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ABSTRACT

We consider explainability in equivariant graph neural networks for 3D geometric
graphs. While many XAI methods have been developed for analyzing graph neu-
ral networks, they predominantly target 2D graph structures. The complex nature
of 3D data and the sophisticated architectures of equivariant GNNs present unique
challenges. Current XAI techniques either struggle to adapt to equivariant GNNs
or fail to effectively handle positional data and evaluate the significance of geomet-
ric features adequately. To address these challenges, we introduce a novel method,
known as EquiGX, which uses the Deep Taylor decomposition framework to ex-
tend the layer-wise relevance propagation rules tailored for spherical equivariant
GNNs. Our approach decomposes prediction scores and back-propagates the rel-
evance scores through each layer to the input space. Our decomposition rules
provide a detailed explanation of each layer’s contribution to the network’s pre-
dictions, thereby enhancing our understanding of how geometric and positional
data influence the model’s outputs. Through experiments on both synthetic and
real-world datasets, our method demonstrates its capability to identify critical ge-
ometric structures and outperform alternative baselines. These results indicate that
our method provides significantly enhanced explanations for equivariant GNNs.

1 INTRODUCTION

Equivariant graph neural networks have shown significant promise in addressing complex problems
across quantum physics, molecular science, materials science, and protein research (Thomas et al.,
2018; Fuchs et al., 2020; Liao & Smidt, 2022; Liao et al., 2023; Batzner et al., 2022; Passaro &
Zitnick, 2023; Zhang et al., 2023; Yu et al., 2023; Du et al., 2024). Despite their potential, a critical
challenge in assessing the scientific plausibility of these models’ outcomes is their interpretability.
Most equivariant GNNs are treated as black boxes, which undermines their reliability and limits
their applicability in scientific domains. Therefore, developing explainable artificial intelligence
(XAI) techniques tailored for equivariant GNNs is highly desirable. These techniques can provide
insights into how equivariant GNNs make predictions, thereby increasing the trustworthiness of their
outcomes. Moreover, XAI techniques can not only diagnose and improve existing models but also
facilitate further scientific knowledge discovery.

While many XAI methods have been proposed to study GNNs, they primarily focus on 2D
graphs (Yuan et al., 2023; 2020; Zheng et al., 2023; Chen et al., 2024; Wang et al., 2021). The
high dimensionality of 3D geometric data and the complexity of equivariant GNN models pose
unique challenges and opportunities in this domain. Current XAI techniques either struggle to adapt
to equivariant GNNs or fail to effectively handle positional data and evaluate the significance of geo-
metric features adequately. Specifically, many XAI methods (Huang et al., 2022; Zhang et al., 2021;
Vu & Thai, 2020) overlook the complex behavior of equivariant models, thus requiring additional ef-
fort before they can be applied to equivariant GNNs. On the other hand, some XAI methods, known
for their simplicity and adaptability, such as SA (Baldassarre & Azizpour, 2019), are insufficient to
provide a comprehensive explanation for the importance of geometric features.

To fill this gap, we introduce a novel XAI method called EquiGX, which measures the importance
of input components by decomposing the model predictions. The primary challenge in decom-
posing the predictions of spherical equivariant GNNs lies in attributing the tensor product-based
message-passing operations that are central to these networks. Our approach uses the Deep Taylor
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decomposition framework to extend layer-wise relevance propagation rules specifically for spherical
equivariant GNNs. By explicitly considering the tensor product (TP) operations, we derive new rel-
evance propagation rules based on Taylor decomposition. These rules enable us to back-propagate
relevance scores layer by layer until the input space, providing a detailed explanation of each layer’s
contribution to the network’s predictions. Consequently, EquiGX can enhance our understanding of
how geometric and positional data influence the model’s outputs.

2 BACKGROUND AND RELATED WORK

We denote a geometric graph with n nodes as G = {X,A,C}. Here, X = [X1, · · · ,Xn]
T ∈ Rn×d

is the node feature matrix, where each Xi ∈ Rd is the d-dimensional feature vector of node i.
C = [C1, · · · ,Cn]

T ∈ Rn×3 is the node coordinate matrix, where Ci is the coordinate of i-th
node. Nodes are generally connected by edges using a predetermined radial cutoff distance c ∈ R+,
so that the adjacency matrix A ∈ {0, 1}n×n is defined as Aij = 1 if and only if ∥Ci −Cj∥2 ≤ c.
We use N (i) to denote the set of neighboring nodes of node i.

2.1 EQUIVARIANT GRAPH NETWORKS

Equivariant graph neural networks are critical in the domain of AI for science, particularly for
modeling geometric graphs derived from three-dimensional atomic systems. These networks are
specifically designed to capitalize the physical symmetries and integrate these symmetries into the
model architecture to ensure that the learned hidden representations are equivariant to any symme-
try transformations applied to the input. Specifically, if the input geometric graph is transformed
under any operation in SE(3), which stands for the special Euclidean group in 3D space, the cor-
responding hidden representations at each layer are transformed correspondingly. Formally, a func-
tion f : Rn×3 → R2ℓ+1 mapping between 3D coordinates to a (2ℓ + 1)-dimensional vector is
SE(3) equivariant, if for any input coordinates C, we have f(RCT + t) = Dℓ(R)f(C), where
t ∈ R3 is a translation vector, R is a rotation matrix satisfying RTR = I and |R| = 1, and
Dℓ(R) ∈ R(2ℓ+1)×(2ℓ+1) represents the Wigner-D matrix of R (Gilmore, 2008). Here, function f
is invariant to translation, exemplifying a specific type of translation equivariance.

