

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EDIVAL-AGENT: AN OBJECT-CENTRIC FRAMEWORK FOR AUTOMATED, FINE-GRAINED EVALUATION OF MULTI-TURN EDITING

Anonymous authors

Paper under double-blind review

ABSTRACT

Instruction-based image editing has advanced rapidly, yet reliable and interpretable evaluation remains a bottleneck. Current protocols either (i) depend on paired reference images—resulting in limited coverage and inheriting biases from prior generative models—or (ii) rely *solely* on zero-shot vision–language models (VLMs), whose prompt-based assessments of instruction following, content consistency, and visual quality are often imprecise.

To address this, we introduce **EdiVal-Agent**, an automated and fine-grained evaluation framework grounded in an object-centric perspective, designed to assess not only standard single-turn but also multi-turn instruction-based editing with precision. Given an input image, **EdiVal-Agent** first decomposes it into semantically meaningful objects, then synthesizes diverse, context-aware editing instructions while dynamically updating object pools across turns. These two stages enable two novel object-centric metrics tailored for multi-turn evaluation and one global metric of visual quality: 1) EdiVal-IF, which measures instruction following by combining open-vocabulary object detectors for symbolic checks with VLMs for semantic verification on detector-guided crops; 2) EdiVal-CC, which evaluates content consistency by calculating semantic similarity of unchanged objects and background using the evolving object pools; and 3) EdiVal-VQ, which quantifies changes in overall visual quality with human preference models.

Instantiating this pipeline, we build **EdiVal-Bench**, a multi-turn editing benchmark covering 9 instruction types and 13 state-of-the-art editing models spanning in-context¹, flow-matching, and diffusion paradigms. We further conduct experiments comparing multi-turn editing with single-shot complex editing, highlighting the distinctive characteristics of different model paradigms. We demonstrate that **EdiVal-Agent** can be used to identify existing failure modes, thereby informing the development of the next generation of editing models.

1 INTRODUCTION

What truly defines the success of an image editor? At its core, editing requires making targeted, instruction-driven changes while preserving contextual consistency and perceptual realism—often across multiple refinement turns. Yet current evaluation practice struggles to capture this multi-faceted objective.

When ground-truth edited images are available, a common strategy is to compare model outputs against these references (e.g., MagicBrush Zhang et al. (2023), UltraEdit Zhao et al. (2024), AnyEdit Yu et al. (2025), EmuEdit Sheynin et al. (2024)). Typical metrics include pixel-level distances (e.g., L1/L2) and semantic similarities (e.g., DINO Caron et al. (2021) and CLIP Radford et al. (2021)). While informative, such metrics suffer from two structural issues: (i) the space of acceptable edits is inherently large, whereas a single reference provides only one realization; and (ii) references are

¹In this paper, we label certain closed-source models—GPT-Image-1, Nano Banana, and Gemini 2.0 Flash Image—as *in-context*, since they are integrated into autoregressive language models in the web UI and support **in-context multi-turn editing**.

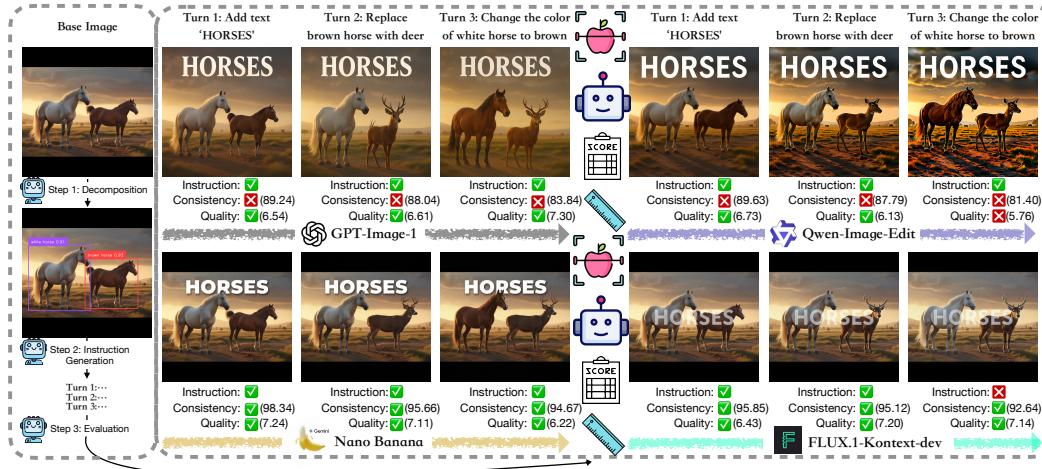


Figure 1: Overview of our workflow and representative model’s performance. For visualization, we adopt two thresholds: a consistency score of at least 90 and a visual quality score of at least 6. Details of the automated evaluation pipeline are provided in Figure 2 and Section 2. In multi-turn editing, models exhibit distinct weaknesses: *GPT-Image-1* struggles with content consistency, *Qwen-Image-Edit* underperforms in both visual quality and content consistency, and *FLUX.1-Kontext-dev* lags in instruction following, whereas *Nano Banana* shows no single dominant weakness.

