we formulate FL as the following
distributed optimization problem:

minw∈Rd

{
L(w) := 1

M

∑M
i=1 Li(w)

}
(1)

where,
Li(w) = 1

n

∑
(xij ,yij)∈Di

ℓ(f(w,xij),yij). (2)
Here, M is the number of clients, Di is the i-th client’s
local dataset consisting of input-label pairs {(xij ,yij)}nj=1

where x ∈ Rp is the input and y ∈ RC is the label, and
n = |Di| is the dataset size. For simplicity, we consider the
case where clients have equal amounts of data; our algorithm
and analysis can easily be extended to the case where client
objectives are unequally weighted. The loss function ℓ(·, ·)
penalizes the difference between the prediction of the model
f(w,x) and true label y. We use D = {Di}Mi=1 to denote
the collection of data across all clients and N = Mn to
denote the total data samples across clients.

Most standard FL algorithms such as FedAvg (4) and
FedProx (5) require multiple rounds of communication
between clients and server in order to train a global model
in federated settings. However, a multi-round approach
has several drawbacks for clients, including the need to
frequently connect with the server, repeated investment of
computational resources to update the global model in ev-
ery round and increased susceptibility to privacy attacks.
To overcome these drawbacks, a recent line of work has
focused on the paradigm of one-shot FL which aims to
learn the parameters of the global model in a single round
of communication between clients and the server. Exist-
ing works for one-shot FL can be broadly split into two
categories: (i) Knowledge Distillation (KD) methods and
(ii) Neuron Matching (NM) methods. KD methods treat
the collection of client models as an ensemble and propose
to distill the knowledge from this ensemble into a single
global model. However, to perform the distillation step,
these works either assume that the server has access to an
auxiliary public dataset (6; 7; 8), or propose to train gener-
ative models such as GANs (9; 10) or variational autoen-
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coders (11) to artificially generate data which raises privacy
and computation concerns. NM methods are based on the
observation that neural networks (NNs) are permutation
invariant, i.e., it is possible to create NNs that differ only
in the ordering of weights while having the same output
(12; 13; 14; 15; 16; 17). Based on this observation, these
works propose to first align the weights of the client models
according to a common ordering (called matching) and then
average the aligned client models. While this idea has been
shown to work well when combining simple models like
feedforward NNs, the performance drops significantly for
more complex models such as CNNs (18). Lastly, we note
that none of these existing works provide any theoretical
guarantees for their proposed methods.

Motivated by the limitations of multi-round FL and current
approaches for one-shot FL, we ask the question: Can we
devise a one-shot FL method that is simultaneously com-
munication and computation efficient, privacy-preserving
and has good practical performance? Furthermore, can we
provide theoretical guarantees for such a method?

Our Contributions. In this work, we take a step towards
providing an affirmative answer to both of the questions for-
mulated above. To do so, we use the idea that Equation (2)
can alternatively be reformulated as a posterior inference
problem, specifically finding the mode of a global posterior
(19; 20). Some highlights of our contribution are as follows.

• We propose FedFisher and show how the problem
of finding a mode of the global posterior can be solved
approximately in a one-shot manner, using the local
models at each client and the Fisher information matri-
ces computed at these local models (Section 2).

• For the case of overparameterized two-layer neural
networks, we show that when we utilize the full Fisher
information in FedFisher, the error of our one-shot
global model becomes vanishingly small as the width
of the neural networks and amount of local training at
clients increases (Section 3).

• We propose practical variants of FedFisher using
the diagonal and K-FAC approximation (21) for the
full Fisher which we term as FedFisher(Diag)
and FedFisher(K-FAC). We evaluate
FedFisher(Diag) and FedFisher(K-FAC)
on a range of one-shot FL tasks using deep neural
networks and show that they give a consistent 5− 10%
accuracy improvement compared to competing KD
and NM one-shot baselines (Section 4).

2. Proposed Algorithm: FedFisher
We begin by stating the following standard assumption on
the loss function ℓ(·, ·), which is true for most common loss
functions such as the squared loss and cross entropy loss.

Assumption 1. Given z = f(w,x), we assume that
ℓ(z,y) is the negative log likelihood of y under some
exponential family probabilistic model, i.e., ℓ(z,y) =
− logP(y|z) where P(y|z) = h(y) exp(z⊤T (y)−A(z))
and h(y), T (y), A(z) are some real-valued functions.

Let us define the likelihood for a data point (x,y) for
a given w as P((x,y)|w) = q(x) exp(−ℓ(f(w,xij),y)
where q(·) is some prior on x, independent of w. We can
now adopt a Bayesian viewpoint and find the maximum a
posteriori probability (MAP) estimate, i.e., find w where
the posterior likelihood P(w|D) ∝ P(D|w)P(w) is max-
imized with P(w) being some prior belief over w. Our
motivation to do so comes from the following proposition:

Proposition 1. (Global Posterior Decomposition (19)) Un-
der the flat prior P(w) ∝ 1, the global posterior decom-
poses into a product of local posteriors, i.e., P(w|D) ∝∏M

i=1 P(w|Di). Furthermore, modes of the global posterior
coincide with the optima of the FL objective in Equation (2),
i.e, argmaxw∈Rd P(w|D) = argminw∈Rd L(w).

Proposition 2 tells us that as long as clients compute and
send their local posteriors P(w|Di) to the server, no further
server-client communication is needed to find the global
MAP estimate or equivalently a minimizer to our FL objec-
tive, giving us a one-shot algorithm. However, doing so is
challenging since P(w|Di) typically does not have an ana-
lytical expression. To get a tractable solution, we propose
to use some approximate inference techniques.

Mode of Local Posterior. To apply the approximate infer-
ence techniques detailed below, clients need to first compute
w̃i ≈ argmaxw P(w|Di), an estimate for the mode of
their local posterior under the flat prior. Note that this cor-
responds to a minimizer of Li(w) and therefore w̃i can be
obtained using standard GD optimization.

Laplace Approximation for Local Posterior. Using a sec-
ond order Taylor expansion around w̃i, we get the following
approximation for the log-posterior at the i-th client:
logP(w|Di) ≈ logP(w̃i|Di)− n

2 (w −w)⊤Hi(w −w) (3)
where we additionally use ∇ logP(w|Di)|w=w̃i

≈ 0. Here
Hi = − 1

n∇
2 logP(w|Di)|w=w̃i

is the Hessian of the neg-
ative log-posterior at client i computed at w̃i.

Approximating Hessian with Fisher. The Fisher informa-
tion matrix Fi (herein referred to as ‘the Fisher’) of the local
model w̃i at client i is defined as follows:
Fi =

1
n

∑n
j=1 Ey

[
∇ logP(y|xij ,w)∇ logP(y|xij ,w)⊤

]
w=w̃i

.