Among the various types of equivariant GNNs (Jing et al., 2020; Schütt et al., 2021; Satorras et al.,
2021), spherical equivariant GNNs (Thomas et al., 2018; Fuchs et al., 2020; Liao & Smidt, 2022)
are particularly prominent. In these approaches, spherical harmonics functions are used to first
encode 3D geometric information into higher dimensional SE(3) equivariant features. We denote
the order-ℓ1 SE(3) equivariant hidden features of node i as Hℓ1

i ∈ R2ℓ1+1. These features are used
in a tensor product operation to compute an equivariant message from node i to node j, denoted as
Mj→i, and the aggregated message Mi =

∑
j∈N (i) Mj→i is used to update the equivariant hidden

features. Mj→i consists of many features with multiple rotation orders as Mj→i =
⊕ℓmax

ℓ=0 M ℓ
j→i,

where
⊕

is direct sum. For an order-ℓ3 message M ℓ3
j→i, it can be computed by using the order-ℓ2

spherical harmonics function as

M ℓ3
j→i =

∑
ℓ1,ℓ2

F(ℓ1,ℓ2,ℓ3)(dij)Yℓ2 (r⃗ij)⊗Hℓ1
j . (1)

Here, F(·) is a learnable function usually implemented by a multi-layer perceptron (MLP) model,
dij = ∥Ci −Cj∥2 and r⃗ij =

Ci−Cj

dij
are the distance and direction between nodes i and j, re-

spectively. Yℓ2(·) : R3 → R2ℓ2+1 is the spherical harmonics function, which maps an input 3D
vector to a (2ℓ2 + 1)-dimensional vector representing the coefficients of order-ℓ2 spherical harmon-
ics bases. ⊗ is the tensor product operation, which takes a order-ℓ1 equivariant feature u and a
order-ℓ2 equivariant feature v as input, yielding order-ℓ3 equivariant feature as

(uℓ1 ⊗ vℓ2)ℓ3m3
=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

C(ℓ3,m3)
(ℓ1,m1),(ℓ2,m1)

uℓ1
m1

vℓ2
m2

, (2)

where C is Clebsch-Gordan (CG) coefficients (Griffiths & Schroeter, 2018) and m denotes the m-th
element in the equivariant feature. See more discussions about equivariant graph neural networks in
Appendix D.
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2.2 EXPLAINABILITY IN GRAPH NEURAL NETWORKS

Explainability in neural networks is vital for validating the trustworthiness and reliability of their
predictions, especially when applying these models to scientific domains. Current XAI methods pre-
dominantly focus on GNNs designed for 2D graphs. These approaches can be mainly categorized
into four classes, namely, gradients/feature-based methods, perturbation-based methods, decompo-
sition methods, and surrogate methods. Gradients/Feature-based methods, such as SA (Baldassarre
& Azizpour, 2019) and CAM (Pope et al., 2019), use gradient values to assess the importance of
input components. Their popularity stems from their simplicity and direct approach. Perturbation-
based methods (Ying et al., 2019; Yuan et al., 2021; Luo et al., 2020) evaluate changes in predictions
by perturbing different input features to identify the most impactful ones. Surrogate-based methods
(Huang et al., 2022; Zhang et al., 2021; Vu & Thai, 2020) involve fitting a simpler, interpretable
model, such as a decision tree, to mimic the behavior of the original model. The surrogate model’s
explanations are then used to understand the original predictions. Decomposition methods (Schnake
et al., 2021; Xiong et al., 2023; Feng et al., 2023) decompose prediction scores and back-propagate
them layer-by-layer to the input space to compute importance scores and provide deeper insights
into each network layer. Despite significant advances in XAI for 2D GNNs, these methods primar-
ily focus on evaluating the importance of edges, nodes, and subgraphs, struggling to incorporate
positional information effectively and fully evaluate the importance of geometric features. Conse-
quently, the application of these techniques to 3D geometric graphs, especially within equivariant
graph neural networks, poses significant challenges. Recently, Miao et al. (2023) introduces a learn-
able interpreter model that applies random noise to each 3D point to generate importance scores.
However, this method treats the models as black boxes and overlooks the equivariance of the model.
It also requires training the interpreter alongside the prediction model. To sum up, the challenge of
explaining equivariant neural networks highlights a significant gap in the current landscape of XAI,
underscoring the need for innovative approaches that consider the complex behaviors of equivariant
neural networks.

3 METHODOLOGY

Previous XAI methods on 2D graphs encounter limitations when adapting them on geometric graphs,
particularly in effectively incorporating positional information and evaluating geometric features.
To address these challenges, we introduce a novel method, EquiGX, which recursively decomposes
network predictions back to the input elements. Our approach use the Deep Taylor decomposition
framework (Montavon et al., 2017), adapted to extend the layer-wise relevance propagation rules
specifically for TP based message passing process. This adaptation allows for a detailed explanation
of each layer’s contribution to the network’s predictions, thus enhancing our understanding of how
geometric and positional data influence the model’s outputs.

