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ABSTRACT

Continuous sign language recognition (CSLR) plays a crucial role in promoting
inclusivity and facilitating communication within the hearing-impaired commu-
nity. One of the key challenges in CSLR is accurately capturing the intricate
hand movements involved. To address this challenge, we propose a multi-modal
framework that first combines video, keypoints, and optical flow modalities to
extract more representative features. We investigate various fusion techniques to
effectively integrate the information from these modalities. Furthermore, we in-
troduce a hierarchical knowledge distillation (HKD) framework to alleviate the
computational burden associated with extracting keypoints and optical flow in-
formation. This framework enables the hierarchical transfer of knowledge from
multiple modalities to a single-modal CSLR model, ensuring high performance
while reducing computational costs. To evaluate the effectiveness of our ap-
proach, we conduct extensive experiments on three benchmark datasets: Phoenix-
2014, Phoenix-2014T, and CSL-Daily. The results demonstrate that our approach
achieves state-of-the-art performance in CSLR, both in the single-stream and
multi-stream settings.

1 INTRODUCTION

Sign language (Tamura & Kawasaki, 1988; Starner et al., 1998) serves as a highly inclusive means
of communication for the hearing-impaired community, effectively bridging the gap between deaf
and hearing individuals (Zhang et al., 2023). Consequently, the automatic recognition of sign lan-
guage has emerged as a crucial area of research within the fields of computer vision and artificial
intelligence (Cui et al., 2019; Zhou et al., 2021b; Yao et al., 2023; Wei & Chen, 2023). This research
direction aims to develop technologies and systems that can accurately interpret and understand sign
language, thereby facilitating effective communication and enhancing accessibility for individuals
with hearing impairments. Sign Language Recognition can be divided into two primary categories:
isolated sign language recognition (ISLR) (Sincan et al., 2021; Vázquez-Enrı́quez et al., 2021; Lee
et al., 2023; Laines et al., 2023) and continuous sign language recognition (CSLR) (Chen et al.,
2022b; Joze & Koller, 2018; Tang et al., 2021). CSLR poses a greater challenge than ISLR, as the
latter focuses on the classification of isolated sign videos into single gloss, while CSLR involves
the intricate task of transcribing co-articulated sign videos into sign sequences on a gloss-by-gloss
basis. Since ISLR fails to capture the continuous and context-dependent nature of sign language, a
more natural and accurate approach is required to recognize sign language in a continuous fashion
and understand the complex temporal dependencies between signs.

Recently, deep learning models have shown remarkable success in various computer vision
tasks, including SLR (Hu et al., 2023a; Zhou et al., 2023; Zuo et al., 2023). Many ap-
proaches (Cihan Camgoz et al., 2017; Cheng et al., 2020; Chen et al., 2022a) for SLR rely
on computer vision techniques that extract features solely from video sequences. However,
these methods often encounter challenges in effectively addressing the inherent complexities of
sign language, such as the high dimensionality of the data, dynamic hand movements, and
variations in signing styles among individuals. Additionally, the lack of large-scale, finely-
annotated sign datasets in the field of SLR often leads to insufficient training in these models.
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Figure 1: Our SignKD architecture. We train a
multi-modal network using video, keypoints and
optical flow as the teacher model. And then use
our proposed hierarchical knowledge distillation
framework to distill the multi-modal information
to the single-modal network which only use video
as input.

Therefore, numerous studies (Koller et al.,
2019; Zuo & Mak, 2022; Chen et al., 2022b)
focused on developing multi-stream solutions,
i.e., video-flow or video-keypoints dual-stream
networks. The multi-stream architectures ex-
tend multi-cue visual features, yielding the cur-
rent state-of-the-art performances. However,
previous methods fail to aggregate the three
modalities, i.e., video, keypoints, and optical
flow, to utilize the potential connection among
them as an enhancement for CSLR. Further-
more, they face the problem of large compu-
tation costs and low efficiency. As a result,
achieving high sign recognition accuracy with
efficient computational performance in real-
world scenarios remains a formidable task.

To address the challenge of mentioned above,
we propose a novel methodology that com-
bines video, keypoints, and optical flow modal-
ities. Additionally, we investigate various fu-
sion methods to effectively integrate the information from these modalities, including MLP-based
fusion, attention-based fusion and convolution-based fusion. To mitigate the computational over-
head associated with extracting keypoints and optical flow information, we introduce a Hierarchical
Knowledge Distillation framework. This framework enables the transfer of knowledge from multi-
ple modalities to a single-modal SLR model in a hierarchical manner. By leveraging this approach,
we can maintain the high performance as the larger model while reducing the computational cost
and resource requirements. Figure 1 describes the central concept of this work.

