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Abstract

With the increasing acquisition of datasets over time, we now have access to
precise and varied descriptions of the world, capturing all sorts of phenomena.
These datasets can be seen as empirical observations of unknown causal generative
processes, or Structural Causal Models (SCMs). Recovering these causal generative
processes from observations poses formidable challenges, and often require to
learn a specific generative model for each dataset. In this work, we propose
to learn a single model capable of inferring in a zero-shot manner the causal
generative processes of datasets. Rather than learning a specific SCM for each
dataset, we enable FiP, the architecture proposed in Scetbon et al. [2024], to infer
the generative SCMs conditionally on their empirical representations, termed as
cond-Fip. We show that cond-FiP is capable of predicting in zero-shot the true
generative SCMs, and as a by-product, of (i) generating new dataset samples, and
(ii) inferring intervened ones. Our experiments demonstrate that cond-FiP achieves
performances on par with SoTA methods trained specifically for each dataset on
both in and out-of-distribution problems.

1 Introduction

Learning the causal generative process from observations is a fundamental problem in several
scientific domains [Sachs et al., 2005, Foster et al., 2011, Xie et al., 2012], as it offers a comprehensive
understanding of the data generation process, and allows for simulating the effect of controlled
experiments/interventions. With a learned model of the generative process, one could even accelerate
scientific discoveries by reliably predicting the effects of unseen interventions, eliminating the need
for laboratory experiments [Ke et al., 2023, Zhang et al., 2024].

A popular approach for modeling causal processes is the structural causal model (SCM) frame-
work [Peters et al., 2017] where causal mechanisms are modeled via structured functional relation-
ships, and causal structures are given by directed acyclic graphs (DAGs). Since in several applications
we only have access to observational data, the task of recovering the SCM from observations is an
important problem in causality [Pearl, 2009]. Solving this inverse problem is challenging as both the
graph and the functional relationships are unknown a priori. Several works have focused on the graph
recovery problem by approximating the discrete search space of DAGs [Chickering, 2002, Peters
et al., 2014], or using continuous optimization objectives [Zheng et al., 2018, Lachapelle et al., 2019].
However, all these works focus only on the structure learning aspect and do not explicitly evaluate
the learning of the functional mechanisms. Another line of work has studied the recovery of the
functional relationships, often under structural assumptions like known causal graphs or topological
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Figure 1: Sketch of the approach proposed in this work. Given a dataset of observations DX and
a causal graph G obtained from an unkown SCM S(PN ,G,F ), the encoder produces a dataset
embedding µ(DX ,G), which serves as a condition to instantiate Cond-FiP. Then for any point
z ∈ Rd, T (z, DX ,G) aims at replicating the functional mechanism F (z) of the generative SCM.

orders, using maximum likelihood estimation (MLE) independently per node [Blöbaum et al., 2022],
autoregressive flows [Khemakhem et al., 2021, Geffner et al., 2022] to model causal generative
processes, or transformer-based architectures to directly model SCMs [Scetbon et al., 2024]. Despite
these advances in causal learning, a major limitation remains: each new dataset of observations
requires training a specific model, which prevents sharing of causal knowledge across datasets.

Amortized learning [Amos, 2022] allows knowledge sharing across datasets through a supervised
training objective. Rather than optimizing the parameters of a specific model for each dataset,
amortized methods aim at training a single model that learn to predict the solutions to various
instances of the same optimization problem by exploiting their shared structure. Once trained, such
methods enables zero-shot inference (without updating parameters) to new problems at test time.
Recent works have proposed techniques for amortized causal structure learning [Lorch et al., 2022,
Ke et al., 2022, Scetbon et al., 2024], ATE estimation [Zhang et al., 2023], and model selection for
causal discovery [Gupta et al., 2023]. However, none of these works have yet amortized the learning
of the functional relationships to directly infer the SCMs.

Contributions. We introduce a conditional version of FiP [Scetbon et al., 2024], termed cond-FiP,
that zero-shot predicts the functional mechanisms of SCMs associated with datasets given their
causal graphs. As a by-product, cond-FiP can perform zero-shot generation of new samples and
simulation of interventions. To achieve this, we enable FiP to be conditioned on dataset embeddings,
and propose to amortize its training by minimizing the reconstruction errors of observed data on
synthetically generated problems. To obtain the dataset embeddings, we separately train an encoder in
an amortized manner to infer the noise associated to observations and use its latent representations in
cond-FiP. We show empirically that our method achieves similar performances as SoTA approaches
trained specifically for each dataset on both in and out-of-distribution problems. To the best of our
knowledge, this is the first time that SCMs are inferred in a zero-shot manner from observations,
paving the way for a paradigmatic shift towards the assimilation of causal knowledge across datasets.

2 Background on Causal Learning

Structural Causal Models. An SCM defines the causal generative process of a set of d endogenous
(causal) random variables V = {X1, · · · , Xd}, where each causal variable Xi is defined as a function
of a subset of other causal variables (V \ {Xi}) and an exogenous noise variable Ni:

Xi = Fi(PA(Xi), Ni) s.t. PA(Xi) ⊂ V , Xi ̸∈ PA(Xi) . (1)
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Hence, an SCM describes the data-generation process of X := [X1, · · · , Xd] ∼ PX from the noise
variables N := [N1, · · · , Nd] ∼ PN via the function F := [F1, · · · , Fd], and a graph G ∈ {0, 1}d×d

indicating the parents of each variable Xi, that is [G]i,j := 1 if Xj ∈ PA(Xi). G is assumed to be a
directed acyclic graph (DAG), and we assume assume SCMs to be Markovian (independent noise
variables) and denote them as S(PN ,G,F ). In addition, we only consider additive noise models
(ANM), which are SCMs of the form Xi = Fi(PA(Xi)) +Ni.