(4)
Now if w̃i fits the data at client i perfectly, i.e.,
f(w̃i,xij) = yij ∀j ∈ [n], then it can be shown that
Hi = Fi (22; 23). Unlike the Hessian, the Fisher is guar-
anteed to be positive semi-definite, a condition required for
tractable inference at the global server. However, communi-
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Algorithm 1 FedFisher
1: Input: initial w0, no. of iterations K, T , client and

server step sizes η and ηS respectively
2: Global server does:
3: Communicate w0 to all clients;
4: Clients i ∈ [N ] in parallel do:
5: Set w(0)

i ← w0;
6: For k = 0, . . . ,K − 1 iterations:
7: w

(t+1)
i ← w

(t)
i − η∇Li(w

(t)
i );

8: Set w̃i ← w
(K)
i ;

9: Compute F̃i; // Approximation to true Fisher
10: Communicate w̃i and F̃i to the server;
11: Global server does:
12: Set w(0) =

∑M
i=1 w̃i/M ;

13: For t = 0, . . . , T − 1 iterations:
14: w(t+1) ← w(t) −

ηS

(∑M
i=1 F̃iw

(t) −
∑M

i=1 F̃iw̃i

)
cating the full Fisher doing would require O(d2) bits which
is infeasible when the models are neural networks with d in
the order of millions. In practice, clients can replace the full
Fisher Fi with another practical approximation F̃i such as
the diagonal Fisher or K-FAC (21) (see Section 4). Thus,

Hi ≈ Fi ≈ F̃i. (5)
Computing Mode of Global Posterior. Assuming clients
compute and send back w̃i and F̃i to the server, we can
use Proposition 2, Equation (3) and Equation (5) to approxi-
mate the logarithm of the global posterior as logP(w|D) ≈∑M

i=1 logP(w̃i|Di)−n
2

∑M
i=1(w−w̃i)

⊤F̃i(w−w̃i). With
this approximation, finding a mode of the global posterior
can be written as the following optimization problem:

minw∈Rd

∑M
i=1(w − w̃i)

⊤F̃i(w − w̃i) . (6)

Since each F̃i is positive semi-definite, a global minimizer
of Equation (6) can be found by simply setting the derivative
of the objective to zero. Doing so we find that any minimizer
w of Equation (6) satisfies (

∑M
i=1 F̃i)w =

∑M
i=1 F̃iw̃i.

For overparameterized models, i.e, d ≫ N , the rank of∑M
i=1 F̃i will be smaller than d and therefore the system

of equations (
∑M

i=1 F̃i)w =
∑M

i=1 Fiw̃i will not have a
unique solution. To resolve this, we propose to use the
solution that minimizes minimizes

∑M
i=1 ∥w − w̃i∥22. Such

a constraint prevents the solution from drifting too far away
from the local models of each client. Thus, we have,

min
w∈Rd:

∑M
i=1 F̃iw=

∑M
i=1 F̃iw̃i

L̃(w) =
∑M

i=1 ∥w − w̃i∥22. (7)

We refer to the minimizer w∗ of the above objective as
the FedFisher global model in the rest of our discus-
sion. In Lemma 1 in Appendix B, we show that w∗

can be easily computed using GD as follows: w(t+1) ←
w(t) − ηS

(∑M
i=1 F̃iw

(t) −
∑M

i=1 F̃iw̃i

)
where ηS ≤

1/λmax(
∑M

i=1 F̃i) and w(0) =
∑M

i=1 w̃i/M .

3. Theoretical Analysis for Two Layer
Overparameterized ReLU Neural Network

In this section we present a bound on the global training loss
i.e, L(w∗), when f(w, ·) is a two layer overparameterized
ReLU neural network. We begin by modeling a two-layer
ReLU NN as follows,

f(w,x) = 1√
m

∑m
r=1 arσ(x

⊤wr). (8)

Here m is the number of hidden nodes in the first layer,
{wr}Mr=1 are the weights of the first layer, {ar}mr=1 are the
weights of the second layer and σ(x) = max{x, 0} is the
ReLU function. Similar to (24), we consider the ar’s to be
fixed beforehand (initialized to be +1 or −1 uniformly at
random) and only consider the case where wr’s are trained.

Definition 1. (Minimum eigenvalue of Gram Matrix (24))
For (x, y) ∈ D, define matrix H∞ ∈ RN×N as H∞

kl =
Ew∼N (0,I)

[
x⊤
k xlI

{
w⊤xk ≥ 0

}
, I
{
w⊤xl

}
≥ 0}

]
and

λ0 = λmin(H
∞).

Assumption 2. (Data normalization and uniqueness) For
any (x, y) ∈ D, we have ∥x∥2 = 1 and |y| ≤ C, where C
is some positive constant. For any (x, y), (x′, y′) ∈ D we
have ∥x− x′∥2 ≥ ϕ > 0

Assumption 3. (Full Fisher) Clients compute and send
their full Fisher, i.e, F̃i = Fi.

Definition 1 and Assumption 2 are standard in NN optimiza-
tion literature (24; 25; 26; 27). We note that most commonly
used approximations such as the diagonal and K-FAC are
primarily empirically motivated and have little theoretical
understanding. Therefore, we use Assumption 3 to simplify
our analysis and focus on bounding the error introduced by
Equation (3) and suboptimality of w̃i, i.e,∇Li(w̃i) ̸= 0.

Theorem 1. Under Assumptions 2, 3, for m ≥
poly(N,λ−1

0 , δ−1, κ−1), ℓ(z, y) = 1
2 (z − y)2 and i.i.d

Gaussian initialization weights of w0 as w0,r ∼ N (0, κI),
and initializing ar = {−1, 1} with probability 1/2 for all
r ∈ [m], for step sizes η = O(λ0/N

2), ηS = O(λ0/N
2)

and for a given failure probability δ ∈ (0, 1), the following
is true with probability 1− δ

L(w∗) ≤ O
(
(1− ηλ0/2)

K N

δ

)
︸ ︷︷ ︸

local optimization error

(9)

+O
(
(2− (1− ηλ0/2)

K)
poly(N,κ−1, λ−1

0 , δ−1)

m

)
.︸ ︷︷ ︸

Laplace approximation error

Takeaways. Theorem 2 shows that for sufficiently wide
networks, L(w∗) can be decomposed into the local opti-
mization error, which measures how well w̃i fits the data at
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Table 1: Test accuracy results on different datasets by keeping number of client M = 5 fixed
and varying heterogeneity parameter α. Practical implementations of FedFisher consistently
outperforms other baselines.

Dataset Heterogeneity FedAvg PFNM OTFusion DENSE FedFisher FedFisher
α (Diag) (K-FAC)

0.05 49.33 ± 4.16 71.32 ± 3.00 44.18 ± 0.29 53.83 ± 1.53 66.88 ± 1.21 78.27 ± 3.09
MNIST 0.075 55.90 ± 3.47 71.74 ± 2.62 49.85 ± 0.02 60.20 ± 0.50 71.40 ± 3.02 83.15 ± 2.20

0.1 55.67 ± 2.83 70.02 ± 6.06 50.40 ± 0.04 61.67 ± 1.29 69.24 ± 3.64 84.43 ± 1.63

0.05 36.93 ± 3.92 50.86 ± 3.62 37.47 ± 0.22 44.17 ± 1.11 54.40 ± 2.77 54.09 ± 3.18
FashionMNIST 0.075 41.02 ± 3.68 48.97 ± 5.84 40.87 ± 0.77 47.59 ± 2.04 64.88 ± 3.32 67.96 ± 4.35

0.1 46.45 ± 1.47 52.36 ± 5.39 42.39 ± 0.39 53.22 ± 1.55 66.52 ± 4.90 71.56 ± 4.35

0.05 27.03 ± 0.71 45.62 ± 3.55 34.89 ± 0.77 49.06 ± 1.40 51.52 ± 2.92 57.40 ± 3.68
SVHN 0.075 33.71 ± 2.34 51.15 ± 3.43 48.53 ± 0.67 57.39 ± 3.08 53.28 ± 7.48 62.95 ± 1.61

0.1 39.42 ± 2.52 53.19 ± 4.18 51.66 ± 0.26 55.93 ± 1.79 64.24 ± 3.07 69.01 ± 2.68

0.05 29.75 ± 1.32 30.58 ± 3.65 27.00 ± 0.36 31.93 ± 2.70 31.12 ± 1.49 40.39 ± 3.51
CIFAR-10 0.075 34.72 ± 1.63 37.03 ± 3.72 34.69 ± 1.16 37.20 ± 2.50 39.44 ± 2.47 44.07 ± 0.71

0.1 36.43 ± 2.51 39.43 ± 1.80 39.72 ± 1.07 38.29 ± 2.61 40.00 ± 1.35 47.58 ± 1.11

0.05 10.01 ± 2.20 × 8.08 ± 0.59 15.52 ± 0.80 11.56 ± 3.50 18.12 ± 1.97
CINIC-10 0.075 12.13 ± 2.01 × 8.73 ± 2.01 20.53 ± 1.84 15.76 ± 1.79 20.39 ± 1.50

0.1 12.68 ± 1.30 × 10.97 ± 1.38 20.75 ± 1.17 16.92 ± 1.88 22.66 ± 3.00

Table 2: Test accuracy results on different datasets by keeping heterogeneity parameter α = 0.3
fixed and varying number of clients M . Practical implementations of FedFisher consistently
outperforms other baselines.

