
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EDIVAL-AGENT: AN OBJECT-CENTRIC FRAMEWORK
FOR AUTOMATED, FINE-GRAINED EVALUATION OF
MULTI-TURN EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Instruction-based image editing has advanced rapidly, yet reliable and inter-
pretable evaluation remains a bottleneck. Current protocols either (i) depend on
paired reference images—resulting in limited coverage and inheriting biases from
prior generative models—or (ii) rely solely on zero-shot vision–language mod-
els (VLMs), whose prompt-based assessments of instruction following, content
consistency, and visual quality are often imprecise.
To address this, we introduce EdiVal-Agent, an automated and fine-grained evalu-
ation framework grounded in an object-centric perspective, designed to assess not
only standard single-turn but also multi-turn instruction-based editing with preci-
sion. Given an input image, EdiVal-Agent first decomposes it into semantically
meaningful objects, then synthesizes diverse, context-aware editing instructions
while dynamically updating object pools across turns. These two stages enable
two novel object-centric metrics tailored for multi-turn evaluation and one global
metric of visual quality: 1) EdiVal-IF, which measures instruction following by
combining open-vocabulary object detectors for symbolic checks with VLMs for
semantic verification on detector-guided crops; 2) EdiVal-CC, which evaluates
content consistency by calculating semantic similarity of unchanged objects and
background using the evolving object pools; and 3) EdiVal-VQ, which quantifies
changes in overall visual quality with human preference models.
Instantiating this pipeline, we build EdiVal-Bench, a multi-turn editing bench-
mark covering 9 instruction types and 13 state-of-the-art editing models spanning
in-context 1, flow-matching, and diffusion paradigms. We further conduct experi-
ments comparing multi-turn editing with single-shot complex editing, highlighting
the distinctive characteristics of different model paradigms. We demonstrate that
EdiVal-Agent can be used to identify existing failure modes, thereby informing
the development of the next generation of editing models.

1 INTRODUCTION

What truly defines the success of an image editor? At its core, editing requires making targeted,
instruction-driven changes while preserving contextual consistency and perceptual realism—often
across multiple refinement turns. Yet current evaluation practice struggles to capture this multi-
faceted objective.

When ground-truth edited images are available, a common strategy is to compare model outputs
against these references (e.g., MagicBrush Zhang et al. (2023), UltraEdit Zhao et al. (2024), AnyEdit
Yu et al. (2025), EmuEdit Sheynin et al. (2024)). Typical metrics include pixel-level distances (e.g.,
L1/L2) and semantic similarities (e.g., DINO Caron et al. (2021) and CLIP Radford et al. (2021)).
While informative, such metrics suffer from two structural issues: (i) the space of acceptable edits
is inherently large, whereas a single reference provides only one realization; and (ii) references are

1In this paper, we label certain closed-source models—GPT-Image-1, Nano Banana, and Gemini 2.0 Flash
Image—as in-context, since they are integrated into autoregressive language models in the web UI and support
in-context multi-turn editing.
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Figure 1: Overview of our workflow and representative model’s performance. For visualization, we
adopt two thresholds: a consistency score of at least 90 and a visual quality score of at least 6. Details
of the automated evaluation pipeline are provided in Figure 2 and Section 2. In multi-turn editing,
models exhibit distinct weaknesses: GPT-Image-1 struggles with content consistency, Qwen-Image-
Edit underperforms in both visual quality and content consistency, and FLUX.1-Kontext-dev lags in
instruction following, whereas Nano Banana shows no single dominant weakness.

frequently synthesized by existing editing models (e.g., Prompt-to-Prompt Hertz et al. (2023), SDXL
Podell et al. (2024), DALLE-2 Ramesh et al. (2022)), thereby importing their biases and limitations
into the evaluation itself. Consequently, high reference similarity does not necessarily imply faithful
instruction following, preservation of irrelevant content, or aesthetically plausible outcomes.

A complementary line of work employs zero-shot VLMs as interpretable evaluators (e.g., VIEScore
Ku et al. (2023), GEdit-Bench Liu et al. (2025), I2EBench Ma et al. (2024), HQ-Edit Hui et al.
(2024), Complex-Edit Yang et al. (2025), and ImgEdit Ye et al. (2025)) and queries VLMs about
specific aspects of an edit. While VLMs offer holistic, language-mediated judgments, they remain
insufficient for precise editing assessment for several reasons. First, for instruction-following evalu-
ation, they are notoriously poor at spatial reasoning Zhang et al. (2025b); Chen et al. (2024); Chang
et al. (2025) and are prone to object hallucinations in existence, category, attributes, and relations
Bai et al. (2024). These issues together undermine their ability to assess common object-related edit
instructions. Second, they have limited sensitivity to pixel-level changes and frequently miss subtle,
localized modifications Vo et al. (2025) (e.g., fine structures, small attribute shifts, etc.), which are
crucial for evaluating content consistency. Third, since they are predominantly pretrained on natural
images rather than synthetic generations, their priors are miscalibrated for artifacts and aesthetics,
leading to failures in detecting common generative defects (e.g., extra fingers) and in modeling
perceptual “naturalness” Liang et al. (2024); Xu et al. (2023); Ma et al. (2025), which humans
are sensitive to. Consequently, VLM-only scoring lacks the precision and reliability required for
fine-grained evaluation across instruction following, content consistency, and visual quality. How-
ever, we find recently open-source state-of-the-art editing models (e.g., Qwen-Image-Edit Wu et al.
(2025a), Step1X-Edit Liu et al. (2025), BagelDeng et al. (2025)) solely rely on VLMs for evaluation.

To address these challenges, we introduce EdiVal-Agent: an automated and fine-grained evaluation
agent for multi-turn instruction-based image editing from an object-centric perspective, designed to
assess not only standard single-turn but also multi-turn instruction-based editing with precision. As
shown in Fig. 2, EdiVal-Agent first decomposes it into semantically meaningful objects, then syn-
thesizes diverse, context-aware editing instructions while dynamically updating object pools across
turns. These two stages enable two novel object-centric metrics tailored for multi-turn evaluation and
one global metric of visual quality: 1) EdiVal-IF, which measures instruction following by combin-
ing open-vocabulary object detectors for symbolic checks with VLMs for semantic verification on
detector-guided crops; 2) EdiVal-CC, which evaluates content consistency by calculating semantic
similarity of unchanged objects and background using the evolving object pools; and 3) EdiVal-
VQ, which quantifies changes in overall visual quality with human preference models. We show
that EdiVal-IF yields stronger agreement with human judgments in instruction-following evalua-
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Figure 2: Framework of EdiVal-Agent. It first decomposes images into semantically meaningful
objects, such as metal yellow sign and metal brown pole, and identifies their contextual relationships,
e.g., they are both in foreground. It then generates diverse and proper editing scenarios at scale
which are based on the initial analysis, e.g., Change the color of metal brown pole to gray. Finally,
it systematically evaluates editing model outputs from multiple axes with our proposed metrics:
EdiVal-IF, EdiVal-CC, and EdiVal-VQ. Our agentic pipeline is agnostic to the expert tools used and
can be readily enhanced with more advanced tools in the future.

Table 1: Key attributes of open-source edit benchmarks. Note that ImgEdit Ye et al. (2025) does not
include multi-turn editing experiments in the paper.

Benchmark # Size Object-centric Automated Multi-Turn Free from Ref. Images Tools used
EmuEditSheynin et al. (2024) 3,055 ✗ ✓ ✗ ✗ L1, CLIP, DINO
MagicBrushZhang et al. (2023) 1,053 ✗ ✗ ✗ ✗ L1, L2, DINO, CLIP
AnyEditYu et al. (2025) 1,250 ✗ ✗ ✗ ✗ L1, CLIP, DINO
I2EBenchMa et al. (2024) 2,240 ✗ ✗ ✗ ✓ VLM
GEdit-BenchLiu et al. (2025) 606 ✗ ✗ ✗ ✓ VLM
HQ-EditHui et al. (2024) 1,651 ✗ ✓ ✗ ✓ VLM
ImgEdit-BenchYe et al. (2025) 811 ✗ ✓ ✗ ✓ VLM
Kontext-BenchLabs et al. (2025) 1,026 ✗ ✗ ✗ ✓ Human Annotation
EdiVal-Bench (ours) 1,716 ✓ ✓ ✓ ✓ Detector, VLM, L1, DINO, HPS

tion compared to thresholded CLIP directional (CLIP dir) scores Gal et al. (2022) and using VLMs
alone, as evidenced in Sec. 2.5.

Instantiating the agentic pipeline, we curate a new multi-turn image editing benchmark, EdiVal-
Bench, featuring 9 instruction types and 13 existing editing models—spanning in-context, flow-
matching, and diffusion paradigms, across both closed- and open-source systems—conduct fine-
grained analyses, and draw actionable insights. Empirically, as demonstrated in Fig. 1 and Tab.
3, GPT-Image-1 excels at instruction following yet ranks near the bottom in content consistency,
whereas Seedream 4.0 and Nano Banana performs strongly on both axes. Besides, open-sourced
models like Qwen-Image-Edit significantly degrade in instruction following and visual quality when
editing turns increase, while FLUX.1-Kontext-max and FLUX.1-Kontext-dev lags in instruction fol-
lowing. We further contrasts multi-turn editing with single-shot complex prompts Yang et al. (2025),
highlighting complementary strengths and failure modes. We hope that our agent pipeline, bench-
mark, and analyses accelerate the transition of multi-turn editing toward practical applications.

Key contributions. 1) Agent: EdiVal-Agent is a fully automated evaluator that performs object-
centric decomposition, generates diverse multi-turn editing instructions, and measures overall edit-
ing quality using two object-centric metrics (EdiVal-IF and EdiVal-CC) plus EdiVal-VQ for visual
quality. 2) Benchmark: using EdiVal-Agent, we construct EdiVal-Bench with 1,716 instructions
across nine types and three turns on 572 real-world images, with comparisons to prior benchmarks

3
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in Tab. 1. 3) Human agreement: EdiVal-IF attains 81.3% agreement with human ratings for in-
struction following, outperforming zero-shot VLMs and CLIP-based baselines. 4) Evaluation: we
assess 13 editors (diffusion, flow-matching, and close source) along instruction following, content
consistency, and visual quality. 5) Insights: overall ranking—Seedream 4.0 > Nano Banana >
FLUX.1-Kontext-max > GPT-Image-1; the strongest open-source editor, Qwen-Image-Edit, ex-
hibits exposure bias under multi-turn editing. 6) Artifacts & settings: we reveal luminance drift
across turns, and contrast multi-turn against complex single-shot editing to delineate strengths and
weaknesses across model families.

2 Æ EDIVAL-AGENT

2.1 OVERVIEW

As illustrated in Fig. 2. The pipeline comprises three stages: (1) Decomposition uses a VLM
(e.g., GPT-4o; other VLMs are viable alternatives) to extract structured, object-level descrip-
tions—objects, attributes, and relations—enabling symbolic reasoning; (2) Instruction Generation
produces multi-turn, diverse, compositional prompts by maintaining an explicit object pool and
sampling from nine instruction types spanning subject-, attribute-, relational-, text-, count-, and
global-level edits; (3) Evaluation scores edited images with EdiVal-IF, Edival-CC, and EdiVal-VQ.

2.2 STEP 1: DECOMPOSITION

Given an image, a VLM-based agent parses clearly visible foreground objects and returns per-object
JSON with fields object, color, material, text, count, and a boolean foreground.
Names follow "{material} {color} {object}"; unknown fields are omitted; person iden-
tity is never recorded (only wearables/accessories). Example: {"metal yellow sign":
{"object":"sign","color":"yellow","material":"metal","text":"SCHOO
L","count":1,"foreground":true}}. An aggregated all objects string concisely
lists objects (e.g., “metal yellow sign . metal brown pole”). We apply this stage to GEdit-Bench
Liu et al. (2025) (606 images), exclude 34 images with sensitive personal content, and retain 572
images. After extraction, Grounding-DINO validates objects and detects bounding boxes; only reli-
able detections are kept to seed instruction generation and evaluation. The filtered objects are stored
in the All Objects Pool and later used to initialize three distinct object pools that dynamically
track the evolving state of instruction generation.

2.3 STEP 2: INSTRUCTION GENERATION

From the decomposed scene, the agent generates multi-turn edits that are grounded in the cur-
rent object state. The instruction taxonomy (nine types; six categories) appears in Table 2. We
maintain three evolving pools at turn t: Pall

t (all objects ever present), Punch
t (original objects

not edited up to t), and Pavail
t (objects currently editable). With a turn budget MAX TURNS, at

each turn the agent (i) selects a type—defaulting to subject add if Pavail
t = ∅, otherwise

sampling a type not yet used in the chain; (ii) selects object(s) from Pavail
t ; (iii) emits a natural-

language instruction via GPT-4o referencing those objects and the scene state; and (iv) updates
Pall
t+1, Pavail

t+1 , and Punch
t+1 according to the intended edit. When a background change edit ap-

plies at turn t, background-consistency scoring is disabled since this turn, and we append “make
{objects in foreground} unchanged” to the instruction to preserve object-level compara-
bility, where objects in foreground = { o ∈ P avail

t : o.foreground = true }. The
loop is adaptive by expanding/contracting Pavail

t and naturally compositional. Our default sets
MAX TURNS= 3 (In our implementation, each turn is assigned a distinct instruction type.), though
longer chains are easily obtained by allowing repetition or adding types.

2.4 STEP 3: EVALUATION

The first two stages enable two novel object-centric metrics for multi-turn editing evaluation for
instruction following and content consistency, respectively, and one global metric for visual quality:

4
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Table 2: Instruction types in EdiVal-Bench created by EdiVal-Agent, grouped by semantic cate-
gory. Counts are shown per turn (T1–T3).

Category Instruction Type Example Instruction T1 T2 T3 Total

Subject-centric
subject add Add bench on the left of metal red fire hydrant. 67 77 93 237
subject remove Remove wooden brown door. 75 69 61 205
subject replace Replace stone gray railing with wooden fence. 54 57 55 166

Attribute-centric color alter Change the color of metal white airplane to blue. 56 73 57 186
material alter Change the material of plastic black pen to metal. 66 50 72 188

Text-related text change Replace the text ’BEARS CONTROL’ on cotton
black cap with ’WILD PATH’.

