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Abstract

Graph is a prevalent discrete data structure, whose generation has wide applications
such as drug discovery and circuit design. Diffusion generative models, as an
emerging research focus, have been applied to graph generation tasks. Overall,
according to the space of states and time steps, diffusion generative models can
be categorized into discrete-/continuous-state discrete-/continuous-time fashions.
In this paper, we formulate the graph diffusion generation in a discrete-state
continuous-time setting, which has never been studied in previous graph diffusion
models. The rationale of such a formulation is to preserve the discrete nature of
graph-structured data and meanwhile provide flexible sampling trade-offs between
sample quality and efficiency. Analysis shows that our training objective is closely
related to the generation quality and our proposed generation framework enjoys
ideal invariant/equivariant properties concerning the permutation of node ordering.
Our proposed model shows competitive empirical performance against state-of-
the-art graph generation solutions on various benchmarks and at the same time can
flexibly trade off the generation quality and efficiency in the sampling phase.

1 Introduction

Figure 1: A taxonomy of graph diffusion models.

Graph generation has been studied for a
long time with broad applications, based on
either the one-shot (i.e., one-step) [50, 39,
56, 51, 72, 32] or auto-regressive genera-
tion paradigm [82, 29, 42, 52]. The former
generates all the graph components at once
and the latter does that sequentially. A re-
cent trend of applying diffusion generative
models [67, 23, 70] to graph generation
tasks attracts increasing attentions because
of its excellent performance and solid theo-
retical foundation. In this paper, we follow
the one-shot generation paradigm, the same
as most graph diffusion generative models.

Some earlier attempts at graph diffusion models treat the graph data in a continuous state space by
viewing the graph topology and features as continuous variables [56]. Such a formulation departs
from the discrete nature of graph-structured data; e.g., topological sparsity is lost and the discretization
in the generation process requires extra hyper-parameters. DiGress [73] is one of the early efforts
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applying discrete-state diffusion models to graph generation tasks and is the current state-of-the-art
graph diffusion generative model. However, DiGress is defined in the discrete time space whose
generation is inflexible. This is because, its number of sampling steps must match the number of
forward diffusion steps, which is a fixed hyperparameter after the model finishes training. A unique
advantage of the continuous-time diffusion models [70, 32] lies in their flexible sampling process, and
its simulation complexity is proportional to the number of sampling steps, determined by the step size
of various numerical approaches (e.g., τ -leaping [18, 8, 71]) and decoupled from the models’ training.
Thus, a discrete-state continuous-time diffusion model is highly desirable for graph generation tasks.

Driven by the recent advance of continuous-time Markov Chain (CTMC)-based diffusion generative
model [8], we incorporate the ideas of CTMC into the corruption and denoising of graph data and
propose the first discrete-state continuous-time graph diffusion generative model. It shares the same
advantages as DiGress by preserving the discrete nature of graph data and meanwhile overcomes the
drawback of the nonadjustable sampling process in DiGress. This Discrete-state Continuous-time
graph diffusion model is named DISCO.

DISCO bears several desirable properties and advantages. First, despite its simplicity, the training
objective has a rigorously proved connection to the sampling error. Second, its formulation includes
a parametric graph-to-graph mapping, named backbone model, whose input-output architecture
is shared between DISCO and DiGress. Therefore, the graph transformer (GT)-based backbone
model [54] from DiGress can be seamlessly plugged into DISCO. Third, a concise message-passing
neural network backbone model is explored with DISCO, which is simpler than the GT backbone and
has decent empirical performance. Last but not least, our analyses show that the forward and reverse
diffusion process in DISCO can retain the permutation-equivariant/invariant properties for its training
loss and sampling distribution, both of which are critical and practical inductive biases on graph data.

Comprehensive experiments on plain and molecule graphs show that DISCO can obtain competitive
or superior performance against state-of-the-art graph generative models and provide additional
sampling flexibility. Our main contributions are summarized:

• Model. We propose the first discrete-state continuous-time graph diffusion model, DISCO. We
utilize the successful graph-to-graph neural network architecture from DiGress and further explore
a new lightweight backbone model with decent efficacy.

• Analysis. Our analysis reveals (1) the key connection between the training loss and the approx-
imation error (Theorem 3.3) and (2) invariant/equivariant properties of DISCO in terms of the
permutation of nodes (Theorems 3.8 and 3.9).

• Experiment. Extensive experiments validate the empirical performance of DISCO.

2 Preliminaries

2.1 Discrete-State Continuous-time Diffusion Models

A D-dimensional discrete state space is represented as X = {1, . . . , C}D. A continuous-time
Markov Chain (CTMC) {xt = [x1

t , · · ·xD
t ]}t∈[0,T ] is characterized by its (time-dependent) rate

matrix Rt ∈ R|X |×|X|. Here xt is the state at the time step t. The transition probability qt|s between
from time s to t satisfies the Kolmogorov forward equation, for s < t,

d

dt
qt|s(xt|xs) =

∑
ξ∈X

qt|s(ξ|xs)Rt(ξ,xt), (1)

The marginal distribution can be represented as qt(xt) =
∑

x0∈X qt|0(xt|x0)πdata(x0) where
πdata(x0) is the data distribution. If the CTMC is defined in time interval [0, T ] and if the rate
matrix Rt is well-designed, the final distribution qT (xT ) can be close to a tractable reference distri-
bution πref(xT ), e.g., uniform distribution. We notate the reverse stochastic process as x̃t = xT−t; a
well-known fact (e.g., Section 5.9 in [63]) is that the reverse process {x̃t}t∈[0,T ] is also a CTMC,
characterized by the reverse rate matrix: R̃t(x,y) =

q(y)
q(x)Rt(y,x). The goal of the CTMC-based

diffusion models is an accurate estimation of the reverse rate matrix R̃t so that new data can be gener-
ated by sampling the reference distribution πref and then simulating the reverse CTMC [16, 17, 18, 1].
However, the complexity of the rate matrix is prohibitively high because there are CD possible states.
A reasonable simplification is to factorize the process over dimensions [8, 71, 73, 2]. Specifically,
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Figure 2: An overview of DISCO. A transition can happen at any time in [0, T ].

the forward process is factorized as qt|s(xt|xs) =
∏D

d=1 qt|s(x
d
t |xd

s), for s < t. Then, the forward
diffusion of each dimension is independent and is governed by dimension-specific forward rate
matrices {Rd

t }Dd=1. With such a factorization, the goal is to estimate the dimension-specific reverse
rate matrices {R̃d

t }Dd=1.

The dimension-specific reverse rate is represented as R̃d
t (x

d, yd) =∑
xd
0
Rd

t (y
d, xd)

qt|0(y
d|xd

0)

qt|0(xd|xd
0)
q0|t(x

d
0|x). Campbell et al. [8] estimate q0|t(x

d
0|x) via a neural

network pθ such that pθ(xd
0|x, t) ≈ q0|t(x

d
0|x); Sun et al. [71] propose another singleton conditional

distribution-based objective pθ(y
d|x\d,t)

pθ(xd|x\d,t)
≈ q(yd|x\d)

q(xd|x\d)
whose rationale is Brook’s Lemma [5, 49].

2.2 Graph Generation and Notations

We study the graphs with categorical node and edge attributes. A graph with n nodes is represented
by its edge type matrix and node type vector: G = (E,F), where E = (e(i,j))i,j∈N+

≤n
∈ {1, . . . , a+

1}n×n, F = (f i)i∈N+
≤n
∈ {1, . . . , b}n, a and b are the numbers of node and edge types, respectively.

Notably, the absence of an edge is viewed as a special edge type, so there are (a+ 1) edge types in
total. The problem we study is graph generation where N graphs {Gi}i∈N+

≤N
from an inaccessible

graph data distribution G are given and we aim to generate M graphs {Gi}i∈N+
≤M

from G.

3 Method

This section presents the proposed discrete-state continuous-time graph diffusion model, DISCO
whose overview is Figure 2. Section 3.1 introduces the necessity to factorize the diffusion process
and Section 3.2 details the forward process. Our training objective and its connection to sampling are
introduced in Sections 3.3 and 3.4, respectively. Last but not least, a specific neural architecture of
the graph-to-graph backbone model and its properties regarding the permutation of node ordering are
introduced in Sections 3.5 and 3.6, respectively. All proofs are in Appendix.

3.1 Factorized Discrete Graph Diffusion Process

The number of possible states of an n-node graph is (a + 1)n
2 × bn which is intractably large.

Thus, we follow existing discrete models [2, 8, 71, 73] and formulate the forward processes on every
node/edge to be independent. Mathematically, the forward diffusion process for s < t is factorized as

qt|s(Gt|Gs) =
n∏

i,j=1

qt|s(e
(i,j)
t |e(i,j)s )

n∏
i=1

qt|s(f
i
t |f i

s) (2)

where the edge type transition probabilities {qt|s(e
(i,j)
t |e(i,j)s )}i,j∈N+

≤n
and node type transition

probabilities {qt|s(f i
t |f i

s)}i∈N+
≤n

are characterized by their forward rate matrices {R(i,j)
t }i,j∈N+

≤n

and {Ri
t}i∈N+

≤n
, respectively. The forward processes, i.e., the forward rate matrices in our context,

are predefined, which will be introduced in Section 3.2. Given the factorization of forward transition
probability in Eq. (2), a question is raised: what is the corresponding factorization of the forward
rate matrix (Rt) and the reverse rate matrix (R̃t)? Remark 3.1 shows such a factorization.
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Algorithm 1 Training of DISCO

1: A training graph G0 = ({f i
0}, {e

(i,j)
0 }) is given.

2: Sample t ∼ U(0,T ); sample Gt based on transition probabilities qt|0(ft = v|f0 = u) =

(e
∫ t
0
β(s)Rfds)uv and qt|0(et = v|e0 = u) = (e

∫ t
0
β(s)Reds)uv , given G0 = ({f i

0}, {e
(i,j)
0 }).

