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Abstract

Curriculum learning strategies in prior multi-
task learning approaches arrange datasets in a
difficulty hierarchy either based on human per-
ception or by exhaustively searching the op-
timal arrangement. However, human percep-
tion of difficulty may not always correlate well
with machine interpretation leading to poor
performance and exhaustive search is compu-
tationally expensive. Addressing these con-
cerns, we propose two classes of techniques to
arrange training instances into a learning cur-
riculum based on difficulty scores computed
via model-based approaches. The two classes
i.e Dataset-level and Instance-level differ in
the granularity of arrangement. We conduct
comprehensive experiments with 12 datasets
and show that instance-level and dataset-level
techniques lead to an average performance im-
provement of 4.17% and 3.15% over their re-
spective baseline methods. Furthermore, we
find that most of this improvement comes from
correctly answering the difficult instances, im-
plying a greater efficacy of our techniques on
difficult tasks.

1 Introduction

In recent times, Multi-Task Learning (MTL) (Caru-
ana, 1997) i.e developing one Generalist model
capable of handling multiple tasks has received sig-
nificant attention from the NLP community (Agha-
janyan et al., 2021; Lu et al., 2020; Sanh et al.,
2019; Clark et al., 2019). Developing a single
model in MTL has several advantages over multi-
ple Specialist models as it (i) can leverage knowl-
edge gained while learning other tasks and perform
better in limited-data scenarios (Crammer and Man-
sour, 2012; Ruder et al., 2017), (ii) prevents overfit-
ting to a single task, thus providing a regularization
effect and increasing robustness (Clark et al., 2019;
Evgeniou and Pontil, 2004), and (iii) provides stor-
age and efficiency benefits because only one model
needs to be maintained for all the tasks (Bingel and
S@gaard, 2017).

Prior work has shown that presenting training
instances ordered by difficulty level benefits not
only humans but also machines (Elman, 1993; Xu
et al., 2020). Arranging instances in a difficulty
hierarchy i.e Curriculum Learning (easy to hard)
and Anti-Curriculum Learning (hard to easy) has
been studied in MTL setup (McCann et al., 2018;
Pentina et al., 2015). These techniques arrange
datasets either based on human perception of diffi-
culty or by exhaustively searching the optimal ar-
rangement. However, both these approaches have
several limitations. Firstly, human perception of
difficulty may not always correlate well with ma-
chine interpretation, for instance, a dataset that is
easy for humans could be difficult for machines to
learn or vice-versa. Secondly, exhaustive search is
computationally expensive and becomes intractable
as the number and size of datasets increase.

In this work, we propose two classes of tech-
niques that enable models to form their own learn-
ing curriculum in a difficulty hierarchy. The two
classes i.e Dataset-level and Instance-level differ
in the granularity of arrangement. In dataset-level
techniques, we arrange datasets based on the aver-
age difficulty score of their instances and train the
model sequentially such that all the instances of a
dataset are learned together. In instance-level tech-
niques, we relax the dataset boundaries and order
instances solely based on their difficulty scores.
We leverage two model-based approaches to com-
pute the difficulty scores (Section 2).

We experiment with 12 datasets covering vari-
ous sentence pair tasks and show the efficacy of
instance and dataset-level techniques with an av-
erage performance gain of 4.17% and 3.15% over
their respective baseline methods. Furthermore,
we analyze model predictions and find that diffi-
cult instances contribute most to this improvement
implying greater effectiveness of our techniques
on difficult tasks. We note that our techniques are
generic and can be employed in any MTL setup.



In summary, our contributions are as follows:
(i) Incorporating Machine Interpretation of Dif-
ficulty in MTL: We introduce a novel framework
for MTL that goes beyond human intuition of sam-
ple difficulty and provides model the flexibility
to form its own curriculum at two granularities:
instance-level and dataset-level.

(i) Performance Improvement: We experiment
with 12 varied datasets and show that instance and
dataset-level techniques lead to a significant perfor-
mance improvement of 4.17% and 3.15%.

