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Abstract

We introduce a novel approach to self-supervised learning for point clouds, employing a
geometrically informed mask selection strategy called GeoMask3D (GM3D) to boost the
efficiency of Masked Auto Encoders (MAE). Unlike the conventional method of random
masking, our technique utilizes a teacher-student model to focus on intricate areas within
the data, guiding the model’s focus toward regions with higher geometric complexity. This
strategy is grounded in the hypothesis that concentrating on harder patches yields a more
robust feature representation, as evidenced by the improved performance on downstream
tasks. Our method also presents a feature-level knowledge distillation technique designed to
guide the prediction of geometric complexity, which utilizes a comprehensive context from
feature-level information. Extensive experiments confirm our method’s superiority over
State-Of-The-Art (SOTA) baselines, demonstrating marked improvements in classification,
segmentation, and few-shot tasks.

1 Introduction

Figure 1: A relative comparison of the SOTA
point cloud MAE methods on different tasks.
Here, the center and the outer circles repre-
sent the lowest and highest values on each
task, respectively.

The advent of large-scale 3D datasets (Deitke et al., 2023;
Slim et al., 2023) has propelled research on deep learning
for point clouds, leading to notable improvements in com-
plex 3D tasks. However, the time-consuming nature of data
collection, compounded by the complexity of 3D view varia-
tions and the mismatch between human perception and point
cloud representation, significantly hinders the development
of effective deep networks for this type of data (Xiao et al.,
2023). In response to this challenge, Self-Supervised Learn-
ing (SSL) has emerged as a promising solution, facilitating
the learning of representations without relying on manual
annotations. SSL not only circumvents the issues of costly
and error-prone labeling but also improves the model’s gen-
eralization ability, offering a pivotal advancement in the field
of point cloud-based deep learning (Fei et al., 2023).

MAEs, as simple yet effective self-supervised learners, have
gained prominence by learning to recover masked parts of
data. This approach has significantly advanced NLP models
and has resulted in exceptional vision-based representation
learners (Kenton & Toutanova, 2019; He et al., 2022) when
applied to vision tasks. Building on their success, MAEs have
recently been adapted for point cloud representation learn-
ing, leading to SOTA methods including MaskPoint (Liu
et al., 2022), Point-Bert (Yu et al., 2022), Point-MAE (Pang et al., 2022), Point-M2AE (Zhang et al.,
2022), I2P-MAE (Zhang et al., 2023), and MAE3D (Jiang et al., 2023). However, these methods share a
common limitation stemming from the random masking strategy they use, where masked regions of the
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point cloud are selected arbitrarily without taking into account their informativeness. As demonstrated in
recent work on Masked Image Modeling (MIM) (Wang et al., 2023), employing a selection strategy that
prioritizes informative regions over background areas can significantly enhance the robustness of the learned
representation. While such a strategy has shown promising results for image processing, its application to
point clouds has not been explored so far.

To bridge this gap, we study the use of a targeted masking strategy for point clouds within the MAE
framework, applicable across both single and multi-scale methods. We introduce GeoMask3D (GM3D), a
novel geometrically-informed mask selection strategy for object point clouds. Due to the lack of background
data in the object’s point clouds, GM3D enables models to concentrate on more complex areas, such as
canonical ones with higher connections to the other areas, and pay less attention to the geometrically simple
areas like smooth surfaces, as depicted in Fig. 2. To showcase the effectiveness of our method, we integrate it
into the pretraining process of both single-scale Point-MAE and multi-scale Point-M2AE, the leading MAE
methods for point clouds. As illustrated in Fig. 1, our method exhibits notable enhancements over the earlier
SOTA approaches across a range of challenging tasks.

To the best of our knowledge, this represents the first attempt to implement a masking strategy for point
clouds, independent of additional modalities such as multi-view images. Our contributions are summarized
as follows:

1. We propose a novel masking approach for point cloud MAEs, which selects patches based on their
geometric complexity rather than selecting them randomly. This approach employs an easy-to-
hard curriculum learning strategy where the ratio of patches selected using geometric complexity is
gradually increased during training.

2. We also introduce a feature-level knowledge distillation technique to further guide the prediction
of geometric complexity. Instead of relying on the noisy and incomplete information of 3D points,
this efficient technique transfers latent features from a frozen teacher model, encoding higher-level
information on the geometry, to the student model learning the point cloud representation.

3. We integrate these mechanisms into the pretraining process of single-scale Point-MAE and multi-
scale PointM2AE, both of which are SOTA point cloud MAEs, significantly enhancing their perfor-
mance in diverse downstream tasks.