3: Predict the clean graph Ĝ0 = ({f̂ i
0}, {ê

(i,j)
0 })←

(
{pθ0|t(f

i|Gt)}, {pθ0|t(e
(i,j)|Gt)}

)
, given Gt.

4: Compute cross-entropy loss between G0 and Ĝ0 based on Eq. (6) and update θ.

Remark 3.1. (Factorization of rate matrices, extended from Proposition 3 of [8]) Given the factorized
forward process Eq. (2), the overall rate matrices are factorized as

Rt(Ḡ,G) =
∑
i

Ai
t +
∑
i,j

B
(i,j)
t (3)

R̃t(G, Ḡ) =
∑
i

Ai
t

∑
fi
0

qt|0(f̄
i|f i

0)

qt|0(f i|f i
0)
q0|t(f

i
0|G) +

∑
i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e
(i,j)
0 )

q0|t(e
(i,j)
0 |G) (4)

where Ai
t = Ri

t(f̄
i, f i)δḠ\f̄i,G\fi , B

(i,j)
t = R

(i,j)
t (ē(i,j), e(i,j))δḠ\ē(i,j),G\e(i,j) , the operator

δḠ\f̄i,G\fi (or δḠ\ē(i,j),G\e(i,j)) checks whether two graphs Ḡ and G are exactly the same except
for node i (or the edge between nodes i and j).

Note that this factorization itself is not our contribution but a necessary part of our framework, so we
mention it here for completeness. Its full derivation is in Appendix - Section A. Next, we detail the
design of forward rate matrices.

3.2 Forward Process

A proper choice of the forward rate matrices {R(i,j)
t }i,j∈N+

≤n
and {Ri

t}i∈N+
≤n

is important because

(1) the probability distributions of node and edge types, {q(f i
t )}i∈N+

≤n
and {q(e(i,j)t )}i,j∈N+

≤n
, should

converge to their reference distributions within [0, T ] and (2) the reference distributions should be
easy to sample (e.g., uniform distribution). We follow [8] to formulate R

(i,j)
t = β(t)R

(i,j)
e , ∀i, j

and Ri
t = β(t)Ri

f , ∀i, where β(t) is a corruption schedule, {R(i,j)
e } and {Ri

f} are the base rate
matrices. For brevity, we set all the nodes/edges to share a common node/edge rate matrix, i.e.,
R

(i,j)
e = Re and Ri

f = Rf , ∀i, j. Then, the forward transition probability for all the nodes and

edges are qt|0(ft = v|f0 = u) = (e
∫ t
0
β(s)Rfds)uv and qt|0(et = v|e0 = u) = (e

∫ t
0
β(s)Reds)uv,

respectively. We omit the superscript i (or (i, j)) because the transition probability is shared by all
the nodes (or edges). The detailed derivation of the above analytic forward transition probability is
provided in Appendix - Section B.

For categorical data, a reasonable reference distribution is a uniform distribution, i.e., πf = 1
b for

nodes and πe = 1
a+1 for edges. In addition, inspired by [73], we find that node and edge marginal

distributions mf and me are good choices as the reference distributions. Concretely, an empirical
estimation of mf and me is to count the number of node/edge types and normalize them. The
following proposition shows how to design the rate matrices to guide the forward process to converge
to uniform and marginal distributions.

Proposition 3.2. The forward processes for nodes and edges converge to uniform distributions if
Rf = 11⊤ − bI and Re = 11⊤ − (a+ 1)I; they converge to marginal distributions mf and me if
Rf = 1m⊤

f − I and Re = 1m⊤
e − I. 1 is an all-one vector and I is an identity matrix.

Regarding the selection of β(t), we follow [23, 70, 8] and set β(t) = αγt log(γ) for a smooth change
of the rate matrix. α and γ are hyperparameters. Detailed settings are in Appendix F.3.
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3.3 Parameterization and Optimization Objective

Next, we introduce the estimation of the reverse process from its motivation. The reverse pro-
cess is essentially determined by the reverse rate matrix R̃t in Eq. (4), whose computation
needs q0|t(f

i
0|G) and q0|t(e

(i,j)
0 |G), ∀i, j; their exact estimation is expensive because according

to Bayes’ rule, pt(G) is needed, whose computation needs to enumerate all the given graphs:
pt(G) =

∑
G0

qt|0(G|G0)πdata(G0).
Thus, we propose parameterizing the reverse transition probabilities via a neural network
θ whose specific architecture is introduced in Section 3.5. The terms {q0|t(f i

0|G)}i∈N+
≤n

and {q0|t(e
(i,j)
0 |G)}i,j∈N+

≤n
in Eq. (4) are replaced with the parameterized {pθ0|t(f

i|G)}i∈N+
≤n

and {pθ0|t(e
(i,j)|G)}i,j∈N+

≤n
. Thus, a parameterized reverse rate matrix R̃θ,t(G, Ḡ) is repre-

sented as R̃θ,t(G, Ḡ) =
∑

i R̃
i
θ,t(f

i, f̄ i) +
∑

i,j R̃
(i,j)
θ,t (e(i,j), ē(i,j)) where R̃i

θ,t(f
i, f̄ i) =

Ai
t

∑
fi
0

qt|0(f̄
i|fi

0)

qt|0(fi|fi
0)
pθ0|t(f

i
0|G), R̃

(i,j)
θ,t (e(i,j), ē(i,j)) = B

(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e
(i,j)
0 )

pθ0|t(e
(i,j)
0 |G), and

the remaining notations are the same as Eq. (4). Note that all the terms {pθ0|t(f
i|G)}i∈N+

≤n
and

{pθ0|t(e
(i,j)|G)}i,j∈N+

≤n
can be viewed together as a graph-to-graph mapping θ : G 7→ G, whose

input is the noisy graph Gt and its output is the predicted clean graph probabilities, concretely, the
node/edge type probabilities of all the nodes and edges.

Intuitively, the discrepancy between the groundtruth R̃t (from Eq. (4)) and the parametric R̃θ,t

should be small. Theorem 3.3 establishes a cross-entropy (CE)-based upper bound of such a
discrepancy, where the estimated probability vectors (sum is 1) are notated as f̂ i

0 = [pθ0|t(f
i =

1|Gt), . . . , pθ0|t(f
i = b|Gt)]⊤ ∈ [0, 1]b and ê

(i,j)
0 = [pθ0|t(e

(i,j) = 1|Gt), . . . , pθ0|t(e
(i,j) = a +

1|Gt)]⊤ ∈ [0, 1]a+1.
Theorem 3.3 (Approximation error). for G ≠ Ḡ∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)

∣∣∣2 ≤ Ct + Cnode
t EG0qt|0(G|G0)

∑
i

LCE
(
One-Hot(f i

0), f̂
i
0

)
+ Cedge

t EG0qt|0(G|G0)
∑
i,j

LCE
(
One-Hot(e(i,j)0 ), ê

(i,j)
0

)
(5)

where Ct, Cnode
t , and Cedge

t are constants independent on θ but dependent on t, G, and Ḡ; One-Hot
transforms f i

0 and e
(i,j)
0 into one-hot vectors.

The bound in Theorem 3.3 is tight, i.e., the right-hand side of Eq. (5) is 0, whenever f̂ i
0 =

q0|t(f
i
0|Gt),∀i and ê

(i,j)
0 = q0|t(e

(i,j)
0 |Gt),∀i, j. Guided by Theorem 3.3, we (1) take expecta-

tion of t by sampling t from a uniform distribution t ∼ U(0,T ) and (2) simplify the right-hand side of
Eq. (5) by using the unweighted CE loss as our training objective:

min
θ

TEtEG0
Eqt|0(Gt|G0)

[∑
i

LCE(One-Hot(f i
0), f̂

i
0) +

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 )

]
(6)

A step-by-step training algorithm is in Algorithm 1. Note that the above CE loss has been used in
some diffusion models (e.g., [2, 8]) but lacks a good motivation, especially in the continuous-time
setting. We motivate it based on the rate matrix discrepancy, as a unique contribution of this paper.

3.4 Sampling Reverse Process

Given the parametric reverse rate matrix R̃θ,t(G, Ḡ), the graph generation process can be implemented
by two steps: (1) sampling the reference distribution πref (i.e., πf for nodes and πe for edges) and
(2) numerically simulating the CTMC from time T to 0. The exact simulation of a CTMC has been
studied for a long time, e.g., [16, 17, 1]. However, their simulation strategies only allow one transition
(e.g., one edge/node type change) per step, which is highly inefficient for graphs as the number of
nodes and edges is typically large; once a(n) node/edge is updated, R̃θ,t requires recomputation. A
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practical approximation is to assume R̃θ,t is fixed during a time interval [t− τ, t], i.e., delaying the
happening of transitions in [t− τ, t] and triggering them all together at the time t− τ ; this strategy is
also known as τ -leaping [18, 8, 71], and DISCO adopts it.

We elaborate on τ -leaping for transitions of node types; the transitions of edge types are similar. The

rate matrix of the i-th node is fixed as R̃i
θ,t(f

i, f̄ i) = Ri
t(f̄

i, f i)
∑

fi
0

qt|0(f̄
i|fi

0)

qt|0(fi|fi
0)
pθ0|t(f

i|Gt), during

[t− τ, t]. According to the definition of rate matrix, in [t− τ, t], the number of transitions from f i

to f̄ i, namely Jfi,f̄i , follows the Poisson distribution, i.e., Jfi,f̄i ∼ Poisson(τR̃i
θ,t(f

i, f̄ i)). For
categorical data (e.g., node type), multiple transitions in [t − τ, t] are invalid and meaningless. In
other words, for the i-th node, if the total number of transitions

∑
f̄i Jfi,f̄i > 1, f i keeps unchanged

in [t− τ, t]; otherwise, if
∑

f̄i Jfi,f̄i = 1 and Jfi,s = 1, i.e., there is exact 1 transition, f i jumps to
s. A step-by-step sampling algorithm (Algorithm 2) is in Appendix.
Remark 3.4. The sampling error of τ -leaping is linear to Cerr [8], the approximation error of the
reverse rates:

∑
G≠Ḡ

∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣ ≤ Cerr. Interested readers are referred to Theorem 1

from [8]. Our Theorem 3.3 shows the connection between our training loss and Cerr, which further
verifies the correctness of our training loss.