(iii) Findings and Benefits for the Community:
We conduct experiments in a limited training data
regime and find that the proposed techniques are
most effective on difficult instances. This find-
ing makes our techniques more applicable for real-
world tasks as they are often more difficult than
abstract toy tasks and provide limited training in-
stances. Furthermore, we analyze difficulty scores
and find that approximately one-third instances of
existing datasets get assigned a very low difficulty
score i.e very easy-to-lean instances, hinting at pres-
ence of dataset artifacts or inherent easiness of a
large portion of the datasets. These findings will
help the community in developing high-quality and
hard datasets.

2 Difficulty Score Computation

In this section, we describe two model-based diffi-
culty computation methods based on recent works.

2.1 Cross Review Method

Xu et al. (2020) proposed a method that requires
splitting the training dataset D into [N equal meta-
datasets (M7 to M) and training a separate model
on each meta-dataset with identical architecture.
Then, each training instance is inferred using the
models trained on other meta-datasets and the aver-
age prediction confidence is subtracted from 1 to
get the difficulty score. Mathematically, score of
instance ¢ (€ M}) is calculated as,
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where c;; is prediction confidence on instance ¢
given by the model trained on M;.
2.2 Average Confidence Across Epochs

In this method, the difficulty score is computed by
simply averaging the prediction confidences across

epochs of a single model and subtracting it from 1.
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where the model is trained till £ epochs and c;; is
prediction confidence of the correct answer given
by the model at j** checkpoint. This method is
based on a recent work (Swayamdipta et al., 2020)
that analyses the behavior of model during training
i.e “training dynamics”.
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Algorithm 1: General Training Structure
Input:
D: the training dataset,
{S1, ..., Sk }: splits created from D
frac: fraction of previous split
Initialization: Model M
for i < 1to K do
train_data = S;
for j < 1toi— 1do
sampled_S; = Sampler(S;, frac)
train_data += sampled_S;
end

Train M with train_data
end

Train M with D

3 Proposed Techniques

Addressing the limitations of current approaches
highlighted in Section 1, we propose two classes
of techniques to arrange training instances that al-
low models to form the learning curriculum based
on their own difficulty interpretation. The tech-
nique classes i.e Dataset-Level and Instance-Level
leverage difficulty scores computed using meth-
ods described in section 2 and follow the general
training structure shown in Algorithm 1. The train-
ing dataset D is divided into K splits (S, ..., Sk)
based on the difficulty score, and model M is
trained sequentially on these ordered splits. Fur-
thermore, while training the model on split .5;, a
fraction (frac) of instances from previous splits
(Sj(j < 1)) is also included in training to avoid
catastrophic forgetting (Carpenter and Grossberg,
1988) i.e forgetting the previous splits while learn-
ing a new split. Note that D is a collection of
multiple datasets in the MTL setup. The final step
requires training on the entire dataset D as the eval-
uation sets often contain instances of all tasks and
difficulty levels. Dataset-level and Instance level
techniques vary in the way splits (51, ..., Si) are
created as described below:
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Figure 1: Distribution of instances based on difficulty
score computed using Average Confidence method.
Difficulty score of datasets are shown in the legends.

Dataset-level techniques: In this technique
class, each dataset represents a split and is ar-
ranged based on the average difficulty score of its
instances i.e score of a dataset Dy, is calculated as:
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where, s; is the difficulty score of instance i € Dj,.

Instance-level techniques: Here, we relax
the dataset boundaries and arrange instances
solely based on their difficulty scores. We study
two approaches of dividing instances into splits
(S1, ..., Sk): Uniform and Distribution-based split-
ting. In the former, we create K uniform splits
from D, while in the latter, we divide based on
the distribution of scores such that instances with
similar scores are grouped in the same split!. The
latter approach can result in unequal split sizes as
we show in Figure 3 that the number of instances
varies greatly across difficulty scores.

4 Experiments

Datasets: We experiment with 12 datasets cov-
ering various sentence pair tasks, namely, Nat-
ural Language Inference (SNLI (Bowman et al.,
2015), MultiNLI (Williams et al., 2018), Adversar-
ial NLI (Nie et al., 2020)), Paraphrase Identification
(QQP (Iyer et al., 2017), MRPC (Dolan and Brock-
ett, 2005), PAWS (Zhang et al., 2019)), Common-
sense Reasoning (Winogrande (Sakaguchi et al.,
2020)), Question Answering NLI (QNLI (Wang
et al., 2018)), Dialogue NLI (DNLI (Welleck et al.,
2019)), and Numerical Reasoning (Stress Test of
Equate (Ravichander et al., 2019)). For evaluation
on robustness and generalization parameters, we

'Refer Supplementary for details

use HANS (McCoy et al., 2019) and Stress Test
(Naik et al., 2018) datasets.