64 70 54 188

Relational position change Change the position of ceramic white cup to right
of plastic white laptop.

52 63 48 163

Counting count change Change the count of fur brown bear to 3. 73 58 60 191

Global background change Change the background to forest, remain the
brown fur bear unchanged.

65 55 72 192

EdiVal-IF To evaluate instruction following, we introduce EdiVal-IF, which assesses multi-turn
edits by comparing the image from the previous turn, It−1, to the current image, It. For a given
instruction P t at turn t, the score is determined differently for symbolically and semantically ver-
ifiable tasks. Symbolically verifiable types (Tsym)—such as subject add, subject remove,
subject replace, position change, and count change—are evaluated using an open-
vocabulary object detector Mdetect Liu et al. (2024b). The detector’s outputs, including bounding
boxes and confidence, are assessed against geometric and logical criteria Fsym derived from the
instruction. For example, for a position change instruction “Move [A] to the left of [B]”,
Fsym verifies that the x-coordinate of A’s bounding box B center is less than that of B in It, i.e.,
centerx(BtA) < centerx(BtB). In this case,

EdiVal-IF(It, It−1, P t ∈ Tsym) = Fsym(Mdetect(I
t−1, It|P t)). (1)

Semantically verifiable types (Tsem)—color alter, material alter, text change, and
background change—are evaluated with a VLMMVLM Yang et al. (2024). To focus the eval-
uation, the VLM is applied to detector-guided object crops (Io) using instruction-specific templates.

EdiVal-IF(It, It−1, P t ∈ Tsem) =MVLM(It−1
o , Ito|P t) =MVLM(Mdetect(I

t−1, It|P t)). (2)
We show that EdiVal-IF achieves superior human agreement (Sec. 2.5). The multi-turn editing
success rate is defined as the logical AND of the EdiVal-IF scores across all edits along the chain,
whereas the marginal task rate at turn t is defined according to the formulas 1 and 2 provided above.

(a) Base image (b) GPT-Image-1 (c) FLUX.1-max

Figure 3: Beautification vs. preservation under
the prompt: “Change the background to a li-
brary.” GPT-Image-1 tends to increase HPSv3 via
beautification, while FLUX.1-Kontext-max em-
phasizes fidelity to the input.

EdiVal-CC To assess content consistency,
EdiVal-CC measures the preservation of non-
target content between the base image I0 and
the current image It. Given editing instruc-
tions P 1:t from turn 1 to turn t, the object pools
Punch
t and Pall

t are dynamically updated. Let
Ω denote the entire image area. Using object
bounding boxes from the base image (B0o) and
the current image (Bto), extracted by the detec-
torMdetect, the background region is defined as
Ωt

bg = Ω −
⋃

o∈Pall
t
(B0o ∪ Bt

o), i.e., the region
obtained by excluding all objects that have ap-
peared. Background consistency is then com-
puted as stbg = ϕ(I0bg, I

t
bg), where Itbg = Ωt

bg◦It
denotes the background of the image, and ϕ is a similarity function such as L1 distance or DINO-
based similarity. For unchanged objects, we compute the per-object consistency sto = ϕ(I0o , I

t
o) for

each o ∈ Punch
t , and then average them. Formally, the final EdiVal-CC score emphasizes semantic

preservation by averaging the feature-level similarities of the background and unchanged objects
(see Appendix. O.3 for details):

EdiVal-CC(It, I0, P 1:t) = 1
2

stbg +
1

|Punch
t |

∑
o∈Punch

t

sto

 . (3)
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Figure 4: Results of human agreement. Dashed lines represent the average accuracy of each
method. EdiVal-IF achieves 81.3% human agreement accuracy, significantly outperforming the
VLM (Qwen2.5-VL) at 75.2% and thresholded CLIP dir at 65.4%. Note that the CLIP dir threshold
is tuned separately for each task.

EdiVal-CC aligns with the intuitive notion of consistency, providing a precise measurement.

EdiVal-VQ. Zero-shot VLMs are not trained for reliable assessment of image qual-
ity—particularly artifacts and aesthetics—and we find they are imprecise as scoring functions (see
Appx. N). Consequently, we adopt Human Preference Score v3 (HPSv3) Ma et al. (2025) as our
visual-quality (VQ) evaluator. In practice, applying preference models to unedited, real photographs
often yields relatively low aesthetic scores. We also observe divergent behaviors across editors (See
Fig. 3): some (e.g., GPT-Image-1) tend to beautify images and increase HPSv3, whereas others
(e.g., FLUX.1-Kontext-max) preserve the original appearance with minimal aesthetic change. Be-
cause aesthetic preference is inherently user- and task-dependent, and beautification can trade off
with content consistency (already incorporated into our overall score), we report EdiVal-VQ sepa-
rately and do not fold it into the aggregate metric.

EdiVal-O. We aggregate Instruction Following (EdiVal-IF) and Content Consistency (EdiVal-CC)
into a single overall score. Since both metrics are unit-free and normalized to [0, 1] but capture com-
plementary aspects, we follow prior work and use the geometric mean to balance them and penalize
imbalance (Liu et al., 2025; Ku et al., 2023). Formally, EdiVal-O =

√
EdiVal-IF · EdiVal-CC .

Design Scope and Limitations. We omit style change from our taxonomy because style cate-
gories are inherently ill-defined, which makes instruction-following (EdiVal-IF) difficult to evaluate
reliably. Extending EdiVal-Agent with style-aware recognition is promising future work. After
language-based extraction, we validate objects using Grounding-DINO Liu et al. (2024a) and prune
low-confidence or ambiguous detections. This stabilizes the object pool and reduces error propaga-
tion during instruction generation and IF evaluation. By default, we employ Grounding-DINO as
the open-vocabulary detector, Qwen2.5-VL as the VLM, and DINOv3 Siméoni et al. (2025) as the
image feature extractor due to their state-of-the-art performance and open-source availability, which
facilitates community use. The agentic pipeline is tool-agnostic and can be readily strengthened by
substituting more advanced modules in the future.

2.5 MEASURING HUMAN AGREEMENT

Setup. We conduct human study on edits made by four exemplary models, Step1X-Edit, AnyEdit,
Gemini 2.0 Flash and Flux.1-Kontext-dev, on EdiVal-Bench, generated by EdiVal-Agent as de-
scribed in Sec. 2.3. In total, we collect 4,576 human annotations of edits. During evaluation, raters
were shown the original image, the edited image, and the corresponding instruction, and asked a
binary question: “Evaluate whether the edited image successfully follows the given instruction.”

Results. Figure 4 summarizes the findings. EdiVal-IF achieves a human agreement accuracy of
81.3%, significantly higher than VLM-only (Qwen-2.5-VL, 75.2%), CLIP dir (65.4%), and other
zero-shot VLMs. These results verify that integrating VLMs reasoning with object detection leads
to better alignment with human judgment compared to existing methods. The inter-annotator’s
agreement rate (85.5%) indicates the best performance any evaluation tool can reach.
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We attribute the improvement in instruction-following evaluation to two factors. First, for sym-
bolically verifiable instruction types—subject add, subject remove, subject replace,
position change, and count change—EdiVal-IF relies solely on Grounding-DINO. It de-
termines the success of an edit by checking object presence/absence, the positions of object centers,
and the number of bounding boxes. Results for position change and subject remove show
that these fixed rules, combined with Grounding-DINO, can significantly outperform Qwen2.5-VL
in edit evaluation. We hypothesize that errors in position change stem from poor spatial rea-
soning, while failures in subject remove are due to hallucinations regarding object existence.
Second, semantically verifiable types—color alter, material alter, text change, and
background change—are evaluated using Qwen2.5-VL combined with Grounding-DINO. The
decomposition stage in EdiVal-Agent can supports evaluation by localizing text regions, enabling
the LLM to reason more precisely about text edits. These findings indicate that EdiVal-IF not only
enhances interpretability but also improves the practical applicability of evaluation pipelines in real-
world settings that demand human-like understanding. Nonetheless, EdiVal-IF has failure modes,
which we document and analyze in Appendix. K.

3 BENCHMARKING MULTI-TURN EDITING

Table 3: Results of multi-turn editing. EdiVal-IF, EdiVal-CC , and EdiVal-O across three sequen-
tial editing turns. Best per column in dark red; second-best in lighter red.

Latency EdiVal-IF EdiVal-CC EdiVal-O Rank
Technique Model In-Context Date (s/img) T1 T2 T3 T1 T2 T3 T1 T2 T3

Unknown

Seedream 4.0 ✗ 25.09.10 14.55 75.93 55.58 41.59 92.51 88.03 85.86 83.81 69.95 59.76 1
Nano Banana ✓ 25.08.26 9.20 70.70 50.66 35.35 93.91 90.48 89.48 81.48 67.70 56.24 2
GPT-Image-1 ✓ 25.07.16 26.47 73.12 54.89 38.35 81.00 77.78 75.50 76.96 65.34 53.81 3
Gemini 2.0 Flash ✓ 25.02.05 8.34 68.07 45.96 28.42 90.58 85.10 80.88 78.52 62.54 47.94 5

Flow Matching

FLUX.1-Kontext-max ✗ 25.06.03 10.13 69.49 46.89 31.83 93.93 90.90 88.40 80.79 65.29 53.04 4
Qwen-Image-Edit ✗ 25.08.04 115.08 72.90 44.06 22.55 84.22 80.52 77.98 78.36 59.56 41.93 6
Step1X-Edit ✗ 25.04.25 20.42 61.89 34.97 17.83 92.76 88.52 85.21 75.77 55.64 38.98 7
FLUX.1-Kontext-dev ✗ 25.06.25 29.21 59.97 32.69 16.61 95.32 92.24 90.22 75.61 54.91 38.71 8
OmniGen ✗ 24.09.11 19.70 54.72 24.48 10.66 93.00 88.42 83.92 71.34 46.52 29.91 9

Diffusion

AnyEdit ✗ 24.11.24 3.93 41.07 16.32 7.22 86.42 78.91 70.10 59.58 35.89 22.50 10
UltraEdit ✗ 24.07.07 3.15 51.37 17.70 6.36 86.80 84.50 82.40 66.78 38.67 22.89 11
MagicBrush ✗ 23.06.16 4.08 42.31 15.73 4.90 86.96 81.26 76.86 60.66 35.75 19.41 12
IP2P ✗ 23.12.15 4.09 37.41 10.66 2.80 76.85 68.36 60.30 53.62 26.99 12.99 13
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Seedream 4.0 (+0.18)

Nano Banana (-2.46)

GPT-Image-1 (+0.00)
FLUX.1-Kontext-max (+0.94)
Gemini 2.0 Flash (+0.35)

Qwen-Image-Edit (-16.78)
Step1X-Edit (-8.57)
FLUX.1-Kontext-dev (-8.57)

OmniGen (-12.24)

UltraEdit (-19.05)

AnyEdit (+0.53)
MagicBrush (-1.05)

IP2P (-3.14)

Sharpest drop -16.78 pts

Marginal Task Rate Across Turns

Technique
Unknown
Flow Matching
Diffusion

Technique
Unknown
Flow Matching
Diffusion

Figure 5: Marginal Task Success rate
across turns.

Summary of Results. Table 3 shows that Seedream 4.0
achieves the strongest overall performance, leading in
EdiVal-O across all three turns (83.81/69.95/59.76) with
competitive latency (15.8 s/img)2 Nano Banana offers the
best speed–quality trade-off at 9.7 s/img, ranking second
in EdiVal-O and staying close to Seedream 4.0 in both
instruction following and consistency. GPT-Image-1 ex-
cels in instruction following, but its very high latency
(71.3 s/img) and weaker consistency lower its overall
score, consistent with more regenerative behavior that pri-
oritizes aesthetics over stability. Among open-source sys-
tems, Qwen-Image-Edit performs well initially (EdiVal-O
78.36 at T1) but degrades rapidly with additional turns,
likely due to exposure bias as discussed below. We can
see that there is a clear gap between the performance of closed-source and open-source systems.
With the exception of Qwen-Image-Edit, our model rankings exactly match those reported on the
Artificial Analysis leaderboard (rank by human vote) as of September 12, 2025; see Appendix. J.

3.1 INSTRUCTION FOLLOWING

Marginal Task Success Rate. For a given turn, the marginal task success rate (Eqns. 1 and 2)
is the proportion of prompts for which the edit requested at that turn is successfully executed. By

2Closed-source latencies are measured using API-budgeted throughput for proprietary models; open-source
latencies are measured on a single NVIDIA A100 GPU with default settings.
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Figure 6: Marginal task success
rate grouped by task types for
Nano Banana.

Base image Qwen-Image-Edit

Figure 7: Illustration of background consistency. Instruc-
tion: “Remove beige brick house.” The grounding box is the
union of all object regions from the raw and edited images.

contrast, the instruction-following score in Table 3 reports the multi-turn task success rate at turn i:
the logical AND of the EdiVal-IF scores across all edits along the chain. Figure 5 summarizes
per-turn performance. High-ranking models—such as Seedream 4.0, Nano Banana, and FLUX.1-
Kontext-max—maintain relatively stable EdiVal-IF across turns, even though Seedream 4.0 and
FLUX.1-Kontext-max are not in-context editors (they do not condition on prior prompts or interme-
diate images). In contrast, several other models exhibit a clear decline in marginal success as the
number of turns increases.

A particularly salient case is Qwen-Image-Edit. Although it is the strongest open-source system
at turn 1 (EdiVal-O 78.36 vs. 81.48 for Nano Banana), its performance degrades more rapidly over
subsequent turns. We hypothesize that this stems from exposure bias (Ning et al., 2023; Schmidt,
2019): many single-turn editors are trained to operate on real images and ground-truth inputs rather
than on their own previous outputs. When asked to edit their own generations, small distributional
mismatches compound across turns, reducing stability; this effect is further aggravated when the
model can only attend to a limited history.

Marginal Task Success Rate Across Instruction Types. We analyze marginal subtask success
rates across turns for different instruction types. The results for Nano Banana are shown in Fig. 6.
Other editing models exhibit similar behavior. Nano Banana performs relatively well on attribute-
centric tasks such as color alter and material alter, but poorly on position change
and count change, indicating weaknesses in spatial and numerical reasoning, respectively.