2 Related Works

Point Cloud Learning. PointNet (Qi et al., 2017a) established point cloud processing as a key method
in 3D geometric data analysis by addressing the permutation issue of point clouds with a max-pooling layer.
To further enhance performance and capture both local and global features, PointNet++ (Qi et al., 2017b)
introduced a hierarchical structure, expanding the receptive fields of its kernels recursively for improved
results over PointNet. Another study (Jaritz et al., 2019) focused on point cloud scene processing, where
multi-view image features are combined with point clouds. In this study, 2D image features are aggregated
into 3D point clouds and a point-based network fuses these features in 3D space for semantic labeling,
demonstrating the substantial benefits of multi-view information in point cloud analysis.

MAE for Representation Learning. Leveraging the success of MAEs in text and image modalities,
Point-BERT (Yu et al., 2022) introduced an approach inspired by BERT (Devlin et al., 2018) adapting Trans-
formers to 3D point clouds. This approach creates a Masked Point Modeling task, partitioning point clouds
into patches and using a Tokenizer with a discrete Variational AutoEncoder (dVAE) to produce localized
point tokens, with the goal of recovering original tokens at masked points. Similarly, Point-GPT (Chen et al.,
2024) introduced an auto-regressive generative pretraining (GPT) approach to address the unordered nature
and low information density of point clouds. ACT (Dong et al., 2022) proposed a cross-modal knowledge
transfer method using pretrained 2D or natural language Transformers as teachers for 3D representation
learning. MaskPoint (Liu et al., 2022), a discriminative mask pretraining framework for point clouds, rep-
resents the point cloud with discrete occupancy values and performs binary classification between object
points and noise points, showing resilience to point sampling variance. Point-MAE (Pang et al., 2022)
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Figure 2: Visualization of estimated Geometric Complexity (GC) progression throughout training is depicted. The
color spectrum denotes GC, ranging from low (Blue) to high (Red). GC values are normalized per object to reflect
relative complexity across patches within each object’s point cloud. As training progresses (from left to right), initial
GC rankings display a random distribution (a). After 100 epochs, the model learns to assign lower complexity rankings
to smooth areas (b) and higher rankings to complex regions (c). Through GC guided masking, the model increasingly
focuses on complex areas from epochs 200 to 300, resulting in a reduction of GC ranking (d) and smoothing of the
complexity ranking distribution, accompanied by a decrease in total complexity loss LGC (e). Eventually, the model
converges to a low LGC value, consistently targeting canonical patches while maintaining a smoother GC distribution
(f).

adapted MAE-style pretraining to 3D point clouds, employing a specialized Transformer-based autoencoder
to reconstruct masked irregular patches and demonstrating strong generalization in various tasks. Following
this, MAE3D (Jiang et al., 2023) used a Patch Embedding Module for feature extraction from unmasked
patches. Point-M2AE (Zhang et al., 2022) introduced a Multi-scale MAE framework with a pyramid ar-
chitecture for self-supervised learning, focusing on fine-grained and high-level semantics. I2P-MAE (Zhang
et al., 2023) further improved the self-supervised point cloud learning process by leveraging pretrained 2D
models through an Image-to-Point transformation.

Our proposed method, which can be integrated into any point cloud MAE architecture, differs from previous
approaches like Point-MaskPoint, MAE, MAE3D and Point-M2AE that are based on random patch selection.
Moreover, unlike recent point cloud learning approaches such as I2P-MAE (Zhang et al., 2023), which rely
on image information and 2D backbones, our method only requires 3D coordinates as input.

3 Method

3.1 Preliminaries

Masked Auto Encoders. Autoencoders use an encoder E to map an input X to a latent representation
Z = E(X) and a decoder to reconstruct the input as X̂ = D(Z). Masked Auto Encoders (MAE) are a special
type of autoencoder that receive a masked-patch input composed of a set of visible patches (with positional
encoding) Xv and the index set of masked patches M , and reconstruct the masked patches as follows:

[Xv, X̂m] = MAE(Xv, M) = D
(
[E(Xv), TM ]

)
(1)

The encoder E and decoder D are both transformer-based networks. The encoder only transforms the visible
patches to their latent representations Zv = E(Xv). On the other hand, the decoder takes as input Zv and
a set of tokens TM =

{(
tmask , Epos(i)

)
| i ∈ M

}
where tmask is a global learnable mask token and Epos(i) is

the positional embedding of masked patch i ∈ M . Let N = Nv +Nm be the number of patches in the input,
with Nv = |Xv| and Nm = |M |, the masking ratio is defined as mratio = Nm/N .