DAG-Attention Mechanism. In FiP [Scetbon et al., 2024] the authors propose to leverage the
transformer architecture to learn SCMs from observations. By reparameterizing an SCM according to
a topological ordering induced by its graph, the authors propose to formulate an SCM as a fixed-point
problem on X of the form X = H(X,N) where H admits a simple triangular structure:

[JacxH(x,n)]i,j = 0, if j ≥ i, and [JacnH(x,n)]i,j = 0, if i ̸= j.

Motivated by this fixed-point reformulation, FiP considers a transformed-based architecture to model
the functional relationships of SCMs and propose a new attention mechanism to represent DAGs in a
differentiable manner. Recall that the standard attention matrix is defined as:

AM (Q,K) =
exp((QKT −M)/

√
dh)

exp((QKT −M)/
√
dh) 1d

(2)

where Q,K ∈ Rd×dh denote the keys and queries for a single attention head, and M ∈ {0,+∞}d×d

is a (potential) mask. When M is chosen to be a triangular mask, the attention mechanism (2) enables
to parameterize the effects of previous nodes on the current ones. However, the normalization inherent
to the softmax operator prevents effective modeling of root nodes, which are not influenced by any
other node in the graph. To alleviate this issue, Scetbon et al. [2024] propose to considering instead:

DAM (Q,K) =
exp((QKT −M)/

√
dh)

V
(
exp((QKT −M)/

√
dh) 1d

) (3)

where Vi(v) = vi if vi ≥ 1, else Vi(v) = 1 for any v ∈ Rd. While softmax forces the weights along
each row of the attention matrix to sum to one, the attention mechanism described in (3) allows the
rows to sum in [0, 1], thus enabling to modelize root nodes in attention.

3 Conditional FiP

Our approach is composed of two key components: (1) a dataset encoder that generates dataset
embeddings based on observations and causal structures, and (2) a conditional variant of FiP, designed
to zero-shot infer the generative SCMs of datasets when conditioned on their dataset embeddings
produced by the encoder. We first present our dataset encoder and then introduce cond-FiP.

3.1 Dataset Encoder

To obtain dataset embeddings, we propose to train an encoder that predicts in a zero-shot manner
the noise samples from their associated observations given the causal structures. We consider
the amortized setting at training time, where we have access to empirical representations of K

SCMs
(
S(P(k)

N ,G(k),F (k))
)K
k=1

that have been sampled independently according to a distribution

S(P(k)
N ,G(k),F (k)) ∼ PS . These empirical representations, denoted (D

(k)
X ,G(k))Kk=1 respectively,

contain each n observations D
(k)
X := [X

(k)
1 , . . . ,X

(k)
n ]T ∈ Rn×d, and the causal graph G(k) ∈

{0, 1}d×d. At training time, we also require to have access to the associated noise samples D(k)
N :=

[N
(k)
1 , . . . ,N

(k)
n ]T ∈ Rn×d, which play the role of the target variable in our supervised task. For

the sake of clarity, we will omit the dependence on k in our notation and assume access to the full
distribution of SCMs PS . Our goal here is to learn a model that given a dataset of observations DX

and the causal graph associated G, recovers the true noise DN from which the observations have
been generated. This will provide us with dataset embeddings as well, detailed below.

Encoder Architecture. Following [Lorch et al., 2021], we propose to encode datasets with a
transformer-based architecture that alternatively attends on both the sample and node dimensions
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of the input. More specifically, after having embedded the dataset DX into a higher dimensional
space using a linear operation L(DX) ∈ Rn×d×dh where dh is the hidden dimension, the encoder
E alternates the application of transformer blocks, consisting of a self-attention block followed by
an MLP block [Vaswani et al., 2017], where the attention mechanism is applied either across the
samples n or the nodes d. When attending over samples, the encoder uses standard self-attention (2)
without masking (M = {0}n×n), however, when the model attends over the nodes, we leverage
the knowledge of the causal graph to mask the undesirable relationships between the nodes, i.e., we
set M = +∞ × (1 − G), with the convention that 0 × (+∞) = 0, in the standard attention (2).
Finally, the obtained embeddings E(L(DX),G) ∈ Rn×d×dh are transormed to the original space
via prediction network H : Rn×d×dh → Rn×d defined as 2-hidden layers MLP.

Training Procedure. To infer the noise samples in a zero-shot manner, we propose to minimize
the mean squared error (MSE) of predicting the target noises DN from the input (DX ,G) over the
distribution of SCMs PS available during training:

ES∼PS ||DN −H ◦ E(L(DX),G)||22 .

Further, as we restrict ourselves to the case of ANMs, we can equivalently reformulate our training
objective in order to predict the functional relationships rather than the noise samples. Recall
that for an ANM S(PN ,G,F ), we have F (X) = X − N . Hence, with the new targets as
F (DX) := DX − DN , we can instead to train our encoder to predict the evaluations of the
functional relationships over the SCM distribution by minimizing:

ES∼PS ||F (DX)−H ◦ E(L(DX),G)||22 .