To validate the effectiveness of our proposed method, we conduct extensive experiments on Phoenix-
2014 (Koller et al., 2015), Phoenix-2014T (Camgoz et al., 2018) and CSL-Daily (Zhou et al., 2021a).
The results demonstrate that our approach achieves state-of-the-art performance in continuous sign
language recognition in both single-modal settings and multi-modal settings.

Our main contributions can be summarized as follows:

• We are the first to effectively utilize video, keypoints, and optical flow modalities together to
capture dynamic hand movement information in sign language recognition.

• We present a hierarchical knowledge distillation framework that enhances the accuracy of single-
modal model while taking lower computational costs than multi-modal model.

• Our results demonstrate significant improvements achieved by SignKD across multiple bench-
marks in both multi-modal and single-modal settings.

2 RELATED WORKS

Sign language recognition. Early efforts in CSLR primarily relied on hand-crafted features (Han
et al., 2009; Koller et al., 2015) or Hidden Markov Model-based systems (Koller et al., 2016; 2017).
These approaches, while foundational, struggled to capture the inherent complexity and variability
of sign language. In recent years, deep learning-based methodologies have ushered in a paradigm
shift in the domain of CSLR, which can be succinctly encapsulated within three pivotal phases:
feature extraction, recognition, and alignment. Predominantly, 3D CNNs (Pu et al., 2019; Li et al.,
2020; Chen et al., 2022a;b; Joze & Koller, 2018) have gained widespread adoption for feature ex-
traction. Additionally, certain approaches (Hu et al., 2023b; Min et al., 2021; Zhou et al., 2021b;
Cui et al., 2019) opt to commence with a 2D CNN to extract frame-wise features before subse-
quently incorporating hybrid architectures composed of 1D CNNs and Long Short-Term Memory
(LSTM) networks to capture temporal dependencies. Upon deriving features, classifiers can com-
pute posterior probabilities to facilitate the recognition process. Since CSLR is a weakly supervised
sequence-to-sequence task without temporal boundary annotation available, CTC loss (Graves et al.,
2006) is widely used to find the proper alignment between clips and glosses to ensure an accurate
training procedure.
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Kepoints and optical flow in action recognition. Keypoints play a crucial role in action recogni-
tion, as they provide valuable information about the spatial and temporal characteristics of actions in
videos or image sequences. Various CNN and RNN based methods (Zhang et al., 2019b; Zhao et al.,
2019; Li et al., 2018; Hernandez Ruiz et al., 2017) have been proposed for kepoints action recog-
nition. Commencing with ST-GCN (Yan et al., 2018), a succession of keypoint-based approaches
(Chen et al., 2021b;c; Chi et al., 2022) has leveraged Graph Convolutional Networks (GCNs) to ef-
fectively model spatio-temporal relationships, consistently delivering superior performance results.
Leveraging keypoints to enhance the performance of SLR remains an ongoing challenge. Recent re-
search endeavors (Zhou et al., 2021b; Tang et al., 2021; Chen et al., 2022b) have proposed innovative
methodologies and made progress in this regard. Optical flow provides information about how pixels
in consecutive frames of a video are moving. Consequently, numerous studies (Feichtenhofer et al.,
2016; Simonyan & Zisserman, 2014; Wang et al., 2019; Sun et al., 2018) have adopted the strategy
of decomposing videos into spatial and temporal components through the utilization of RGB and
optical flow frames, ultimately yielding state-of-the-art results in the realm of action recognition. In
a similar vein, within the domain of SLR, Cui et al. (2019) have delved into the multi-modal fusion
of RGB images and optical flow data as an approach to enhance the recognition accuracy.

Knowledge distillation. Knowledge distillation technology enables the extraction of knowledge
from a teacher model to guide the training of student models. Leveraging this technology, we adopt
a similar approach by utilizing the multi-modal features learned by a multi-modal model to guide the
training of a single-modal model. This allows us to obtain an efficient and high-performance student
model specifically designed for SLR. Initially, Breiman & Shang (1996) pioneered the concept of
learning singletree models, which approximate the performance of multipletree models and offer
enhanced interpretability. In the context of neural networks, similar approaches emerged through
the work of Buciluǎ et al. (2006), Ba & Caruana (2014), and Hinton et al. (2015), primarily aimed
at model compression. More recently, Zhang et al. (2019a), on the other hand, directly employed
the final pose maps of teacher networks to supervise both the interim and final results of student
networks. Additionally, He et al. (2019) and Liu et al. (2019) have focused on distilling knowledge
embedded within layer-wise features for tasks such as semantic segmentation. Liu et al. (2020)
introduced a structured knowledge transfer framework that facilitates the transfer of knowledge from
teacher networks to student networks, encompassing both inter-part and intra-part aspects. Zhao
et al. (2022) presented an effective logit distillation method named decoupled knowledge distillation.
Knowledge distillation has seen broad utilization in numerous fields. In this work, we propose
a hierarchical knowledge distillation method to distill knowledge from multiple modalities into a
single-modal SLR.