3.2 CONTENT CONSISTENCY

We evaluate two aspects: (i) unchanged-object consistency (Fig. 8), which measures whether
objects that are not edited up to turn i remain unchanged, and (ii) background consistency (Fig.
7), which assesses whether the background remains stable when it is not explicitly modified. When
calculating consistency, the grounding box is extracted from the raw input image and applied to all
edited images. We therefore choose to report DINOv3 over L1 distance for consistency computation
because even small shifts in object location can lead to large variations in pixel-wise L1 loss, even
if unchanged objects are well preserved. By relying on DINO features, we ensure that consistency
is measured semantically, capturing attributes such as object identity, attributes, and texture, etc.
Nevertheless, the consistency scores from DINOv3 remain highly correlated with those computed
using pixel-wise L1 loss (See results in the Appendix. P). Based on the results, the most consistent
editing model is FLUX.1-Kontext-dev, followed by Nano Banana and FLUX.1-Kontext-max.
In contrast, GPT-Image-1 ranks near the bottom, showing notably poor consistency across turns.
Representative qualitative examples are shown in Figure 8 and Figure 7.

3.3 VISUAL QUALITY

Besdies EdiVal-VQ, we report the absolute change in VQ score relative to the base image:
EdiVal-VQ∆i =

∣∣EdiVal-VQturn i − EdiVal-VQbase

∣∣. Smaller ∆ indicates stronger style fidelity to

8
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(a) Base Image (b) GPT-Image-1 (95.19) (c) Nano Banana (98.05) (d) Qwen-Image-Edit (94.96)

Figure 8: Illustration of object consistency. Instruction: “Remove brick beige house.” The ground-
ing box, extracted from the raw input image, highlights the localized region used to compute
unchanged-object consistency. The corresponding consistency score is shown in brackets.
the base image; larger ∆ reflects greater beautification or stylistic drift. As summarized in Table 4,
GPT-Image-1 achieves the highest aesthetic scores across turns and the biggest ∆, indicating a sig-
nificant stylistic shift (Fig. 3). For preserving the base image’s look (small ∆), Gemini 2.0 Flash
shows the least drift, with Nano Banana also performing well. We provide low-level exposure
statistics analysis in Appendix. M.

Table 4: EdiVal-VQ and EdiVal-VQ∆ results across
turns. dark red denotes the best value in the column;
lighter red denotes the second-best. For HPS, higher
values are stronger aesthetics. For ∆, smaller values
are stronger fidelity preservation.

Technique Model EdiVal-VQ EdiVal-VQ∆

T1 T2 T3 T1 T2 T3

Unknown

Seedream 4.0 5.14 5.15 5.15 0.76 0.77 0.77
Nano Banana 4.94 5.12 5.26 0.56 0.73 0.88
GPT-Image-1 6.65 6.59 6.56 2.27 2.21 2.18
Gemini 2.0 Flash 4.44 4.23 4.07 0.05 0.15 0.32

Flow Matching

FLUX.1-Kontext-max 5.12 5.07 5.04 0.41 0.49 0.47
Qwen-Image-Edit 5.86 5.72 5.15 1.47 1.34 0.77
Step1X-Edit 4.06 3.34 2.76 0.33 1.04 1.63
FLUX.1-Kontext-dev 5.12 5.07 5.04 0.73 0.69 0.65
OmniGen 4.61 4.07 3.50 0.23 0.31 0.89

Diffusion

AnyEdit 3.66 2.80 1.95 0.72 1.58 2.44
UltraEdit 4.79 4.68 4.36 0.41 0.30 0.02
MagicBrush 3.85 3.08 2.36 0.54 1.30 2.02
IP2P 3.20 2.38 1.44 1.18 2.01 2.94

Figure 9: Turn-3 instruction follow-
ing: Multi-turn vs. single-shot complex
prompts.

3.4 MULTI-TURN EDITING VS. COMPLEX EDITING

We compare two strategies for composing multiple edits. In multi-turn editing, instructions are
executed sequentially—apply instruction 1, then apply instruction 2 to the result, and so on. In
complex editing, we concatenate C instructions into a single prompt and perform one edit (“complex
level” C, with C ∈ {1, 2, 3}). Empirically (Fig. 9), when a model does not suffer from exposure
bias, multi-turn editing tends to yield higher success rates, consistent with a step-by-step “chain of
edits” (analogous to chain-of-thought in reasoning). For instance, Nano Banana benefits from the
multi-turn formulation. Conversely, when exposure bias is pronounced, compressing instructions
into a single, complex prompt can perform better; see Qwen-Image-Edit in Fig. 9.

3.5 PARETO FRONT

After constructing the leaderboard using EdiVal-O, we further analyze the trade-offs between dif-
ferent evaluation dimensions. To ensure that no model “games” the benchmark by excelling in only
one dimension, we plot the Pareto boundary at Turn 3 for all pairwise combinations of our three
evaluated dimensions: EdiVal-IF, EdiVal-CC, and EdiVal-VQ (see Figure 10). Additional Pareto
plots for Turn 1 and Turn 2 are provided in Figures 14 and 15.

3.6 ABLATION STUDY ON COMPLEX EDITING COMPRESSION

We conduct an ablation study on how to compress three-turn instructions into a single “complex
edit” prompt. In the previous experiment, we adopt the simplest concatenation strategy: {prompt
T1}. {prompt T2}. {prompt T3}. We further evaluate three alternative variants on Qwen-Image-

9
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Figure 10: Pareto front plot for Turn 3 editing across EdiVal-IF, EdiVal-CC, and EdiVal-VQ.

Table 5: Complex Editing Performance for com-
pression variants.

Connector Variant Complex(C3) (%)

Default 27.62
Random shuffle 27.10
Sequential connector 26.92
Keep-unchanged 25.87

Table 6: Tool swap analysis (correlations).

Type Default Variant Metric Pearson Spearman

VLM Qwen2.5-7B-VL
Qwen2-7B-VL IF 0.9544 0.9298
Qwen2.5-32B-VL IF 0.9790 0.9544
InternVL3-8B IF 0.9660 0.9228

Threshold [0.3, 0.4]
Threshold = 0.4 IF 0.9817 0.9860
Threshold = 0.3 IF 0.9772 0.9457

Filter Has filter No filter IF 0.9982 0.9930

Detector Grounding DINO OWL-ViT IF 0.8157 0.7929

Feature DINOv3 DINOv2 CC 0.9987 1.0000

Edit: 1) Random shuffle: randomly shuffle the three per-turn prompts before concatenation. 2)
Sequential connector: explicitly encode the order as: first, {prompt T1}, then, {prompt T2}, last,
{prompt T3}. 3) Keep-unchanged objects: append an explicit constraint: {prompt T1}. {prompt
T2}. {prompt T3}. Keep {unchanged objects} unchanged. Table 5 reports the resulting complex
editing success rate(%) at C = 3. The results show these compression variants have only a very
mild effect on performance.

3.7 TOOL SWAP ANALYSIS

We analyze the effect of swapping individual components in our evaluation stack, including the
VLM, detector, detector threshold, and image feature extractor. We find that modifying the VLM
(Appendix C.1), adjusting the detector threshold (Appendix C.2), changing the detector (Ap-
pendix C.3), or changing the image feature extractor (Appendix C.4) has only a minor impact on the
final evaluation outcomes. The summary statistics are shown in Tab. 6, which demonstrates that for
each configuration replacement, our evaluation results remain highly correlated with those obtained
under the default stack. As for EdiVal-VQ, we found that HPSv3 is the only human preference
model trained on images generated after SD3.5. This suggests that other preference models, such as
HPSv2, cannot provide reliable assessments of recent, more advanced generations, as they are only
sensitive to earlier-stage generations that are significantly lower in quality.

However, we note that replacing Grounding DINO with OWL-ViT Minderer et al. (2022) (Ap-
pendix C.3) fails to filter out failure cases originally caused by Grounding DINO and also reduces
agreement with human annotations. This highlights that detector accuracy should be prioritized
when considering detector substitutions.

We further examine component-specific tasks, such as counting, where we compare the perfor-
mance of density-map estimation methods (Appendix D). Finally, we include preliminary experi-
ments on style transfer (Appendix F), which indicate that existing VLMs still struggle to reliably
judge whether a style transfer succeeds.

4 CONCLUSION

We introduced EdiVal-Agent, an automated, and interpretable framework for evaluating instruction-
based image editing. By leveraging symbolic object decomposition, structured instruction genera-
tion, and a hybrid evaluation pipeline integrating both specialist tools and vision-language reasoning
models, EdiVal-Agent enables fine-grained, object-centric assessment of modern multi-turn editing
systems. Limitations and discussions are deferred to Appendix H.
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ETHICS STATEMENT

Our work focuses on developing reliable and interpretable evaluation methods for instruction-based
image editing. While such technology holds promise for creative design, accessibility, and efficient
content creation, it may also be misused for harmful purposes such as generating misleading, de-
ceptive, or inappropriate content. We emphasize that our benchmark and evaluation framework are
intended solely for advancing research in safe and trustworthy generative AI. To mitigate risks, we
build on publicly available datasets, apply safety filters to generated images, and encourage respon-
sible use aligned with ethical standards and community guidelines.

REPRODUCIBILITY STATEMENT

We provide complete prompting templates and pseudo-code in the Appendix, along with imple-
mentation details and API links. Comprehensive results, datasets, and evaluation metrics are also
documented. To ensure full reproducibility, we will release all code, data, and model checkpoints
upon acceptance of this manuscript.
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People Scenes

(a) One person (b) Cartoon person (c) Crowd (d) Kids
Outdoor / Nature

(e) Forest (f) Outdoor (g) Outdoor (h) View
Special Scenes

(i) Snow (j) Volcano (k) Dusk (l) Romance
Indoor Scenes

(m) Furniture (n) Cake (o) Cat (p) Dog
Special Items

(q) Book Cover (r) Ads (s) Logo (t) Menu
Artistic / Cartoon Scenes

(u) Artistic (v) Cartoon (w) Poster (x) Statue

Figure 11: Scene diversity of our dataset across multiple environments and content types.
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A DIVERSITY OF OUR DATASET

Figure 12: Images of different lightning sorted from very dark to very bright.

Figure 13: Categories and examples of objects in the base images.

All base images can be found here: the GEdit-Bench’s official Huggingface link https://
huggingface.co/datasets/stepfun-ai/GEdit-Bench.

Our dataset could reflect real-world editing scenarios in the following senses.

Data Source We first stress that our images

1. are from real-world user editing cases as stated in GEdit-Bench Liu et al. (2025).

2. include both synthetic and real images

3. are carefully selected by the GEdit team to ensure the diversity.

Different Scenes We demonstrate example images of different scenes in Fig. 11 which covers
assorted environments and content types, including but not limited to indoor/outdoor, person, special
items, and artistic scenes. This diversity helps our dataset to better reflect the real-world user cases.
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Different Lightning We demonstrate images of lightning conditions in Fig. 12 sorted from very
dark to very bright. Our dataset includes a variety of illumination scenarios that aim to cover the
spectrum of very bright to very dark environments. This variation reflects the real-world complex
editing scenes.

Object categories. After decomposition, we analyzed and found that there are a total of 724 dis-
tinct objects in the dataset. We classify them into 13 categories, ranging from everyday items such
as furniture and kitchenware to special entities like vehicles and animals. Specifically, they are (The
distribution of these objects is presented in Fig. 13.):

1. Clothing & Accessories
2. Furniture & Home
3. Food & Kitchen
4. Structures & Places
5. Vehicles & Transport
6. Nature & Outdoors
7. Animals
8. Sports, Toys & Hobby
9. Stationery & Office

10. Electronics & Tech
11. Body & Medical
12. Tools & Industrial
13. Other

B PARETO PLOT

In addition to presenting a leaderboard in Table 14, we also visualize the trade-offs among the
three EdiVal dimensions—EdiVal-IF, EdiVal-CC, and EdiVal-VQ—using Pareto plots. These plots
illustrate the performance frontier for each turn, providing a more concrete view of the trade-off and
allowing users to select the most suitable model according to their preference.

We present the Pareto plots for Turn 1 in Figure 14, Turn 2 in Figure 15, and Turn 3 in Figure 10.

Figure 14: Pareto plot for Turn 1.

C TOOL SWAP ANALYSIS

C.1 VLM SWAP

To assess how our evaluation results depend on the choice of VLM, we swap the default VLM
in our stack (Qwen2.5-7B-VL) with several alternatives: Qwen2-7B-VL, Qwen2.5-32B-VL, and
InternVL3-8B. For each configuration, we recompute the per-turn instruction-following success
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Figure 15: Pareto plot for Turn 2.

rates for four representative editors: GPT-Image-1, Seedream 4.0, Nano Banana, and FLUX.1-
Kontext-max.

Across all VLM choices, the relative ranking of these editors remains unchanged. While the ab-
solute scores shift slightly (e.g., the Qwen2.5- and InternVL-based stacks tend to assign somewhat
lower scores than the Qwen2-7B-VL stack), the overall ordering is stable. When we compare per-
turn/marginal success rates between the default Qwen2.5-7B-VL stack and each swapped VLM,
both Pearson and Spearman correlations remain high over all (model, turn) pairs.

Concretely, Table 7 reports correlations between the per-turn success rates under our default VLM
(Qwen2.5-7B-VL) and those obtained with each alternative VLM. All Pearson correlations exceed
0.95 and all Spearman correlations exceed 0.92, indicating that changing the VLM has only a modest
effect on the absolute scores and largely preserves the relative ordering of the four models. In
particular, on the EdiVal-IF leaderboard we consistently observe

Seedream 4.0 > GPT-Image-1 > Nano Banana > FLUX.1-Kontext-max.

Table 7: Correlations between per-turn instruction-following success rates under the default VLM
(Qwen2.5-7B-VL) and three strong vision–language baselines. All correlations are computed over
12 (model, turn) points.

Baseline Model Pearson Spearman
Qwen2-7B-VL 0.9544 0.9298
Qwen2.5-32B-VL 0.9790 0.9544
InternVL3-8B 0.9660 0.9228

C.2 GROUNDING DINO THRESHOLD AND LARGE-BOX FILTER SWAP

In this section, we ablate the effect of changing Grounding DINO’s detection threshold and dis-
abling the large-box filter. By default, we use a threshold of 0.30 for subject remove, 0.40 for
position change, and 0.35 for all other tasks. In addition, during detection we discard any
box whose normalized height and width are both larger than 0.98, in order to filter out degenerate
predictions that cover almost the entire image.