MAE for Point Clouds. A 3D point cloud P is a set of Np points pj ∈ R3. For this type of data, patches
correspond to possibly overlapping subsets of K points in P . While there are various ways to generate
patches from a point cloud, we follow the strategy employed by several related methods (Pang et al., 2022;
Zhang et al., 2022) where each patch xi is defined as a center point ci and the set Pi ⊂ P of K-Nearest
Neighbours (KNN) to this center. To uniformly represent the whole point cloud, patch centers ci are obtained
using a Farthest Point Sampling (FPS) algorithm, where a first center is randomly chosen from P and then
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Figure 3: Overview of the GeoMask3D (GM3D) method for self-supervised representation learning in point
clouds. The Teacher network predicts Geometric Complexity (GC), and patches with the highest GC,
denoted by N sel , are selected for masking. The Student network is then trained to reconstruct these masked
tokens while simultaneously learning GC through the loss LGC . The reconstruction loss is defined as Lrec =
Lrecp + Lrecf . The Teacher network’s weights are updated using the Exponential Moving Average (EMA)
of the Student’s weights, while the Knowledge Teacher remains frozen and is used for generating encoder
features essential for the Student’s training with Lrecf .

the next one is selected as the point in P furthest away from previously selected centers. Assuming that ci

is included as the first element of its nearest-neighbor list Pi, we can represent the patchified version of the
point cloud as a tensor X ∈ RN×K×3.

In autoencoders for images, a pixel-wise L2 reconstruction loss is typically used for training the MAE. In
our case, since patches xi ∈ X are points sets, we instead employ the Chamfer distance to measure the
reconstruction error Lrecp of masked patches:

Lrecp = 1
Nm

Nm∑
i=1

Chamfer(xm
i , x̂m

i ), (2)

where the Chamfer distance between two sets of points S and S′ is defined as

Chamfer(S, S′) =
∑
p∈S

min
p′∈S′

∥p − p′∥2
2 +

∑
p′∈S′

min
p∈S

∥p − p′∥2
2. (3)

In the next section, we build on these definitions and present our GeoMask3D method for self-supervised
point cloud representation learning.

3.2 GeoMask3D

In the originally proposed MAE, masked patches are selected randomly during each iteration without con-
sidering the varying impacts that different patches may have on the training process. This random masking
approach may not be efficient, as patches in a point cloud can exhibit varying levels of Geometric Complexity
(GC), which pose different degrees of challenge to the learning network. Inspired by the principles of human
learning—where repeatedly tackling challenging tasks enhances performance over time—we propose prior-
itizing geometrically complex patches during the pre-training phase of a MAE network. A MAE network
can achieve more efficient and effective learning by shifting from random masking to a strategy focusing on
complex patches.

This strategy raises a fundamental question: what is Geometric Complexity (GC), and how can it be mea-
sured? We define GC for a patch as the relative difficulty of reconstructing that patch using an MAE network.
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Specifically, a patch is considered complex if the MAE network demonstrates difficulty in reconstructing it,
as indicated by higher reconstruction loss Lrecp .

To this end, we propose GeoMask3D (GM3D) as a modular component that integrates with any point cloud
MAE backbone. This component is incorporated into the pretraining phase of a chosen method, shifting from
a basic naive random masking approach to a selective focus on geometrically complex patches for masking.
The architecture of GM3D employs an auxiliary head DGC for predicting the geometric complexity GC ∈ RN

across the input patches, which is trained with a loss LGC .

A teacher-student framework is utilized to integrate GM3D with a target network. We denote as GM3Ds =
(Es, Ds, Ds

GC) the student and as GM3Dt =(Et, Dt, Dt
GC) the teacher, both of them having their own encoder,

decoder and auxiliary head. In line with (He et al., 2020), we apply a momentum update method to maintain
a consistent teacher, updating it in each iteration,

GM3Dt = µ·GM3Dt + (1−µ)·GM3Ds (4)

where µ represents the momentum coefficient. Both networks predict the GC based on the patch’s informa-
tional content, as elaborated in Section 3.2.1. We employ the prediction of GC in the masking strategy of
the method during its pretraining stage. The GC of the student network (GCs) is predicted based on the
masked input Xv, while the GC of the teacher (GCt) is calculated in inference mode using the complete
input X:

GCa =
{

Da
GC(E(X)), if a = t (teacher)

Da
GC

(
[E(Xv), TM ]

)
, if a = s (student)

(5)

The overview of our method for self-supervised representation learning in the point cloud is depicted in
Fig. 3. The GeoMask3D (GM3D) approach involves three interconnected steps, which will be explained in
the following sections. Additionally, we provide a detailed explanation of the Knowledge-Distillation-Guided
GC strategy in Section 3.3.

3.2.1 Prediction of Geometric Complexity (GC)

During this stage, our goal is to evaluate GC of each patch in Xm, relative to the others within the same set.
We achieve this by using a Dense Relation Comparison (DRC) loss (Wang et al., 2023) which enforces the
GC of masked patch pairs (k, l), predicted by the student (i.e., GCs

k and GCs
l ), to follow the same relative

order as their loss values Lrec
k , Lrec

l :

LGC =
Nm∑
k=1

Nm∑
l=1
l ̸=k

I+
kl log

(
σ(GCs

k − GCs
l )

)
− I−

kl log
(
1 − σ(GCs

k − GCs
l )

)
(6)

where I+
kl = 1(Lrec

k > Lrec
l ), I−

kl = 1(Lrec
k < Lrec

l ), σ(·) is the sigmoid function, and Lrec is detailed in
Section 3.3.