3.5 Model Instantiation

As mentioned in Section 3.3, the parametric backbone pθ0|t(G0|Gt) is a graph-to-graph mapping whose
input is the noisy graph Gt and its output is the predicted denoised graph G0. There exists a broad
range of neural network architectures. Notably, DiGress [73] uses a graph Transformer (GT) as pθ0|t,
a decent reference for our continuous-time framework. We name our model with the GT backbone as
DISCO-GT and its detailed configuration is in Appendix F.3. The main advantage of the GT is its
long-range interaction thanks to the complete self-attention graph; however, the architecture is very
complex and includes multi-head self-attention modules, leading to expensive computation.

Beyond GTs, in this paper, we posit that a regular message-passing neural network (MPNN) [19]
should be a promising choice for pθ0|t(G0|Gt). It is recognized that the MPNNs’ expressiveness might
not be as good as GTs’ [33, 7], e.g., in terms of long-range interactions. However, in our setting, the
absence of an edge is viewed as a special type of edge and the whole graph is complete; therefore,
such a limitation of MPNN is naturally mitigated, which is verified by our empirical evaluations.

Concretely, an MPNN-based graph-to-graph mapping is presented as follows, and DISCO with MPNN
backbone is named DISCO-MPNN. Given a graph G = (E,F), where E ∈ {1, . . . , a, a + 1}n×n,
F ∈ {1, . . . , b}n, we first transform both the matrix E and F into one-hot embeddings EOH ∈
{0, 1}n×n×(a+1) and FOH ∈ {0, 1}n×b. Then, some auxiliary features (e.g., the # of specific motifs)
are extracted: Faux,yaux = Aux(EOH) to overcome the expressiveness limitation of MPNNs [11].
Here Faux and yaux are the node and global auxiliary features, respectively. Note that a similar
auxiliary feature engineering is also applied in DiGress [73]. More details about the Aux can be
found in Appendix E. Then, three multi-layer perceptrons (MLPs) are used to map node features
FOH ⊕ Faux, edge features EOH, and global features yaux into a common hidden space as Fhidden =
MLP(FOH ⊕ Faux), Ehidden = MLP(EOH), yhidden = MLP(yaux), where ⊕ is a concatenation operator.
The following formulas present the update of node embeddings (e.g., ri = F(i, :)), edge embedding
(e.g., r(i,j) = E(i, j, :)), and global embedding y in an MPNN layer, where we omit the subscript
hidden if it does not cause ambiguity:

ri ← FiLM

(
FiLM

(
ri, MLP

( n∑
j=1

r(j,i)/n

))
,y

)
, r(i,j) ← FiLM

(
FiLM(r(i,j), ri ⊙ rj),y

)
, (7)

y← y + PNA
(
{ri}ni=1

)
+ PNA

(
{r(i,j)}ni,j=1

)
. (8)

The edge embeddings are aggregated by mean pooling (i.e.,
∑n

j=1 r
(j,i)/n); the node pair embeddings

are passed to edges by Hadamard product (i.e., ri ⊙ rj); edge/node embeddings are merged to
the global embedding y via the PNA module [12]; Some FiLM modules [57] are used for the
interaction between node/edge/global embeddings. More details about the PNA and FiLM are in
Appendix E. In this paper, we name Eqs. (7) and (8) on all nodes/edges together as an MPNN
layer, F,E,y ← MPNN(F,E,y). Stacking multiple MPNN layers leads to larger model capacity.

6



Finally, two readout MLPs are used to project the node/edge embeddings into input dimensions,
MLP(F) ∈ Rn×b and MLP(E) ∈ Rn×n×(a+1), which are output after wrapped with softmax.

Both the proposed MPNN and the GT from DiGress [73] use the PNA and FiLM to merge embeddings,
but MPNN does not have multi-head self-attention layers so that the computation overhead is lower.

3.6 Permutation Equivariance and Invariance

Reordering the nodes keeps the property of a given graph, which is known as permutation invariance.
In addition, for a given function if its input is permuted and its output is permuted accordingly,
such a behavior is known as permutation equivariance. In this subsection, we analyze permutation-
equivariance/invariance of the (1) diffusion framework (Lemmas 3.5, 3.6, and 3.7), (2) sampling
density (Theorem 3.8), and (3) training loss (Theorem 3.9).

Lemma 3.5 (Permutation-equivariant layer). The proposed MPNN layer (Eqs. (7) and (8)) is
permutation-equivariant.

The auxiliary features from the Aux are also permutation-equivariant (see Appendix E). Thus, the
whole MPNN-based backbone pθ0|t is permutation-equivariant. Note that the GT-based backbone
from DiGress [73] is also permutation-equivariant whose proof is omitted as it is not our contribution.
Next, we show the permutation invariance of the rate matrices.

Lemma 3.6 (Permutation-invariant rate matrices). The forward rate matrix of DISCO is permutation-
invariant if it is factorized as Eq. (3). The parametric reverse rate matrix of DISCO (R̃θ,t) is
permutation-invariant whenever the graph-to-graph backbone pθ0|t is permutation-equivariant.

Lemma 3.7 (Permutation-invariant transition probability). For CTMC satisfying the Kolmogorov
forward equation (Eq. (1)), if the rate matrix is permutation-invariant (i.e., Rt(xi,xj) =
Rt(P(xi),P(xj)), the transition probability is permutation-invariant (i.e., qt|s(xt|xs) =
qt|s(P(xt)|P(xs)), where P is a permutation.

Based on Lemmas 3.6 and 3.7, DISCO’s parametric reverse transition probability is permutation-
invariant. The next theorem shows the permutation-invariance of the sampling probability.

Theorem 3.8 (Permutation-invariant sampling probability). If both the reference distribution πref
and the reverse transition probability are permutation-invariant, the parametric sampling distribution
pθ0(G0) is permutation-invariant.

In addition, the next theorem shows the permutation invariance of the training loss.

Theorem 3.9 (Permutation-invariant training loss). The proposed training loss Eq. (6) is invariant to
any permutation of the input graph G0 if pθ0|t is permutation-equivariant.

4 Experiments

This section includes: an effectiveness evaluation on plain graphs (Section 4.1) and molecule graphs
(Section 4.2), an efficiency study (Section 4.3), and an ablation study (Section 4.4). Detailed
settings (Sections F.1-F.3), additional effectiveness evaluation (Sections F.4, additional ablation study
(Section F.5), convergence study (Section F.6), and visualization (Section F.7) are in Appendix. Our
code is released 3.

4.1 Plain Graph Generation

Datasets and metrics. Datasets SBM, Planar [51], and Community [82] are used. The relative
squared Maximum Mean Discrepancy (MMD) for degree distributions (Deg.), clustering coefficient
distributions (Clus.), and orbit counts (Orb.) distributions (the number of occurrences of substructures
with 4 nodes), Uniqueness(%), Novelty(%), and Validity(%) are chosen as metrics. Details about the
datasets, metrics, baselines (Section F.2.2), and results on Community (Table 8) are in Appendix.

Results. Table 1 shows the effectiveness evaluation on SBD and Planar from which we observe:
3https://github.com/pricexu/DisCo
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Table 1: Performance (mean±std) on SBM and Planar datasets.

Dataset Model Deg.↓ Clus.↓ Orb.↓ Unique ↑ Novel ↑ Valid ↑

SBM

GraphRNN [82] 6.9 1.7 3.1 100.0 100.0 5.0
GRAN [42] 14.1 1.7 2.1 100.0 100.0 25.0
GG-GAN [37] 4.4 2.1 2.3 100.0 100.0 0.0
MolGAN [9] 29.4 3.5 2.8 95.0 100.0 10.0
SPECTRE [51] 1.9 1.6 1.6 100.0 100.0 52.5
ConGress [73] 34.1 3.1 4.5 0.0 0.0 0.0
DiGress [73] 1.6 1.5 1.7 100.0 100.0 67.5
DISCO-MPNN 1.8±0.2 0.8±0.1 2.7±0.4 100.0±0.0 100.0±0.0 41.9±2.2

DISCO-GT 0.8±0.2 0.8±0.4 2.0±0.5 100.0±0.0 100.0±0.0 66.2±1.4

Planar

GraphRNN [82] 24.5 9.0 2508.0 100.0 100.0 0.0
GRAN [42] 3.5 1.4 1.8 85.0 2.5 97.5
GG-GAN [37] 315.0 8.3 2062.6 100.0 100.0 0.0
MolGAN [9] 4.5 10.2 2346.0 25.0 100.0 0.0
SPECTRE [51] 2.5 2.5 2.4 100.0 100.0 25.0
ConGress [73] 23.8 8.8 2590.0 0.0 0.0 0.0
DiGress [73] 1.4 1.2 1.7 100.0 100.0 85.0
DISCO-MPNN 1.4±0.3 1.4±0.4 6.4±1.6 100.0±0.0 100.0±0.0 33.8±2.7

DISCO-GT 1.2±0.5 1.3±0.5 1.7±0.7 100.0±0.0 100.0±0.0 83.6±2.1

Table 2: Performance (mean±std%) on QM9 dataset. V., U., and N. mean Valid, Unique, and Novel.