To investigate sensitivity to these choices, we re-run the evaluation under three alternative settings:
(1) a global threshold of 0.30, (2) a global threshold of 0.40, and (3) the default thresholds but with
the large-box filter disabled. The results are reported in Table 8. Across all settings, the instruction-
following metrics (image success, task success, and overall scores) change only slightly, and the
ranking of models remains unchanged. This suggests that our conclusions are robust to reasonable
variations in the detector threshold and the large-box filtering heuristic.

C.3 DETECTOR SWAP

We also perform an ablation study by swapping the open-vocabulary detector in our pipeline from
Grounding DINO to alternative detectors, such as OWL-ViT Minderer et al. (2022) and GLIP Li
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Table 8: Per-turn image success, task success, and overall scores under different evaluation settings
(ranked).

Config Model Img. Success Task Success Overall Rank
T1 T2 T3 T1 T2 T3 T1 T2 T3

Default Seedream 4.0 75.930 55.580 41.590 75.930 75.580 76.110 83.811 69.948 59.757 1
Nano Banana 70.700 50.660 35.350 70.700 72.590 68.240 81.483 67.703 56.242 2
GPT-Image-1 73.120 54.890 37.970 73.120 74.440 72.740 76.959 65.340 53.542 3
FLUX.1-Kontext-max 69.490 46.890 31.830 69.490 69.110 70.430 80.791 65.286 53.045 4

Threshold 0.3 Seedream 4.0 73.450 53.270 38.940 73.450 74.870 74.870 82.431 68.479 57.822 1
Nano Banana 69.940 49.340 33.460 69.940 71.640 67.490 81.044 66.815 54.717 2
GPT-Image-1 71.430 52.820 37.030 71.430 74.060 72.180 76.065 64.096 52.875 3
FLUX.1-Kontext-max 68.170 45.570 30.510 68.170 68.360 68.930 80.020 64.361 51.933 4

Threshold 0.4 Seedream 4.0 73.980 52.570 38.940 73.980 73.450 74.510 82.728 68.027 57.822 1
Nano Banana 68.810 47.260 31.950 68.810 69.570 64.460 80.386 65.392 53.469 2
GPT-Image-1 70.110 50.190 35.150 70.110 72.560 71.240 75.359 62.480 51.515 3
FLUX.1-Kontext-max 66.290 43.690 28.630 66.290 67.230 67.420 78.909 63.019 50.308 4

No Large-Box Filter Seedream 4.0 75.930 55.220 41.240 75.930 75.220 76.110 83.811 69.721 59.505 1
Nano Banana 70.700 50.660 35.350 70.700 72.590 68.240 81.483 67.703 56.242 2
GPT-Image-1 72.930 54.890 38.350 72.930 74.440 73.120 76.859 65.340 53.809 3
FLUX.1-Kontext-max 69.490 46.890 31.830 69.490 69.110 70.430 80.791 65.286 53.045 4

et al. (2022). For this swap, detector accuracy is the primary factor we must prioritize, since a more
accurate detector directly translates to higher agreement with human annotations.

Table 9 summarizes the performance of several popular open-vocabulary detectors on standard de-
tection benchmarks. In the open-set setting ODinW (object detection in the wild), which most
closely resembles our scenario, Grounding DINO outperforms GLIP. It also achieves the best AP
on COCO, a widely used benchmark with 80 common objects. LVIS is a challenging benchmark
with more than 1k categories spanning rare, common, and frequent objects; on LVISval, OWL-ViT
attains strong performance, but Grounding DINO still provides a better trade-off for our open-world
editing setting, particularly when ODinW performance is considered.

We do not adopt other available detectors such as Grounding DINO 1.5, because they are closed-
source and thus unsuitable for a community benchmark where users may need to run evaluation
many times or adapt the pipeline to their own models. Moreover, our current configuration already
achieves better alignment with human judgment (81.3%) than strong zero-shot VLM baselines, so
switching to a closed-source detector would reduce reproducibility without a clear benefit.

When we swap Grounding DINO for OWL-ViT in our EdiVal-IF pipeline, the relative ranking of
models (based on Img.Success at Turn 3) remains unchanged, but the absolute scores drop. Never-
theless, the per-turn/marginal success rates still exhibit high correlation with those under Grounding
DINO (Pearson 0.82, Spearman 0.79). OWL-ViT frequently fails to detect objects that are clearly
present in the image, which leads to many spurious “reject” decisions and thus lower Task.Success
and Img.Success across all models. This bias is largely consistent across models, so EdiVal-IF pre-
serves the same ordering, but the absolute values are shifted downward. A qualitative example is
shown in Figure 17, where OWL-ViT fails to detect objects that are clearly present in the image.

We therefore do not recommend replacing Grounding DINO with OWL-ViT, GLIP, or other weaker
open-vocabulary detectors in our framework. Grounding DINO remains a widely adopted state-of-
the-art open-vocabulary detector, and weaker detectors not only reduce absolute performance scores
but also harm agreement with human judgments. For example, when swapping Grounding DINO for
OWL-ViT, the human agreement of EdiVal-IF drops from 81.30% to 53.67%. In general, upgrading
to a stronger open-vocabulary detector should preserve the relative EdiVal-IF ranking while improv-
ing absolute scores and human agreement, whereas downgrading to significantly weaker detectors
has the opposite effect and is therefore undesirable.

Can detector swapping avoid failure cases? No. We also examine the same failure cases of
Grounding DINO under OWL-ViT and GLIP. In these examples, OWL-ViT behaves differently
from Grounding DINO but does not fix the underlying issue: regardless of whether the object truly
exists in the image, OWL-ViT often detects nothing at all. GLIP, on the other hand, exhibits similar
false-positive behavior to Grounding DINO, but with denser and less precise bounding boxes. Thus,
switching to OWL-ViT or GLIP does not eliminate such failure cases; it merely changes them into
systematic missed detections or more cluttered false positives.
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Method Backbone Pre-training data COCO LVISminival LVISval ODinW35 ODinW13

APall APall APr APc APf APall APr APc APf APavg APavg

OWL-ViT ViT-L O365, OID, VG, LiT 42.2 - - - - 34.6 31.2 - - - -
GLIP Swin-L FourODs, GoldG, Cap24M 49.8 37.3 28.2 34.3 41.5 26.9 17.1 23.3 35.4 - 52.1
Grounding DINO Swin-L O365, OID, GoldG 52.5 - - - - - - - - 26.1 56.9

Table 9: Performance of popular detectors including OWL-ViT, GLIP, and Grounding DINO (Swin-
L). Numbers are copied from Table 1 of Grounding DINO 1.5 Ren et al. (2024). In the open-set
setting ODinW, which is most similar to our scenario, Grounding DINO outperforms GLIP. It also
achieves the best AP on COCO. LVIS is a large-scale benchmark with over 1k categories spanning
rare, common, and frequent objects.

(a) Base image
(original)

(b) Seedream 4.0
(edited)

(c) Detected: stone gray
railing

(d) Detected: wooden
fence

Figure 16: Failure due to detector false positives. Although the edit visually replaces the railing
with a wooden fence, Grounding DINO fires on both “stone gray railing” and “wooden fence” in
overlapping regions, causing an incorrect failure in our instruction-following metric.

(a) Base image
(original)

(b) Seedream 4.0
(edited)

(c) Nothing detected:
“stone gray railing”

(d) Nothing detected:
“wooden fence”

Figure 17: OWL-ViT fails to detect the queried objects regardless of whether they are actually
present in the image, and therefore does not resolve this failure case.

(a) Base image
(original)

(b) Seedream 4.0
(edited)

(c) GLIP prediction:
“stone gray railing”

(d) GLIP prediction:
“wooden fence”

Figure 18: GLIP produces substantially more false positives than Grounding DINO, hallucinating
objects such as a “stone gray railing” and misclassifying the tower region as a “wooden fence” or
“stone gray railing”.
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C.4 IMAGE FEATURE EXTRACTOR SWAP: DINOV3 TO DINOV2

We further ablate the image feature extractor by swapping the default backbone (DINOv3) with
DINOv2. As with our other component swaps (VLM, detector, and threshold), we observe the
same qualitative behavior: the relative ranking of models remains unchanged, while the absolute
consistency scores shift.

Concretely, DINOv2 systematically produces lower EdiVal-CC values than DINOv3, but the or-
dering across models is identical. When we compare per-turn consistency scores across the two
backbones over all (model, turn) pairs, we obtain Pearson correlation 0.9987 and Spearman corre-
lation 1.0000, indicating that DINOv2 and DINOv3 induce essentially the same ranking and very
similar relative differences between models, despite the shift in absolute scale.

Table 10: DINO-v2 feature backbone results with EdiVal-CC Rank.

Model Turn 1 Turn 2 Turn 3 EdiVal-CC Rank

Seedream 4.0 89.455 84.185 81.120 3
Nano Banana 90.820 86.900 85.070 1
GPT-Image-1 76.360 72.555 69.845 4
FLUX.1-Kontext-max 91.530 87.535 84.460 2

Table 11: DINO-v3 feature backbone results with EdiVal-CC Rank.

Model Turn 1 Turn 2 Turn 3 EdiVal-CC Rank

Seedream 4.0 92.51 88.03 85.86 3
Nano Banana 93.91 90.48 89.48 1
GPT-Image-1 81.00 77.78 75.50 4
FLUX.1-Kontext-max 93.93 90.90 88.40 2

Figure 19: Per-turn EdiVal-CC scores under DINOv3 (x-axis) vs. DINOv2 (y-axis) for the four rep-
resentative models. Each point is a (model, turn) pair; Pearson correlation is 0.9987 and Spearman
correlation is 1.0000, confirming that the feature-extractor swap only shifts the absolute scale while
preserving the ranking.

D IMPROVEMENT TOWARDS COUNTING

When we generate prompts, the target count is never higher than 10. Under this regime, Grounding
DINO is sufficiently reliable for counting the relevant objects.

Potentially there are two other families of methods to do counting: tracking-based counting and
density-map estimation. Tracking-based methods are typically designed for videos, where they
exploit multiple frames to track objects over time. In our case, we only use single edited images to
do counting, so such tracking-based approaches are not applicable.

Density-map estimation methods (e.g., CSRNet Zhang et al. (2016); Li et al. (2018)) are usually
developed for crowd counting of a fixed target category (such as humans) on specific datasets, rather
than open-vocabulary object counting. When the objects to be counted are not aligned with the
training data distribution, these methods can fail dramatically. To make this concrete, we apply
CSRNet to one of our examples: CSRNet outputs an estimated count of 44.86, whereas Grounding
DINO correctly predicts 3 bounding boxes for the target objects.
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(a) Count by Grounding
DINO.

(b) Count by CSRNet
(density map).

Figure 20: Illustration of counting with an open-vocabulary detector (Grounding DINO) vs. a
density-map-based crowd counter (CSRNet). CSRNet severely overestimates the count in this open-
vocabulary setting.

E COMPLEX EDITING COMPRESSION CONNECTOR

As the reviewer pointed out, the way we connect individual instructions may influence the final
instruction-following performance. In the main paper, we adopt the most straightforward strategy:
we simply concatenate per-turn instructions in order as {prompt for turn 1}. {prompt
for turn 2}. {prompt for turn 3}. We fully agree that alternative connectors or
prompt templates could potentially change performance, as suggested by the reviewer.

To study this effect, we experiment with three additional variants of the complex-edit prompt con-
struction. For concreteness and reproducibility, we conduct this analysis on Qwen-Image-Edit, since
it is the strongest open-source model in our pool and thus a natural candidate for investigating such
effects.

1. Random shuffle: randomly shuffle the sequence of the three per-turn prompts and then concate-
nate them with periods.

2. Sequential connector: explicitly indicate ordering using connectors such as first, {prompt
1}, then, {prompt 2}, last, {prompt 3}.
3. Keep-unchanged clause: append an explicit constraint about unchanged objects at the end, while
still concatenating by periods, e.g., {prompt 1}. {prompt 2}. {prompt 3}. Keep
{unchanged objects} unchanged.

We then measure the Turn-3 instruction-following rate under these four variants (default + three
connectors). The results are summarized in Table 12.

Table 12: Turn-3 instruction-following rate for different complex-edit connector variants (Qwen-
Image-Edit).

Connector Variant Complex(C3) (%)

Vanilla (default concatenation) 27.62
Random shuffle 27.10
Sequential connector 26.92
Keep-unchanged clause 25.87

Overall, these connector variants do not substantially change the instruction-following performance
in our setting. The differences are relatively small, and the qualitative behavior remains similar. We
will add a brief discussion of these variants and their impact to the revised version.

F STYLE CHANGE: PRELIMINARY EXAMINATION

We also conducted a preliminary examination of style-change edits. Concretely, we generated styl-
ized images (e.g., “Ghibli style” or “Pixar style”) and then asked both GPT-4o and Gemini to classify
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(a) Base image. (b) GPT-Image-1. (c) Qwen-Image-Edit.

Figure 21: Examples of edits targeting a “Ghibli style”.

(a) Base image. (b) GPT-Image-1. (c) Qwen-Image-Edit.

Figure 22: Examples of edits targeting a “Pixar style”.

them. For each generated image, we prompted the VLMs with a yes/no question such as: “Is this
image in Ghibli style?” or “Is this image in Pixar style? Please answer only ‘yes’ or ‘no’.” In all
cases, both models answered “no”, even for images that humans would generally agree are success-
ful style transfers (see Fig. 21 and Fig. 22). This preliminary experiment highlights a key limitation:
current VLMs struggle to reliably judge whether a style-transfer edit has succeeded, even when
evaluating images produced by the same model being queried (e.g., GPT-4o answering “no” for its
own generations).