3 METHODS

In this section, we present our SignKD approach for continuous sign language recognition. Firstly,
we introduce our multi-modal feature extractor, which is the first to combine video, keypoints,
and optical flow to effectively capture dynamic hand movement information. Next, we discuss our
proposed multi-modal feature fusion module and various fusion strategies for integrating the features
from multiple modalities. Lastly, we propose a hierarchical knowledge distillation framework that
transfers knowledge from multiple modalities to a single-modal SLR model in a hierarchical manner.
This ensures the effective distillation of knowledge across different levels. Figure 2 illustrates the
design of our framework.

3.1 MULTI-MODAL FEATURE EXTRACTOR

In this subsection, we provide individual introductions for each of the three streams that compose
the feature encoders of our multi-modal model. By incorporating video, keypoints and optical flow,
our model can effectively capture movement patterns and hand gestures, which are crucial in sign
language understanding.

Video encoder. We adopt S3D (Xie et al., 2018) with a lightweight head network as our video
encoder. However, to achieve dense temporal representations, we only utilize the first four blocks of
S3D. Each input video of dimensions T ×H ×W × 3 is fed into the encoder to extract its features,
where T denotes the frame number and H and W represent the height and width of the video by
default. We pool the output feature of the last S3D block into T/4 × 832 before feeding it into the
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Figure 2: Illustration of our framework. Our multi-modal teacher network use video, keypoints
and optical flow as inputs and single-modal student network only utilizes video as input. For the
multi-modal network, we use S3D for feature representation learning, a feature fusion module to
fuse the feature of different modalities, and head networks and CTC decoder to decoder the features
to glosses. The components are the same for the student network except for the fusion module.

head network, which aims to capture further temporal context. Then the feature is feed to the video
head network, which consists of a temporal linear layer, a batch normalization layer, a ReLU layer,
and a temporal convolutional block with two temporal convolutional layers with a kernel size of
3 and stride 1, a linear translation layer, and another ReLU layer. The output feature is named as
gloss representation with a size of T/4× 512. Frame-level gloss probabilities are extracted using a
linear classifier and Softmax function. Finally, we optimize the video encoder using connectionist
temporal classification (CTC) loss (Graves et al., 2006).

Keypoint encoder. We adopt the keypoints generated by HRNet (Wang et al., 2020) trained on
COCO-WholeBody (Jin et al., 2020), which contains 42 hand keypoints, 26 face keypoints covering
the mouth, eyes, and face contour, and 11 upper body keypoints covering shoulders, elbows, and
wrists per frame, to model the keypoint sequences. In total, 79 keypoints are employed, and we
represent the keypoints using heatmaps. Concretely, denoting the keypoint heatmap sequence with
a size of T ×H ′×W ′×K as G, where H ′ and W ′ represent the spatial resolution of each heatmap
and K is the total number of keypoints, the elements of G are computed using a Gaussian function
represents the coordinates of the k − th keypoint in the t − th frame and σ controls the scale of
keypoints. We set σ = 4 by default and H ′ = W ′ = 112 to reduce computational cost. The
network architecture of the keypoint encoder is the same as the video encoder except for the first
convolutional layer, which is modified to accommodate keypoints input. The weights of the video
encoder and keypoint encoder are not shared to extract the representative features of each modality.
Similarly, a CTC loss is used to train the keypoint encoder.

Optical flow encoder. The optical flow encoder plays a crucial role in our multi-modal framework.
We adopt dense optical flow extracted by TV-L1 algorithm (Sánchez Pérez et al., 2013) as the source
of motion representation. The network architecture of the optical flow encoder is similar to that of
the video encoder and keypoint encoder, except for the first layer. The utilization of optical flow
as a representation for sign language recognition serves several important purposes. Firstly, optical
flow provides a dense motion representation, capturing the spatial-temporal dynamics inherent in
sign language. By calculating the displacement of pixels between consecutive frames, optical flow
encodes the motion information that is essential for understanding sign language gestures. This en-
ables the model to capture finer details of the signing motion and facilitates accurate recognition.
Secondly, employing optical flow as an intermediate encoding enables the network to focus on cap-
turing the movement patterns and hand gestures, effectively bypassing irrelevant visual information
such as static backgrounds or lighting variations. This enhances the discriminative power of the
network by emphasizing the most relevant features for SLR. Furthermore, by incorporating optical
flow in our framework, we exploit the complementary nature of appearance-based features from
the video encoder and motion-based features from the optical flow encoder and keypoint encoder.
The fusion of these modalities allows our model to capture both static and dynamic aspects of sign
language, enabling a more comprehensive understanding of the signing gestures.
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3.2 MULTI-MODAL NETWORK

Multi-modal fusion. The multi-modal feature fusion module is a critical component in our frame-
work for continuous sign language recognition. It aims to integrate the information from the video,
keypoints, and optical flow modality, leveraging their complementary characteristics to enhance the
model’s discriminative power.