Setup: We experiment in a low-resource regime
limiting the number of training instances of each
dataset to 5000. This enables evaluating our tech-
niques in a fair and comprehensive manner as trans-
former models achieve very high accuracy when
given large datasets. Furthermore, inspired by de-
caNLP (McCann et al., 2018), we reformulate all
the tasks in our MTL setup as span identification
Question Answering tasks!. This allows creating a
single model to solve the tasks that originally have
different output spaces.

Implementation Details: We use three values of
frac: 0,0.2, and 0.4 (refer Algorithm 1), N =5
(in Cross Review method), and ¥ = 5 (in Average
Confidence method). For distribution-based split-
ting, we experiment by dividing D into 3 and 5
splits'. These hyper-parameters are selected based
on development dataset performance.

Baseline Methods: In MTL, heterogeneous batch-
ing where all the datasets are combined and a batch
is randomly sampled has been shown to be much
more effective than homogeneous and partitioned
batching strategies (Gottumukkala et al., 2020).
Therefore, we use it as the baseline for instance-
level techniques. For dataset-level techniques, we
generate multiple dataset orders and take the aver-
age performance as the baseline. We average these
baseline scores across 3 different runs.

5 Results:

Table 1 shows the efficacy of our proposed curricu-
lum learning techniques.

Performance Improvement: Instance and
Dataset-level techniques achieve an average im-
provement of 4.17% and 3.15% over their respec-
tive baseline methods. This improvement in con-
sistent across all the datasets and also outperforms
single-task performance in most cases. Further-
more, we find that models leveraging Average Con-
fidence method (2.2) outperform their counterparts
using the Cross Review method (2.1)! rendering
Average Confidence approach as more effective
both in terms of performance and computation as
Cross Review requires training multiple models
(one for each meta-dataset).

Uniform Vs Distribution based splitting: In
instance-level experiments, distribution-based split-
ting shows slight improvement over uniform split-
ting. We attribute this to the superior inductive bias



Single-Task

Instance-Level

Dataset-Level

Datasets Heterogeneous(B)  Uniform Distribution (D) D with frac=0.4 Random Order(B) Proposed Order
EM F1 EM F1 EM Fl EM F1 EM F1 ‘ EM Fl1 EM Fl1

SNLI 7726 7742 | 7455 74.62 7179 7179 77.64 777 77.65 77.65 717 7175 78.94  79.05
MNLI Mismatched 6598 66.12 | 62.07 62.14 66.14 663  66.71 66.78 66.6  66.66 66.29 66.4 69.15  69.28
MNLI Matched 6533 6545 | 61.23 61.36 65.85 6596 6691 67.01 66.82  66.85 65.96  66.09 69.18  69.33
‘Winogrande 50 50 47.34 50 50.24 50.27 50 50.12 49.82 49.85 4799 49.85 48.37 50.3

QNLI 7421 7423 | 66.78 66.81 7042 7044 71.81 71.81 71.38 71.38 70.35  70.39 73.75  73.79
EQUATE 98.99 98.99 | 98.99 98.99 99.14 99.21 99.57 99.57 99.28 99.28 99.57 99.57 99.57 99.57
QQpP 80.04 80.06 | 7534 7535 78.89 789 79.23 79.25 79.11 79.12 79.23  79.26 80.27 80.29
MRPC 80.98 80.98 | 74.42 74.45 74.05 74.05 7595 75.98 754 754 7573 7577 79.08 79.08
PAWS Wiki 52.45 5249 | 5592 56.01 53.15 53.16 5439 5447 70.59 70.62 56.44  56.51 80.33 80.34
PAWS QQP 68.25 68.41 | 73.03 73.03 69 69 71.83 71.83 78.84 78.84 73.08 73.12 83.46 83.46
ANLIRI1 422 4257 | 38.1  38.28 42.1  42.13 457 457 432 4333 429 43.04 423 4258
ANLI R2 38.1 3878 | 35 35 398 399 389 39.05 372 3725 384 385 368 3697
ANLIR3 39.25 3938 | 36.17 36.24 385 38.62 38.17 3824 36.5 36.56 37.92 38.03 3725 374