Dataset # Clients FedAvg PFNM OTFusion DENSE FedFisher FedFisher
M (Diag) (K-FAC)

10 83.68 ± 1.90 79.84 ± 4.80 56.46 ± 0.17 88.95 ± 0.65 91.88 ± 1.29 91.32 ± 0.29
MNIST 20 81.05 ± 2.33 62.44 ± 6.22 55.55 ± 0.26 88.08 ± 0.59 89.00 ± 1.29 89.78 ± 1.18

30 81.61 ± 2.85 49.88 ± 5.87 52.20 ± 0.23 87.12 ± 0.16 90.08 ± 0.72 88.94 ± 1.35

10 75.20 ± 2.96 63.08 ± 8.41 50.86 ± 1.00 78.83 ± 1.68 82.40 ± 1.29 78.17 ± 3.40
FashionMNIST 20 74.61 ± 2.96 46.94 ± 6.11 49.45 ± 0.82 79.54 ± 1.54 77.84 ± 2.35 78.73 ± 2.46

30 75.24 ± 2.28 40.93 ± 9.89 48.75 ± 1.24 77.52 ± 0.88 76.16 ± 1.38 78.03 ± 2.46

10 51.92 ± 3.89 63.24 ± 2.37 49.44 ± 0.65 63.27 ± 2.89 63.72 ± 2.73 74.63 ± 0.75
SVHN 20 37.39 ± 3.73 51.96 ± 1.95 42.56 ± 3.30 57.34 ± 2.06 53.88 ± 4.16 76.25 ± 0.97

30 28.69 ± 4.70 38.59 ± 4.93 33.06 ± 1.24 64.56 ± 1.72 41.04 ± 8.82 68.55 ± 1.74

10 43.12 ± 0.46 44.78 ± 0.96 35.27 ± 0.42 46.44 ± 1.02 44.92 ± 0.84 51.92 ± 1.18
CIFAR-10 20 37.96 ± 0.58 42.43 ± 0.81 29.47 ± 1.26 40.46 ± 2.09 39.16 ± 2.56 48.07 ± 1.61

30 36.16 ± 2.19 40.65 ± 2.27 27.54 ± 1.36 40.74 ± 1.14 38.88 ± 2.07 48.29 ± 0.85

10 15.00 ± 2.40 × 8.75 ± 2.22 19.85 ± 4.86 16.04 ± 2.22 25.01 ± 0.61
CINIC-10 20 14.86 ± 0.63 × 7.49 ± 2.04 22.62 ± 2.43 15.04 ± 2.03 24.96 ± 0.96

30 14.07 ± 0.92 × 7.87 ± 0.23 19.48 ± 2.12 14.68 ± 0.83 24.72 ± 0.78

the i-th client, and the error introduced by the Laplace ap-
proximation in Equation (3). While the overall error always
decreases as the width m increases, there is a trade-off in
the number of local optimization steps K. In particular, a
larger K reduces the local optimization error but increases
the Laplace error as each local model w̃i drifts further away
from w∗. Note by setting m and K appropriately, the error
can be made arbitrarily small. In contrast, a similar bound
for FedAvg has a fixed O(1) bound on the error (28; 29).

4. Practical Variants of FedFisher and
Experiments

Two of the most popular approximations for the Fisher
are the diagonal Fisher and the Kronecker Factored Ap-
proximate Curvature (K-FAC). Using these approximations
as a substitute for the true Fisher in Equation (5), we get
two practical variants of FedFisher which we term as
FedFisher(Diag) and FedFisher(K-FAC) respec-
tively. We highlight the computation and communication
efficiency of these variations along with their privacy prop-
erties in Appendix C. In particular, we ensure that the com-
munication cost of these variants matches that of FedAvg.
Here we evaluate the performance of FedFisher(Diag)
and FedFisher(K-FAC) in comparison to state-of-the-
art (SOTA) one-shot FL baselines across a range of image
recognition tasks in a FL setting. The datasets that we use
are (i) MNIST (30), (ii) FashionMNIST (31) (iii) SVHN
(32) (iv) CIFAR-10 (33) and (v) CINIC-10 (34).

Baselines. FedAvg is the de-facto baseline in all our ex-
periments. The other baselines that we compare with are
(i) PFNM (ii) OTFusion (12) and (iii) DENSE (9). PFNM
and OTFusion are SOTA neuron matching methods that
first permute the weights of the local models and then aver-
age them, instead of direct averaging. DENSE, is a SOTA
method for one-shot FL using data-free knowledge distilla-
tion that uses GANs to artificially generate data for distilla-
tion at the server. We avoid comparing with baselines that
need auxiliary data or maintain an ensemble of local models
(35; 36) at the server to ensure fairness of comparison.

Models and Experimental Setup. For MNIST and Fash-
ionMNIST we use the MLPNet architecture proposed in
(12); for SVHN and CIFAR10 we use a CNN model pro-

posed in (18); for CINIC-10 we use ResNet-18 (37). We
note that PFNM does not currently support ResNet18 archi-
tecture. To simulate data heterogeneity among the client
datasets, we split our original image dataset into N parti-
tions using a Dirichlet sampling procedure with parameter
α, as is common in FL literature (38; 39), with a lower value
of α implying a more heterogeneous split. Further details
can be found in Appendix D.

FedFisher outperforms baselines across varying
heterogeneity and number of clients. We evaluate
FedFisher and other baselines in the range of α =
{0.05, 0.075, 0.1} which can be considered as moderate
to high data heterogeneity. Table 1 summarizes the results
obtained the algorithms across the various datasets. We see
that FedFisher variants comprehensively outperforms
baselines in all regimes. In particular for MNIST, Fashion-
MNIST and SVHN, FedFisher(K-FAC) gives almost
10% improvement compared to the nearest baseline. Ta-
ble 2 summarizes the results obtained when we keep the
heterogeneity parameter α = 0.3 fixed and vary the num-
ber of clients M in the range {10, 20, 30}. Note that since
the total dataset size is fixed, as we increase M each client
gets assigned fewer data samples. Thus as M increases,
local models have a larger tendency to overfit the data they
are trained on, making it harder to aggregate such models.
Nonetheless, we see that FedFisher variants, especially
FedFisher(K-FAC) continue to outperform other base-
lines with up to 20% improvement in some cases like the
SVHN and relatively lower drop in accuracy with larger
M . This highlights the effectiveness of FedFisher as a
one-shot algorithm which can tackle data heterogeneity in
FL settings and scale to relatively large number of clients
while being computation and communication efficient.

