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ABSTRACT

Fingerprint recognition has long been a cornerstone of biometric authentication,
yet robust performance across varying imaging conditions remains a challenge,
especially fingerphoto, which are generally acquired from the camera, instead of
the Livescan images, which are not prone to the environmental factors. Due to
the tremendous security demands in large-scale areas and areas where the deploy-
ment of computationally heavy devices might not be feasible, like refugee camps,
the development of a scalable solution must be a priority. Through this research,
we aim to achieve this by understanding the impact of binarization on images
and models. Surprisingly, neither the role of Binarized Neural Networks (BNNs)
nor binary fingerprint images (especially photos, not scans) has been explored
in the literature. Henceforth, in this work, we conduct a comprehensive study
of fingerprint recognition using both floating-point-based Deep Neural Networks
(DNNGs) and Binarised Neural Networks (BNNs) across multiple image represen-
tations, ranging from RGB to grayscale to binary. Our experiments reveal that
while DNNs excel with richer representations such as RGB and grayscale, BNNs
demonstrate superior compatibility with binary fingerprints, effectively leverag-
ing their reduced complexity to achieve competitive or even better recognition
accuracy. This finding highlights the importance of aligning model architectures
with input spectra: full-precision networks benefit from information-rich domains,
whereas binarized models coupled with binary images offer both efficiency and
improved accuracy in inherently discrete representations. The results provide new
insights into spectrum-aware fingerprint recognition, guiding the design of accu-
rate and resource-efficient biometric systems.

1 INTRODUCTION

Fingerprint recognition has long served as the cornerstone of biometric authentication due to
its uniqueness, permanence, and ease of acquisition. Over decades, research on contact-based
fingerprint sensors has delivered highly reliable performance under controlled conditions, en-
abling deployment in large-scale national identity programs, border management, and consumer-
grade authentication systems. However, with the rising demand for contactless biometric so-
lutions—particularly in remote and mobile authentication scenarios—fingerphoto recognition,
wherein fingerprints are captured using commodity cameras such as those embedded in smartphones,
has emerged as a promising alternative (Donida Labati et al., |2019; Malhotra et al.l 2024)). This
modality offers clear advantages: it is hygienic, cost-effective, and obviates the need for specialized
hardware. Yet, fingerphoto recognition introduces several unique challenges arising from uncon-
strained acquisition: uncontrolled illumination, diverse backgrounds, variations in skin tone, motion
blur, and environmental noise (Sreehar1 & Anzar, [2025).

Unlike contact-based sensors that are engineered to optimise ridge—valley contrast, fingerphotos
are captured under consumer-grade imaging pipelines that often involve automatic white-balancing,
colour processing, and compression, thereby altering the fingerprint signal. Prior works have shown
that domain mismatch between contact and contactless modalities can substantially degrade recog-
nition performance (Grosz et al.| [2021). A critical but underexplored aspect of these challenges
lies in the spectral representation of fingerphotos, whether they are processed in RGB, grayscale,
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Figure 1: Can spectrum choice decide whether recognition models succeed or fail? Why do binary
models thrive on binary images, while color spectra shift the outcome?
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or binary form. Traditional fingerprint systems rely primarily on grayscale representations that cap-
ture ridge—valley structures and minutiae points, forming the basis of classical fingerprint matching.
Fingerphotos, however, inherently capture richer colour information, which may encode additional
textural cues useful for recognition (Murshed et al.,|2023). Subsequently, being captured from smart-
phone cameras, which these days are of significantly high resolution, storing these fingerphotos is
also creating a serious issue for edge devices. For example, a single fingerphoto image captured
from an Android camera provides an image of resolution 3072 x 4082 and of size 2.51 Mb. One can
imagine where millions of identities need to be matched, saving such high storage-demanding im-
ages is challenging. On the other hand, binary representations emphasise the ridge structures more
explicitly, but at the cost of discarding subtle colour and intensity variations. The choice of spectrum
thus directly influences recognition accuracy, model robustness, and computational efficiency. De-
spite its importance, a systematic study of spectrum-aware fingerphoto recognition, spanning RGB,
grayscale, and binary domains, remains largely absent in the existing literature. Due to several
challenges involved in the processing of fingerphoto images, especiallythe cost of string both heavy
model weights (full precision floating points) and images (several of MBs), this research aims to
advance fingerphoto recognition for mobile devices including edge-devices.