This loss function enforces consistency between the predicted GCs values and Lrec as the ground truth,
effectively guiding the student model to learn a meaningful ranking of geometric complexities for the masked
patches. By comparing all pairs of patches, the loss ensures a robust evaluation of relative complexity within
Xm.

3.2.2 Geometric-Guided Masking

Patches with a high GC score are typically those that the model struggles to reconstruct accurately (see
Fig. 2). This difficulty often stems from their complex geometry, compounded by the absence of color and
background information. While choosing those patches for masking might seem straightforward, there are
two challenges to this approach. First, during training, the GC is evaluated by the student for masked
patches Xm, yet we need to pick candidate patches from the entire set. Second, the student’s GC estimation
can be noisy, making the training unstable. We address both these challenges by instead selecting patches
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based on the teacher’s score (GCt). Thus, at each iteration, the teacher predicts the GC for all patches in
X, including unmasked ones. Thanks to the momentum update of Fig. 4, the teacher’s predictions are more
consistent across different training iterations.

3.2.3 Curriculum Mask Selection

During the initial phases of training, the model may struggle to reconstruct fine details and is often over-
whelmed by the complexity of the point cloud structure. To mitigate this problem, we follow a curriculum
easy-to-hard mask selection strategy by starting from pure random masking at the initial training epoch
and gradually increasing the portion of geometric-guided masking until the maximum epoch emax . Let
A ∈ [0, 1] be the maximum ratio of patches that can be selected using GCt. At each epoch et, we select the
N sel = ⌊et/emax × A × Nm⌋ patches with highest GCt value, and the remaining Nm − N sel ones are selected
randomly based on a uniform distribution.

3.3 Knowledge-Distillation-Guided GC

Instead of relying exclusively on point geometry, our approach employs a knowledge distillation strategy
to also learn from latent features. This strategy involves transferring geometric knowledge from a frozen
teacher network F = (Ef , Df ) that processes the full set of patches to the student GM3Ds observing unmasked
patches. This encourages the student GM3Ds to replicate the feature activations of the knowledge teacher F,
indirectly learning from the full structure of data. This unique setup enables the student network to benefit
from the global geometric context provided by the teacher network, which is constructed from the complete
point cloud. As a result, this process facilitates the learning of robust and meaningful representations, which
improve performance on downstream tasks. The complexity of patches in the feature space is determined
by employing the Mean Square Error loss between the output of Ef and the output of Ds before converting
back to point space:

Lrecf = 1
Nm

Nm∑
i=1

∥∥Ef
(
X

)
i
− Ds

(
[Es (Xv) , TM ]

)
i

∥∥2 (7)

This loss, combined with the Chamfer loss Lrecp applied in the point space, serves as the ground-truth loss
Lrec for the prediction of GC:

Lrec = Lrecp + Lrecf (8)

The total training loss L is calculated as

L = αLGC + βLrecp + γLrecf (9)

where α, β, and γ are hyper-parameters.

4 Experiments

Several experiments are carried out to evaluate the proposed method. First, we pretrain both Point-MAE and
Point-M2AE networks utilizing our GM3D approach on the ShapeNet (Chang et al., 2015) training dataset.
Moreover, we assess the performance of these pretrained models across a range of standard benchmarks, such
as object classification, few-shot learning, and part segmentation. It is important to note that, to maintain a
completely fair comparison, we exclusively utilize the encoder of the student network for downstream tasks,
ensuring it is identical to the encoder used in the method of interest.

In our approach, we adopt network configurations consistent with those used in the Point-MAE and Point-
M2AE models to guarantee a fully fair comparison, notably using masking ratios of 60% for Point-MAE
and 80% for Point-M2AE. This involves the technique of dividing point clouds into patches, along with
employing the KNN algorithm with predetermined parameters for consistent patch uniformity. While our
autoencoder architecture, including the configuration of Transformer blocks in both encoder and decoder,
generally follows the patterns established in these models, we have uniquely tailored the decoder’s design
specifically for the GC estimation purposes. Moreover, the specifics of our network’s hyperparameters for
the pretraining and fine-tuning phases are comprehensively detailed in the Supplementary Materials.
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4.1 Pretraining Setup

We adopt the ShapeNet dataset (Chang et al., 2015) for the pretraining of our technique, in line with the
practices established by Point-MAE and Point-M2AE. This dataset, known for its diverse and extensive
collection of 3D models across various categories, provides a robust basis for training and evaluation. It
contains 57,448 synthetic 3D shapes of 55 categories.

After this pretraining phase, we assess the quality of 3D representations produced by our approach through
a linear evaluation on the ModelNet40 dataset (Wu et al., 2015). We extract 1,024 points from every 3D
model in ModelNet40 and then pass them through our encoder, which remains unchanged during this phase
to preserve the learned features. The linear evaluation is performed by a Support Vector Machine (SVM)
fitted on these features. This classification performance is quantified by the accuracy metrics detailed in
Table 1. The results clearly indicate that our technique, when applied to Point-MAE and Point-M2AE,
enhances the network’s performance.