3.1 LAYER-WISE RELEVANCE PROPAGATION

The objective of Layer-wise Relevance Propagation (LRP) is to attribute a relevance score to each
input element based on its contribution to the predicted class. This scoring offers insights into
how individual input elements contribute to the model’s final decision. One way to compute such
relevance is to the whole neural network as a mathematical function and use the first-order term
from the Taylor series expansion. Consider a function f : X → Y that maps an input to its output
label. The Taylor decomposition of f at a root point x̂ ∈ Rd is given by

f(x) = f(x̂) +
∑
i

∂f

∂xi

∣∣∣∣
x=x̂

(xi − x̂i) +O(|x− x̂|2), (3)

where O is Big-O notation, and xi and x̂i is the i-th dimension of x and x̂, respectively. Assum-
ing f is a locally linear function and carefully selecting x̂ such that higher-order and zero-order
terms are negligible, the first-order terms can provide the relevance scores for the input elements as
R(xi) =

∂f
∂xi

∣∣∣
x=x̂

(xi − x̂i). Deep neural networks are inherently complex and non-linear, making
it impractical to apply a straightforward Taylor decomposition across all layers. On the other hand,
Deep neural networks, composed of multiple layers, necessitate decomposing the network into a
series of simpler subfunctions, each representing a single layer. This approach, known as Deep
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Taylor Decomposition, allows for applying different relevance score computation rules tailored to
specific types of layers. For instance, when considering linear layer with Relu activation functions,
distinct rules, such as LRP-γ (Montavon et al., 2019), LRP-αβ (Bach et al., 2015) can be used due
to choosing different root points and approximation methods. By using these specifically designed
local propagation rules for every layer, the initial relevance value, i.e. the prediction of the model,
is successively distributed layer-by-layer to the input space. The decomposition characteristic of
LRP gives rise to the conservation property, which ensures that the sum of relevance scores across
neurons in two adjacent layers remains constant. Let H and H ′ be the representations of two adja-
cent layers, the conservation property can be formally described as

∑
i R(H) =

∑
j R(H ′), where

R(H) and R(H ′) are the relevance scores of H and H ′, respectively. We use the Deep Taylor
decomposition to study the complex behavior of equivariant GNNs and provide detailed relevance
propagation rules for each layer in the following subsections.

3.2 ATTRIBUTING THE TP-BASED MESSAGE PASSING

As mentioned in Section 2.1, the key of spherical equivariant GNNs is the TP based message pass-
ing process. Equivariant messages Mj→i are computed from node j to node i using TP, and then
aggregated to form the message Mi. The aggregation operation Mj→i =

∑
j∈N (i) Mj→i inherently

provides a decomposition. Specifically, we assign a relevance score R(Mj→i) to each message
proportional to its contribution to the aggregated message. Since messages of different orders are
summed separately, each order is also considered individually when backpropagating the relevance

score. Formally, this process can be described as R(M ℓ3
j→i) =

M
ℓ3
j→i∑

j∈N(i) M
ℓ3
j→i

R(M ℓ3
i ).

For the equivariant message shown in Eq. 1, we can apply a Taylor series expansion to derive a
decomposition rule. Specifically, the first order Taylor series expansion of an order-ℓ3 message
M ℓ3

j→i at a root point Ĥℓ1
j is given by

M ℓ3
j→i = M̂ ℓ3

j→i +
∑
ℓ1,ℓ2

∂M ℓ3
j→i

∂Hℓ1
j

∣∣∣∣∣
H

ℓ1
j =Ĥ

ℓ1
j

(Hℓ1
j − Ĥℓ1

j ), (4)

where
∂M

ℓ3
j→i

∂H
ℓ1
j

∈ R(2ℓ3+1)×(2ℓ1+1) is a Jacobian matrix. Each element of this matrix is defined as(
∂M ℓ3

j→i

∂Hℓ1
j

)
m3,m1

=
∑
ℓ2

ℓ2∑
m2=−ℓ2

F(ℓ1,ℓ2,ℓ3)(dij)C(ℓ3,m3)
(ℓ1,m1),(ℓ2,m1)

Yℓ2 (r⃗ij) . (5)

The bilinearity of the tensor product indicates that it is linear with respect to each input. This

property implies that the Jacobian matrix
∂M

ℓ3
j→i

∂H
ℓ1
j

is independent of the choice of root point Ĥℓ1
j .

Additionally, the absence of quadratic or higher-degree terms in the Taylor expansion suggests that
when a root point is chosen such that the zero-order term equals to zero, the Taylor expansion serves
as a decomposition of the message. Given that Hℓ1

j contributes to messages of various nodes and
different orders, it is necessary to aggregate these contributions. Formally, this relevance propagation
rule can be described as

R(Hℓ1
j ) =

∑
ℓ3,i

(
R(M ℓ3

j→i)⊘M ℓ3
j→i

)T ∂M ℓ3
j→i

∂Hℓ1
j

⊙Hℓ1
j (6)

where ⊘ is Hadamard division and ⊙ is Hadamard multiplication.