With the advent of Deep Neural Networks (DNNs), spectrum-rich representations (RGB and
grayscale) can be effectively leveraged for extracting fine-grained intensity, texture, and structural
cues. In contrast, Binarized Neural Networks (BNNs), which quantize weights and activations to
binary values, cause significant efficiency gains by reducing both memory footprint and compu-
tational cost (Zhang et al., [2023). However, their performance often deteriorates when handling
high-variance input distributions, such as unconstrained fingerphotos. This raises a fundamental
research question: How does the spectral domain of input data impact fingerphoto recognition per-
formance across full-precision and binarized models? Further, the recent study (Zhang et al., [2025)
shows that the BNNs are highly robust in handling adversarial corruptions on large-scale datase
than the full precision models. Therefore, utilising the BNNs coupled with binary images will not
only save the computational cost but also ensure the developed safety-critical system is robust to
adversarial perturbations. In this work, we present the first comprehensive study on spectrum-aware
fingerphoto recognition across RGB, grayscale, and binary representations, systematically evaluat-
ing the trade-offs between accuracy, efficiency, and generalization (Figure: [T). Our contributions
can be summarized as follows: (i) We conduct a systematic evaluation of widely used pretrained
DNNs alongside pretrained BNNs, analyzing their recognition performance on fingerphotos repre-
sented in color (RGB), grayscale, and binary domains. (ii) We explore mixed-precision architectures
by selectively binarizing layers within DNNs trained on color fingerphotos, and examine their im-
pact on recognition accuracy across different spectral domains. This hybrid design highlights a new
pathway for balancing accuracy and efficiency in fingerphoto recognition.

2 RELATED WORK

The transition from traditional contact-based fingerprint systems to touchless fingerphoto recogni-
tion has opened up promising directions for hygienic, cost-effective, and mobile-friendly authenti-
cation. However, it has also introduced unique challenges related to acquisition, spectral represen-
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tation, and interoperability. Recent surveys highlight that unlike touch-based systems, fingerphotos
are highly susceptible to uncontrolled illumination, background clutter, variations in pose, and scale
distortion, making robust recognition a non-trivial task (Priesnitz et al., [202 1} [Kaplesh et al.| [2025)).
These limitations emphasize the need for systematic investigations that go beyond conventional
grayscale ridge—valley matching to fully exploit and evaluate spectral representations. To support
research in this direction, several databases have been introduced. Chopra et al. released one of the
first unconstrained fingerphoto datasets, explicitly capturing variations in illumination, background,
and hand positioning, thereby highlighting the challenges of recognition under real-world conditions
(Chopra et al., |2018). Other efforts such as ISPFDv2 and related collections attempted to capture
semi-controlled fingerphoto images, yet fully unconstrained benchmarks remain scarce. In paral-
lel, work on preprocessing and interoperability has sought to bridge the gap between contactless
and legacy contact-based systems. Early contributions demonstrated that resolution normalization
and rescaling of fingerphotos toward the 500 dpi standard used in contact sensors improved cross-
domain matching (Kunsuk & Areekull 2023). Building on this, CNN-based frameworks such as
the multi-Siamese architecture of Lin and Kumar combined ridge and minutiae-based representa-
tions to learn domain-invariant features, significantly enhancing contactless-to-contact recognition
performance (Lin & Kumar, 2018)).

At the algorithmic level, deep neural networks have been central to recent advances in feature ex-
traction. Tang et al. proposed FingerNet, a unified architecture that integrates fingerprint domain
knowledge, such as orientation estimation, enhancement, and minutiae detection—within an end-to-
end deep network, thereby improving robustness on noisy and latent fingerprints (Tang et al.l[2017).
Beyond domain-specific designs, researchers have also investigated whether ImageNet-pretrained
object recognition networks can generalize to biometric tasks. Kumar and Agarwal showed that
such models transfer surprisingly well to modalities including face, iris, and fingerprint, often
providing competitive accuracy without requiring large task-specific datasets (Kumar & Agarwal,
2024). These findings suggest that spectrum-rich fingerphotos, particularly in RGB, could be better
exploited by leveraging pretrained architectures. In parallel, efficiency has become an important
consideration, as fingerphoto recognition is increasingly deployed on mobile devices. Recent devel-
opments in network binarization have shown that Binary Neural Networks (BNNs), which restrict
both weights and activations to binary values, can drastically reduce model size and computational
cost, making them well-suited for deployment on resource-constrained platforms (Qin et al., [2020).
However, such binarization often comes with a drop in recognition accuracy, especially when ap-
plied to high-variance biometric data such as unconstrained fingerphotos. This raises open questions
about how binarized and hybrid architectures perform when exposed to different spectral domains.