5. Conclusion
In this work, we propose FedFisher, novel algorithm for
one-shot FL motivated by a Bayesian perspective of FL.
We theoretically analyze FedFisher for two-layer over-
parameterized neural networks and propose practical ver-
sions FedFisher(Diag) and FedFisher(K-FAC)
that outperform current state-of-the-art one-shot methods
while being computation and communication efficient. Fu-
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ture work involves extending the analysis of FedFisher
for deeper neural networks and investigating the use of
differential-privacy to improve privacy guarantees.
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A. Additional Related Work
One-Shot FL. We review here some additional work on one-shot FL apart from the knowledge distillation and neuron
matching baselines discussed in our work. Initial works such as (35) propose to just use the ensemble of client models at the
server. The work (36) discusses how we can improve the prediction of this ensemble when the label distribution across
client data is highly skewed. Another line of work proposes that clients send some distilled form of their data to the server
(40; 41). However, the privacy guarantees of such methods is unclear. The work (42) proposes techniques to optimize the
weights of given to the local models when aggregating them at the server to improve one-shot performance. However, their
analysis is limited to simple linear models and does not consider combing neural networks. We also note the existence of
works that propose to perform clustering in a one-shot manner in FL setting (43; 44); these approaches our orthogonal to our
problem of finding a global minimizer in a one-shot manner.

Convergence of overparameterized NNs in FL. The works (28; 45; 46) study the convergence of FedAvg for overpa-
rameterized neural networks. We note that these works are primarily concerned with convergence and do not propose any
new algorithms as such compared to our work. We also note the existence of related works (47; 48), that proposes to use
NTK style Jacobian features to speed up FL training; however these works usually require multiple training rounds.

B. Proofs
B.1. Proof of Proposition 2.

Proposition 2. (Global Posterior Decomposition (19)) Under the flat prior P(w) ∝ 1, the global posterior decomposes
into a product of local posteriors, i.e., P(w|D) ∝

∏M
i=1 P(w|Di). Furthermore, modes of the global posterior coincide

with the optima of the FL objective in Equation (2), i.e, argmaxw∈Rd P(w|D) = argminw∈Rd L(w).

Proof.

We have,
P(w|D) ∝ P(D|w) (∵ P(w) ∝ 1) (10)

=

M∏
i=1

P(Di|w) (Di are i.i.d generated) (11)

∝
M∏
i=1

P(w|Di). (12)

Also,
argmax
w∈Rd

P(w|D) = argmax
w∈Rd

logP(w|D) (13)

= argmax
w∈Rd

logP(D|w) (14)

= argmax
w∈Rd

M∑
i=1

n∑
j=1

(log q(xij)− ℓ(f(w,xij),yij)) (Assumption 1) (15)

= argmax
w∈Rd

−
M∑
i=1

n∑
j=1

ℓ(f(w,xij),yij) (Assumption 1) (16)

= argmin
w∈Rd

L(w). (17)

B.2. Lemma 1 and Proof.

Lemma 1. Let w(1),w(2), . . . be the iterates generated by running the following gradient descent (GD) procedure:
w(t+1) = w(t) − ηS

(∑M
i=1 F̃iw

(t) − F̃iwi

)
with w(0) =

∑M
i=1 w̃i/M and ηS ≤ 1/λmax where λmax is the maximum

eigen value of
∑M

i=1 F̃i. Then, limT→∞ w(T ) = w∗.
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Proof.

Recall,

w∗ = argmin
w∈Rd

{
L̃(w) =

M∑
i=1

∥w − w̃i∥22 such that

(
M∑
i=1

F̃i

)
w =

M∑
i=1

F̃iw̃i

}
(18)

Let F =
∑M

i=1 F̃i, b =
∑M

i=1 F̃iw̃i and w̄ =
∑M

i=1 wi/M . Also note that
∑M

i=1 ∥w − w̃i∥2 = M ∥w − w̄∥22 +∑M
i=1 ∥w̄ − w̃i∥22. Therefore, the expression for w∗ can be simplified as,

w∗ = argmin
w∈Rd

{
L̃(w) = ∥w − w̄∥2 such that Fw = b

}
. (19)

Since F is symmetric and PSD (each F̃i is symmetric and PSD), we have by the spectral decomposition of F ,

F = V ΣV ⊤ =
[
V1 V2

] [Σ1 0
0 0

] [
V ⊤
1

V ⊤
2

]
= V1Σ1V

⊤
1 . (20)

Here V ∈ R(d×d) is an orthogonal matrix consisting of the eigenvectors of F , and Σ = diag(λ1, λ2, . . . , λr, 0, . . . , 0) is a
diagonal matrix consisting of the eigen values of F . We assume that rank(F ) = r, therefore V1 ∈ Rd×r consists of the
first r eigenvectors of F and Σ1 = diag(λ1, λ2, . . . , λr). We also assume for our discussion that b lies in the column space
of F , i.e., V1V

⊤
1 b = b.

Claim 1. The set of w such that Fw = b is given by,

S = {V2V
⊤
2 w + V1Σ

−1
1 V ⊤

1 b|w ∈ Rd}. (21)

Proof. Let w = V2V
⊤
2 x+ V1Σ

−1
1 V ⊤

1 b for some x ∈ Rd. Firstly we see that,
Fw = V1Σ1V

⊤
1 (V2V

⊤
2 x+ V1Σ

−1
1 V ⊤

1 b) (22)
= b (23)

Now let w⋄ be such that Fw⋄ = V1Σ1V
⊤
1 w⋄ = b. This implies V ⊤

1 w⋄ = Σ−1
1 V ⊤

1 b. We have,
w⋄ = V V ⊤w⋄ (24)

= V2V
⊤
2 w⋄ + V1V

⊤
1 w⋄ (25)

= V2V
⊤
2 w⋄ + V1Σ

−1
1 V ⊤

1 b (26)

Combining Equation (26), Equation (26) we have,
w such that Fw = b ⇐⇒ w ∈ S. (27)

Claim 2.
w∗ = argmin

w∈S
∥w − w̄∥22 = V2V

⊤
2 w̄ + V1Σ

−1
1 V ⊤

1 b (28)

Proof.
Case 1: w̄ ∈ S. In this case we have, w∗ = V2V

⊤
2 w̄ + V1Σ

−1
1 V ⊤

1 b = w̄, therefore argminw∈S ∥w − w̄∥22 = 0.

Case 2: w̄ /∈ S. Suppose w∗ = argminw∈S ∥w − w̄∥22 = V2V
⊤
2 w̃ + V1Σ

−1
1 V ⊤

1 b for some w̃ ̸= w̄. Let w⋄ =
V2V

⊤
2 w̄ + V1Σ

−1
1 V ⊤

1 b. We have,

∥w̄ −w∗∥22 =
∥∥w̄ − V2V

⊤
2 w̃ − V1Σ

−1
1 V ⊤

1 b
∥∥2
2

(29)

=
∥∥V2V

⊤
2 (w̄ − w̃) + V1V

⊤
1 w̄ − V1Σ

−1
1 U⊤b

∥∥2
2

(30)

=
∥∥V2V

⊤
2 (w̄ − w̃)

∥∥2
2
+
∥∥V1V

⊤
1 w̄ − V1Σ

−1
1 U⊤b

∥∥2
2

(31)

=
∥∥V2V

⊤
2 (w̄ − w̃)

∥∥2
2
+
∥∥V1V

⊤
1 w̄ + V2V

⊤
2 w̄ − V2V

⊤
2 w̄ − V1Σ

−1
1 U⊤b

∥∥2
2

(32)

=
∥∥V2V

⊤
2 (w̄ − w̃)

∥∥2
2
+ ∥w̄ −w⋄∥22 (33)

> ∥w̄ −w⋄∥22 (34)
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leading to a contradiction. Thus, w∗ = V2V
⊤
2 w̄ + V1Σ

−1
1 V ⊤

1 b.