Model Valid ↑ V.U. ↑ V.U.N. ↑
CharacterVAE [20] 10.3 7.0 6.3
GrammarVAE[38] 60.2 5.6 4.5
GraphVAE [66] 55.7 42.0 26.1
GT-VAE [55] 74.6 16.8 15.8
Set2GraphVAE [72] 59.9 56.2 -
GG-GAN [37] 51.2 24.4 24.4
MolGAN [9] 98.1 10.2 9.6
SPECTRE [51] 87.3 31.2 29.1
GraphNVP [50] 83.1 82.4 -
GDSS [32] 95.7 94.3 -
EDGE [10] 99.1 99.1 -
ConGress [73] 98.9 95.7 38.3
DiGress [73] 99.0 95.2 31.8
GRAPHARM [36] 90.3 86.3 -
DISCO-MPNN 98.9±0.7 98.7±0.5 68.7±0.2
DISCO-GT 99.3±0.6 98.9±0.6 56.2±0.4

• DISCO-GT can obtain competitive performance against the SOTA, DiGress, which is reasonable
because both models share the graph Transformer backbone. Note that DiGress’s performance in
terms of Validity is not the statistics reported in the paper but from their latest model checkpoint 4.
In fact, we found it very hard for DiGress and DISCO-GT to learn to generate valid SBM/Planar
graphs. These two datasets have only 200 graphs, but sometimes only after > 10, 000 epochs
training, the Validity percentage can be > 50%. Additionally, DISCO-GT provides extra flexibility
during sampling by adjusting the τ . This is important: our models can still trade-off between the
sampling efficiency and quality even after the model is trained and frozen.

• In general, DISCO-MPNN has competitive performance against DISCO-GT in terms of Deg.,
Clus., and Orb. However, its performance is worse compared to DISCO-GT in terms of Validity,
which might be related to the different model expressiveness. Studying the graph-to-graph model
expressiveness would be an interesting future direction, e.g., generating valid Planar graphs.

4https://github.com/cvignac/DiGress/blob/main/README.md

8

https://github.com/cvignac/DiGress/blob/main/README.md


Table 3: Performance on MOSES. VAE, JT-VAE, and GraphINVENT have hard-coded rules to ensure
high validity.

Model Valid ↑ Unique ↑ Novel ↑ Filters ↑ FCD ↓ SNN ↑ Scaf ↑
VAE [21] 97.7 98.8 69.5 99.7 0.57 0.58 5.9
JT-VAE [29] 100.0 100.0 99.9 97.8 1.00 0.53 10.0
GraphINVENT [53] 96.4 99.8 N/A 95.0 1.22 0.54 12.7
ConGress [73] 83.4 99.9 96.4 94.8 1.48 0.50 16.4
DiGress [73] 85.7 100.0 95.0 97.1 1.19 0.52 14.8
DISCO-MPNN 83.9 100.0 98.8 87.3 1.63 0.48 13.5
DISCO-GT 88.3 100.0 97.7 95.6 1.44 0.50 15.1

Table 4: Performance on GuacaMol. LSTM, NAGVAE, and MCTS are tailored for molecule datasets;
ConGress, DiGress, and DISCO are general graph generation models.

Model Valid ↑ Unique ↑ Novel ↑ KL div ↑ FCD ↑
LSTM [64] 95.9 100.0 91.2 99.1 91.3
NAGVAE [40] 92.9 95.5 100.0 38.4 0.9
MCTS [28] 100.0 100.0 95.4 82.2 1.5
ConGress [73] 0.1 100.0 100.0 36.1 0.0
DiGress [73] 85.2 100.0 99.9 92.9 68.0
DISCO-MPNN 68.7 100.0 96.4 77.0 36.4
DISCO-GT 86.6 100.0 99.9 92.6 59.7

4.2 Molecule Graph Generation

Dataset and metrics. The datasets QM9 [62], MOSES [58], and GuacaMol [6] are chosen. For
MOSES, metrics including Uniquess, Novelty, Validity, Filter, FCD, SNN, and Scaf are reported
in Table 3. For QM9, metrics include Uniqueness, Novelty, and Validity. For GuacaMol, metrics
include Valid, Unique, Novel, KL div, and FCD. Details about the datasets, metrics, and baseline
methods are in Appendix F.2.3.

Results. Table 2 shows the performance on QM9 dataset. Our observation is consistent with the per-
formance comparison on plain datasets: (1) DISCO-GT obtains slightly better or at least competitive
performance against DiGress due to the shared graph-to-graph backbone, but our framework offers
extra flexibility in the sampling process; (2) DISCO-MPNN obtains decent performance in terms of
Validity, Uniqueness, and Novelty comparing with DISCO-GT.

Tables 3 and 4 show the performance on MOSES and GuacaMol which further verifies that (1)
performance of DISCO-GT is on par with the SOTA general graph generative models, DiGress and
(2) DISCO-MPNN has decent performance, but worse than DISCO-GT and DiGress.

4.3 Efficiency Study

Table 5: Efficiency comparison in terms of
number of parameters, forward and backprop-
agation time (second/iteration).

GT MPNN

# Parameters 14× 106 7× 106

Forward 0.065 0.022
Backprop. 0.034 0.018

A major computation bottleneck is the graph-to-graph
backbone pθ0|t, which is GT or MPNN. We compare
the number of parameters, the forward and back-
propagation time of GT and MPNN in Table 5. For
a fair comparison, we set all the hidden dimensions
of GT and MPNN as 256 and the number of layers
as 5. We use the Community [82] dataset and set the
batch size as 64. Table 5 shows that GT has a larger
capacity and more parameters at the expense of more
expensive training.
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4.4 Ablation Study

Table 6: Ablation study (mean±std%) with GT backbone. V.,
U., and N. mean Valid, Unique, and Novel.

Ref. Dist. Steps Valid ↑ V.U. ↑ V.U.N. ↑

Marginal

500 99.3±0.6 98.9±0.6 56.2±0.4

100 98.7±0.5 98.5±0.4 58.8±0.4

30 97.9±1.2 97.6±1.1 59.2±0.8

10 95.3±1.9 94.8±1.6 62.1±0.9

5 93.0±1.7 92.4±1.3 64.9±1.1

1 76.1±2.3 73.9±1.6 62.9±1.8

Uniform

500 94.1±0.9 92.9±0.5 56.6±0.4

100 91.5±1.0 90.3±0.9 54.4±1.2

30 88.7±1.6 86.9±1.0 58.6±2.1

10 84.5±2.3 80.4±1.7 59.8±1.8

5 77.0±2.5 69.9±1.5 56.1±3.5

1 44.9±3.1 35.1±3.4 29.6±2.5

An ablation study on DISCO-GT
for reference distributions (marginal
vs. uniform), and sampling steps
(1 to 500) is presented in Table 6.
The number of sampling steps is
round( 1τ ) if T = 1. QM9 dataset
is chosen. A similar ablation study
on DISCO-MPNN is in Table 9 in
Appendix. We observe that first, gen-
erally, the fewer sampling steps, the
lower the generation quality. In some
cases (e.g., the marginal distribution)
with the sampling steps decreasing
significantly (e.g., from 500 to 30),
the performance degradation is still
very slight, implying our method’s
high robustness in sampling steps.
Second, the marginal reference dis-
tribution is better than the uniform distribution, consistent with the observation from DiGress [73].

5 Related Work

Diffusion models [80] can be interpreted from both the score-matching [69, 70] or the variational
autoencoder perspective [23, 35, 34]. Pioneering efforts on diffusion generative modeling study the
process in continuous-state [67, 23, 68] whose typical reference distribution is Gaussian. Beyond that,
some efforts propose discrete-state models [24] to . E.g., D3PM [2] designs the discrete diffusion
process by multiplication of transition matrices; τ -LDR [8] generalizes D3PM by formulating a
continuous-time Markov chain; [71] proposes a singleton conditional distribution-based objective
for the continuous-time Markov chain-based model whose rationale is Brook’s Lemma [5, 49].

Diffusion models are widely used in graph generation tasks [44, 13, 85, 86, 84, 15, 83, 14, 61, 74,
47, 79, 78, 59, 3] such as molecule design [65, 25, 27, 43]. Pioneering works such as EDP-GNN [56]
and GDSS [32] diffuse graph data in a continuous state space [26]. DiscDDPM [22] is an early
effort to modify the DDPM architecture into a discrete state. In addition, DiGress [73] is also a
one-shot discrete-state diffusion model, followed by a very recent work MCD [46], both in the
discrete-time setting. Beyond the above-mentioned efforts, DruM [31] proposes to mix the diffusion
process. EDGE [10] proposes an interesting process: diffusing graphs into empty graphs. Besides,
GRAPHARM [36] proposes an autoregressive graph diffusion model, and [45] applies the diffusion
models for molecule property prediction tasks. In addition to the above-mentioned general graph
diffusion models, there are many other task-tailored graph diffusion generative models [48, 30, 41, 60,
77, 76, 4, 75], which incorporate more in-depth domain expertise into the model design. Interested
readers are referred to this survey [44].

6 Conclusion

This paper introduces the first discrete-state continuous-time graph diffusion generative model,
DISCO. Our model effectively marries continuous-time Markov Chain formulation with the discrete
nature of graph data, addressing the fundamental sampling limitation of prior models. DISCO’s
training objective is concise with a solid theoretical foundation. We also propose a simplified
message-passing architecture to serve as the graph-to-graph backbone, which theoretically has
desirable properties against permutation of node ordering and empirically demonstrates decent
performance against existing graph generative models in tests on various datasets.
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Appendix
The organization of this appendix is as follows

• Section A: the derivation of the factorized rate matrices.
• Section B: the forward transition probability matrix given a rate matrix.
• Section C: all the proofs.