DNLI 84.68 84.83 | 80.36 80.48 83.51 83.57 83.15 832 82.09 82.12 82.52 82.59 82.67 82.73
HANS - - 49.06 49.07 4895 49.01 483 4838 49.39 4945 48.22 48.27 48 48.09
Stress Test - - 55.28 55.44 56.2 5631 58.66 58.77 57.7 57775 56.74 56.84 59.94  60.15

Table 1: Results on performing curriculum learning using the proposed techniques with difficulty scores computed
via Average Confidence approach. Note that frac is 0 unless otherwise mentioned. B means baseline and D with
frac=0.4 column represents Distribution based splitting with value of frac as 0.4.

resulting from the collation of instances with simi-
lar difficulty scores to the same split.

Effect of adding instances from previous splits:
For dataset-level techniques, we find that it does
not provide any improvement. This is because all
the instances of a dataset are grouped in a single
split therefore, adding instances from other splits
doesn’t contribute much to the inductive bias. Fur-
thermore, in the case of instance-level, it leads to a
performance improvement because previous splits
contain instances of the same dataset hence, pro-
viding the inductive bias.

Difficulty Scores Analysis: Figure 3 shows the
distribution of training instances of all datasets
with difficulty scores computed using Average con-
fidence (2.2) method. This distribution reveals that
instances across datasets and within every dataset
vary greatly in difficulty as they are widely spread
across the difficulty scores. Comparing the average
difficulty score of all datasets (shown in legends of
Figure 3) shows that Equate and QNLI are easy-to-
learn while PAWS and Winogrande are relatively
difficult-to-learn. Furthermore, around 32% of the
training instances get assigned a difficulty score
of < 0.1 hinting at either the presence of dataset
artifacts or the inherent easiness of these instances.
A similar observation is made with Cross Review
method with the percentage being 37%.

Test Set Analysis: We also compute difficulty
scores of test instances and plot the performance
improvement achieved by our approach over the
baseline method for every difficulty score bucket
in Figure 2. We find that our technique is effective
especially on instances with high difficulty scores.

____ Proposed
Approach
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Figure 2: Performance improvement vs Difficulty score
for dataset level techniques.

This implies a greater efficacy of our techniques on
tasks that contain difficult instances.

6 Conclusion

In this paper, we proposed two classes of tech-
niques for MTL that allow models to form the learn-
ing curriculum based on their own interpretation
of difficulty. Comprehensive experiments with 12
datasets showed that our techniques lead to a perfor-
mance improvement of 4.17% and 3.15%. Further-
more, we found that difficult instances contribute
most to this improvement, implying a greater effi-
cacy of our techniques on difficult tasks. We also
analyzed the difficulty scores computed using two
model-based approaches and showed that almost
one-third of the training instances get assigned a
score of < 0.1, hinting at presence of dataset arti-
facts or inherent easiness of a large portion of the
existing datasets. We hope that our techniques and
findings will foster development of stronger MTL
models and high-quality hard datasets.
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Dataset Size | Dataset Size
SNLI 9824 MNLI 19645
Winogrande 1654 QNLI 5650
PAWS qqp 671 PAWS wiki 7987
MRPC 1630 ANLI R1 1000
ANLI R2 1000 ANLI R3 1000
DNLI 16408 HANS 30000
Equate 696 QQpP 40371
Stress Test 136464

Table 2: Statistics of our test set.

A Test set Statistics

Table 2 shows the statistics of the test sets used in
our experiments.

B Implementation Details:

We use the huggingface implementation of BERT-
Base model, batch size 16, learning rate 5e — 5 for
our experiments. We use three values of frac: 0,
0.2, and 0.4 (refer Algorithm 1), N = 5 (in Cross
Review method), and £ = 5 (in Average Confi-
dence method). For distribution based splitting,
we experiment by dividing D into 3 and 5 splits.
The results reported in the paper are for 3 splits.
These hyper-parameters are selected based on per-
formance on the dev dataset. We adjust the per gpu
training batch size and gradient accumulation ac-
cordingly to fit in our 4 Nvidia V100 16GB GPUs.
We keep the maximum sequence length of 512 for
our experiments to ensure that the model uses the
full context.