Now the GD step in Lemma 1 can be written as,

w(t+1) = w(t) − ηS(Fw(t) − b) (35)

= (I − ηSF )w(t) + ηSb. (36)
Therefore,

w(T ) = (I − ηSF )Tw(0) + ηS

T−1∑
t=0

(I − ηSF )tb (37)

= V (I − ηSΣ)TV ⊤w(0) + ηS

T−1∑
t=0

V (I − ηSΣ)tV ⊤b (38)

= (V1(I − ηSΣ1)
TV1 + V2V

⊤
2 )w(0) + ηS

(
V1

T−1∑
t=0

(I − ηSΣ1)
tV1 + V2V

⊤
2

)
b. (39)

= (V1(I − ηSΣ1)
TV1 + V2V

⊤
2 )w(0) + ηS

(
V1

T−1∑
t=0

(I − ηSΣ1)
tV1

)
b. (40)

(41)
where the last line uses the fact b lies in the column space of F .

In the limit T →∞ and with ηS ≤ 1/λmax(Σ1), we have,

lim
T→∞

(I − ηSΣ1)
T = 0 and lim

T→∞

T−1∑
t=0

(I − ηSΣ1)
t =

1

ηS
Σ−1

1 . (42)

Thus,
lim

T→∞
w(T ) = V2V

⊤
2 w(0) + V1Σ

−1
1 V ⊤

1 b (43)

= V2V
⊤
2 w̄ + V1Σ

−1
1 V ⊤

1 b (44)
= w∗ (45)

which the last line follows from Equation (21) and Equation (28). This completes our proof.

B.3. Proofs for 2 layer Overparameterized ReLU NN

Recall our two-layer ReLU NN is modeled as follows,

f(w,x) =
1√
m

m∑
r=1

arx
⊤wrI

{
x⊤wr ≥ 0

}
(46)

We can write the output of the neural network alternatively as,
f(w,x) = ϕ(w,x)⊤w (47)

where ϕ(w,x) = 1√
m
[a1xI

{
x⊤w1 ≥ 0

}
; a2xI

{
x⊤w2 ≥ 0

}
; . . . amxI

{
x⊤wm ≥ 0

}
] ∈ Rmp.

We see that,
∇wf(w,x) = ϕ(w,x) (48)

Also observe that,

∥ϕ(w,x)∥22 ≤
1

m

m∑
i=1

∥x∥22 = 1 (49)

Definition of Aw, Ã, Hw, H̃ . We define the following matrices Aw and Ã that will be used in the proof.
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Aw =

 ϕ⊤(w,x11)
...

ϕ⊤(w,xMn)

 ∈ R(N×mp) (50)

and,

Ã =

 ϕ⊤(w̃1,x11)
...

ϕ⊤(w̃M ,xMn)

 ∈ R(N×mp) (51)

We also define Hw = AwA⊤
w, H̃ = ÃÃ⊤.

Initialization. Recall w0 is the common initialization point for all the local models before they perform local optimization,
i.e., w(0)

i = w0. Also recall w(0) = w̄ =
∑M

i=1 w̃i/M is the initialization point for the server optimization.

Simplification of Fisher. Under the squared loss ℓ(z, y) = 1
2 (y − z)2, it can be shown that the Fisher at each client ??

can be simplified as follows (22),

Fi =
1

n

n∑
j=1

[∇wf(w,xij)∇wf(w,xij)
⊤]w=w̃i

(52)

=
1

n

n∑
j=1

ϕ(w̃i,xij)ϕ(w̃i,xij)
⊤ (using Equation (48)) (53)

True Model and Proxy Model Output: Let f(w) = [f(w,x11), f(w),x12), . . . , f(w),xMn)] be the vec-
tor of true model responses. Let y = [y11, y12, . . . , yMn] be the vector of true labels and let ỹ =
[f(w̃1,x11), f(w̃1,x12), . . . , f(w̃M ,xMn)] be the vector of predicted local model outputs.

For any xij and any weight vector w, the proxy model output is defined as f̃(w,xij) = ϕ(w̃i,xij)
⊤w. Let f̃(w) =

[f̃(w,x11), f̃(w,x12), . . . , f̃(w,xMn)] be the vector of proxy Fisher model responses.

We will now state some lemmas from previous work that we utilize in our proof.

Lemma 2. (Theorem 3.1 and Lemma C.1 in (49)) If we set m = Ω
(

N6

λ4
0κ

2δ3

)
and η = O

(
λ0

N2

)
, then with probability at

least 1− δ over the random initialization of w0, we have

•
∑n

j=1(yij − f(w0,xij))
2 = O

(
n
δ

)
∀i ∈ [M ]

•
∑n

j=1(yij − f(w̃i,xij))
2 ≤ (1− ηλ0/2)

KO
(
n
δ

)
∀i ∈ [M ]

• ∥w̃i,r −w0,r∥2 ≤
4
√
n(1−(1−ηλ0/4)

K)√
mλ0

√∑n
j=1(yij − f(w0,xij))2 = R0 ∀i ∈ [M ], r ∈ [m]

Note that (49) provides the above guarantees for a single machine setting. In order for the above result to hold simultaneously
for all i ∈ [M ], we set the failure probability δ′ = δ/M , leading m to have a polynomial dependence on N instead of n.

Lemma 3. For a given R, define the following event:

Aijr(R) = {∃w : ∥w −w0,r∥2 ≤ R, I
{
x⊤
ijw0,r ≥ 0

}
̸= I

{
x⊤
ijw ≥ 0

}
} (54)

We have Pr(Aijr(R)) ≤ 2R√
2πκ

.

Lemma 4. (Lemma 3.1 in (24)). If m = Ω
(

N2

λ2
0
log N

δ

)
, we have with probability 1 − δ, ∥Hw0

−H∞∥2 ≤
λ0

4 and

λmin(Hw0) ≥ 3λ0

4 .

The following three lemmas are our contribution and form the basis of our proof.

Lemma 5. If m = Ω
(

N6

λ4
0κ

2δ3

)
, with probability 1− δ, λmin(H̃) ≥ λ0/2 and λmax(H̃) ≤ N .
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Proof.

The (k, l)-th entry of H̃ is given by,

H̃kl =
1

m
x⊤
k′k′′xl′l′′

m∑
r=1

I
{
x⊤
k′k′′wk′,r ≥ 0

}
I
{
x⊤
l′l′′wl′,r ≥ 0

}
(55)

where k′ = ⌈k/n⌉, k′′ = k − k′ + 1, l′ = ⌈l/n⌉, l′′ = l − l′ + 1.

We have,

E
[
|H̃kl − (Hw(0))kl|

]
(56)

= E

[
1

m
x⊤
k′k′′xl′l′′

m∑
r=1

I
{
I
{
x⊤
k′k′′wk′,r ≥ 0

}
I
{
x⊤
l′l′′wl′,r ≥ 0

}
̸= I

{
x⊤
k′k′′w0,r ≥ 0

}
I
{
x⊤
l′l′′w0,r ≥ 0

}}]
(57)

≤ E

[
1

m

m∑
r=1

I
{
I
{
x⊤
k′k′′wk′,r ≥ 0

}
I
{
x⊤
l′l′′wl′,r ≥ 0

}
̸= I

{
x⊤
k′k′′w0,r ≥ 0

}
I
{
x⊤
l′l′′w0,r ≥ 0

}}]
(58)

≤ E

[
1

m

m∑
r=1

I
{
I
{
x⊤
k′k′′wk′,r ≥ 0

}
̸= I

{
x⊤
k′k′′w0,r ≥ 0

}}
+ I
{
I
{
x⊤
l′l′′wl′,r ≥ 0

}
̸= I

{
x⊤
l′l′′w0,r ≥ 0

}}]
(59)

≤ E

[
1

m

m∑
r=1

I {Ak′k′′r(R0)}+ I {Al′l′′r(R0)}

]
(60)

=
1

m

m∑
r=1

Pr(Ak′k′′r(R0)) + Pr(Al′l′′r(R0)) (61)

≤ 4R0√
2πκ

(62)

Equation (58) uses Cauchy-Schwartz and Assumption 2, Equation (59) follows from the definition of Aijr in Lemma 3,
Equation (62) uses the result in Lemma 3.