Inference. Given a new dataset DX and its causal graph G, the proposed encoder is able to both
provide an embedding E(L(DX),G) ∈ Rn×d×dh , and to evaluate the functional mechanisms
associated to the current observations F̂ (DX) := H ◦ E(L(DX),G). However, this model alone is
insufficient for generating new data, which is addressed by the conditional decoder described ahead.

3.2 Cond-FiP: Conditional Fixed-Point Decoder

In this section, we present our proposed approach to infer the functional mechanisms of SCMs in
zero-shot via amortized training using synthetically generated datasets. To do so, we propose to
extend the formulation of FiP introduced in Scetbon et al. [2024] by enabling it to predict functions,
and use the dataset embeddings E(L(DX),G) obtained by our trained encoder as conditions to
infer the correct functional mechanisms of the associated SCMs. See Figure 1 for a sketch of
Cond-FiP. Analogous to the encoder training setup, we assume access to a distribution of SCMs
S(PN ,G,F ) ∼ PS at training time, from which we can extract empirical representations of the form
(DX ,G) containing the observations and the associated causal graphs respectively. Here, we aim at
learning a single model T that can infer in zero-shot the functional mechanisms of an SCM given
its empirical representation. More formally, we aim at training T such that for given any dataset
DX and its associated causal graph G obtained from an SCM S(PN ,G,F ) ∼ PS , the conditional
function z ∈ Rd → T (z, DX ,G) ∈ Rd induced by the model approximates the true functional
relationship F : z ∈ Rd → F (z) ∈ Rd. We achieve this by enabling the FiP to be conditioned on
dataset embeddings provided by our dataset encoder, described ahead.

Decoder Architecture. The design of our decoder is based on the FiP architecture for fixed-point
SCM learning, with two major differences enabling conditional predictions: (1) we use the dataset
embeddings obtained from our encoder as a high dimensional codebook to embed the nodes, and (2)
we leverage adaptive layer norm operators [Peebles and Xie, 2023] in the transformer blocks of FiP to
enable conditional attention mechanisms. The key change of our decoder compared to the original FiP
is in the embedding of the input. In FiP, they proposed to embed a data point z := [z1, . . . , zd] ∈ Rd

into a high dimensional space using a learnable codebook C := [C1, . . . , Cd]
T ∈ Rd×dh and

positional embedding P := [P1, . . . , Pd]
T ∈ Rd×dh , from which they define:

zemb := [z1 ∗ C1, . . . , zd ∗ Cd]
T + P ∈ Rd×dh .

By doing so, FiP ensures that the embedded samples admit the same causal structure as the original
samples. However, this embedding layer is only adapted if the samples considered are all drawn
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from the same observational distribution, as the representation of the nodes, that is given by the
codebook C, is fixed. In order to generalize their embedding strategy to the case where multiple
SCMs are considered, we consider conditional codebooks and positional embeddings adapted for
each dataset. More formally, given a dataset DX and a causal graph G, we propose to define the
conditional codebook and positional embedding associated as

C(DX ,G) := µ(DX ,G)WC , and P (DX ,G) := µ(DX ,G)WP ,

where µ(DX ,G) := MaxPool(E(L(DX),G)) ∈ Rd×dh is obtained by max-pooling w.r.t the sample
dimension the dataset embedding E(L(DX),G) ∈ Rn×d×dh produced by our trained encoder, and
WC ,WP ∈ Rdh×dh are learnable parameters. Then we propose to embed any point z ∈ Rd

conditionally on (DX ,G) by considering:

zemb := [z1 ∗ C1(DX ,G), . . . , zd ∗ Cd(DX ,G)]T + P (DX ,G) ∈ Rd×dh .

Once an input z ∈ Rd has been embedded into a higher dimensional space zemb ∈ Rd×dh , FiP
models SCMs by simulating the reconstruction of the data from noise. Starting from n0 ∈ Rd×dh a
learnable parameter, they propose to update the current noise L ≥ 1 times by computing:

nℓ+1 = h(DAM (nℓ, zemb)zemb + nℓ)

where h refers to the MLP block, and for clarity, we omit both the layer’s dependence on its
parameters and the inclusion of layer normalization in the notation. Note that FiP considers the
DAG-Attention (3) mechanism in order to modelize correctly the root nodes of the SCM. To obtain
a conditional formulation of their computational scheme, we propose first to replace the starting
noise n0 by a conditional one w.r.t. (DX ,G) and defined as n0 := µ(DX ,G)Wn0 ∈ Rd×dh , where
Wn0

∈ Rdh×dh is a learnable parameter. To project back the latent representation of z obtained
from previous stages, that is nL ∈ Rd×dh , we propose to simply use a linear operation to get
ẑ = nLWout ∈ Rd, where Wout ∈ Rdh is learnable.

Training Procedure. Recall that our goal is to infer in zero-shot the functional mechanisms of SCMs
given their empirical representations. Therefore, to train our model T , we propose to minimize the
reconstruction error of the true functional mechanisms estimated by our model over the distribution
of SCMs PS . More precisely, for any SCM S(PN ,G,F ) ∼ PS and its empirical representation
(DX ,G), we aim at minimizing

Ez∼PX
∥T (z, DX ,G)− F (z)∥22 (4)

where z ∼ PX is chosen independent of the random dataset DX . Therefore, when integrating over
the distribution of SCMs, we obtain the following: ES∼PSEz∼PX

∥T (z, DX ,G)− F (z)∥22.

To compute (4), we propose to sample n independent samples X ′
1, . . . ,X

′
n from PX , leading to a

new dataset DX′ independent of DX , from which we obtain the following optimization problem:

ES∼PS∥T (DX′ , DX ,G)− F (DX′)∥22 .

