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Abstract
Curriculum learning strategies in prior multi-001
task learning approaches arrange datasets in a002
difficulty hierarchy either based on human per-003
ception or by exhaustively searching the op-004
timal arrangement. However, human percep-005
tion of difficulty may not always correlate well006
with machine interpretation leading to poor007
performance and exhaustive search is compu-008
tationally expensive. Addressing these con-009
cerns, we propose two classes of techniques to010
arrange training instances into a learning cur-011
riculum based on difficulty scores computed012
via model-based approaches. The two classes013
i.e Dataset-level and Instance-level differ in014
the granularity of arrangement. We conduct015
comprehensive experiments with 12 datasets016
and show that instance-level and dataset-level017
techniques lead to an average performance im-018
provement of 4.17% and 3.15% over their re-019
spective baseline methods. Furthermore, we020
find that most of this improvement comes from021
correctly answering the difficult instances, im-022
plying a greater efficacy of our techniques on023
difficult tasks.024

1 Introduction025

In recent times, Multi-Task Learning (MTL) (Caru-026

ana, 1997) i.e developing one Generalist model027

capable of handling multiple tasks has received sig-028

nificant attention from the NLP community (Agha-029

janyan et al., 2021; Lu et al., 2020; Sanh et al.,030

2019; Clark et al., 2019). Developing a single031

model in MTL has several advantages over multi-032

ple Specialist models as it (i) can leverage knowl-033

edge gained while learning other tasks and perform034

better in limited-data scenarios (Crammer and Man-035

sour, 2012; Ruder et al., 2017), (ii) prevents overfit-036

ting to a single task, thus providing a regularization037

effect and increasing robustness (Clark et al., 2019;038

Evgeniou and Pontil, 2004), and (iii) provides stor-039

age and efficiency benefits because only one model040

needs to be maintained for all the tasks (Bingel and041

Søgaard, 2017).042

Prior work has shown that presenting training 043

instances ordered by difficulty level benefits not 044

only humans but also machines (Elman, 1993; Xu 045

et al., 2020). Arranging instances in a difficulty 046

hierarchy i.e Curriculum Learning (easy to hard) 047

and Anti-Curriculum Learning (hard to easy) has 048

been studied in MTL setup (McCann et al., 2018; 049

Pentina et al., 2015). These techniques arrange 050

datasets either based on human perception of diffi- 051

culty or by exhaustively searching the optimal ar- 052

rangement. However, both these approaches have 053

several limitations. Firstly, human perception of 054

difficulty may not always correlate well with ma- 055

chine interpretation, for instance, a dataset that is 056

easy for humans could be difficult for machines to 057

learn or vice-versa. Secondly, exhaustive search is 058

computationally expensive and becomes intractable 059

as the number and size of datasets increase. 060

In this work, we propose two classes of tech- 061

niques that enable models to form their own learn- 062

ing curriculum in a difficulty hierarchy. The two 063

classes i.e Dataset-level and Instance-level differ 064

in the granularity of arrangement. In dataset-level 065

techniques, we arrange datasets based on the aver- 066

age difficulty score of their instances and train the 067

model sequentially such that all the instances of a 068

dataset are learned together. In instance-level tech- 069

niques, we relax the dataset boundaries and order 070

instances solely based on their difficulty scores. 071

We leverage two model-based approaches to com- 072

pute the difficulty scores (Section 2). 073

We experiment with 12 datasets covering vari- 074

ous sentence pair tasks and show the efficacy of 075

instance and dataset-level techniques with an av- 076

erage performance gain of 4.17% and 3.15% over 077

their respective baseline methods. Furthermore, 078

we analyze model predictions and find that diffi- 079

cult instances contribute most to this improvement 080

implying greater effectiveness of our techniques 081

on difficult tasks. We note that our techniques are 082

generic and can be employed in any MTL setup. 083
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In summary, our contributions are as follows:084