By combining the feature representations from the video encoder, keypoint encoder, and optical
flow encoder, the feature fusion module enables a more comprehensive representation of sign lan-
guage. Through advanced fusion techniques like MLP-based fusion, attention-based fusion, and
convolution-based fusion, the module effectively merges features at different abstraction levels. This
fusion module plays a vital role in capturing a broader range of cues by leveraging the complemen-
tary nature of the different modalities. The integration of multiple modalities allows the model to
incorporate appearance, motion, and spatial-temporal information, resulting in more informative and
discriminative features. Ultimately, this leads to improved accuracy in recognizing sign language
gestures. In our multi-modal model, the multi-modal feature fusion module acts as a bridge, consol-
idating the outputs from the video, keypoints, and optical flow encoders. This integration enables
a more comprehensive understanding of sign language by considering various modalities simulta-
neously. By leveraging the strengths of each modality, our multi-modal model achieves enhanced
performance in continuous sign language recognition.

Different fusion strategy. In our framework, we explore different fusion methods within the multi-
modal feature fusion module, including MLP-based, attention-based, and convolution-based meth-
ods. These methods effectively combine the feature representations from the video, keypoints, and
optical flow modalities. We conducted ablation studies to analyze the performance of each fusion
method and found that MLP-based method yielded superior results. Please see Section B for the
details.

MLP-based method allow for flexible modeling of the fusion process, capturing complex relation-
ships among the input features. While attention-based method (Huang et al., 2019; Chen et al.,
2021a) and convolution-based method (Liu et al., 2021) have shown success in various tasks, our
experiments revealed that they were not as effective as MLP-based method for sign language recog-
nition. The attention mechanism aims to emphasize relevant features by assigning weights to dif-
ferent parts of the input, while convolution-based method focuses more on learning between local
information of different modalities. However, in our specific context of continuous sign language
recognition, MLP-based fusion demonstrated superior performance. The superior performance of
MLP-based fusion can be attributed to its ability to capture intricate relationships between features
from different modalities, enabling effective integration of complementary information. This find-
ing highlights the importance of exploring and evaluating different fusion techniques tailored to the
specific requirements of sign language recognition tasks.

Multi-modal SLR loss. The total loss of our multi-modal SLR consists of three parts. First, the
CTC losses applied on the outputs of the video encoder LV

CTC , keypoint encoder LK
CTC , optical

flow encoder LOF
CTC and joint head encoder LJ

CTC . Second, the auxiliary CTC losses LSPN applied
on the outputs of our sign pyramid networks. The third is the self-distillation loss LSD which is
implemented by the Kullback-Leibler divergence (Kullback & Leibler, 1951) loss. Please refer to
the section C for the details of our joint head, sign pyramid networks, and self-distillation design.
The total loss for training the multi-modal SLR LT

SLR can be calculated as follows:

LT
SLR = λCTC(L

V
CTC + LK

CTC + LOF
CTC + LJ

CTC) + λSPNLSPN + λSDLSD, (1)

where λCTC , λSPN , and λSD are loss weights. Once the training process is completed, the multi-
modal SLR model becomes capable of predicting a gloss sequence. This is achieved by averaging
the predictions obtained from the four head networks.

3.3 MULTI-MODAL HIERARCHICAL KNOWLEDGE DISTILLATION

To address the challenge of cross-modal knowledge transfer in CSLR, we propose a novel method
called Hierarchical Knowledge Distillation (HKD). Our method focuses on distilling knowledge
from multiple modalities into a single-modal SLR model using knowledge distillation (KD) tech-
nique. Specifically, the teacher network in our approach is a multi-modal SLR model, which incor-
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porates video, keypoints, and optical flow modalities. The student network, on the other hand, is a
single-modal SLR model that utilizes only the video modality as input.

To perform knowledge distillation, we employ a hierarchical approach in HKD. This involves trans-
ferring knowledge from the shallow layers to the deep layers of the network. The hierarchical
distillation process ensures that the student network learns from the fused features at various levels
of abstraction, capturing both low-level details and high-level semantic information.

The adoption of HKD offers several advantages in CSLR. Firstly, it improves the inference speed of
the multi-modal SLR model. By distilling knowledge from multiple modalities into a unified rep-
resentation, HKD eliminates the need for extracting optical flow and keypoints information during
testing, reducing the computational complexity and accelerating the inference process. Secondly,
HKD enhances the accuracy of the single-modal SLR model. By distilling knowledge hierarchi-
cally from the MLP-fused features, the student network benefits from the discriminative power and
contextual information captured by the teacher network. This integration of diverse cues, such as
appearance, motion, and spatial-temporal information, leads to improved recognition accuracy and
better discrimination of sign language gestures, which makes our method more efficient and effective
in real-world applications.