Therefore our training objective aims at learning T such that for any given empirical representation
(DX ,G) of an unknown SCM S(PN ,G,F ) ∼ PS , the conditional function induced by our model,
that is z → T (z, DX ,G), is close to the true functional mechanism F in the MSE sense. Appendix B
provides more details on how to use cond-FiP for causal generation and inference tasks.

4 Experiments

4.1 Experimental Setup

Data Generation Process. We use the synthetic data generation procedure proposed by Lorch et al.
[2022] to generate SCMs in our empirical study, as it offers a wide variety of SCMs, making it
ideal for amortized training. We have the option to sample graphs from various schemes and noise
variables from diverse distributions. Further, we can control the complexity of causal relationships:
either we set them to be linear (LIN) functions randomly sampled, or use random fourier features
(RFF) for generating random non-linear causal relationships. We construct two distribution of SCMs
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.03 (0.0) 0.13 (0.02) 0.04 (0.01) 0.11 (0.01)
DECI 10 0.09 (0.01) 0.23 (0.03) 0.12 (0.01) 0.23 (0.03)
FiP 10 0.04 (0.0) 0.09 (0.01) 0.06 (0.01) 0.08 (0.01)
Cond-FiP 10 0.06 (0.01) 0.1 (0.01) 0.07 (0.01) 0.1 (0.01)

DoWhy 20 0.03 (0.01) 0.15 (0.02) 0.03 (0.0) 0.23 (0.01)
DECI 20 0.10 (0.02) 0.21 (0.03) 0.08 (0.02) 0.23 (0.02)
FiP 20 0.04 (0.0) 0.12 (0.02) 0.05 (0.0) 0.15 (0.02)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.07 (0.0) 0.12 (0.0)

DoWhy 50 0.03 (0.0) 0.18 (0.03) 0.03 (0.0) 0.29 (0.03)
DECI 50 0.09 (0.01) 0.24 (0.02) 0.07 (0.01) 0.29 (0.02)
FiP 50 0.04 (0.0) 0.14 (0.03) 0.04 (0.0) 0.23 (0.04)
Cond-FiP 50 0.06 (0.01) 0.10 (0.01) 0.07 (0.01) 0.14 (0.01)

DoWhy 100 0.03 (0.0) 0.2 (0.03) 0.03 (0.0) 0.31 (0.02)
DECI 100 0.08 (0.02) 0.26 (0.03) 0.07 (0.01) 0.30 (0.02)
FiP 100 0.04 (0.0) 0.16 (0.03) 0.04 (0.0) 0.24 (0.02)
Cond-FiP 100 0.05 (0.0) 0.1 (0.01) 0.07 (0.01) 0.16 (0.01)

Table 1: Results for Noise Prediction. Each cell reports the mean (standard error) RMSE over the
multiple test datasets for each scenario. Shaded rows denote the case where the graph size is larger
than the train graph sizes (d = 20) for Cond-FiP.

PIN, and POUT, which vary based on the choice for sampling causal graphs, noise variables, and
causal relationships. Please refer to Appendix C.1 for more details.

Training Datasets. We randomly sample SCMs from the PIN distribution, and we restrict the total
nodes of each SCM to be d = 20 nodes. From each of these SCMs, we extract the causal graph G
and further generate ntrain = 400 observations to obtain DX . This procedure is used for generating
the training datasets for both amortized training of the dataset encoder and Cond-FiP.

Test Datasets. We evaluate the model for both in-distribution and out-of-distribution generalization
by sampling datasets from PIN and POUT respectively. Our test datasets are categorized as follows:
LIN IN and RFF IN where the SCM are sampled from PIN with linear and non-linear functional
relationships respectively. Similarly, we define LIN OUT and RFF OUT where the SCMs are
sampled from POUT instead. For each category, we vary total nodes d ∈ [10, 20, 50, 100] and sample
for each dimension d either 6 or 9 SCMs, depending on the number of possible schemes for sampling
the causal graphs, from which we generate ntest = 800 observational samples. Hence, we have a total
of 120 test datasets, allowing for a comprehensive evaluation of methods.

4.2 Benchmark of Cond-FiP

We compare Cond-FiP against non-amortized baselines FiP [Scetbon et al., 2024], DECI [Geffner
et al., 2022], and DoWhy [Blöbaum et al., 2022] that are trained from scratch on each test dataset. For
a fair comparison, we use ntrain = 400 samples to train baselines, and evaluate the performance on
the remaining 400 test samples. Also, we provide the true graph G to all the baselines for consistency.
Finally, we use 400 sample to obtain the dataset embedding, and evaluate Cond-FiP on the remaining
ones. Please refer to Appendix C.2 for further implementation details.

We evaluate the performance of all the methods on the following three tasks.

• Noise Prediction: given the observations DX and the true graph G, infer the noise variables
D̂N and compute the root-mean-square error (RMSE) (Appendix C.3) with true noise DN .

• Sample Generation: given the noise samples DN and the true graph G, generate the causal
variables D̂X and compute RMSE with the true causal variables DX .