(i) Incorporating Machine Interpretation of Dif-085

ficulty in MTL: We introduce a novel framework086

for MTL that goes beyond human intuition of sam-087

ple difficulty and provides model the flexibility088

to form its own curriculum at two granularities:089

instance-level and dataset-level.090

(ii) Performance Improvement: We experiment091

with 12 varied datasets and show that instance and092

dataset-level techniques lead to a significant perfor-093

mance improvement of 4.17% and 3.15%.094

(iii) Findings and Benefits for the Community:095

We conduct experiments in a limited training data096

regime and find that the proposed techniques are097

most effective on difficult instances. This find-098

ing makes our techniques more applicable for real-099

world tasks as they are often more difficult than100

abstract toy tasks and provide limited training in-101

stances. Furthermore, we analyze difficulty scores102

and find that approximately one-third instances of103

existing datasets get assigned a very low difficulty104

score i.e very easy-to-lean instances, hinting at pres-105

ence of dataset artifacts or inherent easiness of a106

large portion of the datasets. These findings will107

help the community in developing high-quality and108

hard datasets.109

2 Difficulty Score Computation110

In this section, we describe two model-based diffi-111

culty computation methods based on recent works.112

2.1 Cross Review Method113

Xu et al. (2020) proposed a method that requires114

splitting the training dataset D into N equal meta-115

datasets (M1 to MN ) and training a separate model116

on each meta-dataset with identical architecture.117

Then, each training instance is inferred using the118

models trained on other meta-datasets and the aver-119

age prediction confidence is subtracted from 1 to120

get the difficulty score. Mathematically, score of121

instance i (∈Mk) is calculated as,122

si = 1−
∑

j∈(1,...,N),j 6=k cji

N − 1
123

where cji is prediction confidence on instance i124

given by the model trained on Mj .125

2.2 Average Confidence Across Epochs126

In this method, the difficulty score is computed by127

simply averaging the prediction confidences across128

epochs of a single model and subtracting it from 1. 129

si = 1−
∑E

j=1 cji

E
130

where the model is trained till E epochs and cji is 131

prediction confidence of the correct answer given 132

by the model at jth checkpoint. This method is 133

based on a recent work (Swayamdipta et al., 2020) 134

that analyses the behavior of model during training 135

i.e “training dynamics”. 136

Algorithm 1: General Training Structure
Input:
D: the training dataset,
{S1, ..., SK}: splits created from D
frac: fraction of previous split
Initialization: Model M
for i← 1 to K do

train_data = Si

for j ← 1 to i− 1 do
sampled_Sj = Sampler(Sj , frac)
train_data += sampled_Sj

end
Train M with train_data

end
Train M with D

3 Proposed Techniques 137

Addressing the limitations of current approaches 138

highlighted in Section 1, we propose two classes 139

of techniques to arrange training instances that al- 140

low models to form the learning curriculum based 141

on their own difficulty interpretation. The tech- 142

nique classes i.e Dataset-Level and Instance-Level 143

leverage difficulty scores computed using meth- 144

ods described in section 2 and follow the general 145

training structure shown in Algorithm 1. The train- 146

ing dataset D is divided into K splits (S1, ..., SK) 147

based on the difficulty score, and model M is 148

trained sequentially on these ordered splits. Fur- 149

thermore, while training the model on split Si, a 150

fraction (frac) of instances from previous splits 151

(Sj(j < i)) is also included in training to avoid 152

catastrophic forgetting (Carpenter and Grossberg, 153

1988) i.e forgetting the previous splits while learn- 154

ing a new split. Note that D is a collection of 155

multiple datasets in the MTL setup. The final step 156

requires training on the entire dataset D as the eval- 157

uation sets often contain instances of all tasks and 158

difficulty levels. Dataset-level and Instance level 159

techniques vary in the way splits (S1, ..., SK) are 160

created as described below: 161
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Figure 1: Distribution of instances based on difficulty
score computed using Average Confidence method.
Difficulty score of datasets are shown in the legends.