Hierarchical knowledge distillation loss. The hierarchical knowledge distillation loss in our ap-
proach comprises three components. The first component is the hierarchical feature loss, denoted as
LF . In this step, the fused multiple-modal features are passed through a convolutional layer. The
cosine loss is then calculated between these fused features and the single-modal features. This loss
encourages consistency and alignment between the features extracted from multiple modalities and
single modality. For details, the feature groups T and S selected from teacher model and student
model can be represented as:

T = {f1
t , f

2
t , f

3
t , f

4
t }, S = {f1

s , f
2
s , f

3
s , f

4
s }, (2)

where f i
t represent the features selected from each stage of our multi-modal fusion module and f i

s
are features output from each block of our video modality modal. We generate a group of interim
features H = {f1

h , f
2
h , f

3
h , f

4
h} by feeding each feature f i

s in S into a 3× 3× 3 convolutional layer.
Then the similarity of f i

t and f i
h at location (x, y, t) can be calculated by:

Cos{f i
h(x, y, t), f

i
t (x, y, t)} =

Ci∑
c=1

f i
h(x, y, t, c) · f i

t (x, y, t, c)∣∣f i
h(x, y, t)

∣∣ · ∣∣f i
t (x, y, t)

∣∣ , (3)

where Ci denotes the channel number of feature f i
t , f i

t (x, y, t, c) is the response value of f i
t at

location (x, y, t) of the c-th channel. Finally, LF is defined as follows

LF =
∑
fi
t ,f

i
h

Hi∑
x=1

W i∑
y=1

T i∑
t=1

1− Cos{f i
h(x, y, t), f

i
t (x, y, t)}, (4)

where Hi, W i and T i are the height, width and frames of feature f i
t .

The second component is the Kullback-Leibler divergence loss, denoted as LO, which measures the
divergence between the output probabilities of the teacher network and the student network. This
loss guides the student network to mimic the output distribution of the teacher network, promoting
knowledge transfer. The third component is the CTC loss applied to the outputs of the video decoder
of the student network, denoted as LV S

CTC . This loss function helps align the predicted sequence
from the student network with the ground truth labels, aiding accurate recognition. The hierarchical
knowledge distillation loss, denoted as LHKD, is formulated by combining these three components
as follows:

LHKD = λFLF + λOLO + λCTC V SL
V S
CTC , (5)

where λF , λO, and λCTC V S are loss weights and set to 0.5, 1.0 and 1.0, respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Phoenix-2014 (Koller et al., 2015) and Phoenix-2014T (Camgoz et al., 2018) are two
German sign language (DGS) datasets widely used in the field of continous sign language translation
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Table 1: Comparison with previous works on the Phoenix-2014 and Phoenix-2014T datasets.
The best results and previous best results are marked as bold and underlined.

Method Modality Phoenix-2014 Phoenix-2014T

Dev Test Dev Test

DNF (Cui et al., 2019) video+flow 23.1 22.9 - -
STMC-R (Zhou et al., 2021b) video+keypoints 21.1 20.7 19.6 21.0
C2SLR (Zuo & Mak, 2022) video+keypoints 20.5 20.4 20.2 20.4
TwoStream-SLR (Chen et al., 2022b) video+keypoints 18.4 18.8 17.7 19.3
Ours video+keypoints+flow 17.1 17.3 16.5 18.1
SubUNets (Cihan Camgoz et al., 2017) video 40.8 40.7 - -
SFL (Niu & Mak, 2020) video 23.8 24.4 - -
FCN (Cheng et al., 2020) video 23.7 23.9 23.3 25.1
Joint-SLRT (Camgoz et al., 2020) video - - 24.6 24.5
VAC (Min et al., 2021) video 21.2 22.3 - -
SignBT (Zhou et al., 2021a) video - - 22.7 23.9
SMKD (Hao et al., 2021) video 20.8 21.0 20.8 22.4
MMTLB (Chen et al., 2022a) video - - 21.9 22.5
TLP (Hu et al., 2022) video 19.7 20.8 19.4 21.2
CorrNet (Hu et al., 2023b) video 18.8 19.4 18.9 20.5
CVT-SLR (Zheng et al., 2023) video 19.8 20.1 19.4 20.3
SEN (Hu et al., 2023c) video 19.5 21.0 19.3 20.7
Ours video 18.5 18.9 18.3 19.9

(CSLR). The Phoenix-2014 dataset consists of 5672 training, 540 development, and 629 testing
samples, with a vocabulary size of 1081 for glosses (sign language labels). It covers a total of 1231
unique signs. On the other hand, Phoenix-2014T is an extension of Phoenix-2014, containing 7096
training, 519 development, and 642 testing samples. It has a larger vocabulary size of 1066 for
glosses and 2887 for German text, which includes translations transcribed from the news speaker.
The two datasets share 958 common signs, providing a valuable resource for evaluating SLR models.