• Interventional Generation: Given the noise samples DN and true graph G, generate the
intervened samples and compute RMSE with the true intervened samples.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.05 (0.0) 0.18 (0.03) 0.06 (0.01) 0.12 (0.02)
DECI 10 0.15 (0.02) 0.33 (0.04) 0.16 (0.02) 0.27 (0.03)
FiP 10 0.07 (0.0) 0.13 (0.02) 0.08 (0.01) 0.11 (0.02)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.05) 0.05 (0.0) 0.39 (0.04)
DECI 20 0.16 (0.02) 0.39 (0.05) 0.13 (0.02) 0.44 (0.04)
FiP 20 0.08 (0.01) 0.23 (0.05) 0.08 (0.01) 0.27 (0.04)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.30 (0.03)

DoWhy 50 0.08 (0.01) 0.35 (0.09) 0.06 (0.01) 0.54 (0.06)
DECI 50 0.15 (0.01) 0.46 (0.06) 0.13 (0.02) 0.67 (0.06)
FiP 50 0.09 (0.01) 0.26 (0.05) 0.08 (0.01) 0.48 (0.06)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

DoWhy 100 0.06 (0.0) 0.33 (0.07) 0.06 (0.01) 0.63 (0.07)
DECI 100 0.14 (0.02) 0.50 (0.09) 0.14 (0.02) 0.71 (0.08)
FiP 100 0.08 (0.01) 0.3 (0.06) 0.09 (0.01) 0.55 (0.08)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 2: Results for Sample Generation. Each cell reports the mean (standard error) RMSE over the
multiple test datasets for each scenario. Shaded rows denote the case where the graph size is larger
than the train graph sizes (d = 20) for Cond-FiP.

Results on Noise Predictions. Table 1 presents the results for the case of inferring noise from
observations. Across all the different in-distribution and out-of-distribution scenarios, Cond-FiP is
competitive with the baselines that were trained from scratch at test time. Further, Cond-FiP is able to
generalize to larger graphs (d = 50, d = 100) despite being trained for only graphs of size d = 20.

Results on Generation. Table 2 presents results for generating observational data, and shows that
Cond-FiP is competitive with the baselines across all the scenarios. Similar to the case of noise
prediction, Cond-FiP can generalize to larger graphs at test time! Further, Cond-FiP can also simulate
interventional data while being robust to distribution shifts and graph sizes (Table 3). This is especially
interesting as we never explicitly trained Cond-FiP for interventional tasks. This provide further
evidence towards Cond-FiP capturing the true functional mechanisms.

We also obtain similar findings with the CSuite benchmark (Figure 2), which is a different simulator
than what we used for training Cond-FiP. We also add a real-world experiment in Appendix E to
benchmark Cond-Fip. Further, Appendix F provides results for ablations of the decoder of Cond-FiP,
and Appendix G provides results on Cond-FiP’s ability to generalize to larger sample size.

5 Conclusion.

In this work, we demonstrate that a single model can be trained to infer Structural Causal Models
(SCMs) in a zero-shot manner through amortized training. Our proposed method, Cond-FiP, not
only generalizes effectively to novel SCMs at test time but also remains robust across varying SCM
distributions. To our knowledge, this is the first approach to establish the feasibility of learning causal
generative models in a foundational manner. Future work will focus on scaling to larger problem
instances and applying the method to real-world scenarios.
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A Related Works

Amortized Causal Learning. Amortized methods have been explored in causality research in
order to learn general algorithms that can infer in a zero-shot manner causal knowledge from
observations. [Zhang et al., 2023] proposed to amortize the learning of a causal inference method
to estimate average treatment effect (ATE), [Gupta et al., 2023] used amortized learning to perform
model selection for causal discovery, and [Lorch et al., 2022, Ke et al., 2022, Wu et al., 2024, Scetbon
et al., 2024] proposed to infer causal structures, such as causal graphs or topological orders, from
observations using amortized learning. All these methods rely on the availability of synthetic datasets
generated during training, enabling their learning using supervised objectives to predict the causal
knowledge of interest. In this work, we extend this line of works, and propose to infer in a zero-shot
manner the functional relationships of SCMs from observations and their associated causal structures.
To achieve this, we propose to amortize the learning of causal embeddings of synthetically generated
datasets, which then served as conditions to train a generalized version of FiP [Scetbon et al., 2024]
that infers the generative SCMs in zero-shot.

Autoregressive Causal Learning. While a vast majority of the literature on causal discovery
concerns structure learning, recent works on causal autoregressive flows [Khemakhem et al., 2021,
Javaloy et al., 2023] focus on state-of-the-art generative modeling techniques for learning the causal
generative processes induced by SCMs. Khemakhem et al. [2021] proved a novel connection between
SCMs and autoregressive flows, as the mapping from noise variables to observable variables in SCMs
is a triangular map given the topological order of the causal graph. While their work restricted the
functional relationships to additive and affine flows, this was extended by Javaloy et al. [2023] to
more flexible triangular monotonic increasing maps. More recently, Scetbon et al. [2024] proposed
to directly model SCMs, viewed as fixed-point problems on the ordered nodes, using transformer-
based architectures. While these methods enable efficient learning of SCMs and their generative
processes, they all require to train a specific generative model per dataset. In contrast, we present
a novel extension of FiP [Scetbon et al., 2024] by conditioning the fixed-point process on dataset
embeddings, thereby amortizing the learning of functional relationships across different instances
from the functional class of SCMs.
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B Inference with Cond-FiP: Generation and Intervention

Generation with Cond-FiP. Given a random vector noise n ∼ PN , we can estimate the obser-
vational sample associated according to an unknown SCM S(PN ,G,F ) ∼ PS as long as we have
access to its empirical representation (DX ,G). More formally, starting from n0 = n, we infer the
associated observation by computing for ℓ = 1, . . . , d:

nℓ = T (nℓ−1, DX ,G) + n . (5)

After (at most) d iterations, nd corresponds to the observational sample associated to the original
noise n according to our conditional SCM T (·, DX ,G). To sample noise from PN , we leverage
cond-FiP that can estimates noise samples under the ANM assumption by computing D̂N :=
DX − T (DX , E(L(DX),G). From these estimated noise samples, we can efficiently estimate the
joint distribution of the noise thanks to the Markovian assumption by computing the inverse cdfs of
the marginals as proposed in Scetbon et al. [2024].