4.2 Downstream Tasks

Object Classification on Real-World Dataset. In self-supervised learning for point clouds, it is
crucial to create a model that exhibits strong generalization abilities across various scenarios. The ShapeNet
dataset, which is favored for pretraining, contains clean, isolated object models, lacking any intricate scenes
or background details. Inspired by this limitation, and building on prior approaches, we put our methods to
the test on the ScanObjectNN dataset (Uy et al., 2019), a more demanding dataset that represents about
15,000 real-world objects across 15 categories. This dataset presents a realistic challenge, with objects that
are embedded in cluttered backgrounds, making it an ideal benchmark for assessing our model’s robustness
and generalization in real-world scenarios.

We carry out tests on three different variants: OBJ-BG, OBJ-ONLY, and PBT50-RS. It is important to note
that we do not employ any voting techniques or data augmentation during the testing phase. The outcomes
of these experiments can be found in Table 5. These results demonstrate that integrating the GM3D module
with Point-MAE and Point-M2AE significantly boosts their object classification accuracy on this dataset.
These findings underscore our method’s effectiveness in complex real-world scenarios.

Object Classification on Clean Objects Dataset. For the task of object classification on the Mod-
elNet40 dataset(Wu et al., 2015), we evaluated our pretrained models using the same protocols and con-
figurations as the Point-MAE approach. ModelNet40, featuring 12,311 pristine 3D CAD models across 40
categories, was divided into a training set of 9,843 models and a testing set of 2,468 models, adhering to
established norms. Throughout the training, we employed common data augmentation strategies, including
random scaling and shifting. To ensure fair comparisons, the standard voting method (Liu et al., 2019) was
also applied during the testing phase. According to Table 4, integrating our GM3D module with Point-
MAE has yielded a classification accuracy of 94.20%, which surpasses the performance of the standalone
Point-MAE and even the more complex Point-M2AE on this dataset.

Few-shot Learning. Following the protocols of earlier studies (Yu et al., 2022; Sharma & Kaul, 2020;
Wang et al., 2021), we conduct few-shot learning experiments on ModelNet40(Wu et al., 2015), using an
n-way, m-shot configuration. Here, n is the number of classes randomly chosen from the dataset, and m is
the count of objects randomly selected for each class. The n × m objects are utilized for training. During
the test phase, we randomly sample 20 additional unseen objects from each of the n classes for evaluation.

The results of our few-shot learning experiments are summarized in Fig. 6. In this highly saturated bench-
mark, the combination of the GM3D module exhibits outstanding performance across all tested scenarios. It
is worth noting that I2P-MAE(Zhang et al., 2023) which additionally benefits from multiple 2D views provides
only marginal improvements in results. Furthermore, Point-GPT (Chen et al., 2024) and ACT (Dong et al.,
2022), despite being SOTA and complex methods, show only slight improvements compared to each other
and other SOTA methods. Our findings highlight the effectiveness of our method as our Point-MAE+GM3D
model has already achieved higher accuracy than single-scale Point-MAE and multi-scale Point-M2AE.
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Table 1: Linear evaluation on Model-
Net40 (Wu et al., 2015) by SVM.

Method SVM
MAP-VAE (Wang et al., 2019) 88.4
VIP-GAN (Guo et al., 2021) 90.2
DGCNN + Jiasaw (Yu et al., 2022) 90.6
DGCNN + OcCo (Yu et al., 2022) 90.7
DGCNN + CrossPoint (Yu et al., 2022) 91.2
Transformer + OcCo (Yu et al., 2022) 89.6
Point-BERT (Yu et al., 2022) 87.4
Point-MAE (Pang et al., 2022) 91.05
Point-MAE + GM3D 92.30

Point-M2AE (Zhang et al., 2022) 92.90
Point-M2AE + GM3D 93.15

Table 2: Ablation study on different maximum
hard patch ratios (A). The highest performance is
observed at 50%, where the OBJ-ONLY score reaches
90.36%.

Model A obj-only
Original Point-MAE 0 88.29
Point-MAE+GM3D 0.4 89.67
Point-MAE+GM3D 0.5 90.36
Point-MAE+GM3D 0.7 89.84

Table 3: Part segmentation on ShapeNet-
Part (Yi et al., 2016). mIoUc (%) and mIoUi

(%) denote the mean IoU across all part categories
and all instances in the dataset, respectively. S

S rep-
resents self-supervised pertaining.