C Dataset Examples

Table 3 shows examples of datasets used in this
work.

D Difficulty Scores

Figure 3 shows the distribution of difficulty scores
computed using Cross Review and Average Confi-
dence approach.

E Results

Table 4 shows the results of instance-level and
dataset-level techniques.

F Analysis

Table 5 shows the comparison of comparison of
performance across difficulty scores for instance-
level approaches.

G Limitations

Our method involves computing the difficulty
scores of training instances which requires addi-
tional computation. However, this computation is
only required during training and not required dur-
ing inference. Hence, it does not add any computa-
tional overhead when deployed in an application.



Context — Question Datasets

C: Kyle doesn’t wear leg warmers to bed, while Logan almost always does. he is
more likely to live in a colder climate. false, or true ?
Q: Kyle is more likely to live in a colder climate. Winogrande

C: In order for an elevator to be legal to carry passengers in some jurisdictions it must

have a solid inner door. false, or true ?

Q: What is another name for a freight elevator? Does the context sentence contain QNLI
answer to this question ?

C: What makes a great problem solver? false, or true? QQP, MRPC,
Q: How can I be a fast problem solver? Are the two sentences semantically equivalent? PAWS

C: 1 sell miscellaneous stuff in local fairs . contradiction, or neutral, or entailment ?
Q: i used to work a 9 5 job as a telemarketer . Consistency of the dialogues ? DNLI

C: 205 total Tajima’ s are currently owned by the dealership. contradiction, or neutral,
entailment ?
Q: less than 305 total Tajima’ s are currently owned by the dealership. Equate

C: Two collies are barking as they play on the edge of the ocean contradiction, or SNLI, MNLI,
neutral, or entailment ? ANLI
Q: Two dogs are playing together.

Table 3: Examples context-question pairs of various types of training datasets used in our experiments. Answers
are highlighted in bold.

Instance-Level Dataset-Level
Datasets Uniform Splitting + Prev  Proposed Order with frac=0.4 AC on Proposed Order
EM F1 EM F1 EM F1

SNLI 76.19 76.2 77.09 77.11 77 77.02
MNLI Mismatched 64.54 64.55 65.83 65.85 65.36 6541
MNLI Matched 63.63 63.64 66.06 66.08 64.72 64.77
Winogrande 50.48 50.48 50.6 5094 48.43 49.79
QNLI 68.16 68.17 71.24  71.25 7223 72.26
EQUATE 99.71 99.71 99.43 9943 99.57 99.57
QQP 77.61 77.61 79.32  79.32 79.68 79.71
MRPC 72.15 72.15 76.07 76.07 77.55 717.55
PAWS Wiki 52.11 52.13 69.48 69.48 5292 5295
PAWS QQP 68.7  68.7 69.75 69.75 66.62 66.69
ANLI R1 419 41.93 43.8  43.88 447 448

ANLI R2 37.8  37.85 36.8  36.83 374 375

ANLI R3 37.58 37.62 36.5 36.53 36.83 36.83
DNLI 82.55 82.58 83.64 83.66 81.83 81.93
HANS 49.76  49.77 48.24 48.28 50.25 50.26
Stress Test 56.07 56.09 57.55 57.57 58.79 58.87
Average 62.43 6245 64.46 64.5 63.37 63.49

Table 4: Results on test sets.
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Figure 3: Distribution of instances based on difficulty score.

Difficulty Instances | Random Proposed
Score Order  Order
0.1 63736 94.86 93.77
0.2 18703 87.8 85.55
0.3 28035 81.85 79.85
0.4 17238 74.5 72.81
0.5 21502 65.03 65.84
0.6 17338 57.69 57.94
0.7 21255 46.75 48.92
0.8 18058 38.36 44.05
0.9 22327 26.8 33.07
1 46008 9.17 14.05

Table 5: Performance comparison across difficulty
scores for instance level techniques.