Thus we have,

E
[
∥H̃ −Hw(0)∥F

]
≤ E

∑
k,l

|H̃kl − (Hw(0))kl|

 ≤ 4N2R√
2π

(63)

By Markov’s inequality, with probability 1− δ, we have

∥H̃ −Hw(0)∥F ≤
4N2R0√
2πδκ

(64)

Thus, ∥∥∥H̃ −Hw(0)

∥∥∥
2
≤ ∥H̃ −Hw(0)∥F ≤

4N2R0√
2πδκ

(65)

This implies,

λmin(H̃) ≥ λmin(Hw(0))−
4N2R0√
2πδκ

≥ λ0

2
(66)

where the last line follows from definition of R0 in Lemma 2 and m = Ω
(

N6

λ4
0δ

3κ2

)
.
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We also have, ∥∥∥H̃∥∥∥
2
=
∥∥∥ÃÃ⊤

∥∥∥
2

(67)

=
∥∥∥Ã⊤Ã

∥∥∥
2

(68)

=

∥∥∥∥∥∥
M∑
i=1

n∑
j=1

ϕ(w̃i,xij)ϕ(w̃i,xij)
⊤

∥∥∥∥∥∥
2

(69)

≤
M∑
i=1

n∑
j=1

∥∥ϕ(w̃i,xij)ϕ(w̃i,xij)
⊤∥∥

2
(70)

≤ N max
i,j
∥ϕ(w̃i,xij)∥2 (71)

≤ N (72)
Equation (70) follows from the triangle inequality, for Equation (72) we use Equation (49) and Assumption 2.

Therefore λmax(H̃) =
∥∥∥H̃∥∥∥

2
≤ N

Lemma 6. (Theorem 3.1 and Lemma C.1 in (49)) If we set m = Ω
(

N6

λ4
0κ

2δ3

)
and η = O

(
λ0

N2

)
, then with probability at

least 1− δ over the random initialization of w0, we have

•
∥∥∥f̃(w(0))− ỹ

∥∥∥2
2
= O

(
Nn2

δλ2
0

)
•
∥∥∥f̃(w(t))− ỹ

∥∥∥2
2
≤ (1− ηSλ0/2n)

t
∥∥∥f̃(w(0))− ỹ

∥∥∥2
2

•
∥∥∥w∗

r −w
(0)
r

∥∥∥
2
≤ 4

√
N√

mλ0

∥∥∥f̃(w(0))− ỹ
∥∥∥
2
= R1

Proof.

First part.

We have,
(f̃(w(0),xij)− ỹij)

2 = (ϕ(w̃i,xij)
⊤w(0) − ϕ(w̃i,xij)

⊤w̃i)
2 (73)

=

(
1√
m

m∑
r=1

arI
{
x⊤
ijw̃i,r

}
x⊤
ij

(
M∑
l=1

w̃l,r/M − w̃i,r

))2

(74)

≤
m∑
r=1

(
arI
{
x⊤
ijw̃i,r

}
x⊤
ij

(
M∑
l=1

w̃l,r/M − w̃i,r

))2

(75)

≤
m∑
r=1

∥∥∥∥∥
M∑
l=1

w̃l,r/M − w̃i,r

∥∥∥∥∥
2

2

(76)

≤ 4mR2
0 (77)

= O
(

n2

λ2
0δ

)
(78)

where Equation (75) follows from Jensen’s inequality, Equation (76) uses Cauchy-Schwartz and Assumption 2, Equation (78)
follows from Lemma 2.

Thus,
∥∥∥f̃(w(0))− ỹ

∥∥∥2
2
= O

(
N
δ

)
≤ O

(
Nn2

λ2
0δ

)
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Second part.

The GD step that the central server performs for FedFisher can be written as,

w(t+1) = w(t) − ηS

M∑
i=1

Fi

(
w(t) − w̃i

)
(79)

= w(t) − η̃S

M∑
i=1

n∑
j=1

ϕ(w̃i,xij)ϕ(w̃i,xij)
⊤
(
w(t) − w̃i

)
(η̃S = ηS/n) (80)

= w(t) − η̃S

M∑
i=1

n∑
j=1

ϕ(w̃i,xij)
(
f̃(w(t),xij)− ỹij

)
(81)

= w(t) − η̃SÃ
⊤(f̃(w(t))− ỹ) (82)

Equation (81), Equation (82) follow from the definition of f̃(w,xij), ỹij , Ã in Appendix B.3.

We have,
f̃(w(t+1))− f̃(w(t)) = Ã(w(t+1) −w(t)) (83)

= −η̃SH̃(f̃(w(t))− ỹ) (84)

Therefore, ∥∥∥f̃(w(t+1))− ỹ
∥∥∥2
2
=
∥∥∥f̃(w(t+1))− f̃(w(t)) + f̃(w(t))− ỹ

∥∥∥2
2

(85)

=
∥∥∥f̃(w(t+1))− ỹ

∥∥∥2
2
− 2η̃S(f̃(w

(t))− ỹ)H̃(f̃(w(t))− ỹ)

+ η̃2S

∥∥∥H̃(f̃(w(t))− ỹ)
∥∥∥2
2

(86)

≤ (1− η̃Sλ0 + η̃2SN
2)
∥∥∥f̃(w(t))− ỹ

∥∥∥2
2

(87)

≤
(
1− ηSλ0

2n

)∥∥∥f̃(w(t))− ỹ
∥∥∥2
2

(88)

where Equation (87) follows from Lemma 5 and Equation (88) follows from using η̃S ≤ λ0

2N2

Third part.

We have Equation (81),

∥∥∥w(t+1)
r −w(t)

r

∥∥∥
2
=

∥∥∥∥∥∥ 1√
m
arη̃S

M∑
i=1

n∑
j=1

xijI
{
x⊤
ijw

∗
i,r ≥ 0

}
(ỹij − f̃(w(t),xij))

∥∥∥∥∥∥
2

(89)

≤ η̃S
√
N√

m

∥∥∥ỹ − f̃(w(t))
∥∥∥
2

(90)

where the last inequality follows from Cauchy-Schwartz and Assumption 2.

Therefore,
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r −w(0)

r

∥∥∥
2
≤

∞∑
t=0

∥∥∥w(t+1)
r −w

(t)
F,r

∥∥∥
2

(91)

≤ η̃S
√
N√

m

∞∑
t=0

∥∥∥ỹ − f̃(w(t))
∥∥∥
2

(92)

≤ η̃S
√
N√

m

∞∑
t=0

(
1− η̃Sλ0

4

)t ∥∥∥ỹ − f̃(w(0))
∥∥∥
2

(93)

=
4
√
N√

mλ0

∥∥∥ỹ − f̃(w(0))
∥∥∥
2

(94)

where Equation (93) follows from Equation (88).

Lemma 7. Let Sij = {r ∈ [m] : I
{
x⊤
ijw

∗
r ≥ 0

}
= I

{
x⊤
ijw̃i,r ≥ 0

}
}} and S⊥

ij = [m]− Sij . With probability 1− δ over

the initialization, we have
∑M

i=1

∑n
j=1 |S⊥

ij |2 = O
(

m2N2(R2
0+R2

1)
δ2

)
Proof.