Beyond this limitation, we identify two additional factors that make style-transfer edits particularly
challenging for fair instruction-following evaluation. First, style transfer is an inherently ill-defined
and subjective editing category: the boundaries between styles can be vague (e.g., watercolor anime
vs. Ghibli), which naturally induces lower human agreement. Second, when performing style-
transfer edits with closed-source models, we often encounter copyright-related refusals (e.g., de-
clining to apply a specific proprietary style), which further complicates systematic evaluation under
our framework.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G RELATED WORK

Instruction-based editing models. InstructPix2Pix (IP2P) Brooks et al. (2023) introduced a two-
stage recipe that converts a text-to-image diffusion model Rombach et al. (2022); Zhang et al.
(2025a) into an editor: (i) synthesize paired editing data using Stable Diffusion Rombach et al.
(2022) and training-free techniques such as Prompt-to-Prompt Hertz et al. (2023); (ii) fine-tune the
diffusion model on these pairs. Subsequent systems—MagicBrush Zhang et al. (2023), UltraEdit
Zhao et al. (2024), and AnyEdit Yu et al. (2025)—scale this paradigm to large, fine-grained real-
image editing. More recent work (e.g., OmniGen Xiao et al. (2025); Wu et al. (2025b), Step1X-Edit
Liu et al. (2025), FLUX.1 Kontext Labs et al. (2025), and Qwen-Image-Edit Wu et al. (2025a), See-
dream Gao et al. (2025)) adopts task-aware architectures and increasingly leverages flow matching
Liu et al. (2022); Lipman et al. (2022); Zhang et al. (2024).

A complementary line explores autoregressive (AR) editors such as Gemini 2.0 Flash Image Gem-
ini2 (2025), Gemini 2.5 Flash Image (“Nano Banana”) Deepmind (2025), and GPT-Image-1 OpenAI
(2025). These models enable in-context multi-turn editing: users iteratively refine an image within
a conversational interface, with the model maintaining a coherent editing history. To our knowledge,
we provide the first systematic comparison of in-context multi-turn AR editing versus context-free
multi-turn editing with non-AR models across instruction following, content consistency, and visual
quality.

Editing evaluation. Early evaluations (e.g., Brooks et al. (2023)) rely on CLIP-based similarity
Radford et al. (2021), including directional variants Gal et al. (2022), to approximate editing quality.
However, CLIP emphasizes semantic alignment and is less sensitive to fine, pixel-level changes.
When ground-truth edited images exist, it is natural to compare model outputs against references
using pixel distances (L1) and semantic similarities (DINO Caron et al. (2021), CLIP Radford et al.
(2021)) Zhang et al. (2023); Zhao et al. (2024); Yu et al. (2025); Sheynin et al. (2024). Yet references
are imperfect: the space of valid edits is inherently multimodal, while a single reference captures
only one realization; moreover, many references are themselves synthesized by prior editors (e.g.,
Prompt-to-Prompt Hertz et al. (2023), SDXL Podell et al. (2024), DALLE-2 Ramesh et al. (2022)),
importing their biases into evaluation.

Recent work relies exclusively on VLMs as interpretable judges—e.g., VIEScore Ku et al. (2023),
HQ-Edit Hui et al. (2024), and Complex-Edit Yang et al. (2025)—by querying models such as GPT-
4o OpenAI (2025) about specific aspects of an edit. While VLMs offer holistic, language-mediated
assessments, they are insufficient on their own: they are notoriously poor at spatial reasoning Zhang
et al. (2025b); Cheng et al. (2024); Chen et al. (2024); Qharabagh et al. (2024); Chang et al. (2025)
and are prone to object hallucinations in existence, category, attributes, and relations Bai et al.
(2024); they have limited sensitivity to pixel-level changes and frequently miss subtle, localized
modifications Vo et al. (2025) (e.g., fine structures, small attribute shifts, etc.), which are crucial
for evaluating content consistency; they are miscalibrated for artifacts and aesthetics Liang et al.
(2024); Xu et al. (2023); Ma et al. (2025), which humans are sensitive to. Our approach, EdiVal-
Agent, addresses these gaps by integrating VLM-based reasoning with grounding tools, symbolic,
object-centric pixel- and semantic-level tools, and human preference models, yielding a precise and
interpretable evaluation of instruction-based editing.

Editing tasks. We consider three settings: (i) Single-turn vs. multi-turn. Multi-turn editing
Zhang et al. (2023); Zhao et al. (2024) is more demanding than single-turn, as the model must
maintain consistency across sequential instructions. In contrast to context-free multi-turn pipelines
(each turn consumes the previous image and the next instruction), AR models Gemini2 (2025);
Deepmind (2025); OpenAI (2025) support in-context multi-turn editing by conditioning on the full
conversational history. (ii) Complex single-shot vs. multi-turn. Following Yang et al. (2025),
a sequence of edits can be concatenated into a single complex prompt and executed in one pass;
we compare this setting to genuine multi-turn editing. (iii) Other tasks. We focus on instruction-
based editing, the most common regime; other scenarios (e.g., prompt-to-prompt/caption-to-caption
Hertz et al. (2023)) are outside our scope. To the best of our knowledge, this paper offers the first
comprehensive comparison covering single-turn, multi-turn, and complex single-shot editing within
a unified framework.
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H LIMITATION AND DISCUSSION

Given the object-centric evaluations conducted in this study, several limitations warrant considera-
tion. First, our instruction types are limited to object-centric prompts, which may not capture the
full range of creative editing requests typical in real-world scenarios. Future research should explore
a broader spectrum of instructions, including those involving stylistic changes or complex narrative
elements. Additionally, while our work provides a reliable and comprehensive evaluation frame-
work for multi-turn editing, it does not apply the evaluation results to improve the editing models
themselves. A straightforward extension would be to use evaluation scores for Best-of-N selection
to improve inference-time performance. Future work could also explore post-training methods such
as reinforcement learning, treating the evaluation scores as reward signals.

I MORE METRICS FOR HUMAN AGREEMENT

The most straightforward metric is accuracy. Here, we provide more metrics measuring human
agreement: Pearson Linear Correlation Coefficient (PLCC), Cohen’s Kappa Coefficient (Kappa)
and F1 scores as shown in Tab. 13. However, we note that for 0/1 predictions, correlation metrics
like PLCC and Kappa may be considered not suitable for measuring the agreement with human
annotators.

Table 13: Task-specific and overall performance comparison across models. Metrics reported:
Pearson Linear Correlation Coefficient (PLCC), Cohen’s Kappa, and F1. Best per column high-
lighted in bold.

Task Type Model PLCC Kappa F1

subject add CLIP dir 0.2110 0.1764 0.6914
Qwen2.5-VL 0.5331 0.5264 0.7893
EdiVal-IF 0.5365 0.5364 0.7786

background change CLIP dir -0.0329 -0.0076 0.8745
Qwen2.5-VL 0.5792 0.5686 0.8889
EdiVal-IF 0.5244 0.5157 0.8763

subject remove CLIP dir -0.0011 -0.0002 0.6592
Qwen2.5-VL 0.1891 0.1758 0.4896
EdiVal-IF 0.5473 0.5409 0.7837

count change CLIP dir 0.0456 0.0142 0.0782
Qwen2.5-VL 0.1998 0.1748 0.2162
EdiVal-IF 0.3431 0.3274 0.3571

material alter CLIP dir 0.2086 0.2038 0.4561
Qwen2.5-VL 0.8658 0.8616 0.8971
EdiVal-IF 0.4778 0.4624 0.6364

color alter CLIP dir 0.1841 0.0874 0.8542
Qwen2.5-VL 0.8409 0.8407 0.9573
EdiVal-IF 0.7820 0.7744 0.9338

position change CLIP dir 0.0996 0.0430 0.3285
Qwen2.5-VL -0.0381 -0.0374 0.1798
EdiVal-IF 0.3907 0.3271 0.5000

text change CLIP dir 0.6178 0.6173 0.8063
Qwen2.5-VL 0.7161 0.6947 0.8651
EdiVal-IF 0.7438 0.7347 0.8571

subject replace CLIP dir 0.0420 0.0121 0.8219
Qwen2.5-VL 0.6028 0.5994 0.8699
EdiVal-IF 0.5533 0.5429 0.8410

Overall CLIP dir 0.3186 0.2568 0.6858
Qwen2.5-VL 0.6162 0.6161 0.7922
EdiVal-IF 0.6278 0.6273 0.8030
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J ARTIFICIAL ANALYSIS LEADERBOARD

We report the leaderboard from the Artificial Analysis website as of September 12, 2025 (Fig. 23).
To ensure a fair comparison, we align on the intersection of models evaluated by both platforms and
exclude Qwen-Image-Edit. Among the overlapping systems—Seedream 4.0, Nano Banana (Gem-
ini 2.5 Flash), GPT-Image-1 (GPT-4o), FLUX.1-Kontext-max, and Gemini 2.0 Flash—the relative
ordering of human votes on Artificial Analysis matches our EdiVal rankings exactly (Table 14),
supporting the accuracy of our methodology.

Table 14: Model rankings on the overlapping set. Relative ranks from Artificial Analysis (human
votes) vs. EdiVal (ours) as of Sep 12, 2025.

Model Artificial Analysis (Rank) EdiVal (Rank)
Seedream 4.0 1 1
Nano Banana (Gemini 2.5 Flash) 2 2
GPT-Image-1 (GPT-4o) 3 3
FLUX.1-Kontext-max 4 4
Gemini 2.0 Flash 5 5

Figure 23: Artificial Analysis leaderboard (Sep 12, 2025). Screenshot of the public leaderboard
used for comparison in Table 14.
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K FAILURE CASE

We discuss a representative failure mode of our evaluation. The most severe errors arise from
false positives in Grounding-DINO, despite its strong open-vocabulary performance. Consider the
prompt: “Replace [stone gray railing] with [wooden fence].” As shown in Fig. 24, Seedream 4.0
produces an edit that is visually correct. Our rule for subject replace declares success if, on
the edited image, the source object (stone gray railing) is no longer detected while the target object
(wooden fence) is detected. However, Grounding-DINO occasionally reports both the source and
target objects in the same region with high confidence, incorrectly suggesting that the source object
remains and thereby degrading the measured instruction-following accuracy. Improving the relia-
bility of open-vocabulary detection—particularly reducing false positives—would directly improve
the fidelity of our evaluation.

(a) Base image (b) Seedream 4.0 (edited)
(c) Detected: stone gray
railing

(d) Detected: wooden
fence

Figure 24: Failure due to detector false positives. Although the edit visually replaces the railing
with a wooden fence, Grounding-DINO fires on both “stone gray railing” and “wooden fence” in
overlapping regions, causing an incorrect failure in our instruction-following metric.
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L DISCUSSION ON SINGLE-SHOT COMPLEX EDITING

Figure 25 shows that marginal success for the final instruction remains largely stable as complex
prompt length increases. Together with the multi-turn drops seen in Figure 5, this pattern supports
an exposure-bias explanation: performance degradation primarily stems from error accumulation
across sequential edits rather than an intrinsic inability to handle multiple instructions in a single
prompt.

M DISCUSSION ON VISUAL QUALITY

Beyond instruction following and content consistency, the perceptual quality of the edited image is
a key dimension. We therefore report (i) a learned aesthetic score and (ii) several low-level image
statistics that can surface systematic artifacts and drift in multi-turn editing pipelines.

Table 15: Turn-3 instruction following: Multi-turn
vs. single-shot complex prompts, grouped by tech-
nique. Bold indicates which setting is higher for
each model.

Technique Model Multi-turn (T3) Complex (C3)

In-Context
Nano Banana 35.35 28.14
GPT-Image-1 38.35 28.78
Gemini 2.0 Flash 28.42 21.89

Flow Matching

Qwen-Image-Edit 22.55 27.62
Step1X-Edit 17.83 15.73
FLUX.1-Kontext-dev 16.61 19.58
OmniGen 10.66 11.01

Diffusion

AnyEdit 7.22 2.80
UltraEdit 6.36 8.22
MagicBrush 4.90 4.55
IP2P 2.80 2.80
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Figure 25: Marginal task-success rate of
the last instruction as a function of complex
prompt length (levels C = 1, 2, 3).
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Figure 26: Per-image 99.9% luminance quantile across turns. Higher values indicate more extreme
bright pixels and greater risk of over-exposure.

Low-level image statistics In addition to learned aesthetic scores, we compute several low-level
image statistics that help reveal systematic, multi-turn editing artifacts. Concretely, we convert RGB
pixels to luminance using the Rec. 709 luma coefficients: Y = 0.2126R + 0.7152G + 0.0722B,
and for each edited image we extract the 99.9% luminance quantile (the per-image pixel value
below which 99.9% of pixels fall). The 99.9% quantile is sensitive to high-exposure pixels and
therefore highlights over-exposure and bright streaks while being robust to single-pixel outliers. In
Figure 26 we plot the trend of this statistic across turns.

The measured trend shows a clear pattern: Qwen-Image-Edit and several other flow-matching
models (with the notable exception of FLUX.1-Kontext-dev) exhibit a pronounced increase in the
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99.9% luminance quantile over turns, indicating progressive brightening and increased risk of over-
exposure. By contrast, regeneration-style editors such as GPT-Image-1 tend to produce lower lu-
minance values than the input (reflecting darker, more conservative reconstructions), and several
models remain stable across turns.

Figure 27 provides qualitative examples from Qwen-Image-Edit. The edited images exhibit elevated
luminance and noticeable high-frequency bright artifacts (e.g., white streaks or “line” textures) that
degrade perceptual quality, with luminance quintiles increasing substantially. Correspondingly, HPS
drops from 6.19 to 4.19 and 3.34, suggesting that HPS is sensitive to over-exposure to some extent.
In contrast, when querying VLMs about the visual quality of these images, the returned scores do
not change in the first two turns and remain consistently above 50, reflecting a positive evaluation
under the [0, 100] scale, while the T2/T3 edited images show significant artifacts.

(a) HPS: 4.25
VLM: 85
Luminance:0.7

(b) HPS: 6.19
VLM: 85
Luminance: 0.60

(c) HPS: 4.19
VLM: 85
Luminance: 0.97

(d) HPS: 3.34
VLM: 60
Luminance: 1.00

Figure 27: Representative Qwen-Image-Edit examples illustrating over-exposure and bright artifact
formation across turns. Although editing instructions are often satisfied, the images show elevated
luminance and high-frequency bright streaks that accompany the edits (visible especially in T2/T3).
Editing instructions: [Remove polyester white skirt, Change the count of tennis ball to 4, Change
the color of tank top to blue]. Note that VLM gives a positive score to all the images.

N VLMS FAILING TO JUDGE VISUAL QUALITY

The following is the zero-shot prompt for visual quality with VLMs. The example results are shown
in Fig. 27.