While prior works have significantly advanced touchless fingerprint recognition in terms of datasets,
preprocessing pipelines, and architectural design, there remains a lack of systematic study on
spectrum-aware fingerphoto recognition. Specifically, the implications of representing fingerpho-
tos in color, grayscale, or binary domains, and how these interact with full-precision deep models
versus binarized networks, remain largely unexplored. In this work, we address this gap by conduct-
ing a comprehensive analysis of fingerphoto recognition across RGB, grayscale, and binary spectra.
We evaluate both pretrained and fine-tuned deep networks, investigate the generalization ability of
spectrum-aware models, and explore mixed-precision architectures that selectively binarize layers
to balance efficiency and accuracy. In doing so, our study provides new insights into the trade-offs
between spectral representation, recognition performance, and computational complexity in finger-
photo recognition.

3 EXPERIMENTAL SETUP FOR COST-EFFECTIVE FINGERPHOTO
RECOGNITION

3.1 FINGERPHOTO DATASETS

For our experiments, we employ the IIIT-D SmartPhone Finger-selfie Database vl (ISPFDv1)
(Sankaran et al.| |2015)), a fingerphoto dataset collected using smartphones. The database originally
consists of 64 subjects; however, due to missing information for one subject, we utilize data from 63
subjects in our study. For each subject, eight color fingerphotos are available, corresponding to the
right index and right middle fingers. These images are captured under two distinct background con-
ditions, natural and white, across both indoor and outdoor environments, thereby ensuring diversity



Under review as a conference paper at ICLR 2026

RN e

Natural Indoor Natural Outdoor

- fli! =1F

White Indoor White Outdoor

Figure 2: Figure illustrating color, grayscale, and binary fingerphoto images. It reflects the chal-
lenges involving illumination and background in fingerphoto recognition. These factors also plays
major role when converting images to binary version, hence inaccraute conversion can lead to the
poor performance.

in illumination and background variability. The dataset represents four acquisition scenarios: Natu-
ral Indoor (NI), Natural Outdoor (NO), White Indoor (WI), and White Outdoor (WO), each having
different background conditions. It is interesting to note that livescan images are not only insensitive
to illumination, but there is no role of background. Due to these factors, fingerphoto recognition is
a complex case than the livescan fingerprint.

To prepare the dataset, we first segment the fingerphoto images and subsequently apply enhance-
ment for further use. The fingerprint region is segmented using the COLFISPROOF method (Kol-
berg et al.L[2023)) with a ResNet50 backbone, followed by morphological post-processing, connected
component analysis, and convex hull refinement to isolate the largest foreground region. To improve
segmentation quality, we additionally generate a version of the fingerphoto with a black background,
reapply the COLFISPROOF segmentation, and select the better of the two outputs. The final seg-
mented image is then enhanced using Contrast Limited Adaptive Histogram Equalization (CLAHE)
(Zuiderveld, |1994) on the luminance channel in the LAB color space. CLAHE adaptively increases
local contrast while avoiding noise amplification, thereby improving ridge-valley visibility in the
fingerphotos. These enhanced images are subsequently employed for fingerphoto recognition.

3.2 COLOR-SPACE CONVERSION: RGB-GRAY-BINARY

To normalize the spectral domain of the dataset, we convert RGB fingerphoto images into grayscale
using the OpenCV implementation. Specifically, each pixel in the grayscale image is obtained as a
weighted sum of the original Red, Green, and Blue channels: 14,4, = 0.299R 4-0.587G + 0.114 5.
This formulation reflects the human visual system’s higher sensitivity to green, followed by red and
blue, ensuring perceptually consistent brightness preservation during conversion. The process is ap-
plied uniformly across all images while maintaining the original folder hierarchy, thereby providing
a consistent grayscale dataset for spectrum-aware recognition experiments.