However, this decomposition overlooks the contribution of relative positional information between
node i and node j. As shown in Eq. 1, spherical equivariant GNNs split the relative position vector
of node i and node j into a distance part dij and a directional part r⃗ij . The directional part r⃗ij is
encoded into an SE(3) equivariant feature vector using spherical harmonics functions, which then
serves as one input to the tensor product. The distance part dij is encoded into embeddings via radial
basis functions (RBF), which in turn are used to determine the weight of each tensor product path
(ℓ1, ℓ2 → ℓ3). Thus, an alternative and highly desirable solution is to decompose the relevance score
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of each message Mj→i to all three components, namely the hidden features, directional part, and
distance part. Notably, the message is a trilinear function, meaning it remains linear with respect to
one component when the others are held constant. Following Achtibat et al. (2024), it is reasonable
to assign equal relevance values to each component. Formally, we have the relevance propagation
rules as

R(Hℓ1
j ) =

∑
ℓ3,i

(
R(M ℓ3

j→i)

3
⊘M ℓ3

j→i

)T
∂M ℓ3

j→i

∂Hℓ1
j

⊙Hℓ1
j ,

R
(

F(ℓ1,ℓ2,ℓ3)(dij)
)
=

(
R(M ℓ3

j→i)

3
⊘M ℓ3

j→i

)T
∂M ℓ3

j→i

∂F(ℓ1,ℓ2,ℓ3)(dij)
⊙ F(ℓ1,ℓ2,ℓ3)(dij),

R
(
Yℓ2(r⃗ij)

)
=
∑
ℓ3

(
R(M ℓ3

j→i)

3
⊘M ℓ3

j→i

)T
∂M ℓ3

j→i

∂Yℓ2(r⃗ij)
⊙ Yℓ2(r⃗ij).

(7)

Since one edge distance dij contributes to multiple TP paths, we sum up relevance scores to get
the contribution of edge’s distance as R(dij) =

∑
ℓ1,ℓ2,ℓ3

R(F(ℓ1,ℓ2,ℓ3)(dij)). Similarly, the direc-
tion of each edge is encoded into multiple orders of equivariant features using spherical harmonics
functions, thus we sum up relevance scores to attribute the contribution of an edge’s direction as
R(r⃗ij) =

∑
ℓ2
R(Yℓ2(r⃗ij))).

Note that the relevance propagation rule discussed here is to attribute a single TP-based message
passing layer. To apply relevance propagation across the entire network recursively, only the rel-
evance score of hidden feature R(H) continues to backpropagate towards the input. In contrast,
R(dij) and R(r⃗ij) do not continue to backpropagate beyond their respective layer. These scores in-
dicate the contributions of the edge distance and edge direction, respectively, to the final prediction
within that specific message passing layer. Thus, the relevance scores R(dij) and R(r⃗ij) at each
message passing layer are summed to derive the cumulative relevance score for edge distances and
directions.

3.3 ATTRIBUTING THE LINEAR OPERATION

The tensor product provides a mechanism for interactions between equivariant features of different
orders, while the linear layer is designed to mix equivariant features of the same order. Specifically,
this layer linearly combines each group of order-ℓ equivariant features to produce new features, with
each group having its own set of learnable parameters. Consider the input to the linear layer as p
order-ℓ1 features of node i, denoted by Hℓ1

i ∈ Rp×(2ℓ+1). The output of the linear layer is q order-ℓ1
features of node i, represented as H ′ℓ1

i ∈ Rq×(2ℓ+1). Formally, the transformation in the linear layer
can be described as

H ′ℓ1
i = wℓ1Hℓ1

i , (8)

where wℓ1 ∈ Rq×p are the learnable parameters used for mixing order-ℓ1 features. Since each new
feature is a weighted sum of the input features, we follow the fundamental LRP-ϵ (Bach et al., 2015)
to derive the propagation rule for this linear layer. Let (Hℓ1

i )m1
and (H ′ℓ1

i )m2
denote the m1-th

and m2-th order-ℓ1 features of node i for the input and output, respectively, and let wℓ1
m2,m1

denote
the element at the m2-th row and m1-th column of wℓ1 . The propagation rule for the linear layer is
defined as

R
(
(Hℓ1

i )m1

)
=
∑
m2

(
wℓ1

m2,m1
(Hℓ1

i )m1

)
⊘
(
(H ′ℓ1

i )m2
+ ϵ1

)
R
(
(H ′ℓ1

i )m2

)
, (9)

where ϵ ∈ R is a stabilizing factor with a small value, and 1 ∈ R2ℓ1+1 is a all-ones vector, which
broadcasts ϵ into a vector. It is worth noting that while the above relevance propagation rule is
specifically for order-ℓ1 features of node i, in practice, the input contains groups of equivariant
features of various orders across all nodes. Thus, the propagation rule is applied separately for every
node and rotation order to compute the relevance score for all input features.
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Figure 1: Explanation results on the Shapes dataset with a cube motif shape. The red color indicates
a high importance score, while the blue color indicates a low importance score. Ideally, the nodes
of the cube should be red, indicating their high significance, while the other areas should be blue,
indicating lower significance.

3.4 ATTRIBUTING THE NON-LINEAR FUNCTIONS

In this work, we assume that norm-based non-linear function is used in the model architecture, such
as TFN (Thomas et al., 2018) and SE(3)-Transformer (Fuchs et al., 2020). The norm-based non-
linearity acts as a scalar transformation on each equivariant feature based on its norm. Specifically,
for an order-ℓ1 equivariant feature of node i, denoted as Hℓ1

i ∈ R(2ℓ+1), a scalar value is computed
using an activation function like the sigmoid function. The output of this norm-based non-linearity,
denoted as H ′ℓ1

i ∈ R(2ℓ+1), is computed by multiplying the input equivariant feature by the scalar
output of the activation function. Formally, this process can be described as

H ′ℓ1
i = σ(∥Hℓ1

i ∥)Hℓ1
i , (10)

where σ(·) is the sigmoid function. Since each equivariant feature is transformed by a scalar, re-
versing the transformation results in a way to attribute relevance values. However, directly reversing
the scalar transformation does not preserve the sum of relevance scores between input and output,
thereby breaking the conservation property. To address this, we normalize the relevance scores to
ensure the conservation property is maintained. The relevance propagation rule for the norm-based
non-linear function is given by

R(Hℓ1
i ) = λ

R(H ′ℓ1
i )

σ(∥Hi∥)
, (11)

where λ ∈ R is a normalization factor defined as λ =
∑

ℓ1,i R(H′ℓ1
i )∑

ℓ1,i R(H′ℓ1
i )/σ(∥Hi∥)

.