Dataset-level techniques: In this technique162

class, each dataset represents a split and is ar-163

ranged based on the average difficulty score of its164

instances i.e score of a dataset Dk is calculated as:165

dk =

∑
i∈Dk

si

|Dk|
166

where, si is the difficulty score of instance i ∈ Dk.167

Instance-level techniques: Here, we relax168

the dataset boundaries and arrange instances169

solely based on their difficulty scores. We study170

two approaches of dividing instances into splits171

(S1, ..., SK): Uniform and Distribution-based split-172

ting. In the former, we create K uniform splits173

from D, while in the latter, we divide based on174

the distribution of scores such that instances with175

similar scores are grouped in the same split1. The176

latter approach can result in unequal split sizes as177

we show in Figure 3 that the number of instances178

varies greatly across difficulty scores.179

4 Experiments180

Datasets: We experiment with 12 datasets cov-181

ering various sentence pair tasks, namely, Nat-182

ural Language Inference (SNLI (Bowman et al.,183

2015), MultiNLI (Williams et al., 2018), Adversar-184

ial NLI (Nie et al., 2020)), Paraphrase Identification185

(QQP (Iyer et al., 2017), MRPC (Dolan and Brock-186

ett, 2005), PAWS (Zhang et al., 2019)), Common-187

sense Reasoning (Winogrande (Sakaguchi et al.,188

2020)), Question Answering NLI (QNLI (Wang189

et al., 2018)), Dialogue NLI (DNLI (Welleck et al.,190

2019)), and Numerical Reasoning (Stress Test of191

Equate (Ravichander et al., 2019)). For evaluation192

on robustness and generalization parameters, we193

1Refer Supplementary for details

use HANS (McCoy et al., 2019) and Stress Test 194

(Naik et al., 2018) datasets. 195

Setup: We experiment in a low-resource regime 196

limiting the number of training instances of each 197

dataset to 5000. This enables evaluating our tech- 198

niques in a fair and comprehensive manner as trans- 199

former models achieve very high accuracy when 200

given large datasets. Furthermore, inspired by de- 201

caNLP (McCann et al., 2018), we reformulate all 202

the tasks in our MTL setup as span identification 203

Question Answering tasks1. This allows creating a 204

single model to solve the tasks that originally have 205

different output spaces. 206

Implementation Details: We use three values of 207

frac: 0, 0.2, and 0.4 (refer Algorithm 1), N = 5 208

(in Cross Review method), and E = 5 (in Average 209

Confidence method). For distribution-based split- 210

ting, we experiment by dividing D into 3 and 5 211

splits1. These hyper-parameters are selected based 212

on development dataset performance. 213

Baseline Methods: In MTL, heterogeneous batch- 214

ing where all the datasets are combined and a batch 215

is randomly sampled has been shown to be much 216

more effective than homogeneous and partitioned 217

batching strategies (Gottumukkala et al., 2020). 218

Therefore, we use it as the baseline for instance- 219

level techniques. For dataset-level techniques, we 220

generate multiple dataset orders and take the aver- 221

age performance as the baseline. We average these 222

baseline scores across 3 different runs. 223

5 Results: 224

Table 1 shows the efficacy of our proposed curricu- 225

lum learning techniques. 226

Performance Improvement: Instance and 227

Dataset-level techniques achieve an average im- 228

provement of 4.17% and 3.15% over their respec- 229

tive baseline methods. This improvement in con- 230

sistent across all the datasets and also outperforms 231

single-task performance in most cases. Further- 232

more, we find that models leveraging Average Con- 233

fidence method (2.2) outperform their counterparts 234

using the Cross Review method (2.1)1 rendering 235

Average Confidence approach as more effective 236

both in terms of performance and computation as 237

Cross Review requires training multiple models 238

(one for each meta-dataset). 239

Uniform Vs Distribution based splitting: In 240

instance-level experiments, distribution-based split- 241

ting shows slight improvement over uniform split- 242

ting. We attribute this to the superior inductive bias 243
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Datasets
Single-Task Instance-Level Dataset-Level

Heterogeneous(B) Uniform Distribution (D) D with frac=0.4 Random Order(B) Proposed Order
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

SNLI 77.26 77.42 74.55 74.62 77.79 77.79 77.64 77.7 77.65 77.65 77.7 77.75 78.94 79.05
MNLI Mismatched 65.98 66.12 62.07 62.14 66.14 66.3 66.71 66.78 66.6 66.66 66.29 66.4 69.15 69.28
MNLI Matched 65.33 65.45 61.23 61.36 65.85 65.96 66.91 67.01 66.82 66.85 65.96 66.09 69.18 69.33
Winogrande 50 50 47.34 50 50.24 50.27 50 50.12 49.82 49.85 47.99 49.85 48.37 50.3
QNLI 74.21 74.23 66.78 66.81 70.42 70.44 71.81 71.81 71.38 71.38 70.35 70.39 73.75 73.79
EQUATE 98.99 98.99 98.99 98.99 99.14 99.21 99.57 99.57 99.28 99.28 99.57 99.57 99.57 99.57
QQP 80.04 80.06 75.34 75.35 78.89 78.9 79.23 79.25 79.11 79.12 79.23 79.26 80.27 80.29
MRPC 80.98 80.98 74.42 74.45 74.05 74.05 75.95 75.98 75.4 75.4 75.73 75.77 79.08 79.08
PAWS Wiki 52.45 52.49 55.92 56.01 53.15 53.16 54.39 54.47 70.59 70.62 56.44 56.51 80.33 80.34
PAWS QQP 68.25 68.41 73.03 73.03 69 69 71.83 71.83 78.84 78.84 73.08 73.12 83.46 83.46
ANLI R1 42.2 42.57 38.1 38.28 42.1 42.13 45.7 45.7 43.2 43.33 42.9 43.04 42.3 42.58
ANLI R2 38.1 38.78 35 35 39.8 39.9 38.9 39.05 37.2 37.25 38.4 38.5 36.8 36.97
ANLI R3 39.25 39.38 36.17 36.24 38.5 38.62 38.17 38.24 36.5 36.56 37.92 38.03 37.25 37.4
DNLI 84.68 84.83 80.36 80.48 83.51 83.57 83.15 83.2 82.09 82.12 82.52 82.59 82.67 82.73
HANS - - 49.06 49.07 48.95 49.01 48.3 48.38 49.39 49.45 48.22 48.27 48 48.09
Stress Test - - 55.28 55.44 56.2 56.31 58.66 58.77 57.7 57.75 56.74 56.84 59.94 60.15