You are an expert at evaluating image visual quality and naturalness.

I will show you an image.

Please analyze whether the image is visually pleasing and natural. Consider:
1. Is the image visually pleasing?
2. Is the image natural?
3. Does the image look natural and coherent?

Respond only with a score between 0 and 100, where 100 is the highest score.
100 means the image is visually pleasing and natural.
0 means the image is not visually pleasing and natural.
50 means the image is neutral.
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Algorithm 1 Object Listing and Grounding Filter

Require: image I
Ensure: object pool O with grounding metadata

1: J ← LISTOBJECTS(I) ▷ see Sec. O.2.1
2: O ← ∅
3: for all (name, attrs) ∈ J excluding key All Objects do
4: (boxes, phrases, scores)← GROUND(I, name) ▷ thresholds 0.3–0.4
5: if boxes ̸= ∅ and each box has w, h < 0.9 and area ≤ 0.4 then
6: O[name]← attrs; attach grounding metadata (count, boxes, phrases, scores)
7: end if
8: end for
9: O[Filtered All Objects]← JOIN(KEYS(O), ”. ”) and then append ”.”

O ALGORITHMIC DETAILS

This appendix provides the algorithmic details of our pipeline: object discovery and grounding-
based filtering (decomposition), instruction generation for multi-turn editing, and evaluation (in-
struction following, consistency, and perceptual quality). We also list the exact prompts and imple-
mentation specifics needed for reproducibility, and summarize the model-generation configurations.

O.1 DECOMPOSITION

We first enumerate visible objects in an input image using a vision-language model (VLM) prompt,
then filter these objects via visual grounding.

• Object listing: We use GPT-4o with the prompt in Section O.2.1. The model re-
turns a JSON with one entry per object and a terminal aggregated string key ‘‘All
Objects’’.

• Grounding filter: We use GroundingDINO SwinT-OGC Liu et al. (2024a) to retain only
objects that can be visually grounded. We resize images to 512× 512. We keep detections
meeting text/box thresholds (0.35) and reject oversized boxes by checking width/height
in normalized coordinates; we use max box size=0.9 and filter large regions if area
> 0.4. The output augments each kept object with grounding counts, phrases, boxes, and
scores, and creates a ‘‘Filtered All Objects’’ string listing retained objects.

O.2 INSTRUCTION GENERATION

We generate multi-turn editing instructions from the grounded object pool. We support
nine task types: local edits {subject replace, subject remove, material alter,
color alter, subject add, text change, position change, count change} and
the global edit {background change}. We set MAX TURNS=3. At each turn, we sample a new
task type without repetition where feasible. Feasibility is checked against the current object pool
(e.g., position change requires at least two objects). If a sampled task is infeasible, we fall
back to subject add. We maintain an available-objects pool that is updated after each instruc-
tion according to its semantics (adds, removes, or modifies attributes). If a background change oc-
curs, we mark bg consistency=false for subsequent turns and restrict the pool to foreground
objects for the remainder of the episode.

Prompts (Full Text) Below we reproduce the prompts used by our generators, reformatted for
readability in print (content preserved).

O.2.1 OBJECT LISTING PROMPT

You will be given an image. Your task is to identify and describe all clearly visible objects
in the image in a structured JSON format.
Output rules:
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Algorithm 2 Multi-Turn Instruction Generation

Require: grounded pool O0, turns T=3
Ensure: tasks {τt}, instructions {It}, formats {Ft}, flag has bg, set all objects ever

1: used← ∅; O ← O0; has bg← false
2: all edited← ∅; all objects ever← keys(O0)
3: for t = 1 to T do
4: cand← {all task types} \ used
5: τt ← sample(cand);
6: if not feasible(τt,O) then τt ← subject add
7: end if
8: Ft ← format instruction(τt,O) ▷ Query VLM by prompts in Section O.2.2
9: It ← render instruction(Ft, τt,O) ▷ strip brackets; add unchanged list for background

10: used← used ∪ {τt}; append Ft, It
11: Update all object pool by adding any objects introduced in instruction It.
12: Update available object pool by adding or removing objects as specified in It.
13: Update unchanged objects pool by removing any objects affected by It.
14: if τt = background change then
15: has bg← true; O ← filter foreground(O)
16: end if
17: end for
18: return {τt}, {It}, {Ft}, has bg, all objects ever

1. Each object must be listed as a key in the JSON, using the format: “{material} {color}
{object name}”. If the material or color is unknown, omit that part. Do not include
any visible text in the key. Do not use “person” as an object name; instead, describe
wearable items (e.g., “blue cotton shirt”).

2. For each object, the value is a dictionary with fields: “object” (type, e.g., shirt, cup),
“color” (dominant color, use null if unknown), “material” (likely material, use null
if unknown), “text” (visible text, null if none), “count” (number of instances), and
“foreground” (boolean).

3. Do not include objects that are too small to describe, mostly occluded/incomplete, or
only background scenery (e.g., distant sky, wall, floor).

4. Add a final key “All Objects” whose value is a single string listing all object
names, formatted as: “{material} {color} {object name}. {color} {object name}.
{material} {object name}. {object name}.” Exclude “null”/“None” and separate
entries by “. ” (period + space). Do not include any text content in this list.

Example output (abridged JSON):
• “cotton blue shirt”: {object: “shirt”, color: “blue”, material: “cotton”, text: null,

count: 1, foreground: true}
• “ceramic white cup”: {object: “cup”, color: “white”, material: “ceramic”, text:

“GOOD DAY”, count: 1, foreground: false}
• “leather bag”: {object: “bag”, color: null, material: “leather”, text: null, count: 2,

foreground: true}
• “red scarf”: {object: “scarf”, color: “red”, material: null, text: null, count: 1, fore-

ground: true}
• “All Objects”: “cotton blue shirt. ceramic white cup. leather bag. red scarf.”

O.2.2 TASK PROMPTS

Subject Replace

You are given an image and asked to suggest a replacement object for a specific object in
the scene.
Given object to replace: object name
Your task:

1. Understand the scene context.
2. Suggest a new object that naturally replaces “object name”.
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3. Ensure the suggestion is realistic for the scene.
4. Respond with only the object name (e.g., “chair”, “lamp”, “book”).

Examples: In a kitchen: “bowl”, “mug”; on a street: “bus”, “truck”; in an office: “stool”,
“bench”.
Answer format: New object name:

Material Alter

You are given an image and asked to suggest a new material for a specific object.
Object: object name Current material: current material
Your task:

1. Identify the object.
2. Suggest a realistic alternative material that is easy to distinguish from the current one.
3. Respond with only the material name (e.g., “wood”, “metal”, “plastic”, “leather”).

Examples: cup: ceramic, glass, metal, plastic; chair: wood, metal, plastic, fabric; bag:
leather, canvas, nylon, fabric.
Answer format: New material:

Position Change

You are given an image and asked to create a position change instruction.
Available objects: available objects Positions: left, right, above, below
Your task:

1. Select a target object to move and a reference object.
2. Choose a relative position (left, right, above, below).
3. Ensure the instruction is physically reasonable.
4. Format: “Change the position of [target object] to [position] of [reference object]”.

Examples: “Change the position of [cup] to [right] of [book]”; “Change the position of
[lamp] to [above] of [table]”.
Answer format: Position change instruction:

Count Change

You are given an image and asked to create a count change instruction.
Available objects: available objects Target count: target count
Your task:

1. Identify a suitable object for the requested count.
2. Ensure the target count is realistic for the scene.
3. Format: “Change the count of [object name] to [target count]”.

Examples: “Change the count of [cup] to [3]”; “Change the count of [book] to [2]”.
Answer format: Count change instruction:

Text Change

You are given an image and asked to generate new text content.
Context: text situation
Your task:

1. Generate text that fits the scene.
2. Keep text short: max 2 words in English or 4 Chinese characters.
3. Respond with only the text content (no quotes or extra words).

Examples: coffee shop: “COFFEE”, “OPEN”; book: “NOVEL”, “GUIDE”; sign: “EXIT”,
“STOP”; Chinese: “咖啡 ”, “出口 ”.
Answer format: New text:

Color Alter
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You are given an image and asked to suggest a new color for a specific object.
Object: object name Current color: current color
Your task:

1. Suggest a simple, common color that fits the object.
2. Use only basic colors: red, blue, green, yellow, black, white, brown, gray, orange,

purple, pink.
3. Choose a color different from the current color and answer with the color name only.

Answer format: New color:

Subject Add

You are given an image and asked to suggest a new object to add to the scene.
Reference object: reference object Position: position
Your task:

1. Propose an object that would naturally fit at the specified position relative to the ref-
erence object.

2. Ensure the suggestion is realistic and contextually appropriate.
3. Respond with only the object name (e.g., “lamp”, “book”, “cup”).

Examples: next to a desk: “chair”, “lamp”, “computer”; near a kitchen counter: “bowl”,
“plate”, “mug”; by a window: “plant”, “curtain”, “book”.
Answer format: New object:

Background Change

You are given an image and asked to suggest a new background for the scene. The existing
objects should remain unchanged.
Your task:

1. Propose a new background that works with the current setting.
2. Keep it simple and realistic; use 1–2 words (e.g., “kitchen”, “office”, “garden”,

“beach”, “forest”).
3. Respond with only the background name.

Answer format: New background:

O.3 EVALUATION

We evaluate in two modes: (i) Multi-turn (each turn edits the output of the previous turn), and (ii)
Complex Editing (compress all instructions to a single prompt).

Instruction Following. We compute a binary success per instruction with a detector combining
GroundingDINO Liu et al. (2024a) and a VLM (Qwen2-VL-7B) Bai et al. (2025). Representative
details:

• Detector thresholds. Unless noted per task, GroundingDINO thresholds are 0.3–0.4; detec-
tions return normalized boxes [x1, y1, x2, y2].

• Cropping and small objects. For object-level checks we crop by detected boxes; very small
boxes (<0.05 in width/height) can be enlarged before VLM queries.

• Replace. Detect old and new objects in source/target; success if both are detected and any
IoU between a source box (old) and a target box (new) is > 0. A VLM pre-check rejects
obvious non-replacements. See details in Alg 3.

• Remove. Detect the object in the source; success if the object is absent in the target. See
details in Alg 4.

• Position change. Detect target and reference objects and verify the requested spatial relation
using object centers; also ensure the object count did not increase spuriously. See details in
Alg 6.

• Count change. Use the detector to locate instances of the target object and take the number
of validated detections as the count. See details in Alg 7.
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Algorithm 3 Evaluate Subject Replace

Require: base B, target T , old object name o, new object name n
Ensure: success flag succ

1: S ← DETECT(B, o, τ); Tn ← DETECT(T, n, τ)
2: if S ̸= ∅ ∧ Tn ̸= ∅ then
3: succ← maxb∈S, t∈Tn

IOU(b, t) > 0
4: else
5: succ← false
6: end if
7: return succ

Algorithm 4 Evaluate Subject Remove

Require: base B, target T , object name o
Ensure: success flag succ

1: S ← DETECT(B, o, τ); To ← DETECT(T, o, τ)
2: succ← (S ̸= ∅ ∧ To = ∅)
3: return succ

• Color/material. Crop the object in the target and ask the VLM a yes/no question about the
new color/material. See details in Alg 8 and Alg 9.

• Text change. If the instruction adds text anywhere, run the VLM on the whole image; if it
replaces text on a specific object, first crop that object’s box, ask the VLM to extract the
text, and compare it to the requested text. See details in Alg 10.

• Background change. Ask the VLM yes/no whether the requested background category is
present. See details in Alg 11.

Consistency. We measure object and background stability as follows:

• Object consistency (unchanged objects): DINOv3 ViT-B/16 Siméoni et al. (2025) feature
similarity between crops of unchanged objects in base vs. target; we also report pixel L1
consistency and average across objects per image.

• Background consistency: detect objects in all objects pool in base/target (Ground-
ingDINO), mask them to isolate background, then compute masked L1 between back-
grounds (optionally DINOv3 masked similarity). Background consistency is evaluated only
when no background change occurred earlier (bg consistency=true).

Perceptual Quality. We report HPSv3 Ma et al. (2025) plausibility and aesthetics, plus luminance
metrics. Quality is not folded into the Overall score.

O.4 OVERALL SCORE AND AGGREGATION DETAILS

Let αt be the image success rate at turn t: the fraction of images for which all edits up to and
including turn t are successful (aggregated per task type, then averaged). Let κ denote the average
content-consistency score combining object and background DINOv3 similarities when applicable.

• Overall score. We report

Overall =
[
meant(αt) × mean(κ)

]1/2
.

• Missing outputs across turns. For summary tables, we include only images that produce all
required outputs for the evaluated mode. If a model fails to generate a later turn, that image
is omitted from later-turn aggregates for that mode. Some edits will be rejected by some
models since the sensitive content flag.

• No unchanged objects. If the unchanged-object list is empty, object consistency is recorded
as None and excluded from averages; background consistency is still computed when
bg consistency=true.
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Algorithm 5 Evaluate Subject Add

Require: base B, target T , new object name n, optional reference object name r, optional position
p ∈ {left, right, above, below}

Ensure: success flag
1: Bn ← DETECT(B,n, τ); Tn ← DETECT(T, n, τ)
2: if Tn = ∅ ∨ Bn ̸= ∅ then
3: return false
4: end if
5: if r and p are provided then
6: Br ← DETECT(B, r, τ); Tr ← DETECT(T, r, τ)
7: if Tr = ∅ then
8: return false
9: end if

10: Choose max logits boxes t ∈ Tn, u ∈ Tr

11: (xt, yt)← CENTER(t); (xu, yu)← CENTER(u)
12: if p = left ∧ xt < xu − εx then
13: return true
14: end if
15: if p = right ∧ xt > xu + εx then
16: return true
17: end if
18: if p = above ∧ yt < yu − εy then
19: return true
20: end if
21: if p = below ∧ yt > yu + εy then
22: return true
23: end if
24: return false
25: else
26: return true
27: end if

• Turn-level reporting. We also report per-turn (T1, T2, T3) instruction-following and con-
sistency, and per-task-type success rates αt,type. Quality metrics are reported separately and
are not folded into Overall.