We have,

E
[
|S⊥

ij |
]
=

m∑
i=1

Pr(I
{
x⊤
ijw

∗
r ≥ 0

}
̸= I

{
x⊤
ijw̃i,r ≥ 0

}
) (95)

≤ Pr
({

I
{
x⊤
ijw

∗
r ≥ 0

}
̸= I

{
x⊤
ijw0,r ≥ 0

}}
∪
{
I
{
x⊤
ijw̃i,r ≥ 0

}
̸= I

{
x⊤
ijw0,r ≥ 0

}})
(96)

≤ Pr(Aijr(R0 +R1)) + Pr(Aijr(R0)) (97)

≤ 4m(R0 +R1)√
2π

(98)

Equation (97) follows from union-bound and Lemma 3, Lemma 2, Lemma 6.

Thus, using Markov’s inequality, with probability at least 1− δ we have,

|S⊥
ij | = O

(
m(R0 +R1)

δ

)
(99)

Setting the failure probability of each |Sij | being large as δ/N , we have with probability 1− δ, for all i ∈ [M ] and j ∈ [n]
simultaneously,

|S⊥
ij | = O

(
mN(R0 +R1)

δ

)
(100)

Thus with probability 1− δ we have,
M∑
i=1

n∑
j=1

|Sij |2 ≤ O
(
m2N2(R2

0 +R2
1)

δ2

)
(101)

Proof of Theorem 1.

We first state the full theorem statement with the exact dependence of m on (N,λ−1
0 , δ−1, κ−1).

Theorem 2. Under Assumptions 2, 3, for m = Ω
(

N9

λ8
0κ

2δ4

)
, and i.i.d Gaussian initialization weights of w0 as w0,r ∼

N (0, κ), and initializing ar = {−1, 1} with probability 1/2 for all r ∈ [m], for step sizes η = O(λ0/N
2), ηS = O(λ0/N

2)
and for a given failure probability δ ∈ (0, 1), the following is true with probability 1− δ over the random initialization:

L(w∗) ≤ O
(
(1− ηλ0/2)

K N

δ

)
︸ ︷︷ ︸

local optimization error

+O
(
(2− (1− ηλ0/2)

K)
N9

λ8
0δ

4m

)
︸ ︷︷ ︸

Laplace approximation error

. (102)

Proof.

15



Towards a Theoretical and Practical Understanding of One-Shot Federated Learning with Fisher Information

Note that the conditions in all the preceding lemmas are satisfied by setting m = Ω
(

N9

λ8
0κ

2δ4

)
, η = O(λ0/N

2), ηS =

O(λ0/N
2) and hence we can now apply these lemma results for our proof.

From Lemma 6, we observe that

ỹij = f̃(w∗,xij) = ϕ(w̃i,xij)
⊤w∗

We have,

L(w∗) =
1

N

M∑
i=1

n∑
j=1

(f(w∗,xij)− yij)
2 (103)

=
1

N

M∑
i=1

n∑
j=1

(
(ϕ(w∗,xij)

⊤w∗ − ỹij + ỹij − yij
)2

(104)

≤ 2

N

M∑
i=1

n∑
j=1

(
ϕ(w∗,xij)

⊤w∗ − ỹij
)2

︸ ︷︷ ︸
T1

+
2

N

M∑
i=1

N∑
j=1

(ỹij − yij)
2

︸ ︷︷ ︸
T2

(105)

T2 can be bounded as O
(
(1− ηλ0/2)

K N
δ

)
using the result from Lemma 2.

Our goal is to now bound T1 as follows.

T1 =
2

N

M∑
i=1

n∑
j=1

(
ϕ(w∗,xij)

⊤w∗ − ỹij
)2

(106)

=
2

N

M∑
i=1

n∑
j=1

(
ϕ(w∗,xij)

⊤w∗ − ϕ(w̃i,xij)
⊤w∗)2 (107)

=
2

N

M∑
i=1

n∑
j=1

(
1√
m

m∑
r=1

arx
⊤
ijw

∗
r(I
{
x⊤
ijw

∗
r ≥ 0

}
− I
{
x⊤
ijw̃i,r ≥ 0

}
)

)2

(108)

=
2

N

M∑
i=1

n∑
j=1

 1√
m

∑
r∈S⊥

ij

arx
⊤
ijw

∗
r(I
{
x⊤
ijw

∗
r ≥ 0

}
− I
{
x⊤
ijw̃i,r ≥ 0

}
)

2

(109)

≤ 2

N

M∑
i=1

n∑
j=1

|S⊥
ij |
m

∑
r∈S⊥

ij

(
arx

⊤
ijw

∗
r

)2
(110)

≤ 2

N

M∑
i=1

n∑
j=1

|S⊥
ij |
m

∑
r∈S⊥

ij

(
x⊤
ijw

∗
r − x⊤

ijw̃i,r

)2
(111)

≤ 2

N

M∑
i=1

n∑
j=1

|S⊥
ij |2 maxr∈[m] ∥w∗

r − w̃i,r∥22
m

(112)

≤ O
(
m2N(R4

0 +R4
1)

δ2m

)
(113)

= O
(

N9

λ8
0δ

4m
(2− (1− ηλ0/2)

K)

)
(114)

Equation (110) uses Jensen’s inequality and definition of Sij in Lemma 7, Equation (111) uses the observation that
since r ∈ S⊥

ij we have sign(x⊤
ijwF,r) ̸= sign(x⊤

ijw
∗
i,r) which implies |x⊤

ijwF,r| ≤ |x⊤
ijwF,r − x⊤

ijw
∗
i,r|, Equa-

tion (112) uses Cauchy Schwartz, Equation (113) uses Lemma 7, Lemma 6, Lemma 2, Equation (114) substitutes
R0 = O

(
n√

mδλ0
(1− (1− ηλ0/4)

K)
)

and R1 = O
(

N2
√
mδλ2

0

)
.

16



Towards a Theoretical and Practical Understanding of One-Shot Federated Learning with Fisher Information

Thus we have,

L(w∗) ≤ O
(
(1− ηλ0/2)

K N

δ

)
+O

(
(2− (1− ηλ0/2)

K)
N9

λ8
0δ

4m

)
. (115)

This completes the proof.

C. Computation and Communication Efficiency of FedFisher(Diag) and
FedFisher(K-FAC)

C.1. Computation Efficiency

To compute their diagonal Fisher or K-FAC, clients need to perform an additional forward-backward pass over the data, i.e.,
an additional epoch of training, plus some small overhead cost. This is a reasonable cost for FL setups since the bulk of the
computation cost goes into computing w̃i, which needs multiple local epochs. We also experimentally verify this in Table 3,
where we show that FedFisher(Diag) and FedFisher(K-FAC) add less than 12.5% of the total computational cost
of FedAvg at clients for our FL setups.

Table 3: Time spent (in s) for client side computation for FedFisher variants vs FedAvg

Dataset/Model FedAvg FedFisher FedFisher
(Diag) (K-FAC)

MNIST/MLP 18.7 19.7(+5.3%) 19.9(+6.4%)

CIFAR10/CNN 36.1 40.5(+12.1%) 38.5(+6.6%)

CINIC10/ResNet18 314.5 353.8(+12.4%) 344.3(+9.4%)

C.2. Communication Efficiency

We assume that the number of bits used to represent a scalar is 32 by default. For FedAvg, clients just need to transfer
w̃i, making the total communication cost 32d bits. Our goal in this section is to show that we can introduce compression
techniques in FedFisher(Diag) and FedFisher(K-FAC) to match the communication cost of FedAvg while
having similar accuracy as the uncompressed version of these algorithms. To do so, we use standard uniform quantization
and SVD compression as described below.