– Section C.1: proof of Proposition 3.2
– Section C.2: proof of Theorem 3.3
– Section C.3: proof of Lemma 3.5
– Section C.4: proof of Lemma 3.6
– Section C.5: proof of Lemma 3.7
– Section C.6: proof of Theorem 3.8
– Section C.7: proof of Theorem 3.9

• Section D: a step-by-step sampling algorithm.
• Section E: the auxiliary features and neural modules used by DISCO.
• Section F: detailed experimental settings and additional experimental results.

– Section F.1: hardware and software
– Section F.2: dataset setup
– Section F.3: hyperparameter settings
– Section F.4: additional effectiveness evaluation on Community Dataset
– Section F.5: additional ablation study with the MPNN backbone
– Section F.6: convergence study
– Section F.7: visualization

• Section G: this paper’s limitations and future work.
• Section H: the broad impact of this paper.

A Details of the Factorization of Rate Matrices

In this section, we detail the derivation of Remark 3.1, which is extended from the following
Proposition 3 of [8].
Proposition A.1 (Factorization of the rate matrix, Proposition 3 from [8]). If the forward process
factorizes as qt|s(xt|xs) =

∏D
d=1 qt|s(x

d
t |xd

s), t > s, then the forward and reverse rates are of the
form

Rt(x̄,x) =

D∑
d=1

Rd
t (x̄

d, xd)δx̄\x̄d,x\xd (9)

R̃t(x, x̄) =

D∑
d=1

Rd
t (x̄

d, xd)δx̄\x̄d,x\xd

∑
xd
0

q0|t(x
d
0|x)

qt|0(x̄
d|xd

0)

qt|0(xd|xd
0)

(10)

where δx̄\x̄d,x\xd = 1 when all dimensions except for d are equal.

As all the nodes and edges are categorical, applying the above proposition of all the nodes and edges
leads to our Remark 3.1.

B Details of Forward Transition Probability

In this section, we present the derivation of the forward transition probability for nodes; the forward
process for edges can be derived similarly. Note that this derivation has been mentioned in [8] for
generic discrete cases; we graft it to the graph settings and include it here for completeness. The core
derivation of the forward transition probability is to prove the following proposition.
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Proposition B.1 (Analytical forward process for commutable rate matrices, Proposition 10 from [8]).
if Rt and Rt′ commute ∀t, t′, qt|0(xt = j|x0 = i) = (e

∫ t
0
Rsds)ij

Proof. If qt|0 = exp

(∫ t

0
Rsds

)
is the forward transition probability matrix, it should satisfy the

Kolmogorov forward equation d
dtqt|0 = qt|0Rs. The transition probability matrix

qt|0 =

∞∑
k=0

1

k!

(∫ t

0

Rsds

)k

, (11)

and, based on the fact that Rt and R′
t commute ∀t, t′ , its derivative is

d

dt
qt|0 =

∞∑
k=1

1

(k − 1)!

(∫ t

0

Rsds

)(k−1)

= qt|0Rt. (12)

Thus, qt|0 = exp

(∫ t

0
Rsds

)
is the solution of Kolmogorov forward equation.

For the node i, if its forward rate matrix is set as Ri
t = β(t)Rf , we have Ri

t and Ri
t′ commute,

∀t, t′. Thus, the transition probability for node i is qt|0(f i
t = v|f i

0 = u) = (e
∫ t
0
β(s)Rfds)uv. Based

on similar derivation, we have the transition probability for the edge (i, j) as qt|0(e
(i,j)
t = v|e(i,j)0 =

u) = (e
∫ t
0
β(s)Reds)uv .

C Proofs

C.1 Proof of Proposition 3.2

Proposition 3.2 claims the forward process converges to uniform distributions if Rf = 11⊤ − bI and
Re = 11⊤ − (a+ 1)I and it converges to marginal distributions mf and me if Rf = 1m⊤

f − I and
Re = 1m⊤

e − I.

Proof. If we formulate the rate matrices for nodes and edges as R(i,j)
t = β(t)Re, ∀i, j and Ri

t =
β(t)Rf , ∀i, every rate matrix is commutable for any time steps t and t′. In the following content,
we show the proof for the node rate matrix Ri

t = β(t)Rf ; the converged distribution of edge can be
proved similarly. Based on Proposition B.1, the transition probability matrix between time steps t
and t+∆t is

qt+∆t|t = I+

∫ t+∆t

t

β(s)Rfds+O((∆t)2) (13)

(∗)
= I+∆tβ(ξ)Rf +O((∆t)2), (14)

where (*) is based on the Mean Value Theorem. If the high-order term O((∆t)2) is omitted and we
short β∆t = ∆tβ(ξ), for Rf = 11⊤ − bI, we have

qt+∆t|t ≈ β∆t11
⊤ + (1− β∆tb)I, (15)

which is the transition matrix of the uniform diffusion in the discrete-time diffusion models [67, 2].
Thus, with T → ∞ and qt+∆t|t to the power of infinite, the converged distribution is a uniform
distribution. Similarly, for Rf = 1m⊤

f − I the transition matrix is

qt+∆t|t ≈ β∆t1m
⊤
f + (1− β∆t)I (16)

which is a generalized transition matrix of the ‘absorbing state’ diffusion [2]. The difference lies at
for the ‘absorbing state’ diffusion [2], mf is set as a one-hot vector for the absorbing state, and here
we set it as the marginal distribution. Thus, with T → ∞ and qt+∆t|t to the power of infinite, the
converged distribution is a marginal distribution mf .
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C.2 Proof of Theorem 3.3

Theorem 3.3 says for G ≠ Ḡ,

∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣2 ≤ Ct + Cnode

t EG0qt|0(G|G0)
∑
i

LCE(One-Hot(f i
0), f̂

i
0)

+ Cedge
t EG0qt|0(G|G0)

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 ) (17)

where the node and edge estimated probability vector (sum is 1) is notated as f̂ i
0 = [pθ0|t(f

i =

1|Gt), . . . , pθ0|t(f
i = b|Gt)]⊤ ∈ [0, 1]b and ê

(i,j)
0 = [pθ0|t(e

(i,j) = 1|Gt), . . . , pθ0|t(e
(i,j) = a +

1|Gt)]⊤ ∈ [0, 1]a+1.

Proof. ∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣ (18)

=
∣∣∣∑

i

Ai
t

∑
fi
0

qt|0(f̄
i|f i

0)

qt|0(f i|f i
0)
(q0|t(f

i
0|G)− pθ0|t(f

i
0|G))

+
∑
i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e
(i,j)
0 )

(q0|t(e
(i,j)
0 |G)− pθ0|t(e

(i,j)
0 |G))

∣∣∣ (19)

≤
∣∣∣∑

i

Ai
t

∑
fi
0

qt|0(f̄
i|f i

0)

qt|0(f i|f i
0)
(q0|t(f

i
0|G)− pθ0|t(f

i
0|G))

∣∣∣
+
∣∣∣∑

i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e
(i,j)
0 )

(q0|t(e
(i,j)
0 |G)− pθ0|t(e

(i,j)
0 |G))

∣∣∣ (20)

We check the first term of Eq. (20):∣∣∣∑
i

Ai
t

∑
fi
0

qt|0(f̄
i|f i

0)

qt|0(f i|f i
0)
(q0|t(f

i
0|G)− pθ0|t(f

i
0|G))

∣∣∣ (21)

≤
∑
i

Ai
t sup

fi
0

{qt|0(f̄ i|f i
0)

qt|0(f i|f i
0)

}∑
fi
0

∣∣∣q0|t(f i
0|G)− pθ0|t(f

i
0|G)

∣∣∣ (22)

=
∑
i

Ci

∑
fi
0

∣∣∣q0|t(f i
0|G)− pθ0|t(f

i
0|G)

∣∣∣ (23)

(∗)
≤
∑
i

Ci

√
2
∑
fi
0

(
Cfi

0
− q0|t(f

i
0|G) log pθ0|t(f

i
0|G)

)
(24)

(∗∗)
≤ C1

√∑
i

∑
fi
0

(
Cfi

0
− q0|t(f

i
0|G) log pθ0|t(f

i
0|G)

)
(25)

=C1

√
C2 −

∑
i

∑
fi
0

q0|t(f
i
0|G) log pθ0|t(f

i
0|G) (26)

where Ci = Ai
t supfi

0

{
qt|0(f̄

i|fi
0)

qt|0(fi|fi
0)

}
, Cfi

0
= q0|t(f

i
0|G) log q0|t(f i

0|G), (*) is based on the Pinsker’s

inequality, (**) is based on Cauchy–Schwarz inequality:
∑n

i=1

√
xi ≤

√
n
∑n

i=1 xi, C1 =√
2n supi{Ci}, C2 =

∑
i

∑
fi
0
Cfi

0
. Next, the term −

∑
i

∑
fi
0
q0|t(f

i
0|G) log pθ0|t(f

i
0|G) is equiva-
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lent to:

−
∑
i

∑
fi
0

q0|t(f
i
0|G) log pθ0|t(f

i
0|G) (27)

=− 1

pt(G)
∑
i

∑
fi
0

p0,t(f
i
0,G) log pθ0|t(f

i
0|G) (28)

=− 1

pt(G)
∑
i

∑
fi
0

∑
G0(fi

0)

p0,t(G0,G) log pθ0|t(f
i
0|G) (29)

=− 1

pt(G)
∑
i

∑
fi
0

∑
G0(fi

0)

πdata(G0)qt|0(G|G0) log pθ0|t(f
i
0|G) (30)

=
1

pt(G)
∑
i

∑
fi
0

∑
G0(fi

0)

πdata(G0)qt|0(G|G0)LCE(One-Hot(f i
0), f̂

i
0) (31)

=
1

pt(G)
∑
G0

πdata(G0)qt|0(G|G0)
∑
i

LCE(One-Hot(f i
0), f̂

i
0) (32)