frequently synthesized by existing editing models (e.g., Prompt-to-Prompt Hertz et al. (2023), SDXL Podell et al. (2024), DALLE-2 Ramesh et al. (2022)), thereby importing their biases and limitations into the evaluation itself. Consequently, high reference similarity does not necessarily imply faithful instruction following, preservation of irrelevant content, or aesthetically plausible outcomes.

A complementary line of work employs zero-shot VLMs as interpretable evaluators (e.g., VIEScore Ku et al. (2023), GEdit-Bench Liu et al. (2025), I²EBench Ma et al. (2024), HQ-Edit Hui et al. (2024), Complex-Edit Yang et al. (2025), and ImgEdit Ye et al. (2025)) and queries VLMs about specific aspects of an edit. While VLMs offer holistic, language-mediated judgments, they remain insufficient for precise editing assessment for several reasons. First, for instruction-following evaluation, they are notoriously poor at spatial reasoning Zhang et al. (2025b); Chen et al. (2024); Chang et al. (2025) and are prone to object hallucinations in existence, category, attributes, and relations Bai et al. (2024). These issues together undermine their ability to assess common object-related edit instructions. Second, they have limited sensitivity to pixel-level changes and frequently miss subtle, localized modifications Vo et al. (2025) (e.g., fine structures, small attribute shifts, etc.), which are crucial for evaluating content consistency. Third, since they are predominantly pretrained on natural images rather than synthetic generations, their priors are miscalibrated for artifacts and aesthetics, leading to failures in detecting common generative defects (e.g., extra fingers) and in modeling perceptual “naturalness” Liang et al. (2024); Xu et al. (2023); Ma et al. (2025), which humans are sensitive to. Consequently, VLM-only scoring lacks the precision and reliability required for fine-grained evaluation across instruction following, content consistency, and visual quality. However, we find recently open-source state-of-the-art editing models (e.g., Qwen-Image-Edit Wu et al. (2025a), Step1X-Edit Liu et al. (2025), BagelDeng et al. (2025)) *solely* rely on VLMs for evaluation.

To address these challenges, we introduce **EdiVal-Agent**: an automated and fine-grained evaluation agent for multi-turn instruction-based image editing from an object-centric perspective, designed to assess not only standard single-turn but also multi-turn instruction-based editing with precision. As shown in Fig. 2, **EdiVal-Agent** first decomposes it into semantically meaningful objects, then synthesizes diverse, context-aware editing instructions while dynamically updating object pools across turns. These two stages enable two novel object-centric metrics tailored for multi-turn evaluation and one global metric of visual quality: 1) EdiVal-IF, which measures instruction following by combining open-vocabulary object detectors for symbolic checks with VLMs for semantic verification on detector-guided crops; 2) EdiVal-CC, which evaluates content consistency by calculating semantic similarity of unchanged objects and background using the evolving object pools; and 3) EdiVal-VQ, which quantifies changes in overall visual quality with human preference models. We show that EdiVal-IF yields stronger agreement with human judgments in instruction-following evalua-