Uniform Quantization. Let sq ∈ {1, 2, . . . , 16} be the factor by which we want to compress our information. We define
number of quantization levels as lq = 2⌊32/sq⌋−1 − 1. Now given a vector x ∈ Rd, we define each element of the quantized
x as follows,

[Q(x, sq)]i = ∥x∥∞sign(xi)ζi(x, sq) (116)

where ∥x∥∞ = maxi∈[d] |xi| and ζi(x, sq) =
⌈
lq

|xi|
∥x∥∞

⌉
/lq. Now to communicate ζi(x, sq) we only need ⌊32/sq⌋ − 1

bits, to communicate sign(xi) we need 1 bit and to communicate ∥x∥∞ we need 32 bits. Thus the communication cost of
Q(x, sq) becomes d(⌊32/sq⌋ − 1) + d+ 32 = d(⌊32/sq⌋) + 32 bits.

Singular Value Decomposition Compression. Let A = R(m×m) matrix. The SVD decomposition of A can be written
as,

A = UΣV ⊤ (117)

where U = R(m×m) is the matrix of left singular vectors, Σ ∈ R(m×m) is a diagonal matrix with each element correspond-
ing to a singular value and V = R(m×m) is the matrix of right of singular vectors. The singular values are assumed to be
sorted by magnitude, i.e., |Σ1,1| ≥ |Σ2,2| . . . , |Σm,m|. We see that the total cost for communicating A will 32m2 bits. To
reduce this cost, a natural idea is to send only a limited number of singular values and singular vectors obtained by the
SVD decomposition of A. Specifically let sv be the factor by which we want to compress the information in A. We define
lv = ⌊m/2sv⌋. Then the SVD decompression of A can be defined as,

V (A, sv) = UlvΣlvV
⊤
lv (118)

where Ulv ∈ R(m×lv) corresponds to first lv columns of U , Σlv ∈ R(lv×lv) is a diagonal matrix corresponding to the
first lv elements of Σ and V ∈ R(m×lv) corresponds to the first lv columns of V . The communication cost of V (A, sv)
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becomes 32(mlv + lv +mlv) ≈ 64mlv ≤ 32m2/sv bits, thereby achieving close to sv compression.

Compression in FedFisher(Diag). For FedFisher(Diag) , clients need to communicate w̃i and F̃i where the
number of parameters in F̃i is exactly d. To ensure comparable communication to FedAvg, we quantize the weights
corresponding to each layer of a neural network in w̃i and F̃i by a factor of 2, i.e, sq = 2. This ensures that the
communication of FedFisher(Diag) is 32(d + 2L) bits where L is the number of layers in the neural network. We
note that there is a small overhead of 64L bits; however is negligible since d≫ 2L for our neural networks. Table 4 shows
that the compression affects the accuracy of FedFisher(Diag) by less than 1% for the CIFAR-10 and MLP datasets.

Table 4: Test accuracy performance of FedFisher(Diag) and its compressed version on CIFAR10 and FashionMNIST with 5 clients
and α = 0.5

Dataset FedAvg FedFisher(Diag) FedFisher(Diag)(Compressed)
FashionMNST 74.30 78.53 77.59

CIFAR10 44.12 45.32 44.67

Compression in FedFisher(K-FAC). Let {m0,m1,m2, . . . ,mL} be the dimensions of each layer of a L layer neural
network with m0 corresponding to the dimension of the input. For FedFisher(K-FAC), F̃i can be represented as
{(A1 ⊗B1), (A2 ⊗B2), . . . , (AL ⊗BL)} where Al ∈ R(ml−1×ml−1) and Bl ∈ R(ml×ml) represents the Kronecker
factors of the l-th layer. Thus, the communication cost of F̃i in this case is

∑L
l=1 32(m

2
l−1 +m2

l ) bits.

Our goal is to ensure that the communication cost of compressed F̃i is less than 16d bits (we compress w̃i to 16d bits using
quantization, similar to FedFisher(Diag)). To do so, we use a mix of quantization and SVD compression. Specifically
each Al and Bl is first compressed to the SVD decomposition corresponding to maintaining the top lv vectors. This
ensures that the communication cost of (Al,Bl) is 32(2ml−1lv + 2mllv + 2lv). This SVD decomposition is then further
compressed using sq quantization compression to ensure that the communication cost is (32/sq)(2ml−1lv + 2mllv + 2lv).
We set sq and lv such that

∑L
l=1(32/sq)(2ml−1lv +2mllv +2lv) ≤ 16d. The corresponding sv is then defined as ⌈m/2lv⌉.

Table 5 and Table 6 summarizes the results obtained by different levels of sq and sv for the FashionMNIST and CIFAR
datasets respectively. We see that keeping sq = 4 and setting sv accordingly usually gives the best performance and hence
we use this setting for all our experiments.

Table 5: Test accuracy performance of FedFisher(K-FAC) with different levels of compression on FashionMNIST with 5 clients and
α = 0.5

Algorithm sq sv Accuracy
FedAvg × × 77.81

FedFisher(K-FAC) × × 84.93
FedFisher(K-FAC) 2 2.5 82.70
FedFisher(K-FAC) 4 1.25 83.30
FedFisher(K-FAC) 8 1 79.71

Table 6: Test accuracy performance of FedFisher(K-FAC) with different levels of compression on CIFAR10 with 5 clients and
α = 0.5

Algorithm sq sv Accuracy
FedAvg × × 48.93

FedFisher(K-FAC) × × 63.97
FedFisher(K-FAC) 2 8.1 60.51
FedFisher(K-FAC) 4 4.1 62.67
FedFisher(K-FAC) 8 2.1 48.57
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D. Additional Experimental Details
The local optimization procedure is the same across all algorithms. In particular, clients perform T epochs of local training
using the SGD optimizer with local learning rate η = 0.01, batch size 64 and momentum factor 0.9. We set T = 100 for
the experiments on CINIC-10 and T = 30 for the others. To compute the Fisher diagonal and Fisher K-FAC we use the
nngeometry package (50). For hyperparameter tuning we assume that the server has access to a dataset of 500 samples,
sampled uniformly from the original training set. We describe the hyperparameters tuned for each of the algorithms below.

FedFisher(Diag) and FedFisher(K-FAC). While Algorithm 1 performs the server optimization with GD, this
can be replaced with any other suitable GD optimizer. We choose to use the Adam optimizer here. We set ηS = 0.01, β1 =
0.9, β2 = 0.99 and ϵ = 0.01 for the Adam optimizer and number of steps T = 2000 for all our experiments. We measure
the validation performance after every 100 steps and use the model which achieves the best validation performance as the
final FedFisher model.

PFNM. For PFNM we tune the σ, σ0 and γ parameters as done in the official implementation available at https:
//github.com/IBM/probabilistic-federated-neural-matching. The grid for σ is {0.1, 0.5, 1.0}, grid
for σ0 is {1.0, 10.0} and grid for γ is {0.001, 1, 50}.

DENSE. For DENSE we use the default settings as described in Section 3.1.4 of (9). In particular we set TG = 30, λ1 =
1, λ2 = 0.5 and train the server model with SGD optimizer with learning rate ηS = 0.01 and momentum factor 0.9. To
ensure computational fairness among baselines we limit the number of distillation epochs T = 20. We use the validation
data to determine the model which achieves the best validation performance during the server training and use this as the
final model.

OTFusion. The official code for OTFusion available at https://github.com/sidak/otfusion contains
more than 15 hyperparameters, making it hard to tune each of these parameters. Among these we found that the correction
hyperparameter and type of ground metric normalization affect performance most and hence we focus on tuning these
hyperparameters for our experiments, while using the default settings for the other hyperparameters.
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