4 EXPERIMENTS

In this section, we evaluate the proposed method on both synthetic and real-world datasets. For each
dataset, we first train a TFN and then use baselines and our method to generate the explanations.
Experimental results show that our method outperforms many baselines on both visualization results
and quantitative studies. See more implemental details in Appendix A.
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4.1 DATASETS AND EXPERIMENTAL SETTINGS

Synthetic Datasets. We create two kinds of geometric graph classification datasets, namely Shapes
and Spiral Noise. For the Shapes dataset, we begin by randomly selecting a 3D motif shape from
two options, including a cube or an icosahedron, the latter being a polyhedron with 20 triangular
faces. Subsequently, we choose a 3D base shape, either a pyramid or a star. A random translation
and rotation are performed on the base shape. The classification task is to predict whether the motif
shape in the geometric graph is a cube or not. In the Spiral Noise dataset, we randomly select a
3D motif shape, either a tetrahedron, a polyhedron with four triangular faces, or a triangular prism.
We then introduce a variable number of noise points to create a spiral pattern in 3D space. The
classification task is to determine whether the motif shape is a tetrahedron or not.

Real-world Datasets. In addition to synthetic datasets containing perfect 3D geometric shapes, we
evaluate our method on three real-world datasets, including the Structural Classification of Proteins
(SCOP), BioLiP, and Actstrack. The SCOP database (Murzin et al., 1995; Andreeva et al., 2007;
Chandonia et al., 2019) is a predominantly manually curated classification of protein structural do-
mains, organized based on similarities in their structures and amino acid sequences. While using the
same training and validation datasets as Hou et al. (2018); Hermosilla et al. (2020), our focus is on
the fold classification task, which is to predict the broad types of protein tertiary structure topolo-
gies. Hence, we only use the Fold test set. There are seven categories in total, such as all-alpha
and all-beta proteins. Protein labels, provided by human experts, are based on the secondary struc-
ture, which reflects the local spatial conformation of proteins. Specifically, labeling for all-alpha
and all-beta proteins is determined by the presence of α-helices and β-sheets within their structures,
respectively. BioLiP (Yang et al., 2012; Zhang et al., 2024) is a semi-manually curated database ded-
icated to high-quality ligand-protein binding interactions. The 3D structural data primarily sourced
from the Protein Data Bank are complemented with biological information, such as binding affinity
scores, from literature and other databases. The task is to predict whether there is a tight binding
between a protein-ligand pair. Like previous methods (Somnath et al., 2021; Öztürk et al., 2018;
Townshend et al., 2020), we do not differentiate between the inhibition constant (Ki) and dissoci-
ation constant (Kd), instead predicting whether a protein-ligand pair is of affinity of Kd/Ki ≤ 1
nM. ActsTrack (Miao et al., 2023) is a particle tracking simulation dataset in high-energy physics.
The task is to predict whether a collision event contains a z → µµ decay based on a point cloud of
detector hits. Each point in the point cloud corresponds to a particle interaction with the detector.
Positive samples include hits from both the z → µµ decay and background interactions, thus the
particle hits left by the two muons (µs) are labeled as the ground truth for model explanations.

Baselines. We compare our method with the following baseline methods, including (1) Grad (Bal-
dassarre & Azizpour, 2019), which uses the norm of the gradient of the predictions with respect
to the 3D coordinates to evaluate node importance; (2) Grad-CAM (Pope et al., 2019), a gradient-
based method combining with activations from hidden node representations; (3) GNN-Explainer
(Ying et al., 2019), a perturbation-based method identifying important edges through optimization
of soft masks; (4) LRI-Bern (Miao et al., 2023), which learns a model to inject Bernoulli noise to
evaluate the significance of point existence; (5) LRI-Gaussian (Miao et al., 2023), which learns a
model to inject Gaussian noise to evaluate the significance of point positions; (6) PG-Explainer (Luo
et al., 2020), which generate explanations by learning parameterized masks that highlight the most
relevant subgraphs. For methods that assign importance scores to edges, we distribute the score to
the connecting nodes to evaluate node-level explanations.

4.2 QUALITATIVE EVALUATION

In this section, we present the visualization of explanations for our methods and other baselines
across all four datasets. Since the importance scores of different methods vary in range, we normal-
ize each method to have the same score range to enable fair comparison. The explanation results
for the Shapes dataset are visualized in Figure 1. In this dataset, the cube shape is the motif shape,
so the nodes forming the cube are used as the ground truth for explanations. Therefore, the cube
nodes should be marked as important, while the other nodes should not be. As shown in Figure 1,
LRI incorrectly marks some nodes of the base shape as important. In contrast, our method pro-
vides better visual explanations, accurately identifying the cube nodes as the important ones. For
the Spiral Noise dataset, the tetrahedron shape is the motif shape, so the nodes forming the tetrahe-
dron are used as the ground truth for explanations. Consequently, the tetrahedron nodes should be
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Figure 2: Explanation results on the Spiral Noise dataset with a tetrahedron motif shape. The
red color indicates a high importance score, while the blue color indicates a low importance score.
Ideally, the nodes of the tetrahedron should be red, indicating their high significance, while the other
areas should be blue, indicating lower significance.