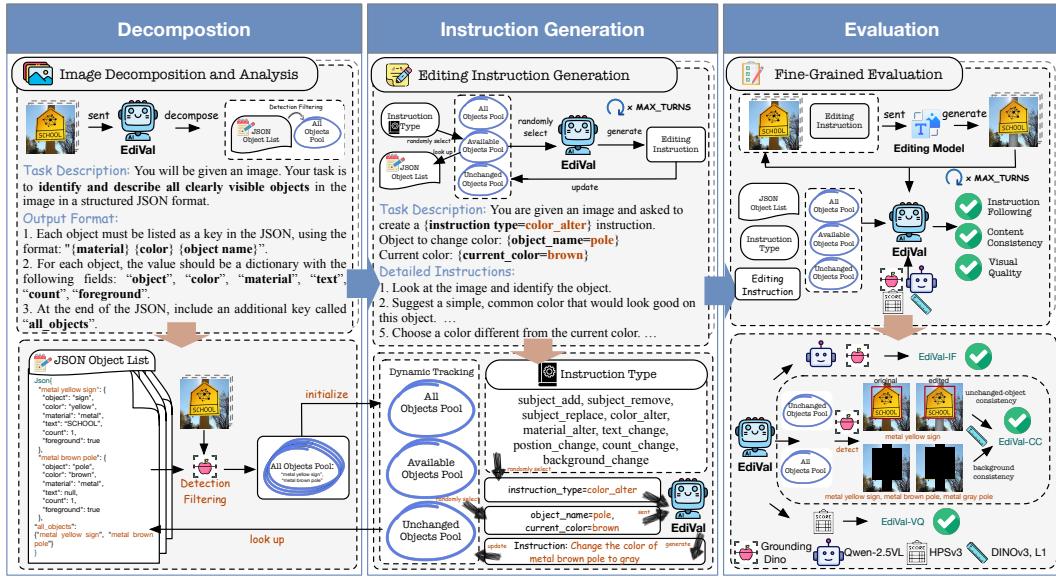


Figure 2: Framework of **EdiVal-Agent**. It first decomposes images into semantically meaningful objects, such as *metal yellow sign* and *metal brown pole*, and identifies their contextual relationships, e.g., they are both in *foreground*. It then generates diverse and proper editing scenarios at scale which are based on the initial analysis, e.g., *Change the color of metal brown pole to gray*. Finally, it systematically evaluates editing model outputs from multiple axes with our proposed metrics: **EdiVal-IF**, **EdiVal-CC**, and **EdiVal-VQ**. Our agentic pipeline is agnostic to the expert tools used and can be readily enhanced with more advanced tools in the future.

Table 1: Key attributes of open-source edit benchmarks. Note that *ImgEdit* Ye et al. (2025) does not include multi-turn editing experiments in the paper.

Benchmark	# Size	Object-centric	Automated	Multi-Turn	Free from Ref. Images	Tools used
EmuEditSheynin et al. (2024)	3,055	✗	✓	✗	✗	L1, CLIP, DINO
MagicBrushZhang et al. (2023)	1,053	✗	✗	✗	✗	L1, L2, DINO, CLIP
AnyEditYu et al. (2025)	1,250	✗	✗	✗	✗	L1, CLIP, DINO
I2EBenchMa et al. (2024)	2,240	✗	✗	✗	✓	VLM
GEdit-BenchLiu et al. (2025)	606	✗	✗	✗	✓	VLM
HQ-EditHui et al. (2024)	1,651	✗	✓	✗	✓	VLM
ImgEdit-BenchYe et al. (2025)	811	✗	✓	✗	✓	VLM
Kontext-BenchLabs et al. (2025)	1,026	✗	✗	✗	✓	Human Annotation
EdiVal-Bench (ours)	1,716	✓	✓	✓	✓	Detector, VLM, L1, DINO, HPS

tion compared to thresholded CLIP directional (CLIP_dir) scores Gal et al. (2022) and using VLMs alone, as evidenced in Sec. 2.5.

Instantiating the agentic pipeline, we curate a new multi-turn image editing benchmark, **EdiVal-Bench**, featuring 9 instruction types and 13 existing editing models—spanning in-context, flow-matching, and diffusion paradigms, across both closed- and open-source systems—conduct fine-grained analyses, and draw actionable insights. Empirically, as demonstrated in Fig. 1 and Tab. 3, *GPT-Image-1* excels at instruction following yet ranks near the bottom in content consistency, whereas *Seedream 4.0* and *Nano Banana* performs strongly on both axes. Besides, open-sourced models like *Qwen-Image-Edit* significantly degrade in instruction following and visual quality when editing turns increase, while *FLUX.1-Kontext-max* and *FLUX.1-Kontext-dev* lags in instruction following. We further contrasts multi-turn editing with single-shot complex prompts Yang et al. (2025), highlighting complementary strengths and failure modes. We hope that our agent pipeline, benchmark, and analyses accelerate the transition of multi-turn editing toward practical applications.

Key contributions. 1) *Agent*: **EdiVal-Agent** is a fully automated evaluator that performs object-centric decomposition, generates diverse multi-turn editing instructions, and measures overall editing quality using two object-centric metrics (EdiVal-IF and EdiVal-CC) plus EdiVal-VQ for visual quality. 2) *Benchmark*: using **EdiVal-Agent**, we construct **EdiVal-Bench** with 1,716 instructions across nine types and three turns on 572 real-world images, with comparisons to prior benchmarks

162 in Tab. 1. 3) *Human agreement*: EdiVal-IF attains 81.3% agreement with human ratings for in-
 163 struction following, outperforming zero-shot VLMs and CLIP-based baselines. 4) *Evaluation*: we
 164 assess 13 editors (diffusion, flow-matching, and close source) along instruction following, content
 165 consistency, and visual quality. 5) *Insights*: overall ranking—Seedream 4.0 > Nano Banana >
 166 FLUX.1-Kontext-max > GPT-Image-1; the strongest open-source editor, Qwen-Image-Edit, ex-
 167 hibits exposure bias under multi-turn editing. 6) *Artifacts & settings*: we reveal luminance drift
 168 across turns, and contrast multi-turn against complex single-shot editing to delineate strengths and
 169 weaknesses across model families.