Method mIoUc mIoUi

PointNet (Qi et al., 2017a) 80.39 83.70
PointNet++(Qi et al., 2017a) 81.85 85.10
DGCNN (Wang et al., 2019) 82.33 85.20
Transformer (Yu et al., 2022) 83.42 85.10

S
S Transformer + OcCo (Yu et al., 2022) 83.42 85.10

S
S Point-BERT (Yu et al., 2022) 84.11 85.60

S
S I2P-MAE (Zhang et al., 2023) 85.15 86.76

S
S Point-GPT-S (Chen et al., 2024) 84.10 86.2

S
S ACT (Dong et al., 2022) 84.66 86.16

S
S Point-MAE (Pang et al., 2022) 84.19 86.10

S
S Point-MAE + GM3D 84.49 86.04

S
S Point-M2AE (Zhang et al., 2022) 84.86 86.51

S
S Point-M2AE + GM3D 84.91 86.52

Table 4: Linear evaluation on Model-
Net40 (Wu et al., 2015). ‘points’ and ‘Acc’ de-
note the number of points for training and overall
accuracy. S

S represents self-supervised pretraining.

Method Points Acc (%)
PointNet (Qi et al., 2017a) 1k 89.2
PointNet++ (Qi et al., 2017a) 1k 90.5

S
S SO-Net (Li et al., 2018a) 5k 92.5

DGCNN (Wang et al., 2019) 1k 92.9
Point Transformer (Zhao et al., 2021) 93.7
Transformer (Yu et al., 2022) 1k 91.4

S
S Transformer + OcCo (Yu et al., 2022) 1k 92.1

S
S Point-BERT (Yu et al., 2022) 1k 93.2

S
S Point-BERT (Yu et al., 2022) 4k 93.4

S
S Point-BERT (Yu et al., 2022) 8k 93.8

S
S Point-M2AE (Zhang et al., 2022) 1k 94.00

S
S Point-GPT-S (Chen et al., 2024) 1k 94.00

S
S ACT (Dong et al., 2022) 1k 93.5

S
S I2P-MAE (Zhang et al., 2023) 1k 94.1

S
S Point-MAE (Pang et al., 2022) 1k 93.80

S
S Point-MAE + GM3D 1k 94.20

Part Segmentation. Our method’s capacity for representation learning was assessed using the ShapeNet-
Part dataset (Yi et al., 2016), which includes 16,881 objects across 16 different categories. In alignment with
the approaches taken in prior studies (Qi et al., 2017a;b; Yu et al., 2022), we sampled 2,048 points from each
object to serve as input.

For this highly competitive benchmark, our GM3D method achieves a slight improvement on both the Point-
MAE and Point-M2AE networks, as detailed in Table 3. Considering that our approach exclusively utilizes
3D information, the observed improvement over methods like I2P-MAE(Zhang et al., 2023) that supplement
3D with additional 2D data is reasonable, especially considering the slight enhancements achieved by I2P-
MAE. Furthermore, Point-GPT (Chen et al., 2024) and ACT (Dong et al., 2022), despite being SOTA and
complex methods, show only slight improvements over each other and other SOTA methods. Based on
the results of SOTA methods presented in Table 3, it is evident that this dataset is highly challenging and
competitive. This highlights the effectiveness of our masking strategy in enhancing the understanding of
detailed, point-wise 3D patterns.
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Table 5: Object classification on real-world ScanObjectNN dataset (Uy et al., 2019). We evaluate
our approach on three variants, among which PB-T50-RS is the hardest setting. Accuracy (%) for each
variant is reported. S

S represents self-supervised pretraining.

Method OBJ-BG OBJ-ONLY PB-T50-RS
PointNet (Qi et al., 2017a) 73.3 79.2 68.0
SpiderCNN (Xu et al., 2018) 77.1 79.5 73.7
PointNet++ (Qi et al., 2017b) 82.3 84.3 77.9
DGCNN (Wang et al., 2019) 82.8 86.2 78.1
PointCNN (Li et al., 2018b) 86.1 85.5 78.5
BGA-DGCNN (Uy et al., 2019) - - 79.7
BGA-PN++ (Uy et al., 2019) - - 80.2
GBNet (Qiu et al., 2021) - - 80.5
PRANet (Cheng et al., 2021) - - 81.0
Transformer (Yu et al., 2022) 79.86 80.55 77.24

S
S Transformer-OcCo (Yu et al., 2022) 84.85 85.54 78.79

S
S Point-BERT (Yu et al., 2022) 87.43 88.12 83.07

S
S I2P-MAE (Zhang et al., 2023) 94.15 91.57 90.11

S
S Point-GPT-S (Chen et al., 2024) 91.6 90.0 86.9

S
S ACT (Dong et al., 2022) 93.29 91.91 88.21

S
S Point-MAE (Pang et al., 2022) 90.02 88.29 85.18

S
S Point-MAE + GM3D 93.45 90.36 88.30

S
S Point-M2AE (Zhang et al., 2022) 91.22 88.81 86.43

S
S Point-M2AE + GM3D 94.14 91.04 87.75

4.3 Additional Visualization

Geometric Complexity. Fig. 4 illustrates the GC of randomly selected point clouds from the ShapeNet
dataset. This illustration highlights the model’s capability to assess GC at the patch level, where the red
points denote areas of high GC and blue ones indicate areas of low GC. As mentioned in our methodology
section, the model bases the masking process on the predicted GC of the patches. Consequently, patches
representing regions with higher GC are preferentially masked. This strategic masking induces the model to

Table 6: Few-shot classification on ModelNet40. We report the average accuracy (%) and standard
deviation (%) of 10 independent experiments. S

S represents self-supervised pretraining.

Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot
DGCNN (Wang et al., 2019) 91.8 ±3.7 93.4 ±3.2 86.3 ±6.2 90.9 ±5.1

S
S DGCNN + OcCo (Wang et al., 2021) 91.9 ±3.3 93.9 ±3.1 86.4 ±5.4 91.3 ±4.6

Transformer (Yu et al., 2022) 87.8 ±5.2 93.3 ±4.3 84.6 ±5.5 89.4 ±6.3

S
S Transformer + OcCo (Yu et al., 2022) 94.0 ±3.6 95.9 ±2.3 89.4 ±5.1 92.4 ±4.6

S
S Point-BERT (Yu et al., 2022) 94.6 ±3.1 96.3 ±2.7 91.0 ±5.4 92.7 ±5.1

S
S I2P-MAE (Zhang et al., 2023) 97.0 ±1.8 98.3 ±1.3 92.6 ±5.0 95.5 ±3.0

S
S Point-GPT-S (Chen et al., 2024) 96.8 ±2.0 98.6 ±1.1 92.6 ±4.6 95.2 ±3.4

S
S ACT (Dong et al., 2022) 96.8 ±2.3 98.0 ±1.4 93.3 ±4.0 95.6 ±2.8

S
S Point-M2AE (Zhang et al., 2022) 96.8 ±1.8 98.3 ±1.4 92.3 ±4.5 95.0 ±3.0

S
S Point-MAE 96.3 ±2.5 97.8 ±1.8 92.6 ±4.1 95.0 ±3.0

S
S Point-MAE + GM3D 97.0 ±2.5 98.3 ±1.3 93.1 ±4.0 95.2 ±3.6
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Figure 4: Visualization of GC values on diverse point clouds from the ShapeNet dataset (Chang et al., 2015).

Figure 5: Reconstruction results on the ShapeNet dataset (Chang et al., 2015).

focus intensively on intricate point cloud regions containing salient geometric information, thereby enhancing
its overall performance in tasks requiring nuanced geometric understanding. It is important to note that
the provided normalized GC scores are computed relative to the individual patches within each point cloud
sample from the ShapeNet dataset. This normalization ensures that the GC scores are a reflection of the
variation in complexity within a given sample, enabling the model to internally assess and compare different
regions of the same point cloud.

Reconstructed Points. To elucidate the capabilities of Masked Autoencoders (MAEs) in processing point
cloud data, Fig. 5 provides a visual sequence involving the original input, the intermediate masking phase,
and the reconstructed output. The first column, titled “Input Point Cloud”, displays the entirety of the
point cloud data, illustrating the initial condition before any processing. The subsequent column, “Masked
Point Cloud”, reveals only the points that remain visible after a portion of the data has been masked. The
final column, “Reconstructed Point Cloud”, demonstrates the model’s ability to infer and restore the masked
parts of the point cloud.

The visual comparison in Fig. 5 distinctly highlights the high accuracy of the reconstructed points, under-
scoring the efficacy of our proposed method. It is noteworthy that these visual results were obtained using
Point-MAE+GM3D. For a fair and consistent comparison, the mask ratio used here is like Point-MAE (60%).
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Figure 6: Comparison of convergence speed during
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Figure 7: Fine-tuning vs. Training from Scratch on
SacnObjectNN (Point-MAE).

4.4 Additional Analyses

Pretraining Phase. The convergence rates shown in Fig. 6 clearly highlight the efficiency of our proposed
modules. Among the models, the Point-MAE+GM3D model stands out for its fast convergence, reaching
high SVM accuracy with fewer epochs compared to the other methods. This quick convergence suggests
that the GM3D module helps the model focus on important features in the data more effectively, speeding
up the learning process.

The Point-MAE model, while still effective, achieves a lower accuracy and takes more epochs to get there,
indicating that it learns more slowly. On the other hand, the Point-MAE+GM3D* version (integrating the
GM3D method with Point-MAE alongside Lrecp and LGC) is also effective but doesn’t converge as quickly
as the Point-MAE+GM3D, showing the importance of knowledge distillation alongside GM3D module.

These findings highlight the practical benefits of adding the GM3D module to the Point-MAE framework.
By helping the model learn faster and more reliably, the GM3D module not only improves the model’s overall
performance but also reduces the time needed to achieve high accuracy.