To further normalize the spectrum, grayscale fingerphoto images are converted into binary form
using adaptive Gaussian thresholding (Rehman & Haroon, 2023). In this approach, each pixel
intensity is compared against a locally computed threshold derived from a weighted mean of its
neighborhood, adjusted by a constant. Formally, for each pixel p(x, y), the binary value is assigned
as

255, ifp(z,y) > T(z,y) — C,
0, otherwise,

Bay) = { 1)

where T'(z,y) denotes the Gaussian-weighted mean intensity of a block of size 11 x 11 centered
at (x,y), and C = 2 is a correction factor. This local adaptive method is more robust than global
thresholding in handling illumination variations and non-uniform contrasts, thereby preserving ridge
structures in the binarized fingerphoto images.

Figure2]shows the fingerphoto images demonstrating color, grayscale, and binary spectrum, further,
reflecting the information present in each spectrum.
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Figure 3: Figure illustrating color, grayscale, and binary fingerphoto matching. The results indicate
that binary fingerphotos, when combined with partially binarized models, achieve superior recog-
nition compared to conventional DNN trained on color or grayscale inputs, while simultaneously
reducing computational cost and model complexity.

3.3 ARCHITECTURES FOR FINGERPHOTO RECOGNITION

Since the biometric recognition, including fingerprint recognition, works in a zero-shot setting
where testing identities are never seen during training and is inspired by the effectiveness of object
recognition models (Kumar & Agarwal, 2024), the proposed research utilised several pre-trained
models. In this work, we explore both full-precision and binarized deep learning models for
spectrum-aware fingerphoto recognition. On the full-precision side, we consider several widely
used architectures, ResNet-50, ResNet-101 (He et al.l [2016), ViT-16 (Dosovitskiy et al., |2020),
EfficientNet-B2, EfficientNet-B4 (Tan & Le| [2019), and ConvNeXt (Liu et al.}2022)), that represent
different families of convolutional and transformer-based models with proven success in large-scale
image classification. To complement these, we also investigate lightweight binarized networks,
specifically BNext-S, BNext-M, and BNext-L (Guo et al.|[2022), which quantize weights and activa-
tions to binary values, thereby drastically reducing memory usage and computational cost (Figure[3).

Our study proceeds in two stages.

* First, we evaluate pretrained models directly on the fingerphoto dataset to establish base-
line performance across RGB, grayscale, and binary domains. These models are originally
trained on large-scale ImageNet variants, enabling us to assess their generalization capa-
bilities when transferred to the biometric domain without task-specific adaptation.

* The core focus of this work lies in exploring binarization strategies. We analyze the perfor-
mance of fully binarized models (BNext-S, BNext-M, BNext-L) as well as mixed-precision
variants, where only selected layers of full-precision DNNs like ResNet and ViT are bina-
rized. To fine-tune the partially binarized DNN models, we leverage the Tiny-ImageNet-
200 object dataset (Wu et al) [2017). This dataset comprises approximately 1.2 million
images distributed across 200 object categories. For our experiments, 500 images per class
are used for training, while a separate set of 10,000 images is reserved for validation. The
inclusion of Tiny-ImageNet not only provides large-scale object diversity but also enables
the DNNs and binarized models to generalize effectively before being adapted for finger-
photo recognition.

— To partially binarize ResNet-50 and ResNet-101, we replace the last 20% or 50%
of convolutional layers with binarized counterparts, while keeping the earlier layers in
full precision to preserve low-level representational capacity. In these binarized layers,
both the convolutional weights and the input activations are quantized to binary values
{-1,+1}, thereby reducing memory usage and computational overhead. Since the sign
function used for binarization is non-differentiable, training is made feasible through
the straight-through estimator (STE), which allows approximate gradient flow during
backpropagation. To stabilize optimization and avoid loss of accuracy, each binarized
convolutional layer is followed by batch normalization (BN) and dropout. This hybrid
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design enables the network to retain much of the expressive power of the original full-
precision ResNet while benefiting from the efficiency gains of binarization, making it
well-suited for spectrum-aware fingerphoto recognition under resource constraints.