171 2 EDIVAL-AGENT

173 2.1 OVERVIEW

175 As illustrated in Fig. 2. The pipeline comprises three stages: (1) *Decomposition* uses a VLM
 176 (e.g., GPT-4o; other VLMs are viable alternatives) to extract structured, object-level descrip-
 177 tions—objects, attributes, and relations—enabling symbolic reasoning; (2) *Instruction Generation*
 178 produces multi-turn, diverse, compositional prompts by maintaining an explicit object pool and
 179 sampling from nine instruction types spanning subject-, attribute-, relational-, text-, count-, and
 180 global-level edits; (3) *Evaluation* scores edited images with EdiVal-IF, Edival-CC, and EdiVal-VQ.

182 2.2 STEP 1: DECOMPOSITION

184 Given an image, a VLM-based agent parses clearly visible foreground objects and returns per-object
 185 JSON with fields `object`, `color`, `material`, `text`, `count`, and a boolean `foreground`.
 186 Names follow "`{material} {color} {object}`"; unknown fields are omitted; person iden-
 187 tity is never recorded (only wearables/accessories). Example: `{"metal yellow sign":`
 188 `{"object": "sign", "color": "yellow", "material": "metal", "text": "SCHOO`
 189 `L", "count": 1, "foreground": true}}`. An aggregated `all_objects` string concisely
 190 lists objects (e.g., "metal yellow sign . metal brown pole"). We apply this stage to GEdit-Bench
 191 Liu et al. (2025) (606 images), exclude 34 images with sensitive personal content, and retain 572
 192 images. After extraction, Grounding-DINO validates objects and detects bounding boxes; only reli-
 193 able detections are kept to seed instruction generation and evaluation. The filtered objects are stored
 194 in the `All_Objects_Pool` and later used to initialize three distinct object pools that dynamically
 195 track the evolving state of instruction generation.

196 2.3 STEP 2: INSTRUCTION GENERATION

198 From the decomposed scene, the agent generates multi-turn edits that are grounded in the cur-
 199 rent object state. The instruction taxonomy (nine types; six categories) appears in Table 2. We
 200 maintain three evolving pools at turn t : $\mathcal{P}_t^{\text{all}}$ (all objects ever present), $\mathcal{P}_t^{\text{unch}}$ (original objects
 201 not edited up to t), and $\mathcal{P}_t^{\text{avail}}$ (objects currently editable). With a turn budget `MAX_TURNS`, at
 202 each turn the agent (i) selects a type—defaulting to `subject_add` if $\mathcal{P}_t^{\text{avail}} = \emptyset$, otherwise
 203 sampling a type not yet used in the chain; (ii) selects object(s) from $\mathcal{P}_t^{\text{avail}}$; (iii) emits a natural-
 204 language instruction via GPT-4o referencing those objects and the scene state; and (iv) updates
 205 $\mathcal{P}_{t+1}^{\text{all}}$, $\mathcal{P}_{t+1}^{\text{avail}}$, and $\mathcal{P}_{t+1}^{\text{unch}}$ according to the intended edit. When a `background_change` edit ap-
 206 plies at turn t , background-consistency scoring is disabled since this turn, and we append "make
 207 `{objects_in_foreground}` unchanged" to the instruction to preserve object-level compara-
 208 bility, where `objects_in_foreground = {o ∈ P_t^{\text{avail}} : o.foreground = true}`. The
 209 loop is adaptive by expanding/contracting $\mathcal{P}_t^{\text{avail}}$ and naturally compositional. Our default sets
 210 `MAX_TURNS= 3` (In our implementation, each turn is assigned a distinct instruction type.), though
 211 longer chains are easily obtained by allowing repetition or adding types.

212 2.4 STEP 3: EVALUATION

213 The first two stages enable two novel object-centric metrics for multi-turn editing evaluation for
 214 instruction following and content consistency, respectively, and one global metric for visual quality:

Table 2: **Instruction types in EdiVal-Bench** created by **EdiVal-Agent**, grouped by semantic category. Counts are shown per turn (T1–T3).