EquiGX Grad Grad-CAM

LRI-Bern LRI-Gaussian GNN-Explainer

Figure 3: Explanation results on the SCOP dataset of all-beta proteins. Since the sample is an
all-beta protein, ideally the β-sheets should have high importance scores, i.e. be red in the figure.

highlighted as important, while the other nodes should not be. As seen in Figure 2, GNN-Explainer
struggles to identify the four important nodes forming the tetrahedron. In contrast, our method suc-
cessfully recognizes the tetrahedron. We also show the explanation results of the SCOP dataset in
Figure 3. As mentioned in section 4.1, protein fold classes are labeled by human experts based on
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EquiGX GNN-Explainer Grad-CAM

Figure 4: Explanation results on the BioLip dataset. The ligand is highlighted with a green border.

Table 1: Comparisons between our method and baselines. The best results are shown in bold.

Dataset
Shapes Spiral Noise SCOP ActsTrack

AUROC ↑ AP ↑ AUROC ↑ AP ↑ AUROC ↑ AP ↑ AUROC ↑ AP ↑

Random 50 65.70 50 49.01 50 53.67 50 20.9

Grad 68.44 ± 12.44 83.81 ± 6.40 49.94 ± 0.13 49.16 ± 0.09 56.45 ± 4.93 59.75 ± 3.68 55.84 ± 0.05 31.87 ± 0.54

Grad-CAM 64.77 ± 8.84 78.95 ± 4.82 66.93± 6.89 71.88 ± 6.45 59.57 ± 4.38 61.26 ± 1.99 62.11 ± 1.93 44.95 ± 1.40

GNN-Explainer 80.85 ± 5.38 89.97 ± 2.27 79.69 ± 2.30 82.37 ± 1.90 77.26 ± 0.19 72.37 ± 0.26 65.18 ± 0.59 35.54 ± 0.76

LRI-Bern 67.84 ± 17.32 83.25 ± 9.04 79.06 ± 5.69 81.85 ± 4.85 56.09 ± 2.92 58.45 ± 3.12 62.63 ± 1.43 39.39 ± 0.88

LRI-Gaussian 68.46 ± 10.71 81.65 ± 7.24 58.75 ± 10.96 63.89 ± 8.53 65.99 ± 5.05 64.35 ± 5.41 57.54 ± 6.21 32.43 ± 1.02

PG-Explainer 82.83 ± 11.7 90.86 ± 5.66 69.09 ± 1.71 74.53 ± 1.58 76.92 ± 0.23 72.63 ± 0.13 52.16 ± 4.24 29.43 ± 2.91

EquiGX 84.31 ± 8.89 91.00 ± 5.32 83.57 ± 10.07 86.82 ± 8.30 81.51 ± 4.61 82.69 ± 3.49 76.96 ± 1.69 60.47 ± 1.71

the secondary structures of proteins. We investigate whether the explanations provided by different
methods can accurately reflect the secondary structures of proteins. An all-beta protein is shown in
Figure 3. Ideally, the β-sheets should have a high importance score (i.e., be red in the figure), while
the remaining parts should have a low importance score (i.e., be blue in the figure). While baseline
methods either fail to identify β-sheets or incorrectly assign high importance to most parts of the
protein, our method accurately distinguishes β-sheets from other parts, including an α-helix. For
the BioLip dataset, we present the explanation results in Figure 4. Since binding affinity does not
have a definitive answer, there is no ground truth for explanations. It is known that binding is closely
related to the protein pocket and especially the ligand itself. In the example, both our method and
GNN-Explainer indicate that the model relies on the ligand to make predictions. To further evalu-
ate explanation methods on the BioLip dataset, we conduct experiments using Fidelity and Sparsity
scores in Section 4.3.

4.3 QUANTITATIVE EVALUATION

In two synthetic datasets, the relationships between geometric graphs and labels are explicitly de-
fined. This allows us to evaluate the explanations of baseline methods and our approach by compar-
ing them with the ground truth. Specifically, in the Shapes dataset, the explanation ground truth for
class 0 is the nodes that form a cube, and for class 1, the nodes that form an icosahedron. Similarly,
in the Spiral Noise dataset, the explanation ground truth for class 0 is the nodes that form a tetrahe-
dron, while for class 1, it is the nodes that form a triangular prism. For both synthetic datasets, we
use AUROC and average precision as evaluation metrics. As shown in Table 1, our proposed method
outperforms the baselines in terms of both AUROC and average precision. In the SCOP dataset, the
classification of proteins is determined based on the secondary structures of proteins. In this paper,
we explain two classes, including all-alpha and all-beta proteins. Since the reason for labeling for
all-alpha and all-beta proteins is the presence of α-helices and β-sheets within their structures, re-
spectively, we use the atoms that form α-helices and β-sheets as the explanation ground truth. We
also use AUROC and average precision as evaluation metrics. As shown in Table 1, our proposed
method has better explanations than the baselines in terms of both AUROC and average precision.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Sparsity
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fid
el

ity

ours
Grad

CAM
LRI-B

LRI-G
GNN Explainer

Figure 5: The quantitative studies for dif-
ferent explanation methods on the BioLip
dataset.