— To make BinaryViT, the last 20% or 50% of transformer layers are binarized to re-
duce computational complexity while retaining discriminative power. For each binary
linear projection, the weight matrix is quantized as

Wb = Sign(W)’ Wb (= {_17 _|_1}dom><din, (2)

while the affine-normalized input is defined as

x' = ax + f, 3)
, Where «, and f3 are the affine transformation parameter initially taken as 1 and 0
respectively.
and the binary projection is expressed as

y =x'W;, +b. 4)
In the self-attention module, binary projections are applied to the queries, keys, and
values:
Q=XW}), K=XWi& V=XW, (5)
with the attention update computed as
KT
Attention(X) = softmax (Q ) V. (6)
Vi

In the feed-forward pyramid MLP, the forward pass is expressed as

H, = o(XW?), H, = fouma(H1), Y = (H, + H,)W}, (7

where fiyramia(-) denotes the multi-scale convolutional aggregation. By binarizing

0, Wk, Wy, W, W, while retaining full-precision normalization and residual
paths, BinaryViT significantly reduces FLOPs and memory footprint, yet preserves
recognition accuracy through affine scaling and residual compensation.

By systematically comparing pretrained models, fine-tuned models, and binarized models, we pro-
vide a comprehensive evaluation of how spectrum-aware representations interact with network pre-
cision in fingerphoto recognition.

4  FINGERPHOTO RECOGNITION RESULTS AND ANALYSIS

4.1 EFFECTIVENESS EVALUATION OF PRETRAINED DEEP AND BINARIZED MODELS

This study emphasizes the central question of whether color information plays a significant role
in fingerphoto recognition. As shown in Table [I, when color fingerphoto images are evaluated
using color-trained floating-point models such as ResNet-50 in the natural indoor (NI) scenario, the
performance reaches 85.98% under both cosine and Euclidean similarity measures. Comparable
results are observed with other architectures, where ResNet-101 achieves 82.80% and ViT attains
84.13% under the same conditions. Similar trends extend across the natural outdoor (NO), white
indoor (WI), and white outdoor (WO) scenarios. For example, in the NO setting, ResNet-50 and ViT
obtain accuracies of 85.18% and 75.40%, respectively, highlighting the consistent effectiveness of
color images when used with conventional deep neural networks (DNN5). Interestingly, pretrained
binary-weighted networks also demonstrate strong recognition performance on color fingerphotos.
For instance, BNext-T achieves 82.80% and BNext-S yields 83.60% in NI, which are competitive
with their floating-point counterparts. This trend is consistent across other acquisition scenarios,
suggesting that color images provide sufficient discriminative cues regardless of whether they are
processed by full-precision or binarized models. In other words, color representations appear to be
robust to the underlying network precision, consistently producing compatible performance.
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Scenario | Spectrum | Metric | ResNet50 ResNetl01 ViT EffNet-B2 EffNet-B4 ConvNeXt-T BNext-T BNext-S BNext-M BNext-L
Color Cos 85.98 82.80 84.13 80.16 69.58 73.28 82.80 83.60 82.80 78.04
Euc 85.98 82.28 82.28 80.95 68.52 73.02 83.33 83.86 82.54 7751
Cos 83.07 81.75 8228 7831 83.60 80.42 80.42 82.80 79.89 81.75
NI Grayscale
Euc 83.07 80.69 8042 7831 84.13 82.01 80.16 83.60 80.42 80.42
Binar Cos 62.96 59.52 60.32 61.38 64.29 69.05 65.61 70.90 70.37 67.99
Y Euc 61.90 58.73 61.11 61.64 62.96 68.78 65.08 70.63 70.11 68.25
Color Cos 85.18 85.18 7540  78.83 79.63 83.07 82.80 82.54 79.89 77.25
Euc 84.13 84.13 73.01 78.04 79.10 83.07 83.07 82.01 79.1 76.45
Cos 84.92 80.95 72.75 82.54 80.69 80.16 84.92 82.80 82.54 81.22
NO Grayscale
Euc 84.66 79.89 70.90  82.01 80.16 80.95 84.39 82.54 82.27 81.75
Binar Cos 64.55 66.66 53.97 69.57 69.05 71.69 70.37 73.81 70.37 69.58
Y Euc 62.96 66.14 53.17  70.10 66.93 70.90 70.63 74.07 70.63 69.05
Color Cos 72.22 73.54 71.16  69.58 77.51 72.22 68.52 67.99 70.10 70.90
Euc 70.90 71.95 70.37  70.63 76.72 71.43 68.78 67.46 70.37 71.16
Cos 70.37 68.78 7249 7143 71.96 71.96 67.19 68.78 67.19 65.34
WI Grayscale
Euc 70.37 67.19 71.43 70.37 72.22 71.69 67.19 69.84 67.46 65.61
Binar Cos 50.79 52.64 48.94 4894 53.97 52.38 52.64 52.38 52.64 44.44
Y Euc 49.20 52.64 48.41 48.15 53.97 5291 51.85 53.17 53.70 43.65
Color Cos 70.63 71.43 61.64  67.72 69.58 73.28 71.43 73.28 73.54 60.32
Euc 65.87 70.90 61.11 66.4 68.62 73.01 71.69 73.28 74.07 60.05
Cos 67.19 68.78 60.58  70.37 71.16 71.43 70.9 73.81 72.22 69.58
woO Grayscale
Euc 63.49 69.05 5820  70.10 70.37 73.28 69.84 74.34 72.49 69.31
Binar Cos 53.17 55.29 48.15 61.37 61.11 60.85 52.64 57.94 55.82 54.50
Y Euc 53.17 53.97 48.15 59.52 60.32 60.32 51.85 57.41 56.08 55.55