Fine-tuning Phase. Fig. 7 displays the fine-tuning accuracy on the OBJBG dataset, providing clear evi-
dence of the benefits brought by integrating our GM3D module with Point-MAE. The results reveal that the
Point-MAE+GM3D model not only achieves the highest accuracy but also maintains this improvement con-
sistently over the course of 400 epochs. This consistent performance highlights the stability and effectiveness
of the GM3D module in guiding the model to learn more relevant features from the data.

4.5 Ablation Study

Our ablation study focuses on the incremental improvements offered by our proposed method GM3D when
integrated with the original Point-MAE framework. The original Point-MAE serves as our baseline, using
the Chamfer loss for self-supervised learning and setting a performance benchmark on subsequent pretraining
and fine-tuning tasks.

Table 7: Comparison of Point-MAE, and Point-MAE+GM3D on Pretraining (SVM) and Fine-tuning (OBJ-
ONLY) Tasks. ‘*’ stands for our method without Lrecf .

Model Loss Function SVM
ModelNet40 OBJ-ONLY

Point-MAE Lrecp 91.05 88.29
Point-MAE + GM3D* Lrecp + LGC 91.45 89.50
Point-MAE + GM3D Lrecp + Lrecf + LGC 92.30 90.36
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Table 8: Ablation study on different components of our method based on Point-MAE

Input � F L Lrec � LGC GM3Dt

Lrecf OBJ-ONLYXv X Lrecf Lrecp Lrecf Lrecp µ

a ✓ ✓ ✓ ✓ Ef � Ds 89.32
b ✓ ✓ ✓ ✓ ✓ ✓ Ef � Ds 90.18
c ✓ ✓ ✓ ✓ ✓ Ef � Ds 89.67
d ✓ ✓ ✓ ✓ Ef � Ds 89.50
e ✓ ✓ ✓ ✓ ✓ Ef � Ds 89.33
f ✓ ✓ ✓ ✓ ✓ ✓ Ef � Es 89.15
g ✓ ✓ ✓ ✓ ✓ ✓ Ef � Ds 90.36

GM3D. Initially, we integrate the GM3D method with Point-MAE alongside Lrecp and LGC . As reported
in Table 7, this combination, termed Point-MAE+GM3D*, shows a clear improvement over the baseline
model by achieving higher pretraining SVM evaluation metrics on ModelNet40 and better fine-tuning results
on ScanObjectNN (OBJ-ONLY). This supports the idea that a training focus on more geometrically complex
patches contributes to improved model generalization.

Building on this structure, we enhance the performance by incorporating knowledge distillation alongside the
GM3D module. The improved model, Point-MAE+GM3D, which employs three distinct loss functions, not
only outperforms the baseline Point-MAE but also shows further improvement over the Point-MAE+GM3D*

approach that utilizes only Lrecp and LGC . This advancement validates the effectiveness of our knowledge
distillation strategy, which focuses on accurate reconstruction while also capturing the complex geometric
interrelations in the data. The various impacts of knowledge distillation are further explored in Table 8.

Maximum Hard Patch Ratios. The data presented in Table 2 offer insights into the ablation study
focusing on different hardness ratios, denoted by A, within the context of point cloud modeling. It is
noteworthy that the inclusion of GM3D enhances the performance across different A settings when compared
to the original model, with the highest performance observed at a 50% hardness ratio, where the OBJ-ONLY
score reaches 90.36%.

Additional Configurations. In Table 8, which details our ablation study, we investigate the various
configurations of our proposed method. The ‘Input’ column pertains to the input utilized by the knowledge-
teacher network; it specifies whether complete data X is provided or only partial data Xv are used. The
second column, denoted by L, encompasses both Lrecf and Lrecp , representing the reconstruction loss func-
tions in two spaces. In the third column, we analyze the impact of the chosen loss functions serving as the
ground truth for LGC , which is our geometric complexity loss. As can be seen, the performance is enhanced
by the geometric complexity guidance, which is informed by the feature-level knowledge distillation (rows
c, and g). The subsequent column considers the influence of momentum, a parameter linked to the perfor-
mance of GM3Dt. In the fifth column, we evaluate the impact of implementing Lrecf on the interactions
between various components of GM3Ds and F. As evidenced by the results, each setting has been systemat-
ically varied to assess its effect on the final performance metric, OBJ-ONLY, demonstrating the significant
contributions of each component to the model’s learning efficacy.

5 Conclusion

We presented a geometrically-informed masked selection strategy for point cloud representation learning. Our
GeoMask3D (GM3D) approach leverages a teacher-student model to find complex-to-reconstruct patches in
the point cloud, which are more informative for learning robust representations. A knowledge distillation is
further proposed to transfer rich geometric information from the teacher to the student, thereby improving
the student’s reconstruction of masked point clouds. Comprehensive experiments on several datasets and
downstream tasks show our method’s ability to boost the performance of point cloud learners.
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