O.5 MODEL GENERATIONS

We evaluate a mix of closed- and open-source editors using each model’s default settings (no hyper-
parameter tuning):

• GPT-Image-1, Nano Banana, and Gemini 2.0 Flash: called via their APIs with default
parameters.

• QWEN Image Edit: default settings from https://huggingface.co/Qwen/
Qwen-Image-Edit.

• InstructPix2Pix (IP2P): settings from https://github.com/timothybrooks/
instruct-pix2pix.

• Magicbrush: same settings as IP2P; model weights from https://huggingface.
co/vinesmsuic/magicbrush-jul7.

• UltraEdit: settings from https://github.com/HaozheZhao/UltraEdit; we
apply a black mask since no explicit mask is provided.

• AnyEdit: repository at https://github.com/weichow23/AnySD/tree/
9e7d36ef88e237b527695efc90b1abc18fa51218 with edit type set to
general.

• Step1X-Edit: repository at https://github.com/stepfun-ai/Step1X-Edit;
weights at https://huggingface.co/stepfun-ai/Step1X-Edit.
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Algorithm 6 Evaluate Position Change

Require: base B, target T , target object name a, reference object r, position p
Ensure: success flag

1: Ba ← DETECT(B, a, τ); Ta ← DETECT(T, a, τ)
2: Br ← DETECT(B, r, τ); Tr ← DETECT(T, r, τ)
3: if Ta = ∅ ∨ Tr = ∅ then
4: return false
5: end if
6: if |Ta| > |Ba| then
7: return false ▷ No count inflation
8: end if
9: Select max logits boxes t ∈ Ta, u ∈ Tr

10: (xt, yt)← CENTER(t); (xu, yu)← CENTER(u)
11: if p = left then
12: return xt < xu − εx
13: end if
14: if p = right then
15: return xt > xu + εx
16: end if
17: if p = above then
18: return yt < yu − εy
19: end if
20: if p = below then
21: return yt > yu + εy
22: end if
23: return false

Algorithm 7 Evaluate Count Change

Require: target T , name o, requested count c∗
Ensure: success flag

1: ĉ← |DETECT(T, o)|
2: return (ĉ = c∗)

• OmniGen: repository at https://github.com/VectorSpaceLab/OmniGen.
• FLUX: default settings from https://huggingface.co/black-forest-labs/
FLUX.1-Kontext-dev.

Modes. For clarity in the paper: we report both Multipass and Complex Editing (renamed from
singlepass for consistency with the rest of the paper).

Reproducibility Notes. Prompts are provided in full (Section O.2); thresholds are specified above.
Grounding uses SwinT-OGC weights; consistency uses DINOv3 ViT-B/16; the quality head follows
our RAHF implementation, and HPSv3 is included when available. All other parameters are left at
defaults.
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Algorithm 8 Evaluate Color Alter

Require: target image T , object name o, color k
1: return VLMYESNO(T, “Is the o k?”)

Algorithm 9 Evaluate Material Alter

Require: target image T , object name o, material m
Ensure: success flag

1: return VLMYESNO(T, “Is the o made of m?”)

Algorithm 10 Evaluate Text Change

Require: target T , desired text t∗ (optionally object name)
Ensure: success flag

1: t← VLMTEXT(T )
2: Normalize t and t∗ (case, punctuation, whitespace)
3: return TEXT-MATCH(t, t∗)

Algorithm 11 Evaluate Background Change

Require: target T , category g
Ensure: success flag

1: return VLMYESNO(T, “Does the background show g?”)
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Table 16: Image success rates and overall task success rates across turns. (Multi-turn model)

Model Image Success Rate Overall Task Rate
T1 T2 T3 T1 T2 T3

Seedream 4.0 75.93 55.58 41.59 75.93 75.58 76.11
Nano Banana 70.70 50.66 35.35 70.70 72.59 68.24
GPT-Image-1 73.12 54.89 38.35 73.12 74.44 73.12
FLUX.1-Kontext-max 69.49 46.89 31.83 69.49 69.11 70.43
Gemini 2.0 Flash 68.07 45.96 28.42 68.07 67.72 68.42
Qwen-Image-Edit 72.90 44.06 22.55 72.90 62.94 56.12
Step1X-Edit 61.89 34.97 17.83 61.89 59.09 53.32
FLUX.1-Kontext-dev 59.97 32.69 16.61 59.97 56.29 51.40
OmniGen 54.72 24.48 10.66 54.72 48.60 42.48
UltraEdit 51.37 17.70 6.36 50.52 36.54 31.47
AnyEdit 41.07 16.32 7.22 40.03 39.34 40.56
MagicBrush 42.31 15.73 4.90 42.31 40.73 41.26
IP2P 37.41 10.66 2.80 37.41 32.87 34.27

Table 17: Task success rates (%) across five instruction types and three turns (multi-turn mode).

Model Subject Replace Subject Remove Material Alter Color Alter Subject Add
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 90.74 91.23 88.89 68.92 47.69 50.00 95.31 96.00 95.77 100.00 98.59 100.00 83.08 89.61 81.52
Nano Banana 91.84 92.31 75.47 64.18 51.61 40.35 91.94 89.36 87.50 100.00 97.18 98.11 73.02 77.94 72.41
GPT-Image-1 84.31 94.64 85.71 70.77 55.93 47.37 96.83 95.65 87.88 100.00 97.06 100.00 80.95 72.46 72.41
FLUX.1-Kontext-max 92.31 88.89 88.00 67.16 55.56 56.36 87.30 79.07 80.30 100.00 95.65 98.04 77.05 71.23 72.73
Gemini 2.0 Flash 83.33 92.98 78.18 58.67 53.62 50.82 90.91 82.00 83.33 100.00 89.04 98.21 77.61 72.73 75.27
Qwen-Image-Edit 87.04 82.46 70.91 70.67 31.88 37.70 93.94 90.00 79.17 100.00 97.26 94.74 77.61 55.84 39.78
Step1X-Edit 90.74 96.49 67.27 53.33 30.43 21.31 95.45 80.00 87.50 100.00 100.00 91.23 64.18 57.14 45.16
FLUX.1-Kontext-dev 85.19 80.70 72.73 54.67 42.03 32.79 84.85 74.00 73.61 100.00 98.63 94.74 67.16 61.04 39.78
OmniGen 88.89 84.21 58.18 46.67 21.74 19.67 84.85 72.00 70.83 100.00 90.41 91.23 53.73 51.95 37.63
UltraEdit 88.89 63.16 38.18 26.67 5.80 6.56 87.88 66.00 63.89 98.21 80.82 78.95 38.81 23.38 9.68
AnyEdit 74.07 66.67 61.82 37.33 39.13 36.07 78.79 68.00 68.06 78.57 68.49 78.95 22.39 38.96 25.81
MagicBrush 83.33 75.44 63.64 28.00 18.84 18.03 83.33 86.00 80.56 94.64 87.67 91.23 37.31 41.56 37.63
IP2P 75.93 66.67 65.45 25.33 8.70 18.03 74.24 70.00 65.28 87.50 82.19 75.44 23.88 28.57 19.35

P ADDITIONAL EVALUATION RESULTS

In this section, we provide extended evaluation results. We separate the analysis into two modes:
multi-turn editing and complex editing. Each mode is evaluated across three aspects: instruction
following, consistency, and quality.

For the multi-turn editing mode, the overall instruction-following success rate is reported in Table 16,
while success rates for individual instruction types appear in Tables 17 and 18. Consistency results
are summarized in Table 22. We also observed that some input images are non-square after resizing,
which can leave black padding on the top/bottom or left/right edges. Certain editing models, such
as GPT-Image-1 and Qwen-Image-Edit, attempt to fill these areas, whereas others preserve them.
To account for this, we separately report consistency for square (Table 23) and non-square inputs
(Table 24). The conclusions remain consistent with the overall evaluation. Quality results for multi-
turn editing are presented in Table 26.

For the complex editing mode, the overall instruction-following success rate is shown in Table 19,
and per-instruction-type results are in Tables 20 and 21. Consistency and quality results are reported
in Tables 25 and 27, respectively.

In consistency table, p99 means 99% quantile of luminance value, and p999 means 99.9% quantile
of luminance value.
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Table 18: Task success rates (%) across four instrcution types and three turns (multi-turn mode).

Model Text Change Position Change Count Change Background Change
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 95.31 97.14 96.23 39.22 39.68 48.94 18.06 19.30 20.00 98.46 96.36 93.06
Nano Banana 83.33 86.36 81.25 20.00 47.37 45.24 23.19 9.62 10.91 96.67 94.44 90.00
GPT-Image-1 88.33 97.01 97.96 31.11 40.68 50.00 11.27 18.52 18.18 98.39 94.44 91.30
FLUX.1-Kontext-max 80.36 86.15 82.69 18.75 38.18 44.44 8.82 9.09 12.28 96.88 92.59 92.54
Gemini 2.0 Flash 90.32 94.29 96.30 21.15 28.57 31.91 10.96 7.14 10.00 86.15 83.64 80.56
Qwen-Image-Edit 98.44 92.86 72.22 21.15 34.92 33.33 12.33 1.72 0.00 98.46 80.00 77.78
Step1X-Edit 60.94 51.43 44.44 13.46 31.75 27.08 0.00 1.72 1.67 87.69 87.27 83.33
FLUX.1-Kontext-dev 50.00 41.43 27.78 15.38 26.98 33.33 0.00 1.72 5.00 90.77 80.00 77.78
OmniGen 29.69 35.71 18.52 17.31 22.22 20.83 5.48 5.17 0.00 76.92 56.36 56.94
UltraEdit 28.12 15.71 7.41 21.15 36.51 35.42 5.48 6.90 5.00 75.38 38.18 43.06
AnyEdit 3.12 10.00 11.11 21.15 25.40 27.08 0.00 1.72 1.67 56.92 40.00 52.78
MagicBrush 7.81 12.86 3.70 19.23 15.87 20.83 0.00 0.00 3.33 43.08 34.55 43.06
IP2P 1.56 8.57 5.56 13.46 15.87 25.00 1.37 0.00 5.00 47.69 20.00 31.94

Table 19: Image rates, overall task rates, and marginal means across three turns (complex mode).

Model Image Success Rate Overall Task Rate Marginal Task Rate
T1 T2 T3 T1 T2 T3 T1 T2 T3

GPT-Image-1 73.08 48.45 28.78 73.08 69.77 68.25 73.08 69.98 70.19
Nano Banana 71.46 46.56 28.14 71.46 68.83 67.27 71.46 69.03 67.21
Gemini 2.0 Flash 67.43 40.63 21.89 67.43 64.54 61.94 67.43 64.80 62.17
Qwen-Image-Edit 72.90 46.15 27.62 72.90 69.23 68.07 72.90 67.83 67.66
Step1X-Edit 61.36 32.34 15.73 61.36 57.69 55.01 61.36 55.77 54.02
FLUX.1-Kontext-dev 60.14 33.74 19.58 60.14 59.53 57.87 60.14 57.52 56.99
OmniGen 54.55 23.43 11.01 54.55 50.96 49.83 54.55 48.95 47.90
AnyEdit 39.86 10.31 2.80 39.86 34.79 34.27 39.86 31.47 31.64
UltraEdit 50.70 22.03 8.22 50.70 48.34 46.62 50.70 47.73 47.38
MagicBrush 42.13 14.86 4.55 42.13 38.46 38.81 42.13 38.64 39.34
IP2P 37.24 12.41 2.80 37.24 37.76 35.14 37.24 38.46 34.62

Table 20: Success rates (%) for five instruction types across three turns (complex mode).

Model Subject Replace Subject Remove Material Alter Color Alter Subject Add
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

GPT-Image-1 82.22 80.65 78.99 70.31 63.87 58.54 96.49 90.20 84.66 100.00 97.27 91.88 81.67 70.73 69.00
Nano Banana 91.67 88.89 79.33 67.16 55.83 59.88 92.59 85.15 83.33 97.87 98.15 94.19 69.84 71.21 67.77
Gemini 2.0 Flash 85.19 82.88 75.90 57.33 55.56 54.15 93.94 75.00 74.87 100.00 96.90 93.01 70.15 65.97 66.67
Qwen-Image-Edit 87.04 86.49 80.72 70.67 58.33 54.63 93.94 86.21 85.64 100.00 99.22 98.39 77.61 75.69 73.84
Step1X-Edit 90.74 84.68 76.51 52.00 41.67 42.93 93.94 82.76 79.26 100.00 93.02 90.86 64.18 59.03 54.01
FLUX.1-Kontext-dev 85.19 82.88 74.10 54.67 47.92 40.00 86.36 75.00 76.06 100.00 99.22 98.39 67.16 68.75 63.29
OmniGen 88.89 82.88 75.90 46.67 39.58 41.95 86.36 73.28 72.34 100.00 96.12 93.01 53.73 48.61 49.37
AnyEdit 66.67 58.56 49.40 33.33 20.14 22.44 77.27 76.72 70.21 78.57 68.99 72.04 28.36 22.92 21.10
UltraEdit 88.89 87.39 78.31 26.67 30.56 31.71 87.88 79.31 77.66 98.21 93.02 90.32 38.81 46.53 43.46
MagicBrush 83.33 74.77 69.28 28.00 27.78 29.27 83.33 69.83 73.94 92.86 84.50 83.87 37.31 35.42 32.91
IP2P 75.93 73.87 61.45 25.33 31.25 24.88 71.21 63.79 59.57 87.50 82.95 79.03 23.88 31.94 29.11

Table 21: Success rates (%) for four instruction types across three turns (complex mode).