Table 1: Performance comparison (Top-1 accuracy in %) across four scenarios (Natural Indoor,
Natural Outdoor, White Indoor, White Outdoor), three spectral domains (Color, Grayscale, Binary),
and two distance/similarity metrics (Cosine, Euclidean). Models are shown as columns.

. . L Color Grayscale Binary
Scenario | Model Fraction of Binarization Cos Euc Cos Euc Cos Fuc
NI 20% 80.42 78.84 | 82.54 7857 | 17.46 17.20

50% 79.89 77.25 | 80.95 80.16 | 22.75 20.90

NO 20% 78.04 7540 | 76772 7593 | 2143 1772
ResNet101 50% 81.48 77.51 | 73.28 74.34 | 20.63 21.96

WI 20% 73.02 6825 6772 6429 | 17.20 15.87
50% 66.40 64.29 | 65.87 61.38 | 19.58 21.43

WO 20% 69.31 67.72 | 66.93 65.87 | 15.61 14.55
50% 68.25 68.52 | 62.70 62.96 | 20.90 17.46

Table 2: Performance comparison (Top-1 accuracy in %) across four scenarios (Natural Indoor,
Natural Outdoor, White Indoor, White Outdoor), three spectral domains (Color, Grayscale, Binary),
and two similarity measures (Cosine, Euclidean) for partially binarized ResNet101 (20% and 50%
layers). Best values in each row are highlighted in bold.

In contrast, binary fingerphoto representations reveal a different and more nuanced relationship with
network architectures. While floating-point models such as ResNet-50 achieve at most 60.96% ac-
curacy on binary images, binarized models exhibit notably higher performance. For example, in NI,
BNext variants achieve between 60.96% and 70.59%, clearly surpassing the floating-point baselines.
This effect is even more pronounced in the NO setting, where BNext-S attains 73.81%, representing
nearly a 9% improvement over ResNet-50. Similar relative gains are also observed in the WI and
WO scenarios. These results lead to two key insights. First, color fingerphotos retain discriminative
information that enables consistent recognition performance across both floating-point and binarized
networks. Second, binary fingerphotos align better with binarized models, where the compatibility
between binary input distributions and binary network weights yields superior recognition accuracy
compared to their floating-point counterparts. Together, these findings highlight that while color
remains a strong and versatile representation, binary fingerphotos can be more efficiently and ef-
fectively recognized by binarized architectures, offering a unique advantage in resource-constrained
biometric systems.
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4.2 PERFORMANCE TRENDS IN PARTIALLY BINARIZED NETWORKS