Table 1: Results on performing curriculum learning using the proposed techniques with difficulty scores computed
via Average Confidence approach. Note that frac is 0 unless otherwise mentioned. B means baseline and D with
frac=0.4 column represents Distribution based splitting with value of frac as 0.4.

resulting from the collation of instances with simi-244

lar difficulty scores to the same split.245

Effect of adding instances from previous splits:246

For dataset-level techniques, we find that it does247

not provide any improvement. This is because all248

the instances of a dataset are grouped in a single249

split therefore, adding instances from other splits250

doesn’t contribute much to the inductive bias. Fur-251

thermore, in the case of instance-level, it leads to a252

performance improvement because previous splits253

contain instances of the same dataset hence, pro-254

viding the inductive bias.255

Difficulty Scores Analysis: Figure 3 shows the256

distribution of training instances of all datasets257

with difficulty scores computed using Average con-258

fidence (2.2) method. This distribution reveals that259

instances across datasets and within every dataset260

vary greatly in difficulty as they are widely spread261

across the difficulty scores. Comparing the average262

difficulty score of all datasets (shown in legends of263

Figure 3) shows that Equate and QNLI are easy-to-264

learn while PAWS and Winogrande are relatively265

difficult-to-learn. Furthermore, around 32% of the266

training instances get assigned a difficulty score267

of ≤ 0.1 hinting at either the presence of dataset268

artifacts or the inherent easiness of these instances.269

A similar observation is made with Cross Review270

method with the percentage being 37%.271

Test Set Analysis: We also compute difficulty272

scores of test instances and plot the performance273

improvement achieved by our approach over the274

baseline method for every difficulty score bucket275

in Figure 2. We find that our technique is effective276

especially on instances with high difficulty scores.277

Figure 2: Performance improvement vs Difficulty score
for dataset level techniques.

This implies a greater efficacy of our techniques on 278

tasks that contain difficult instances. 279

6 Conclusion 280

In this paper, we proposed two classes of tech- 281

niques for MTL that allow models to form the learn- 282

ing curriculum based on their own interpretation 283

of difficulty. Comprehensive experiments with 12 284

datasets showed that our techniques lead to a perfor- 285

mance improvement of 4.17% and 3.15%. Further- 286

more, we found that difficult instances contribute 287

most to this improvement, implying a greater effi- 288

cacy of our techniques on difficult tasks. We also 289

analyzed the difficulty scores computed using two 290

model-based approaches and showed that almost 291

one-third of the training instances get assigned a 292

score of ≤ 0.1, hinting at presence of dataset arti- 293

facts or inherent easiness of a large portion of the 294

existing datasets. We hope that our techniques and 295

findings will foster development of stronger MTL 296

models and high-quality hard datasets. 297
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Dataset Size Dataset Size

SNLI 9824 MNLI 19645
Winogrande 1654 QNLI 5650
PAWS qqp 671 PAWS wiki 7987
MRPC 1630 ANLI R1 1000
ANLI R2 1000 ANLI R3 1000
DNLI 16408 HANS 30000
Equate 696 QQP 40371
Stress Test 136464

Table 2: Statistics of our test set.