Model Text Change Position Change Count Change Background Change
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

GPT-Image-1 87.50 92.24 93.75 30.95 22.11 25.36 13.11 10.38 13.12 98.15 96.08 93.37
Nano Banana 84.21 85.34 84.24 24.44 26.00 22.54 20.34 14.15 13.75 98.15 93.40 93.71
Gemini 2.0 Flash 85.94 86.57 84.04 17.31 23.68 16.67 11.11 10.77 6.84 90.77 84.17 80.73
Qwen-Image-Edit 98.44 97.01 93.62 21.15 22.61 24.54 12.33 3.05 3.66 98.46 95.83 93.75
Step1X-Edit 57.81 59.70 52.13 15.38 21.74 25.15 1.37 3.05 1.57 86.15 80.00 73.44
FLUX.1-Kontext-dev 50.00 48.51 47.87 15.38 26.96 27.61 0.00 1.53 3.66 90.77 90.00 88.54
OmniGen 28.12 32.84 27.13 15.38 21.74 17.18 6.85 1.53 2.09 75.38 70.00 69.79
AnyEdit 3.12 5.22 7.98 25.00 26.96 29.45 1.37 1.53 1.57 56.92 44.17 40.62
UltraEdit 29.69 16.42 11.70 21.15 26.09 22.70 5.48 2.29 3.14 75.38 65.00 64.06
MagicBrush 7.81 4.48 6.38 19.23 22.61 17.18 0.00 0.00 5.24 43.08 36.67 35.42
IP2P 3.12 5.22 6.38 13.46 20.00 20.25 1.37 2.29 1.57 47.69 37.50 38.54
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Table 22: Consistency scores (%) across DINOv3-based and L1-based object/background metrics.
(multi-turn mode)

Model Object DINOv3 Consistency Background DINOv3 Consistency Object 1− L1 Consistency Background 1− L1 Consistency
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 89.50 83.68 81.18 95.52 92.38 90.54 93.31 88.76 86.22 94.30 89.04 85.00
Nano Banana 90.17 85.25 84.38 97.65 95.70 94.58 92.39 90.00 89.10 95.95 94.70 93.88
GPT-Image-1 73.26 68.80 67.21 88.74 86.76 83.78 79.65 78.32 77.60 78.07 76.53 75.79
FLUX.1-Kontext-max 90.91 86.66 83.68 96.95 95.15 93.11 94.16 91.26 89.46 95.88 93.43 91.46
Gemini 2.0 Flash 85.53 77.12 72.02 95.63 93.07 89.74 90.72 86.32 84.11 95.04 93.15 91.73
Qwen-Image-Edit 77.12 71.56 68.51 91.31 89.47 87.45 83.48 79.15 76.32 84.57 81.18 78.43
Step1X-Edit 88.17 81.65 77.33 97.34 95.40 93.09 93.92 90.64 88.80 98.24 97.10 95.73
FLUX.1-Kontext-dev 92.66 87.92 85.29 97.97 96.55 95.14 94.39 91.59 89.91 96.36 95.06 94.13
OmniGen 88.34 80.77 73.64 97.66 96.08 94.21 93.87 91.02 89.43 97.44 97.00 96.34
UltraEdit 78.81 75.11 72.24 94.80 93.89 92.57 91.86 90.47 89.65 97.12 96.62 96.19
AnyEdit 82.02 73.41 63.04 90.82 84.42 77.17 92.52 88.96 84.97 93.72 89.98 86.05
MagicBrush 79.70 70.71 65.46 94.22 91.81 88.27 91.13 87.13 85.56 96.31 94.52 92.87
IP2P 68.24 56.83 48.01 85.47 79.89 72.59 84.44 79.74 77.21 91.31 87.21 83.51

Table 23: Consistency and 1− L1 metrics across three turns (multi-turn mode for square image).

Model Object DINOv3 Consistency (Mean) Background DINOv3 Consistency Object L1 Consistency (Mean) Background L1 Consistency
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 89.04 85.39 80.74 95.76 92.43 88.27 91.66 88.02 84.43 95.34 92.45 89.69
Nano Banana 88.68 85.19 83.31 96.88 93.79 92.41 89.73 87.64 88.48 94.21 93.77 93.36
GPT-Image-1 73.62 71.27 67.27 90.00 85.72 82.16 80.33 78.80 79.88 85.69 81.86 80.85
FLUX.1-Kontext-max 91.34 89.90 86.04 95.99 94.18 90.10 93.81 92.80 90.58 97.27 95.77 93.94
Gemini 2.0 Flash 84.16 79.91 71.13 91.50 91.83 87.07 88.98 87.07 85.13 95.19 93.35 93.34
Qwen-Image-Edit 75.36 72.68 68.85 88.50 88.98 82.71 81.66 78.47 77.04 91.16 87.85 85.78
Step1X-Edit 87.40 84.03 78.27 97.43 92.42 88.15 93.14 91.57 89.40 98.10 97.12 96.01
FLUX.1-Kontext-dev 92.55 88.92 84.04 96.49 93.57 92.19 92.83 90.61 88.34 96.91 95.74 94.73
OmniGen 89.41 84.51 77.77 97.34 93.13 86.64 93.26 91.48 89.53 95.79 96.44 95.36
UltraEdit 79.43 76.51 71.54 92.83 89.88 86.54 91.74 90.16 89.24 95.87 95.14 94.63
AnyEdit 82.25 72.40 53.59 86.12 78.60 70.09 92.33 88.00 82.10 94.36 91.68 87.55
MagicBrush 79.02 75.60 70.07 92.07 87.33 81.08 89.67 87.53 86.90 95.29 93.88 92.38
IP2P 76.38 66.12 54.94 85.29 81.46 65.50 86.90 82.25 77.79 92.45 88.01 84.51

Table 24: Consistency and L1 metrics across three turns (multi-turn model for unsquared image).

Model Object DINOv3 Consistency (Mean) Background DINOv3 Consistency Object 1− L1 Consistency (Mean) Background 1− L1 Consistency
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 89.55 83.48 81.23 95.49 92.38 90.86 93.50 88.85 86.44 94.17 88.62 84.35
Nano Banana 90.34 85.26 84.50 97.74 95.94 94.88 92.69 90.29 89.17 96.16 94.81 93.95
GPT-Image-1 73.22 68.53 67.20 88.60 86.88 83.99 79.57 78.27 77.35 77.20 75.91 75.14
FLUX.1-Kontext-max 90.86 86.31 83.43 97.06 95.27 93.51 94.20 91.09 89.34 95.73 93.16 91.14
Gemini 2.0 Flash 85.69 76.79 72.12 96.14 93.23 90.10 90.91 86.23 83.99 95.02 93.12 91.51
Qwen-Image-Edit 77.32 71.43 68.47 91.65 89.53 88.10 83.68 79.23 76.23 83.78 80.37 77.43
Step1X-Edit 88.26 81.37 77.22 97.33 95.77 93.77 94.01 90.53 88.73 98.26 97.09 95.70
FLUX.1-Kontext-dev 92.67 87.80 85.44 98.15 96.92 95.54 94.57 91.70 90.10 96.30 94.98 94.05
OmniGen 88.22 80.33 73.14 97.70 96.45 95.25 93.94 90.97 89.42 97.64 97.07 96.47
UltraEdit 78.74 74.95 72.32 95.04 94.39 93.40 91.87 90.51 89.70 97.26 96.80 96.40
AnyEdit 82.00 73.53 64.18 91.39 85.14 78.14 92.54 89.07 85.31 93.64 89.78 85.84
MagicBrush 79.78 70.14 64.90 94.48 92.37 89.27 91.30 87.08 85.40 96.44 94.59 92.94
IP2P 67.32 55.75 47.18 85.50 79.69 73.57 84.17 79.45 77.14 91.18 87.12 83.38

Table 25: Consistency scores (%) across object/background DINOv3 and L1 metrics (complex
mode).

Model Object DINOv3 Object 1− L1 Background DINOv3 Background 1− L1

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

GPT-Image-1 73.23 70.02 67.57 79.52 78.03 77.29 88.72 86.77 84.79 77.96 77.38 76.51
Nano Banana 89.23 87.20 86.46 92.15 91.08 90.40 97.39 96.69 95.38 96.39 95.75 95.33
Gemini 2.0 Flash 85.41 80.37 77.38 90.60 88.45 86.53 96.03 94.18 92.83 95.03 94.77 93.46
Qwen-Image-Edit 77.12 76.09 76.69 83.48 83.08 83.11 91.31 91.32 90.51 84.57 84.93 85.35
Step1X-Edit 88.14 85.31 84.38 93.93 92.34 92.11 97.34 96.37 95.44 98.24 98.02 98.04
FLUX.1-Kontext-dev 92.66 90.30 89.19 94.39 92.79 91.61 97.97 96.74 95.40 96.36 95.57 94.04
OmniGen 88.37 85.15 83.14 93.88 92.46 91.06 97.62 97.10 96.07 97.45 97.58 97.40
AnyEdit 81.90 82.94 84.92 92.34 92.43 93.72 90.97 92.63 93.78 94.15 95.11 95.87
UltraEdit 78.81 72.75 71.67 91.86 89.51 88.99 94.80 93.01 92.03 97.12 96.35 96.02
MagicBrush 79.70 75.64 75.53 91.13 89.23 88.69 94.22 94.34 93.13 96.31 96.14 95.83
IP2P 68.24 67.31 69.49 84.44 82.93 83.72 85.47 85.88 86.45 91.31 89.94 90.19
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Table 26: Human preference scores, p999, and p99 across three turns (multi-turn mode).

Model Human Preference Score p999 p99
T1 T2 T3 T1 T2 T3 T1 T2 T3

GPT-Image-1 6.6519 6.5898 6.5609 84.73 82.96 82.50 74.38 71.91 70.54
Nano Banana 4.9431 5.1179 5.2638 89.67 90.27 90.56 81.31 82.01 82.09
Gemini 2.0 Flash 4.4386 4.2332 4.0677 90.95 92.21 92.95 83.08 84.79 86.24
Qwen-Image-Edit 5.8591 5.7198 5.1502 89.16 97.20 99.04 79.60 90.51 95.28
Step1X-Edit 4.0577 3.3443 2.7569 92.81 95.39 97.27 85.10 88.46 91.21
FLUX.1-Kontext-dev 5.1192 5.0701 5.0354 90.76 91.94 93.21 82.05 83.03 84.58
OmniGen 4.6099 4.0743 3.4958 93.15 95.24 96.71 85.55 88.24 90.50
AnyEdit 3.6609 2.8017 1.9457 86.70 86.70 86.71 77.54 76.53 75.82
UltraEdit 4.7934 4.6806 4.3598 92.71 94.19 95.82 85.42 86.76 88.34
MagicBrush 3.8465 3.0805 2.3606 91.49 93.33 94.20 83.42 84.70 85.32
IP2P 3.2020 2.3779 1.4418 89.61 91.59 92.44 81.79 83.78 84.77

Table 27: Updated human preference scores, p999 scores, and p99 scores across three turns (com-
plex mode).

Model Human Preference Score p999 p99
T1 T2 T3 T1 T2 T3 T1 T2 T3

GPT-Image-1 6.6328 6.8428 6.9655 85.33 84.14 84.44 74.73 73.92 73.07
Nano Banana 4.9444 5.1700 5.3632 89.65 90.67 91.79 81.02 81.93 82.75
Gemini 2.0 Flash 4.4511 4.5428 4.5732 91.27 92.66 93.48 83.85 85.69 86.75
Qwen-Image-Edit 5.8591 5.8769 5.9155 89.16 90.92 92.23 79.60 81.36 82.62
Step1X-Edit 4.0534 3.9063 3.8648 92.82 93.55 94.05 85.11 85.49 86.01
FLUX.1-Kontext-dev 5.1192 5.2446 5.4645 90.76 91.01 91.29 82.05 81.53 81.55
OmniGen 4.5976 4.3070 3.8122 93.15 93.74 95.65 85.56 86.28 88.57
AnyEdit 3.7020 3.7601 3.8382 86.47 87.16 87.43 77.82 78.60 79.12
UltraEdit 4.7934 4.7647 4.8117 92.71 93.06 93.24 85.42 86.09 86.47
MagicBrush 3.8465 3.6029 3.5523 91.49 91.52 91.64 83.42 83.31 83.07
IP2P 3.2020 3.3552 3.5640 89.61 90.46 90.86 81.79 82.57 82.71
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Q HUMAN AGREEMENT

The human study was conducted online through Gradio3. Annotators were asked to answer a 2-way
multiple-choice problem (Yes/No) about an editing instruction, an original image, and an edited
image. There were very limited potential participant risks, if they were to be exposed to an image
that was disturbing or not safe for work (NSFW). It is because the source images we used were
from GEit-Bench Liu et al. (2025), which were not in themselves offensive. Also, our agent already
filtered out unsafe images during the first decomposition stage. Furthermore, all edited images from
the models were passed through its own NSFW filters which blacked out any potentially unsafe
content.

We conducted human study on edits made by four exemplary models—Step1X-Edit, AnyEdit,
Gemini-Flash 2.0, and Flux.1-Kontext-dev—on EdiVal-Bench, generated by EdiVal-Agent as
described in Section O.2. For each edit, we collected two human ratings, yielding a total of
572 × 4 × 2 = 4,576 annotations. Depending on the prompt (which affected the editing instruc-
tion), each annotation took about 1–2 minutes. Raters were recruited online, each holding at least
a bachelor’s degree. They were shown the original image, the edited image, and the correspond-
ing instruction, and were asked a binary question: “Evaluate whether the edited image successfully
follows the given instruction.”

R COUNTING

Among all subtasks, count change is the most challenging. Even the best-performing model (GPT-
Image-1) achieves a success rate below 25% at turn 1, while most models remain under 5%. We
also provide illustrative examples in Figure 28.

(a) Base Image (b) GPT-Image-1 (✓) (c) Nano Banana (✓) (d) Gemini 2.0 Flash (×) (e) Qwen-Image-Edit (×)

Figure 28: Example of the count change task: changing the number of paper cups to five.

3https://www.gradio.app/
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Input T1 T2 T3

Seedream 4.0

Nano Banana

GPT-Image-1

Gemini 2.0 Flash

FLUX.1-Kontext-max

Qwen-Image-Edit

Figure 29: T1: Change the color of pumpkin to purple; T2: Change the background to forest;
T3: Remove fabric orange bow. Row-wise quality examples for the first six models: Seedream
4.0, Nano Banana, GPT-Image-1, Gemini 2.0 Flash, FLUX.1-Kontext-max, and Qwen-Image-Edit.
Each row shows generations for Input and three editing turns.

S MORE QUALITY EXAMPLES
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Input T1 T2 T3

Step1X-Edit

FLUX.1-kontext-dev

OmniGen

AnyEdit

UltraEdit

MagicBrush

IP2P

Figure 30: T1: Change the color of pumpkin to purple; T2: Change the background to forest;
T3: Remove fabric orange bow. Row-wise quality examples for the remaining models: Step1X-
Edit, FLUX.1-kontext-dev, OmniGen, AnyEdit, UltraEdit, MagicBrush, and IP2P.
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