=
1

pt(G)
EG0

qt|0(G|G0)
∑
i

LCE(One-Hot(f i
0), f̂

i
0) (33)

where
∑

G0(fi
0)

marginalizing all the graphs at time 0 whose i-th node is f i
0; p0,t(f i

0,G) is the joint
probability of a graph whose i-th node is f i

0 at time 0 and it is G at time t; p0,t(G0,G) is the joint
probability of a graph which is G0 at time 0 and it is G at time t. Plugging Eq. (33) into Eq. (26):∣∣∣∑

i

Ai
t

∑
fi
0

qt|0(f̄
i|f i

0)

qt|0(f i|f i
0)
(q0|t(f

i
0|G)− pθ0|t(f

i
0|G))

∣∣∣
≤C1

√
C2 + C5EG0

qt|0(G|G0)
∑
i

LCE(One-Hot(f i
0), f̂

i
0) (34)

where C5 = 1
pt(G) . A similar analysis can be conducted about the second term of Eq. (20) and we

directly present it here:∣∣∣∑
i,j

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e
(i,j)
0 )

(q0|t(e
(i,j)
0 |G)− pθ0|t(e

(i,j)
0 |G))

∣∣∣
≤C3

√
C4 + C5EG0

qt|0(G|G0)
∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 ) (35)

where C3 =
√
2n supi,j{Ci,j}, C4 =

∑
i,j

∑
e
(i,j)
0

C
e
(i,j)
0

, Ci,j =

B
(i,j)
t sup

e
(i,j)
0

{
qt|0(ē

(i,j)|e(i,j)0 )

qt|0(e(i,j)|e
(i,j)
0 )

}
, C

e
(i,j)
0

= q0|t(e
(i,j)
0 |G) log q0|t(e

(i,j)
0 |G).

Plugging Eqs. (34) and (35) into Eq. (20), being aware that C1, C2, C3, C4, C5 are all t-related:∣∣∣R̃t(G, Ḡ)− R̃θ,t(G, Ḡ)
∣∣∣ ≤ C1

√
C2 + C5EG0

qt|0(G|G0)
∑
i

LCE(One-Hot(f i
0), f̂

i
0)

+ C3

√
C4 + C5EG0

qt|0(G|G0)
∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 ) (36)

(∗)
≤
(
Ct + Cnode

t EG0qt|0(G|G0)
∑
i

LCE(One-Hot(f i
0), f̂

i
0)

+ Cedge
t EG0

qt|0(G|G0)
∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 )

)1/2
(37)
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where (*) is based on Cauchy–Schwarz inequality, Ct = 2C2
1C2 + 2C2

3C4, Cnode
t = 2C2

1C5,
Cedge

t = 2C2
3C5.

C.3 Proof of Lemma 3.5

We clarify that the term "permutation" in this paper refers to the reordering of the node indices, i.e.,
the first dimension of F and the first two dimensions of E.

Proof. The input of an MPNN layer is F = {ri}ni=1 ∈ Rn×d,E = {ri,j}ni,j=1 ∈ Rn×n×d,y ∈ Rd,
where d is the hidden dimension. The updating formulas of an MPNN layer can be presented as

ri ← FiLM

(
FiLM

(
ri, MLP

(∑n
j=1 r

(j,i)

n

))
,y

)
, (38)

r(i,j) ← FiLM
(
FiLM(r(i,j), ri ⊙ rj),y

)
, (39)

y← y + PNA
(
{ri}ni=1

)
+ PNA

(
{r(i,j)}ni,j=1

)
, (40)

The permutation P of the input of an MPNN layer can be presented as P
(
F = {ri}ni=1,E =

{ri,j}ni,j=1,y
)
=
(
{rσ(i)}ni=1, {rσ(i),σ(j)}ni,j=1,y

)
where σ : {1, . . . , n} 7→ {1, . . . , n} is a bijec-

tion.

For PNA (Eq. (70)), it includes operations max, min, mean, and std which are all permutation-invariant
and thus, the PNA module is permutation-invariant. Then,

y + PNA
(
{ri}ni=1

)
+ PNA

(
{r(i,j)}ni,j=1

)
= y + PNA

(
{rσ(i)}ni=1

)
+ PNA

(
{r(σ(i),σ(j))}ni,j=1

)
(41)

Because
∑n

j=1 r
(j,i) =

∑n
j=1 r

(σ(j),σ(i)), ri ⊙ rj = rσ(i) ⊙ rσ(j), and the FiLM module (Eq. (71))
is not related to the node ordering,

r(σ(i),σ(j)) ← FiLM
(
FiLM(r(σ(i),σ(j)), rσ(i) ⊙ rσ(j)),y

)
= FiLM

(
FiLM(r(i,j), ri ⊙ rj),y

)
(42)

rσ(i) ← FiLM

(
FiLM

(
rσ(i), MLP

(∑n
j=1 r

(σ(j),σ(i))

n

))
,y

)
(43)

= FiLM

(
FiLM

(
ri, MLP

(∑n
j=1 r

(j,i)

n

))
,y

)
(44)

Thus, we proved that

MPNN

(
P
(
F,E,y

))
= P

(
MPNN(F,E,y)

)
(45)

C.4 Proof of Lemma 3.6

Proof. The forward rate matrix (Eq. (3)) is the sum of component-specific forward rate matrices
({R(i,j)

t }i,j∈N+
≤n

and {Ri
t}i∈N+

≤n
). It is permutation-invariant because the summation is permutation-

invariant.

The parametric reverse rate matrix is

R̃θ,t(G, Ḡ) =
∑
i

R̃i
θ,t(f

i, f̄ i) +
∑
i,j

R̃
(i,j)
θ,t (e(i,j), ē(i,j)) (46)

where R̃i
θ,t(f

i, f̄ i) = Ai
t

∑
fi
0

qt|0(f̄
i|fi

0)

qt|0(fi|fi
0)
pθ0|t(f

i
0|Gt), R̃

(i,j)
θ,t (e(i,j), ē(i,j)) =

B
(i,j)
t

∑
e
(i,j)
0

qt|0(ē
(i,j)|e(i,j)0 )

qt|0(e(i,j)|e
(i,j)
0 )

pθ0|t(e
(i,j)
0 |Gt). If we present the permutation P on every node
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as a bijection σ : {1, . . . , n} 7→ {1, . . . , n}, the term

R̃i
θ,t(f

i, f̄ i) = Ai
t

∑
fi
0

qt|0(f̄
i|f i

0)

qt|0(f i|f i
0)
pθ0|t(f

i
0|Gt) (47)

= Ri
t(f̄

i, f i)δḠ\f̄i,G\fi

∑
fi
0

qt|0(f̄
i|f i

0)

qt|0(f i|f i
0)
pθ0|t(f

i
0|Gt) (48)

(∗)
= R

σ(i)
t (f̄σ(i), fσ(i))δP(Ḡ)\f̄σ(i),P(G)\fσ(i)

∑
f
σ(i)
0

qt|0(f̄
σ(i)|fσ(i)

0 )

qt|0(fσ(i)|fσ(i)
0 )

pθ0|t(f
i
0|Gt) (49)

(∗∗)
= R

σ(i)
t (f̄σ(i), fσ(i))δP(Ḡ)\f̄σ(i),P(G)\fσ(i)

∑
f
σ(i)
0

qt|0(f̄
σ(i)|fσ(i)

0 )

qt|0(fσ(i)|fσ(i)
0 )

pθ0|t(f
σ(i)
0 |P(Gt))

(50)

= R̃
σ(i)
θ,t (fσ(i), f̄σ(i)) (51)

where (*) is based on the permutation invariant of the forward process and its rate matrix; (**) is
based on the permutation equivariance of the graph-to-graph backbone pθ0|t.

C.5 Proof of Lemma 3.7

Recall the Kolmogorov forward equation, for s < t,

d

dt
qt|s(xt|xs) =

∑
ξ∈X

qt|s(ξ|xs)Rt(ξ,xt). (52)

Proof. We aim to show that qt|s(P(xt)|P(xs)) is a solution of Eq. (52). Because the permutation P
is a bijection, we have

d

dt
qt|s(P(xt)|P(xs)) (53)

=
∑
ξ∈X

qt|s(P(ξ)|P(xs))Rt(P(ξ),P(xt)) (54)

(∗)
=
∑
ξ∈X

qt|s(P(ξ)|P(xs))Rt(ξ,xt) (55)

where (*) is because Rt is permutation-invariant. As Eq. 55 and Eq. 52 share the same rate matrix,
and the rate matrix completely determines the CTMC (and its Kolmogorov forward equation) [63],
thus, their solutions are the same: qt|s(xt|xs) = qt|s(P(xt)|P(xs)), i.e., the transition probability is
permutation-invariant.

C.6 Proof of Theorem 3.8

Proof. We start from a simple case where the parametric rate matrix is fixed all the time,

pθ0(G0) =
∑
GT

qθ0|T (G0|GT )πref(GT ), (56)

where the transition probability is by solving the Kolmogorov forward equation

d

dt
qθt|s(Gt|Gs) =

∑
ξ

qθt|s(ξ|Gs)R̃θ(ξ,Gt). (57)
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Thus, the sampling probability of permuted graph P(G0)

pθ0(P(G0)) =
∑
GT

qθ0|T (P(G0)|P(GT ))πref(P(GT )) (58)

(∗)
=
∑
GT

qθ0|T (G0|GT )πref(P(GT )) (59)

(∗∗)
=
∑
GT

qθ0|T (G0|GT )πref(GT ) (60)

= pθ0(G0) (61)

where (*) is based on Lemma 3.6 and Lemma 3.7, the transition probability of DISCO is permutation-
invariant and (**) is from the assumption that the reference distribution πref(GT ) is permutation-
invariant. Thus, we proved that for the simple case, R̃θ,t fixed ∀t, the sampling probability is
permutation-invariant.