Interventional Predictions. Cond-FiP also enables the estimation of interventions given an empiri-
cal representation (DX ,G) of an unkown SCM S(PN ,G,F ) ∼ PS . To achieve this, we start from
a noise sample n, and we generate the associated intervened sample ẑdo by directly modifying the
conditional SCM provided by Cond-FiP. More specifically, we modify in place the SCM obtained
by Cond-FiP, leading to its interventional version T do(·, DX ,G). Now, generating an intervened
sample can be done by applying the loop defined in (5), starting from n and using the intervened
SCM T do(·, DX ,G) rather than the original one.

C Experiment Setup Details

C.1 Data Generation Process

• In Distribution (PIN): We sample causal graphs using the Erods-Renyi [Erdos and Renyi,
1959] and scale-free models [Barabási and Albert, 1999] schemes. Noise variables are sam-
pled from the gaussian distribution, and we allow for both LIN and RFF causal relationships.

• Out of Distribution (POUT): Causal graphs are drawn from Watts-Strogatz [Watts and
Strogatz, 1998] and stochastic block models [Holland et al., 1983] schemes. Noise variables
follow the laplace distribution, and both the LIN and RFF cases are used to sample functions.
However, the parameters of these distributions are sampled from a different range as
compared to PIN to create a distribution shift.

C.2 Cond-FiP Model and Training Configuration

For both the dataset encoder and cond-FiP, we set the embedding dimension to dh = 256 and the
hidden dimension of MLP blocks to 512. Both of our transformer-based models contains 4 attention
layers and each attention consists of 8 attention heads. The models were trained for a total of 10k
epochs with the Adam optimizer [Paszke et al., 2017], where we used a learning rate of 1e− 4 and a
weight decay of 5e− 9. We also use the EMA implementation of [Karras et al., 2023] to train our
models. Each epoch contains ≃ 400 randomly generated datasets from the distribution PIN, which
are processed with a batch size of 2 on a single L40 GPU with 48GB memory.

C.3 Evaluation Metric

Let us denote a predicted target as Ŷ ∈ Rntest×d and the true target as Y ∈ Rntest×d. The RMSE is
computed on a sample basis and then averaged over all the test samples available. More formally, the

metric used here is 1
ntest

∑ntest
i=1

√
1
d∥[Y ]i − [Ŷ ]i∥22. This metric allows us to compare results across

different graph sizes as it is scaled by the dimension d.
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D Additional Results: Interventional Generation
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Figure 2: We compare Cond-FiP against the baselines for the different evaluation tasks on the CSuite
benchmark. The y-axis denotes the RMSE for the respective tasks across the 9 datasets.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.08 (0.03) 0.19 (0.04) 0.05 (0.01) 0.12 (0.02)
DECI 10 0.17 (0.02) 0.34 (0.04) 0.13 (0.02) 0.25 (0.03)
FiP 10 0.08 (0.01) 0.15 (0.02) 0.07 (0.01) 0.09 (0.01)
Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

DoWhy 20 0.06 (0.01) 0.27 (0.06) 0.05 (0.0) 0.36 (0.03)
DECI 20 0.16 (0.02) 0.38 (0.05) 0.15 (0.04) 0.42 (0.03)
FiP 20 0.09 (0.01) 0.23 (0.05) 0.12 (0.04) 0.25 (0.03)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

DoWhy 50 0.08 (0.01) 0.29 (0.05) 0.06 (0.01) 0.53 (0.06)
DECI 50 0.17 (0.02) 0.44 (0.06) 0.13 (0.02) 0.64 (0.06)
FiP 50 0.11 (0.02) 0.25 (0.05) 0.09 (0.01) 0.46 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

DoWhy 100 0.05 (0.0) 0.33 (0.07) 0.06 (0.01) 0.60 (0.07)
DECI 100 0.14 (0.02) 0.49 (0.08) 0.15 (0.02) 0.70 (0.08)
FiP 100 0.08 (0.01) 0.29 (0.07) 0.10 (0.01) 0.54 (0.08)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 3: Results for Interventional Generation. We compare Cond-FiP against the baselines for
the task of generating interventional data from the input noise variables. Each cell reports the mean
(standard error) RMSE over the multiple test datasets for each scenario. Shaded rows denote the case
where the graph size is larger than the train graph sizes (d = 20) for Cond-FiP.
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E Experiments on Real World Benchmark

We use the real world flow cytometry dataset [Sachs et al., 2005] to benchmark Cond-FiP againts the
baselines. This dataset contains n ≃ 800 observational samples expressed in a d = 11 dimensional
space, and the reference (true) causal graph. We sample a train dataset Dtrain

X ∈ Rntrain×d and test
dataset Dtest

X ∈ Rntest×d of size ntrain = ntest = 400 each, where the train dataset is to used to train the
baselines and obtain dataset embedding for Cond-FiP.