CSL-Daily (Zhou et al., 2021a) is a recently released large-scale Chinese sign language (CSL)
dataset specifically designed for sign language translation tasks. It comprises 18401 training, 1077
development, and 1176 testing video segments. The dataset captures performances of ten differ-
ent signers and covers various topics such as family life, medical care, and school life. CSL-Daily
features a vocabulary size of 2000 for glosses and 2343 for Chinese text. It serves as a valuable
benchmark for evaluating the performance of SLR models in the context of Chinese sign language.

Evaluation metrics. The Word Error Rate (WER) stands as the predominant metric for assessing
the performance of Sign Language Recognition (SLR). It quantifies the essential insertions (#ins),
substitutions (#sub), and deletions (#del) required to align recognized sentences with their corre-
sponding reference sentences (#reference). The lower WER, the better accuracy.

WER =
#ins+#sub+#del

#reference
. (6)

Implementation details. In both the Phoenix-2014 and Phoenix-2014T datasets, data from three
modalities are cropped to dimensions of 224 × 224, while in the CSL-Daily dataset, a crop size
of 320 × 320 is applied. During the training phase, data augmentations are applied, consisting of
spatial cropping within the range of [0.7-1.0] and frame-rate augmentation spanning [×0.5-×1.5].
For our network training strategy, we implement a cosine annealing schedule spanning 60 epochs.
We utilize the Adam optimizer with a weight decay of 1e−3 and set the initial learning rate to 1e−3.
We train our models on 4 Nvidia A100 GPUs. In the inference stage, we employ a CTC decoder to
derive the final gloss predictions. Specifically, a beam width of 5 is configured for the decoding.
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Table 2: Comparison with previous works on the CSL-Daily dataset. The best results and previ-
ous best results are marked as bold and underlined.

Method Modality CSL-Daily

Dev Test

TwoStream-SLR (Chen et al., 2022b) video+keypoints 25.4 25.3
Ours video+keypoints+flow 24.3 24.0
SubUNets (Cihan Camgoz et al., 2017) video 41.4 41.0
LS-HAN (Huang et al., 2018) video 39.0 39.4
FCN (Cheng et al., 2020) video 33.2 33.5
Joint-SLRT (Camgoz et al., 2020) video 33.1 32.0
SignBT (Zhou et al., 2021a) video 33.2 33.2
CorrNet (Hu et al., 2023b) video 30.6 30.1
SEN (Hu et al., 2023c) video 31.1 30.7
Ours video 26.8 26.6

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

As illustrated in Table 1, we conducted a comparative analysis between our proposed multi-modal
model, which integrates video, keypoints, and optical flow modalities, and the existing state-of-
the-art methods. Our approach outperformed all other methods, establishing new state-of-the-art
results on both the Phoenix-2014 and Phoenix-2014T datasets. The optimal WER scores achieved
by our multi-modal model on the testing set outperforms the previous best method by 7.9% on
Phoenix-2014 and 6.2% on Phoenix-2014T, respectively. Our single-modal model also achieves the
lowest WER, which are 18.5% and 18.9% on the Phoenix-2014 dataset, and 18.3% and 19.9% on
the Phoenix-2014T dataset, respectively. In Table 2, we present a comparative analysis between
our multi-modal model and the previous state-of-the-art method TwoStream-SLR on the CSL-Daily
dataset. Our model exhibits a notable reduction in WER by 1.1% on the development set and 1.3%
on the testing set when compared to TwoStream-SLR, showcasing its superior performance. The
performance of our single-modal model significantly surpasses that of other models relying solely
on video data. Our model achieves a substantial reduction in word error rates, outperforming the
previous best models by 12.4% on the development set and 11.6% on the testing set.

4.3 ABLATION STUDIES

Effect of each encoder in our multi-modal model. In table 3, we assessed the performance of
sign language recognition by individually employing the video encoder, keypoint encoder, and flow
encoder. Notably, the video encoder yielded the most favorable outcomes, while the flow encoder
demonstrated comparatively less effectiveness. Specifically, on the development and testing sets,
WER of 21.2% and 21.8%, respectively, were achieved using the video encoder, while the flow
encoder resulted in WER of 32.1% and 30.8%, respectively. Upon combining these three encoders,
a substantial enhancement in sign language recognition performance was observed, showcasing a
significant reduction in WER compared to using any single encoder in isolation.