For the practical sampling, as we mentioned in Section 3.4, the τ -leaping algorithm assumes that
the time interval [0, T ] is divided into various length-τ intervals [0, τ), [τ, 2τ), . . . , [T − τ, T ] (here
both close sets or open sets work) and assume the reverse rate matrix is fixed as R̃θ,t within every
length-τ interval, such as (t− τ, t]. Thus, the sampling probability can be computed as

pθ0(G0) =
∑

GT ,GT−τ ,...,Gτ

q0|τ (G0|Gτ ) . . . qT−τ |T (GT−τ |GT )πref(GT ). (62)

The conclusion from the simple case can be generalized to this τ -leaping-based case because all the
transition probability qt−τ |t(Gt−τ |Gt) and the reference distribution are permutation-invariant.

Note that Xu et al. [77] have a similar analysis in their Proposition 1 on a DDPM-based model.

C.7 Proof of Theorem 3.9

Recall our training objective is

min
θ

TEt∼U(0,T )
EG0Eqt|0(Gt|G0)

[∑
i

LCE(One-Hot(f i
0), f̂

i
0) +

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 )

]
(63)

where f̂ i
0 = [pθ0|t(f

i = 1|Gt), . . . , pθ0|t(f
i = b|Gt)]⊤ ∈ [0, 1]b and ê

(i,j)
0 = [pθ0|t(e

(i,j) =

1|Gt), . . . , pθ0|t(e
(i,j) = a+ 1|Gt)]⊤ ∈ [0, 1]a+1

Proof. We follow the notation and present the permutation P on every node as a bijection σ :
{1, . . . , n} 7→ {1, . . . , n}. We first analyze the cross-entropy loss on the nodes for a single training
graph G0 and taking expectation EG0 keeps the permutation invariance:

Lnode(G0) = TEt∼U(0,T )
Eqt|0(Gt|G0)

∑
i

LCE(One-Hot(f i
0), f̂

i
0) (64)

= TEt∼U(0,T )

∑
Gt

qt|0(Gt|G0)
∑
i

LCE(One-Hot(f i
0), f̂

i
0) (65)

(∗)
= TEt∼U(0,T )

∑
Gt

qt|0(P(Gt)|P(G0))
∑
i

LCE(One-Hot(f i
0), f̂

i
0) (66)

(∗∗)
= TEt∼U(0,T )

∑
Gt

qt|0(P(Gt)|P(G0))
∑
i

LCE(One-Hot(fσ(i)
0 ), f̂

σ(i)
0 ) (67)

= Lnode(P(G0)) (68)

where (*) is from the permutation invariance of the forward process and (**) is from the permutation
equivariance of the graph-to-graph backbone and the permutation invariance of the cross-entropy
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loss. A similar result can be analyzed on the cross-entropy loss on the edges

Ledge(G0) = TEt∼U(0,T )
Eqt|0(Gt|G0)

∑
i,j

LCE(One-Hot(e(i,j)0 ), ê
(i,j)
0 ) = Ledge(P(G0)) (69)

and we omit the proof here for brevity.

D Sampling Algorithm

A Step-by-step procedure about the τ -leaping graph generation is presented in Algorithm 2.

Algorithm 2 τ -Leaping Graph Generation
1: t← T
2: Gt = ({e(i,j)}i,j∈N+

≤n
, {f i}i∈N+

≤n
)← πref(G)

3: while t > 0 do
4: for i = 1, . . . , n do
5: for s = 1, . . . , b do
6: R̃i

θ,t(f
i, s) = Ri

t(s, f
i)
∑

fi
0

qt|0(s|fi
0)

qt|0(fi|fi
0)
pθ(f

i|Gt, t)
7: Jfi,s ← Poisson(τRi

t(s, f
i)) ▷ # of transition for every node

8: end for
9: end for

10: for i, j = 1, . . . , n do
11: for s = 1, . . . , a do
12: R̃

(i,j)
θ,t (e(i,j), s) = R

(i,j)
t (s, e(i,j))

∑
e
(i,j)
0

qt|0(s|e
(i,j)
0 )

qt|0(e(i,j)|e
(i,j)
0 )

pθ(e
(i,j)|Gt, t)

13: Je(i,j),s ← Poisson(τR(i,j)
t (s, e(i,j))) ▷ # of transition for every edge

14: end for
15: end for
16: for i = 1, . . . , n do
17: if

∑b
s=1 Jfi,s > 1 or

∑b
s=1 Jfi,s = 0 then

18: f i ← f i ▷ stay the same
19: else
20: s∗ = argmaxs{Jfi,s}bs=1

21: f i ← s∗ ▷ update node
22: end if
23: end for
24: for i, j = 1, . . . , n do
25: if

∑a
s=1 Je(i,j),s > 1 or

∑a
s=1 Je(i,j),s = 0 then

26: e(i,j) ← e(i,j) ▷ stay the same
27: else
28: s∗ = argmaxs{Je(i,j),s}bs=1

29: e(i,j) ← s∗ ▷ update edge
30: end if
31: end for
32: t← t− τ
33: end while

E Auxiliary Features, PNA and FiLM Modules

For learning a better graph-to-graph mapping pθ0|t(G0|Gt), artificially augmenting the node-level
features and graph-level features is proved effective to enhance the expressiveness of graph learning
models [81, 73]. For this setting, we keep consistent with the state-of-the-art model, DiGress [73],
and extract the following three sets of auxiliary features. Note that the following features are extracted
on the noised graph Gt.
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We binarize the edge tensor E into an adjacency matrix A ∈ {0, 1}n×n whose 1 entries denote the
corresponding node pair is connected by any type of edge.

Motif features. The number of length-3/4/5 cycles every node is included in is counted as the
topological node-level features; also, the total number of length-3/4/5/6 cycles is the topological
graph-level features.

Spectral features. The graph Laplacian is decomposed. The number of connected components
and the first 5 non-zero eigenvalues are selected as the spectral graph-level features. An estimated
indicator of whether a node is included in the largest connected component and the first 2 eigenvectors
of the non-zero eigenvalues are selected as the spectral node-level features.

Molecule features. On molecule datasets, the valency of each atom is selected as the node-level
feature, and the total weight of the whole molecule is selected as the graph-level feature.

The above node-level features and graph-level features are concatenated together as the auxiliary node-
level features Faux and graph-level features y. An important property is that the above node-level
features are permutation-equivariant and the above graph-level features are permutation-invariant,
whose proof is straightforward so we omit it here.

Next, two important modules used in the MPNN backbone: PNA and FiLM are detailed.

PNA module. The PNA module [12] is implemented as follows,

PNA({xi}ni=1) = MLP(min({xi}ni=1)⊕ max({xi}ni=1)⊕ mean({xi}ni=1)⊕ std({xi}ni=1)) (70)

where ⊕ is the concatenation operator, xi ∈ Rd; min, max, mean, and std are coordinate-wise, e.g.,
min({xi}ni=1) ∈ Rd.

FiLM module. FiLM [57] is implemented as follows,

FiLM(xi,xj) = Linear(xi) + Linear(xi)⊙ xj + xj (71)

where Linear is a single fully-connected layer without activation function and ⊙ is the Hadamard
product.

F Supplementary Details about Experiments

F.1 Hardware and Software

We implement DISCO in PyTorch5 and PyTorch-geometric6. All the efficiency study results are from
one NVIDIA Tesla V100 SXM2-32GB GPU on a server with 96 Intel(R) Xeon(R) Gold 6240R CPU
@ 2.40GHz processors and 1.5T RAM. The training on QM9 and Community can be finished in 2
hours. For the training on SBM, Planar, it can be finished within 48 hours to get decent validity. The
training on MOSES and GuacaMol can be finished within 96 hours.

F.2 Dataset Setup

F.2.1 Dataset Statistics

The statistics about all the datasets used in this paper are presented in Table 7, where a is the number
of edge types, b is the number of node types, |E| is the number of edges and |F| is the number of
nodes.

F.2.2 Detailed Settings on Plain Graph Datasets

Dataset Split. We follow the settings of SPECTRE [51] and DiGress [73] to split the SBM,
Planar [51], and Community [82] datasets into 64/16/20% for training/validation/test set.

5https://pytorch.org
6https://pytorch-geometric.readthedocs.io/en/latest

26

https://pytorch.org
https://pytorch-geometric.readthedocs.io/en/latest


Table 7: Dataset statistics.

Name # Graphs Split a b Avg. |E| Max |E| Avg. |F| Max |F|
SBM 200 128/32/40 1 1 1000.8 2258 104.0 187
Planar 200 128/32/40 1 1 355.7 362 64.0 64
Community 100 64/16/20 1 1 74.0 122 15.7 20
QM9 130831 97734/20042/13055 4 4 18.9 28 8.8 9
MOSES 1733214 1419512/156176/157526 4 8 46.3 62 21.6 27
GuacaMol 1398213 1118633/69926/209654 4 12 60.4 176 27.8 88

Metrics. The Maximum Mean Discrepancy (MMD) [82] measures the discrepancy between two
sets of distributions. The relative squared MMD [73]is defined as follows

score =
MMD2({G}gen||{G}test)

MMD2({G}train||{G}test)
, (72)

where ({G}gen, ({G}train, and ({G}test are the sets of generated graphs, training graphs, and test
graphs, respectively. We report the above relative squared MMD for degree distributions (Deg.),
clustering coefficient distributions (Clus.), and average orbit counts (Orb.) statistics (the number of
occurrences of all substructures with 4 nodes). In addition, the Uniqueness, Novelty, and Validity are
chosen. Uniqueness reports the fraction of the generated nonisomorphic graphs; Novelty reports the
fraction of the generated graphs not isomorphic with any graph from the training set; Validity checks
the fraction of the generated graphs following some specific rules. For the SBM dataset, we follow
the validity check from [51] whose core idea is to check whether real SBM graphs are statistically
indistinguishable from the generated graphs; for the Planar dataset, we check whether the generated
graphs are connected and are indeed planar graphs. Because the Community dataset does not have
the Validity metric, we only report the Uniqueness, Novelty, and Validity results on the SBM and
Planar datasets.