Since we don’t have access to the true functional relationships, we cannot compute RMSE for noise
prediction or sample generation like we did in our experiments with synthetic benchmarks. Instead
for each method, we obtain the noise predictions D̂train

N on the train split, and use it to fit a gaussian
distribution for each component (node). Then we use the learned gaussian distribution to sample

new noise variables, D̂sample
N , which are mapped to the observations as per the causal mechanisms

learned by each method, D̂sample
X . Finally, we compute the maximum mean discrepancy (MMD)

distance between D̂sample
X and Dtest

X as metric to determine whether the method has captured the true
causal relationships. For consistency, we also evaluate the reconstruction performances of the models
by using directly the inferred noise D̂train

N from the models, and the compute MMD between the
reconstructed data and the test data.

Table 4 presents our results, where for reference we also report the MMD distance between the true
train and test split, which should be very small since both the datasets are sampled from the same
distribution. We find that Cond-FiP is competitive with the baselines that were trained from scratch.
Except DoWhy, the MMD distance with reconstructed samples from the methods are close to oracle
performance.

Method MMD(D̂sample
X , Dtest

X ) MMD(D̂train
X , Dtest

X ) MMD(Dtrain
X , Dtest

X )

DoWhy 0.015 0.014 0.005
DECI 0.014 0.005 0.005
FiP 0.015 0.005 0.005
Cond-FiP 0.013 0.005 0.005

Table 4: Results for Sachs dataset. We compare Cond-FiP against the baselines for the task of
generating sample data on the real world benchmark. Each cell reports the MMD, and we also report
the reconstruction error for all of the methods.
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F Ablation Study

We conduct an ablation study where we train two variants of the decoder Cond-FiP described as
follows:

• Cond-FiP (LIN): We sample SCMs with linear functional relationships during training.
• Cond-FiP (RFF): We sample SCMs with non-linear functional relationships for training.

Note that in the main results (Tabel 2, Table 3) we show the performances of Cond-FiP trained by
sampling SCMs with both linear and non-linear functional relationships. Hence, this ablations helps
us to understand whether the strategy of training on mixed functional relationships can bring more
generalization to the amortization process, or if we should have trained decoders specialized for linear
and non-linear functional relationships.

We present the results of our ablation study in Table 5 and Table 6, for the task of sample generation
and interventional generation respectively. Our findings indicate that Cond-FiP decoder trained
for both linear and non-linear functional relationships is able to specialize for both the scenarios.
While Cond-FiP (LIN) is only able to perform well for linear benchmarks, and similarly Cond-FiP
(RFF) can only achieve decent predictions for non-linear benchmarks, Cond-FiP is achieve the best
performances on both the linear and non-linear benchmarks.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.07 (0.02) 0.4 (0.06) 0.07 (0.01) 0.25 (0.06)
Cond-FiP(RFF) 10 0.1 (0.02) 0.15 (0.02) 0.08 (0.01) 0.09 (0.01)
Cond-FiP 10 0.06 (0.01) 0.14 (0.02) 0.05 (0.01) 0.08 (0.01)

Cond-FiP(LIN) 20 0.07 (0.01) 0.44 (0.07) 0.10 (0.01) 0.58 (0.02)
Cond-FiP(RFF) 20 0.11 (0.01) 0.26 (0.06) 0.14 (0.01) 0.31 (0.03)
Cond-FiP 20 0.05 (0.01) 0.24 (0.06) 0.07 (0.01) 0.3 (0.03)

Cond-FiP(LIN) 50 0.10 (0.01) 0.5 (0.07) 0.14 (0.02) 0.69 (0.04)
Cond-FiP(RFF) 50 0.15 (0.02) 0.27 (0.05) 0.19 (0.02) 0.5 (0.07)
Cond-FiP 50 0.08 (0.01) 0.25 (0.05) 0.07 (0.0) 0.48 (0.07)

Cond-FiP(LIN) 100 0.1 (0.01) 0.51 (0.07) 0.15 (0.02) 0.72 (0.04)
Cond-FiP(RFF) 100 0.16 (0.03) 0.29 (0.07) 0.27 (0.04) 0.59 (0.06)
Cond-FiP 100 0.07 (0.01) 0.29 (0.07) 0.09 (0.01) 0.57 (0.07)

Table 5: Ablation for Sample Generation. We compare Cond-FiP for the task of generating samples
from input noise variables against two variants. One variant corresponds to a decoder trained on
SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we have another variant
where the decoder was trained on SCMs with only rff functional relationships, Cond-FiP(RFF). Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
Cond-FiP(LIN) 10 0.09 (0.02) 0.40 (0.07) 0.06 (0.01) 0.22 (0.04)
Cond-FiP(RFF) 10 0.16 (0.05) 0.22 (0.03) 0.08 (0.01) 0.11 (0.01)
Cond-FiP 10 0.10 (0.03) 0.21 (0.03) 0.07 (0.01) 0.11 (0.01)

Cond-FiP(LIN) 20 0.10 (0.01) 0.45 (0.07) 0.16 (0.03) 0.57 (0.02)
Cond-FiP(RFF) 20 0.14 (0.02) 0.26 (0.05) 0.21 (0.03) 0.32 (0.02)
Cond-FiP 20 0.09 (0.01) 0.24 (0.05) 0.14 (0.03) 0.31 (0.03)