Study on fusion methods. We also investigate the efficacy of our four-stage fusion module in Table
3. It became evident that each fusion stage contributed to a reduction in sign language recognition
error rates. When all four stages of the fusion module were employed in tandem, a notable improve-
ment was observed, resulting in WER reductions of 3.0% on the development set and 2.2% on the
testing set, as compared to scenarios where the fusion module was not utilized. Finally, we con-
ducted a comprehensive study of various fusion methods. Our findings revealed that the MLP-based
fusion method outperformed both the attention-based and convolution-based methods, underscoring
its superior effectiveness in enhancing sign language recognition.

Study on training losses. In order to encompass glosses spanning various temporal extents and
encourage intermediate layers to acquire more semantically meaningful features, we leverage a
Sign Pyramid Network (SPN) to craft auxiliary CTC losses. Additionally, we employ averaged
gloss probabilities from four heads as pseudo-targets for fine-grained supervision, creating a self-
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Table 3: Ablation study of each component of our multi-modal model on the Phoenix-2014T.
’VE’, ’KE’, ’FE’ are video encoder, keypoint encoder and flow encoder, respectively. ’M1’ ∼ ’M4’
represent the four fusion stages within our multi-modal model. ’MLP’, ’Attention’ and ’Convolu-
tion’ are different fusion methods.

VE KE FE M1 M2 M3 M4 MLP Attention Convolution Dev Test

✓ 21.2 21.8
✓ 26.0 25.2

✓ 32.1 30.8
✓ ✓ 20.4 21.0
✓ ✓ ✓ 19.5 20.3
✓ ✓ ✓ ✓ ✓ 18.3 19.5
✓ ✓ ✓ ✓ ✓ ✓ 17.6 18.9
✓ ✓ ✓ ✓ ✓ ✓ ✓ 17.0 18.5
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 16.5 18.1
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 17.0 18.8
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 17.4 19.0

Table 4: Effect of each loss used in training the multi-modal model and single-modal model on
the Phoenix-2014T. In subtable (b), ’CTC’ means we use CTC loss to train single-modal model,
’S1’ ∼ ’S4’ means we use feature distillation loss in each stage, ’O’ means the output distillation
loss.

(a) Weights of loss in multi-modal model.

λCTC λSPN λSD Dev Test

1.0 17.4 19.0
1.0 0.2 16.9 18.6
1.0 0.5 17.1 18.9
1.0 0.2 0.5 16.6 18.3
1.0 0.2 1.0 16.5 18.1

(b) Effect of losses in single-modal model.

CTC S1 S2 S3 S4 O Dev Test

✓ 21.2 21.8
✓ ✓ 20.5 21.3
✓ ✓ ✓ 20.0 21.0
✓ ✓ ✓ ✓ 19.4 20.7
✓ ✓ ✓ ✓ ✓ 19.0 20.3
✓ ✓ ✓ ✓ ✓ ✓ 18.3 19.9

distillation loss. In Table 4(a), while maintaining a fixed CTC loss weight of 1.0, we observe that
setting λSPN to 0.2 and λSD to 1.0 yields the optimal performance.

In Table 4(b), our investigation centers on the impact of distillation loss during the training of the
single-modal model. While maintaining a constant CTC loss weight of 1.0, we set the losses for
distillation of latent features to a uniform value of 0.1 and assign a weight of 1.0 to the loss for
distillation of output gloss probabilities. Notably, when these loss components are combined and
used to train the model simultaneously, we observe a significant reduction in WER by 13.7% on the
development set and 8.7% on the test set.

5 CONCLUSION

In this paper, we addressed the challenge of continuous sign language recognition (CSLR) by
proposing SignKD, a novel framework that combines video, keypoints, and optical flow modalities.
We introduced a hierarchical knowledge distillation approach to transfer knowledge from multiple
modalities to a single-modal CSLR model. Our methodology effectively captured the intricate hand
movements inherent in sign language and reduced the computational overhead associated with ex-
tracting keypoints and optical flow information. Through extensive experiments on Phoenix-2014,
Phoenix-2014T, and CSL-Daily datasets, we demonstrated the effectiveness of SignKD in achieving
state-of-the-art performance in CSLR. Our results showed significant improvements in both single-
stream and multi-stream settings, highlighting the advantages of our approach.
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A OVERVIEW

• Section B: Details of fusion methods.
• Section C: More designs in multi-modal model.

B DETAILS OF FUSION METHODS.

For the MLP-based fusion method, we use a simple but effective method, which is a MLP containing
three linear layers, each layer followed by a GELU activation function except for the last one. The
operation of fusion module can be represented as follow:

Ffuse = Rm(Fvideo©Fkeypoint©Fflow), (7)
F

′

video = Ffuse + Fvideo, (8)
F

′

keypoint = Ffuse + Fkeypoint, (9)
F

′

flow = Ffuse + Fflow, (10)

where Rm can represent the MLP function, Ffuse is the feature output from our fusion module,
Fvideo, Fkeypoint, Fflow are features input to fusion module, and F

′

video, F
′

keypoint, F
′

flow are en-
hanced features input to the next stage. The same meanings of the symbols below.