For the BioLip dataset, like many other scientific
properties, the rationale behind the binding affinity
scores remains a topic of research itself, with no
definitive answers available. Therefore, we use Fi-
delity and Sparsity metrics to evaluate the explana-
tions (Pope et al., 2019; Yuan et al., 2021). The Fi-
delity metric assesses whether the explanations are
faithfully important for the predictions by removing
the identified important parts from the input geomet-
ric graphs and comparing the prediction differences.
The Sparsity metric quantifies the proportion of im-
portant structures identified by the explanation meth-
ods. Note that higher Sparsity scores, which indi-
cate that smaller structures are identified as impor-
tant, can influence Fidelity scores. This is because
smaller structures tend to be less crucial. The results
are shown in Figure 5 where we plot the curves of
Fidelity scores with respect to the Sparsity scores.
Notably, the model appears not to use the binding site information for its predictions. This conclu-
sion is supported by the low fidelity score, which remains around 0.02 when the binding sites are
masked.

5 CONCLUSIONS

In this work, we propose a method, known as EquiGX, to explain equivariant graph neural net-
works for geometric graphs. Our method recursively decomposes network predictions back to the
input elements. We adapts the Deep Taylor decomposition framework to TP based message pass-
ing process, leading to specifically designed layer-wise relevance propagation rules. Experimental
results demonstrate the capability of EquiGX to identify critical geometric structures and provide
significantly enhanced explanations for equivariant GNNs.
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Raphael JL Townshend, Martin Vögele, Patricia Suriana, Alexander Derry, Alexander Powers,
Yianni Laloudakis, Sidhika Balachandar, Bowen Jing, Brandon Anderson, Stephan Eismann, et al.
Atom3d: Tasks on molecules in three dimensions. arXiv preprint arXiv:2012.04035, 2020.

Minh Vu and My T Thai. Pgm-explainer: Probabilistic graphical model explanations for graph
neural networks. Advances in neural information processing systems, 33:12225–12235, 2020.

Xiang Wang, Yingxin Wu, An Zhang, Xiangnan He, and Tat-Seng Chua. Towards multi-grained
explainability for graph neural networks. Advances in Neural Information Processing Systems,
34:18446–18458, 2021.

Ping Xiong, Thomas Schnake, Michael Gastegger, Grégoire Montavon, Klaus Robert Muller, and
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Table 2: Statistics and properties of four datasets.
Dataset Shapes Sprial Noise SCOP BioLip
#graphs 1000 1000 13738 26934
#classes 2 2 2 7
#avg nodes 14.92 10.45 498.49 320.33
#avg edges 160.94 89.94 6133.25 1427.3

Table 3: Prediction task performance of TFN models.
Dataset Shapes Sprial Noise SCOP BioLip
ACC 100 100 84.35 ± 0.26 83.66 ± 0.89
AUROC 100 100 N/A 83.36 ± 0.85

A DATASETS AND EXPERIMENTAL SETTINGS

In this section, we provide more details of our experiments. We use NVIDIA RTX A6000 GPUs for
all our experiments.

A.1 DATASETS

The statistics and properties of the datasets are reported in Table 2. For the Shapes dataset, we
randomly select a 3D motif shape from two options, namely a cube or an icosahedron. The cube
has a side length of 2, and the icosahedron has a radius of

√
3. For the base shape, we choose

either a pyramid or a star. The pyramid has a base length and height of 1, while the star has an arm
length of 1. A random vector is then used to translate the base shape, ensuring that it remains a
certain distance from the motif shape without overlapping. Additionally, the motif shape undergoes
a random rotation. The classification task is to predict whether the motif shape in the geometric
graph is a cube or not. We use a radial cutoff of 5 to construct the geometric graph.

In the Spiral Noise dataset, we randomly select a 3D motif shape, either a tetrahedron or a triangular
prism. The tetrahedron has a radius of 1, and the triangular prism has a length and height of 1. The
chosen motif shape is transformed using a randomly sampled translation vector and rotation matrix.
Next, we randomly sample 4 to 8 noise points, which form a spiral pattern with a radius of 1 in 3D
space. The classification task is to determine whether the motif shape is a tetrahedron. We use a
radial cutoff of 2 to construct the geometric graph.

For the SCOP dataset, we extract the backbone atoms of the protein to construct the geometric graph.
Specifically, for each amino acid residue of the protein, the backbone atoms (i.e., nitrogen N, alpha
carbon CA, and carbon C) are extracted and used as the nodes of the geometric graph. The atom
type and residue index are used as features for each atom. We apply a radius cutoff of 5Å to create
the geometric graph.

For the BioLip dataset, we extract the backbone atoms of the proteins and all atoms of the ligands to
construct the geometric graph. Specifically, we use the alpha carbon CA of each amino acid residue
in the protein as the nodes of the geometric graph. Additionally, every atom of the ligand is also
used as a node in the graph. The atom type and residue type serve as node features. A radius cutoff
of 10 Å is applied to create the geometric graph.