Cond-FiP(LIN) 50 0.14 (0.02) 0.49 (0.07) 0.14 (0.02) 0.68 (0.04)
Cond-FiP(RFF) 50 0.19 (0.03) 0.28 (0.05) 0.21 (0.03) 0.49 (0.06)
Cond-FiP 50 0.13 (0.02) 0.27 (0.04) 0.12 (0.02) 0.48 (0.07)

Cond-FiP(LIN) 100 0.12 (0.02) 0.52 (0.07) 0.18 (0.03) 0.71 (0.04)
Cond-FiP(RFF) 100 0.18 (0.03) 0.32 (0.07) 0.24 (0.04) 0.59 (0.07)
Cond-FiP 100 0.10 (0.01) 0.30 (0.06) 0.14 (0.02) 0.58 (0.07)

Table 6: Ablation for Interventional Generation. We compare Cond-FiP against two variants for the
task of interventional data from input noise variables. One variant corresponds to a decoder trained on
SCMs with only linear functional relationships, Cond-FiP(LIN). Similarly, we have another variant
where the decoder was trained on SCMs with only rff functional relationships, Cond-FiP(RFF). Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
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G Evaluating generalization of Cond-Fip to larger sample size

In the main tables (Table 1, Table 5, and Table 3), we evaluated Cond-FiP’s generalization capabilities
to larger graphs (d = 50, d = 100) than those used for training (d = 20). In this section, we carry
a similar experiment where instead of increasing the total nodes in the graph, we test Cond-FiP on
datasets with more samples ntest = 1000, while Cond-FiP was only trained for datasets with sample
size ntrain = 400.

The results for the experiments are presented in Table 7, Table 8, and Table 9 for the task of noise
prediction, sample generation, and interventional generation respectively. Our findings indicate that
Cond-FiP is still able to compete with other baseline in this regime. However, we observe that the
performances of Cond-FiP did not improve by increasing the sample size compared to the results
obtained for the 400 samples case, meaning that the performance of our models depends exclusively
on the setting used at training time. We leave for future works the learning of a larger instance of
Cond-FiP trained on larger sample size problems.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.02 (0.0) 0.10 (0.01) 0.21 (0.04) 0.23 (0.02)
DECI 10 0.05 (0.01) 0.12 (0.01) 0.21 (0.04) 0.27 (0.03)
FiP 10 0.03 (0.0) 0.06 (0.0) 0.21 (0.04) 0.23 (0.02)
Cond-FiP 10 0.05 (0.01) 0.11 (0.01) 0.21 (0.04) 0.25 (0.02)

DoWhy 20 0.02 (0.0) 0.11 (0.02) 0.16 (0.01) 0.3 (0.02)
DECI 20 0.04 (0.01) 0.11 (0.02) 0.16 (0.01) 0.29 (0.02)
FiP 20 0.03 (0.0) 0.08 (0.02) 0.16 (0.01) 0.26 (0.02)
Cond-FiP 20 0.06 (0.01) 0.09 (0.01) 0.18 (0.01) 0.26 (0.01)

Table 7: Results for Noise Prediction with larger sample size (ntest = 1000). We compare Cond-
FiP against the baselines for the task of predicting noise variables from the input observations. Each
cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.

Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.04 (0.0) 0.14 (0.02) 0.29 (0.04) 0.3 (0.03)
DECI 10 0.07 (0.01) 0.17 (0.02) 0.29 (0.04) 0.33 (0.04)
FiP 10 0.05 (0.0) 0.09 (0.01) 0.29 (0.04) 0.29 (0.03)
Cond-FiP 10 0.05 (0.01) 0.14 (0.02) 0.29 (0.04) 0.29 (0.03)

DoWhy 20 0.04 (0.01) 0.21 (0.05) 0.28 (0.01) 0.55 (0.06)
DECI 20 0.07 (0.01) 0.21 (0.04) 0.29 (0.01) 0.59 (0.06)
FiP 20 0.05 (0.0) 0.17 (0.04) 0.28 (0.01) 0.53 (0.06)
Cond-FiP 20 0.05 (0.0) 0.24 (0.05) 0.28 (0.01) 0.53 (0.06)

Table 8: Results for Sample Generation with larger sample size (ntest = 1000). We compare
Cond-FiP against the baselines for the task of generating samples from the input noise variables.
Each cell reports the mean (standard error) RMSE over the multiple test datasets for each scenario.
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Method Total Nodes LIN IN RFF IN LIN OUT RFF OUT
DoWhy 10 0.04 (0.01) 0.16 (0.03) 0.26 (0.03) 0.27 (0.03)
DECI 10 0.09 (0.01) 0.19 (0.02) 0.26 (0.03) 0.31 (0.04)
FiP 10 0.05 (0.01) 0.12 (0.02) 0.26 (0.03) 0.27 (0.03)
Cond-FiP 10 0.09 (0.02) 0.19 (0.03) 0.27 (0.03) 0.3 (0.03)

DoWhy 20 0.04 (0.0) 0.20 (0.04) 0.26 (0.01) 0.53 (0.06)
DECI 20 0.08 (0.01) 0.20 (0.03) 0.29 (0.02) 0.54 (0.05)
FiP 20 0.06 (0.01) 0.16 (0.04) 0.28 (0.02) 0.48 (0.06)
Cond-FiP 20 0.07 (0.01) 0.27 (0.05) 0.30 (0.02) 0.51 (0.06)

Table 9: Results for Interventional Generation with larger sample size (ntest = 1000). We
compare Cond-FiP against the baselines for the task of generating interventional data from the input
noise variables. Each cell reports the mean (standard error) RMSE over the multiple test datasets for
each scenario.
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