For the attention-based fusion method, the operation of fusion module can be represented as:

F
′

video = Fvideo +Rc(Fvideo, Fkeypoint) +Rc(Fkeypoint, Fflow), (11)
F

′

keypoint = Fkeypoint +Rc(Fkeypoint, Fvideo) +Rc(Fkeypoint, Fflow), (12)
F

′

flow = Fflow +Rc(Fflow, Fvideo) +Rc(Fflow, Fkeypoint), (13)

where Rc can represent the cross attention function.

In terms of convolution-based fusion method, we describe the process as:

Ffuse = R1(R2(Fvideo©Fkeypoint©Fflow)) (14)
F

′

video = Ffuse + Fvideo, (15)
F

′

keypoint = Ffuse + Fkeypoint, (16)
F

′

flow = Ffuse + Fflow, (17)

where R1 and R2 can be 1× 1× 1 convolutional layer and 3× 3× 3 convolutional layer.

C MORE DESIGNS IN MULTI-MODAL MODEL.

We utilize a combined head and late ensemble method to merge the multi-modal features, as shown
in Figure 3 (a). This is necessary because each encoder has its own head network. Additionally, we
employ signal pyramid networks that effectively capture glosses across various temporal spans, as
shown in Figure 3 (b). It also facilitates the supervision of shallow layers, enabling them to learn
significant representations. Furthermore, we use a frame-level self-distillation method, which not
only offers frame-level supervision but also transfers knowledge from the late ensemble back to each
individual modality.

Joint Head and Late Ensemble. In our model, we have separate head networks for the video en-
coder, keypoint encoder, and optical flow encoder. However, to fully exploit the potential of our
dual encoder architecture, we introduce an additional head network called the joint head. This joint
head takes the concatenation of the outputs from the three S3D networks as inputs. The architec-
ture of the joint head is the same as the individual video head, keypoint head, and flow head. The
joint head is also supervised by a CTC loss, ensuring comprehensive training. To generate the final
gloss sequence, we employ a late ensemble strategy. We average the frame-wise gloss probabili-
ties predicted by the video head, keypoint head, optical flow head, and joint head. These averaged
probabilities are then passed through a CTC decoder, which generates the final gloss sequence. This
late ensemble strategy combines the results from multiple streams and improves upon the predic-
tions made by individual streams. By incorporating the joint head and employing the late ensemble
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Figure 3: (a) Sign pyramid network use the features of the last three blocks of S3D as the input and
feed the features to the head network. (b) The head networks in our mulit-modal model consists of
a video head, a keypoint head, a flow head and a joint head to generate gloss probabilities, then we
feed the probabilities to a CTC decoder to generate the gloss sequence.

strategy, we maximize the benefits of our multi-stream architecture, leveraging the strengths of each
stream and achieving improved performance compared to single-stream predictions.

Sign Pyramid Network. To capture glosses of different temporal spans and effectively supervise the
shallow layers for meaningful representations, we incorporate a sign pyramid network (SPN) with
auxiliary supervision into our model. This approach builds upon previous research and involves a
top-down pathway and lateral connections within the SPN. To fuse features extracted by adjacent
S3D blocks, we utilize an element-wise addition operation. Additionally, transposed convolutions
are employed to match the temporal and spatial dimensions of the two feature maps before perform-
ing element-wise addition. Two separate head networks, following the same architecture as the dual
encoder, are utilized to extract frame-level gloss probabilities. Auxiliary supervision is provided by
employing CTC losses. We employ three independent SPNs for the video, keypoints, and optical
flow modalities, ensuring comprehensive coverage across different modalities.

Self Knowledge distillation. Due to the lack of labeled temporal boundaries for glosses in exist-
ing datasets, CTC loss has been widely used to leverage weak supervision at the sentence level.
However, once the visual encoder is well optimized, it becomes capable of generating frame-wise
gloss probabilities, which can be used to estimate approximate temporal boundaries for glosses.
Therefore, we utilize these predicted frame-wise gloss probabilities as pseudo-targets to provide
additional fine-grained supervision, complementing the coarse-grained CTC loss. In line with our
multi-modality design, we take the averaged gloss probabilities derived from the four head net-
works as pseudo-targets to guide the learning process of each stream. Specifically, we minimize
the KL-divergence between these pseudo-targets and the predictions obtained from the four head
networks. This loss, which we refer to as frame-level self-distillation loss, serves a dual purpose.
Firstly, it provides frame-level supervision, enabling more precise guidance during training. Sec-
ondly, it facilitates knowledge distillation, as the late ensemble’s knowledge is distilled back into
each individual stream. By applying the frame-level self-distillation loss, our model benefits from
both fine-grained supervision and knowledge distillation, enhancing the learning process and overall
performance of each stream within the multi-modal architecture.
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