A.2 TFN MODEL

We evaluate our methods and baselines using Tensor Field Network models. Each TP-based message
passing layer is followed by a linear layer and a norm-based non-linear function. We first use
spherical harmonics functions to compute the equivariant features of each edge up to order-lmax.
These equivariant edge features are then aggregated and concatenated with the node features to
produce the first hidden equivariant features. Table 4 provides details on the number of layers, the
number of hidden equivariant features, and the highest order of equivariant feature lmax in the TFN.
The accuracy and AUROC of the TFN model is reported in Table 3.
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Table 4: Hyperparameters for TFN models.
Dataset Shapes Sprial Noise SCOP BioLip
#layers 2 2 4 3
#channels 16 16 8 16
lmax 3 3 3 2

Table 5: Runtime comparison between different methods.
Inference Time Shapes Sprial Noise SCOP BioLip
Grad 0.056s 0.066s 0.21s 0.11s
Grad-CAM 0.067s 0.068s 0.22s 0.12s
GNN-Explainer 0.07s 0.058s 0.23s 0.1s
LRI-Bern 0.13s 0.16s 0.35s 0.24s
LRI-Gaussian 0.15s 0.14s 0.33s 0.28s
EquiGX 0.2s 0.19s 0.36s 0.25s

A.3 EVALUATION METRICS

In addition to common metrics, such as AUROC and AP, we also use Fidelity and Sparsity scores. In
this section, we provide detailed definitions of these scores. Given an input geometric graph G, XAI
methods compute an importance score for each node. Based on these scores, we compute a hard
node mask that contains only binary values. Using this mask, we can generate a masked graph G′,
where important nodes are masked out. Let f denote a well-trained equivariant GNN. The Fidelity
score is computed as

Fidelity = f(G)y − f(G′)y, (12)
where f(G)y and f(G′)y means the predicted probability of class y of graph G and G′, respectively.
Intuitively, Fidelity measures the change in predictions when important input elements are removed.
In addition, we use Sparsity to measure the fraction of important nodes in the explanations as

Sparsity = 1− |G′|
|G|

, (13)

where |G′| and |G′| denote the number of nodes in G′ and G′, respectively. The final Fidelity and
Sparsity scores are averaged over the test dataset. Note that good explanations should exhibit high
Sparsity along with high Fidelity.

B MORE EXPLANATIONS

In this section, we show more visualizations of explanations. The explanations of the Shapes dataset
are reported in Figure 6. In addition, the explanations of the Spiral dataset are reported in Figure 7.
As shown in these results, our proposed EquiGX can identify the motif shapes. Furthermore, we
also show explanation results of the SCOP dataset in Figure 8. An all-alpha protein is shown in
Figure 8. Ideally, the α-helices should have a high importance score (i.e., be red in the figure), while
the remaining parts should have a low importance score (i.e., be blue in the figure). Our method
can distinguish α-sheets from other parts, assigning a low importance score to the remaining part.
In Figure 9, we also show more explanations of our proposed EquiGX on the BioLip datasets. The
results demonstrate that ligands typically exhibit high importance scores. This observation aligns
with existing knowledge, which suggests that different ligands have varying binding affinity scores
when interacting with the same protein.

C RUNTIME STUDY

In this section, we conduct runtime experiments on different datasets, evaluating the runtime of
each method for a single data example. It is important to note that PGExplainer requires additional
training time apart from inference time. The results in the Table 5 indicate that our method has a
comparable runtime to most baselines, whereas GNN-Explainer exhibits a significantly high runtime
and PGExplainer incurs an additional training time cost ranging from hours to days.
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Figure 6: Explanation results on the Shapes dataset.
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Figure 7: Explanation results on the Spiral dataset.

D MORE DISCUSSIONS ABOUT EQUIVARIANT GRAPH NETWORKS

As mentioned in Duval et al. (2023a), equivariant networks can be categorized into four main types:
Invariant GNNs: These networks, such as SchNet (Schütt et al., 2017), DimNet (Gasteiger et al.,
2020), SphereNet (Liu et al., 2022), and GemNet (Gasteiger et al., 2021), encode the invariant
geometric information like distances and directions directly into their model design to consider the
3D structures. Cartesian equivariant GNNs: Networks like GVP-GNN (Jing et al., 2020), PaiNN
(Schütt et al., 2021), and E(n)GNN (Satorras et al., 2021) further consider direction vector as input
and use scalar-vector operations to consider their interactions within the architectures. Spherical
Equivariant GNNs: These networks such as TFN (Thomas et al., 2018), SEGNN (Brandstetter et al.,
2021), NequIP (Batzner et al., 2022), Equiformer (Liao & Smidt, 2022), Allegro (Musaelian et al.,
2023), MACE (Batatia et al., 2022), usually use the spherical harmonics of the directions as the input
spherical tensors. Then they combine spherical tensors using equivariant operations like Tensor
Product (TP) and convert them into irreducible representations. These networks have more complex
interactions between equivariant irreducible representations, demonstrating superior performance
and widespread application in property prediction (Ramakrishnan et al., 2014), force field prediction
(Chmiela et al., 2017), and Hamiltonian matrix prediction (Schütt et al., 2019; Yu et al., 2024).
Given the widespread use of the powerful spherical equivariant GNNs, understanding their key
components, especially Tensor Product (TP), is one of the most essential problems in studying the
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EquiGX Grad Grad-CAM

LRI-Bern LRI-Gaussian GNN-Explainer

Figure 8: Explanation results on the SCOP dataset of all-alpha proteins. Since the sample is an
all-alpha protein, ideally the α-helices should have high importance scores, i.e. be red in the figure.

Figure 9: Explanation results of EquiGX on the BioLip dataset. The ligand is highlighted with a
green border.

explainability of equivariant GNNs. While the previous three types of networks explicitly encode the
invariant or equivariant symmetry within their networks, the networks in unconstrained GNNs (Hu
et al., 2021) are not necessarily rotational invariant or equivariant for efficient training and inference.
Furthermore, FAENet (Duval et al., 2023b) makes use of frame averaging techniques to make sure
the overall framework maintains rotational invariant and equivariant.
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