Based on the results in Table 2} we propose the use of partially binarized deep neural networks
(DNNGs) to systematically examine the dependency of binary fingerphoto representations on network
architecture. The analysis reveals distinct trends across spectral domains. For color inputs, we
observe that increasing the proportion of binarized layers in a floating-point model generally leads
to a decline in recognition performance. For example, when color fingerphotos are processed by
ResNet-101 with 20% of its layers binarized, the performance is 80.42%, whereas this drops to
79.89% when 50% of the layers are binarized. A more pronounced decrease is observed in the white
indoor (WI) scenario, where the performance falls from 73.02% (20% binarized) to 66.40% (50%
binarized). These results suggest that color and grayscale fingerphotos, which carry richer spectral
and textural cues, are better recognized by models that retain a larger fraction of floating-point
precision, as binarization reduces the network’s ability to preserve fine-grained intensity variations.

Interestingly, the opposite trend is observed for binary fingerphotos. Unlike color or grayscale im-
ages, binary representations consist primarily of discrete ridge—valley structures, which align more
naturally with the quantized decision boundaries of binarized networks. For instance, in the NI
scenario, recognition accuracy with ResNet-101 improves from 17.46% with 20% binarization to
22.75% with 50% binarization. Similarly, in the WI scenario under Euclidean distance, performance
increases from 15.87% (20%) to 21.43% (50%). These results indicate that as the binarization level
in the model increases, the network becomes more compatible with the binary input distribution,
yielding improved performance. Taken together, these findings highlight a complementary relation-
ship between image representation and network architecture. While color and grayscale fingerphotos
benefit from models that retain higher floating-point precision, binary fingerphotos exhibit stronger
affinity with highly binarized models. This dual behavior underscores the importance of spectrum-
aware model design: the optimal degree of binarization should be carefully chosen depending on
whether the input images are represented in color, grayscale, or binary form.

4.3 EFFICIENCY ANALYSIS: IMAGE AND MODEL SIZES

In addition to recognition, we analyse the storage efficiency of different spectral representations
and model architectures. The results in Figure [da] show that binary fingerphoto images occupy
substantially less storage compared to grayscale and color counterparts, making them more suitable
for resource-constrained environments. A similar trend is observed for models, where partially
binarized ResNet variants require less storage than their full-precision pretrained counterparts as
shown in Figure bl These findings demonstrate the effectiveness of binarization in reducing both
data and model size.

160 |
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Grayscale, Binary). tially binarized).

Figure 4: Storage and model size analysis. Binary fingerphoto images and partially binarized models
require significantly less storage compared to their full counterparts.
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4.4 LIMITATIONS AND FUTURE SCOPE

The dataset contains illumination variations that can affect binary fingerphoto conversion and reduce
recognition accuracy. Future work can explore illumination-invariant preprocessing and more robust
models.

5 DISCUSSION AND CONCLUSION

This study systematically examined fingerphoto recognition across different spectral representations,
RGB, grayscale, and binary, using both floating-point-weights-based deep neural networks (DNNs)
and binarised neural networks (BNNs). The results demonstrate a clear spectrum-dependent be-
haviour: full-precision DNNs achieve the best performance when processing information-rich inputs
such as RGB and grayscale fingerphotos, while BNNs exhibit a stronger affinity with binary images,
where the discrete ridge—valley structures align naturally with their quantized representations. Be-
yond recognition accuracy, we also observe significant efficiency advantages. Binary images require
substantially less storage compared to grayscale and color images, and partially binarized models
are consistently smaller in size than their full-precision counterparts. These findings emphasize
the importance of spectrum-aware model selection and architecture design: full-precision networks
are more effective in information-rich domains, whereas binarized networks not only achieve bet-
ter alignment with binary inputs but also reduce storage and computational demands. Overall, this
work provides valuable insights into the design of fingerprint recognition systems that balance ac-
curacy, efficiency, and scalability, enabling robust deployment in real-world, mobile, and resource-
constrained environments. We believe the presence of such a first-ever understanding can advance
the deployment of fingerphoto recognition, especially for remote areas where high computational
cost is still infeasible and secure the identities in refugee camps.
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