A Test set Statistics459

Table 2 shows the statistics of the test sets used in460

our experiments.461

B Implementation Details:462

We use the huggingface implementation of BERT-463

Base model, batch size 16, learning rate 5e− 5 for464

our experiments. We use three values of frac: 0,465

0.2, and 0.4 (refer Algorithm 1), N = 5 (in Cross466

Review method), and E = 5 (in Average Confi-467

dence method). For distribution based splitting,468

we experiment by dividing D into 3 and 5 splits.469

The results reported in the paper are for 3 splits.470

These hyper-parameters are selected based on per-471

formance on the dev dataset. We adjust the per gpu472

training batch size and gradient accumulation ac-473

cordingly to fit in our 4 Nvidia V100 16GB GPUs.474

We keep the maximum sequence length of 512 for475

our experiments to ensure that the model uses the476

full context.477

C Dataset Examples478

Table 3 shows examples of datasets used in this479

work.480

D Difficulty Scores481

Figure 3 shows the distribution of difficulty scores482

computed using Cross Review and Average Confi-483

dence approach.484

E Results485

Table 4 shows the results of instance-level and486

dataset-level techniques.487

F Analysis488

Table 5 shows the comparison of comparison of489

performance across difficulty scores for instance-490

level approaches.491

G Limitations 492

Our method involves computing the difficulty 493

scores of training instances which requires addi- 494

tional computation. However, this computation is 495

only required during training and not required dur- 496

ing inference. Hence, it does not add any computa- 497

tional overhead when deployed in an application. 498
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Context – Question Datasets

C: Kyle doesn’t wear leg warmers to bed, while Logan almost always does. he is
more likely to live in a colder climate. false, or true ?
Q: Kyle is more likely to live in a colder climate. Winogrande

C: In order for an elevator to be legal to carry passengers in some jurisdictions it must
have a solid inner door. false, or true ?
Q: What is another name for a freight elevator? Does the context sentence contain
answer to this question ?

QNLI

C: What makes a great problem solver? false, or true? QQP, MRPC,
Q: How can I be a fast problem solver? Are the two sentences semantically equivalent? PAWS

C: i sell miscellaneous stuff in local fairs . contradiction, or neutral, or entailment ?
Q: i used to work a 9 5 job as a telemarketer . Consistency of the dialogues ? DNLI

C: 205 total Tajima’ s are currently owned by the dealership. contradiction, or neutral,
entailment ?
Q: less than 305 total Tajima’ s are currently owned by the dealership. Equate

C: Two collies are barking as they play on the edge of the ocean contradiction, or
neutral, or entailment ?

SNLI, MNLI,
ANLI

Q: Two dogs are playing together.

Table 3: Examples context-question pairs of various types of training datasets used in our experiments. Answers
are highlighted in bold.

Datasets
Instance-Level Dataset-Level

Uniform Splitting + Prev Proposed Order with frac=0.4 AC on Proposed Order
EM F1 EM F1 EM F1

SNLI 76.19 76.2 77.09 77.11 77 77.02
MNLI Mismatched 64.54 64.55 65.83 65.85 65.36 65.41
MNLI Matched 63.63 63.64 66.06 66.08 64.72 64.77
Winogrande 50.48 50.48 50.6 50.94 48.43 49.79
QNLI 68.16 68.17 71.24 71.25 72.23 72.26
EQUATE 99.71 99.71 99.43 99.43 99.57 99.57
QQP 77.61 77.61 79.32 79.32 79.68 79.71
MRPC 72.15 72.15 76.07 76.07 77.55 77.55
PAWS Wiki 52.11 52.13 69.48 69.48 52.92 52.95
PAWS QQP 68.7 68.7 69.75 69.75 66.62 66.69
ANLI R1 41.9 41.93 43.8 43.88 44.7 44.8
ANLI R2 37.8 37.85 36.8 36.83 37.4 37.5
ANLI R3 37.58 37.62 36.5 36.53 36.83 36.83
DNLI 82.55 82.58 83.64 83.66 81.83 81.93
HANS 49.76 49.77 48.24 48.28 50.25 50.26
Stress Test 56.07 56.09 57.55 57.57 58.79 58.87
Average 62.43 62.45 64.46 64.5 63.37 63.49

Table 4: Results on test sets.
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(a) Cross Review approach (b) Average Confidence approach

Figure 3: Distribution of instances based on difficulty score.

Difficulty
Score

Instances Random
Order

Proposed
Order

0.1 63736 94.86 93.77
0.2 18703 87.8 85.55
0.3 28035 81.85 79.85
0.4 17238 74.5 72.81
0.5 21502 65.03 65.84
0.6 17338 57.69 57.94
0.7 21255 46.75 48.92
0.8 18058 38.36 44.05
0.9 22327 26.8 33.07
1 46008 9.17 14.05

Table 5: Performance comparison across difficulty
scores for instance level techniques.
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