We report mean±std in 5 runs.

Baseline methods. GraphRNN [82], GRAN [42], GG-GAN [37], MolGAN [9], SPECTRE [51],
EDP-GNN [56], GraphGDP [26], DiscDDPM [22], EDGE [10], ConGress [73], DiGress [73] are
chosen.

F.2.3 Detailed Settings on Molecule Graph Datasets

Dataset Split. We follow the split of QM9 from DiGress [73] and follow the split of MOSES [58]
and GuacaMol [6] according to their benchmark settings. Their statistics are presented in Table 7.

Metrics. For QM9, Uniqueness, Novelty, and Validity are chosen as metrics. The first two are the
same as introduced in Section F.2.2. The Validity is computed by building a molecule with RdKit 7

and checking if we can obtain a valid SMILES string from it.

For MOSES, the chosen metrics include Uniqueness, Novelty, Validity, Filters, Fréchet ChemNet
Distance (FCD), Similarity to a nearest neighbor (SNN), and Scaffold similarity (Scaf), which is
consistent with DiGress [73]. The official evaluation code 8 is used to report the performance.

For GuacaMol, the chosen metrics include Uniqueness, Novelty, Validity, KL Divergence, and Frećhet
ChemNet Distance (FCD), which is consistent with DiGress [73]. The official evaluation code 9 is
used to report the performance.

We report mean±std in 5 runs except MOSES and GuacaMol, whose computations are too expensive
to repeat multiple times.

Baseline methods. CharacterVAE [20], GrammarVAE [38], GraphVAE [66], GT-VAE [55],
Set2GraphVAE [72], GG-GAN [37], MolGAN [9], SPECTRE [51], GraphNVP [50], GDSS [32],

7https://www.rdkit.org/
8https://github.com/molecularsets/moses
9https://github.com/BenevolentAI/guacamol
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Table 8: Generation performance (mean±std) on the Community dataset.

Model Deg.↓ Clus.↓ Orb.↓
GraphRNN [82] 4.0 1.7 4.0
GRAN [42] 3.0 1.6 1.0
EDP-GNN [56] 2.5 2.0 3.0
GraphGDP [26] 2.0 1.1 -
DiscDDPM [22] 1.2 0.9 1.5
EDGE [10] 1.0 1.0 2.0
GG-GAN [37] 4.0 3.1 8.0
MolGAN [9] 3.0 1.9 1.0
SPECTRE [51] 0.5 2.7 2.0
DiGress [73] 1.0 0.9 1.0
DISCO-MPNN 1.4±0.5 0.9±0.2 0.9±0.3
DISCO-GT 0.9±0.2 0.9±0.3 1.1±0.4

EDGE [10], ConGress [73], DiGress [73], GRAPHARM [36],VAE [21], JT-VAE [29], GraphIN-
VENT [53], LSTM [64], NAGVAE [40], and MCTS [28] are chosen.

F.3 Hyperparameter Settings

Forward Diffusion Settings. As we introduced in Proposition 3.2, we tried two sets of rate
matrices for the node and edge forward diffusion, so that the converged distribution is either uniform
or marginal distribution. We found the marginal distribution leads to better results than the uniform
distribution. Thus, the reference distribution is the marginal distribution for all the main results,
except Tables 6 and 9. The performance comparison between the marginal diffusion and uniform
diffusion is presented in the ablation study in Sections 4.4 andF.5. The β(t) controls how fast the
forward process converges to the reference distribution, which is set as β(t) = αγtlog(γ), which is
consistent with many existing works [23, 70, 8]. In our implementation, we assume the converged
time T = 1 and for the forward diffusion hyperparameters (α, γ) we tried two sets: (1.0, 5.0) and
(0.8, 2.0) where the former one can ensure at T = 1 the distribution is very close to the reference
distribution, and the latter one does not fully corrupt the raw data distribution so the graph-to-graph
model pθ0|t is easier to train.

Reverse Sampling Settings. The number of sampling steps is determined by τ , which is round( 1τ )
if we set the converged time T = 1. We select the number of sampling steps from {50, 100, 500},
which is much smaller the number of sampling steps of DiGress [73] from {500, 1000}. For the
number of nodes n in every generated graph, we compute a graph size distribution of the training set
by counting the number of graphs for different sizes (and normalize the counting to sum it up to 1).
Then, we will sample the number of nodes from this graph size distribution for graph generation.

Neural Network Settings. For DISCO-GT, the parametric graph-to-graph model pθ0|t is graph
transformer (GT). We use the exactly same GT architecture as DiGress [73] and adopt their recom-
mended configurations 10. The reason is that this architecture is not our contribution, and setting
the graph-to-graph model pθ0|t same can ensure a fair comparison between the discrete-time graph
diffusion framework (from DiGress) and the continuous-time graph diffusion framework (from this
work). For DISCO-MPNN, we search the number of MPNN layers from {3, 5, 8}, set all the hidden
dimensions the same, and search it from {256, 512}. For both variants, the dropout is set as 0.1, the
learning rate is set as 2e−4, and the weight decay is set as 0.

F.4 Additional Results on Community

Additional Community plain graph dataset results are in Table 8. Our observation is consistent with
the main content: both variants of DISCO are on par with, or even better than the SOTA general
graph diffusion generative model, DiGress.

10https://github.com/cvignac/DiGress/tree/main/configs/experiment
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Table 9: Ablation study (mean±std%) with MPNN backbone. V., U., and N. mean Valid, Unique,
and Novel.

Ref. Dist. Steps Valid ↑ V.U. ↑ V.U.N. ↑

Marginal

500 98.9±0.7 98.7±0.5 68.7±0.2

100 98.4±1.1 98.0±1.0 69.1±0.6

30 97.7±1.2 97.5±0.8 70.4±1.1

10 92.3±1.9 91.9±2.2 66.4±1.7

5 88.8±3.3 87.1±2.8 67.3±2.9

1 64.4±2.7 63.2±1.9 55.8±1.4

Uniform

500 93.5±1.7 93.2±1.1 64.9±1.0

100 93.1±2.1 92.6±1.7 66.2±1.9

30 87.1±1.8 86.8±1.1 64.0±1.0

10 83.7±3.2 81.9±2.1 61.3±2.0

5 81.5±2.9 75.4±3.4 64.6±2.3

1 71.3±2.3 42.2±4.0 36.9±3.2

F.5 Additional Ablation Study

Table 9 shows the ablation study of DISCO-MPNN on QM9 dataset. Our observations are consistent
with the main content: (1) generally, the fewer sampling steps, the lower the generation quality
but method’s performance is robust in terms of the decreasing of sampling steps; (2) the marginal
reference distribution is better than the uniform distribution, consistent with the observation from
DiGress [73].

F.6 Convergence Study

Figure 3 shows the training loss of DISCO-GT and DISCO-MPNN on four datasets, whose X-axis is
the number of iterations (i.e., the number of epochs × the number of training samples / batch size).
We found that overall the training losses converge smoothly on 4 datasets.

(a) SBM (b) Planar

(c) Community (d) QM9

Figure 3: Training loss of DISCO on different datasets and backbone models.

29



F.7 Visualization

The generated graphs on the SBM and Planar datasets are presented in Figure 4. We clarify that the
generated planar graphs are selected to be valid because, as Table 1 shows, not all the generated
graphs are valid planar graphs, but the planar layout can only visualize valid planar graphs in our
setting 11. The generated SBM graphs are not selected; even if a part of them cannot pass the strict
SBM statistic test (introduced in Section F.2.2 - Metrics), most, if not all, of them still form 2− 5
densely connected clusters.

The generation trajectory of SBM graphs is presented in Figure 5 which demonstrates the reverse
denoising process visually.

(a) SBM

(b) Planar

Figure 4: Generated graphs.

G Limitation and Future Work

In this paper, we study the generation of graphs with categorical node and edge types. The current
model DISCO cannot be applied to generate graphs with multiple node/edge features (e.g., multiplex
networks) and this is an important future work to study. Also, we view the absence of edge as a
special type of edge, which forms a complete graph and promotes the expressiveness of our MPNN
backbone model. However, it will lead to quadratic complexity concerning the number of nodes. For
our current dataset (e.g. graphs with < 1000 nodes) the complexity is still acceptable but for future
studies on generating large graphs, we aim to design more efficient diffusion generative models.

11https://networkx.org/documentation/stable/reference/generated/networkx.drawing.
layout.planar_layout.html
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Figure 5: Generation trajectory of SBM graphs with different sizes. Every row is the generation
trajectory of one graph from time t = T (left) to t = 0 (right) with equal time intervals.

H Broader Impact

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction summarize all the theoretical and experimental
contributions of this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is mentioned in Section G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Detailed assumptions and proofs are included in the Section C.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Detailed experimental settings are included in Section F. Also, the code of this
paper is released in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: All the datasets are publicly available and their links are included in Section F.
The code is released in the supplementary materials; we will formally release the code after
acceptance.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training details are included in Section F and the released codes.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report average results with standard deviation on all the datasets, except
MOSES and GuacaMol, whose computations are too expensive to repeat multiple times.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources are detailed in Section F.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We checked the code of Ethics and the paper conforms with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: It is mentioned in Section H. Our work is general graph generative modeling,
which shares potential societal consequences with many established graph generative models.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not scrape any dataset from Internet and our released model is of low
risk for misuse.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets and codes of baseline methods are publicly available and for
the academic purpose.
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• The answer NA means that the paper does not use existing assets.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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