Category	Instruction Type	Example Instruction	T1	T2	T3	Total
Subject-centric	subject_add	Add bench on the left of metal red fire hydrant.	67	77	93	237
	subject_remove	Remove wooden brown door.	75	69	61	205
	subject_replace	Replace stone gray railing with wooden fence.	54	57	55	166
Attribute-centric	color_alter	Change the color of metal white airplane to blue.	56	73	57	186
	material_alter	Change the material of plastic black pen to metal.	66	50	72	188
Text-related	text_change	Replace the text 'BEARS CONTROL' on cotton black cap with 'WILD PATH'.	64	70	54	188
Relational	position_change	Change the position of ceramic white cup to right of plastic white laptop.	52	63	48	163
Counting	count_change	Change the count of fur brown bear to 3.	73	58	60	191
Global	background_change	Change the background to forest, remain the brown fur bear unchanged.	65	55	72	192

EdiVal-IF To evaluate instruction following, we introduce EdiVal-IF, which assesses multi-turn edits by comparing the image from the previous turn, I^{t-1} , to the current image, I^t . For a given instruction P^t at turn t , the score is determined differently for symbolically and semantically verifiable tasks. Symbolically verifiable types (T_{sym})—such as `subject_add`, `subject_remove`, `subject_replace`, `position_change`, and `count_change`—are evaluated using an open-vocabulary object detector $\mathcal{M}_{\text{detect}}$ Liu et al. (2024b). The detector’s outputs, including bounding boxes and confidence, are assessed against geometric and logical criteria \mathcal{F}_{sym} derived from the instruction. For example, for a `position_change` instruction “Move [A] to the left of [B]”, \mathcal{F}_{sym} verifies that the x-coordinate of A’s bounding box \mathcal{B} center is less than that of B in I^t , i.e., $\text{center}_x(\mathcal{B}_A^t) < \text{center}_x(\mathcal{B}_B^t)$. In this case,

$$\text{EdiVal-IF}(I^t, I^{t-1}, P^t \in T_{\text{sym}}) = \mathcal{F}_{\text{sym}}(\mathcal{M}_{\text{detect}}(I^{t-1}, I^t | P^t)). \quad (1)$$

Semantically verifiable types (T_{sem})—`color_alter`, `material_alter`, `text_change`, and `background_change`—are evaluated with a VLM \mathcal{M}_{VLM} Yang et al. (2024). To focus the evaluation, the VLM is applied to detector-guided object crops (I_o) using instruction-specific templates.

$$\text{EdiVal-IF}(I^t, I^{t-1}, P^t \in T_{\text{sem}}) = \mathcal{M}_{\text{VLM}}(I_o^{t-1}, I_o^t | P^t) = \mathcal{M}_{\text{VLM}}(\mathcal{M}_{\text{detect}}(I^{t-1}, I^t | P^t)). \quad (2)$$

We show that EdiVal-IF achieves superior human agreement (Sec. 2.5). The multi-turn editing success rate is defined as the logical AND of the EdiVal-IF scores across all edits along the chain, whereas the marginal task rate at turn t is defined according to the formulas 1 and 2 provided above.

EdiVal-CC To assess content consistency, EdiVal-CC measures the preservation of non-target content between the base image I^0 and the current image I^t . Given editing instructions $P^{1:t}$ from turn 1 to turn t , the object pools $\mathcal{P}_t^{\text{unch}}$ and $\mathcal{P}_t^{\text{all}}$ are dynamically updated. Let Ω denote the entire image area. Using object bounding boxes from the base image (\mathcal{B}_o^0) and the current image (\mathcal{B}_o^t), extracted by the detector $\mathcal{M}_{\text{detect}}$, the background region is defined as $\Omega_{\text{bg}}^t = \Omega - \bigcup_{o \in \mathcal{P}_t^{\text{all}}} (\mathcal{B}_o^0 \cup \mathcal{B}_o^t)$, i.e., the region obtained by excluding all objects that have appeared. Background consistency is then computed as $s_{\text{bg}}^t = \phi(I_{\text{bg}}^t, I_{\text{bg}}^t)$, where $I_{\text{bg}}^t = \Omega_{\text{bg}}^t \cap I^t$ denotes the background of the image, and ϕ is a similarity function such as L_1 distance or DINO-based similarity. For unchanged objects, we compute the per-object consistency $s_o^t = \phi(I_o^0, I_o^t)$ for each $o \in \mathcal{P}_t^{\text{unch}}$, and then average them. Formally, the final EdiVal-CC score emphasizes semantic preservation by averaging the feature-level similarities of the background and unchanged objects (see Appendix. O.3 for details):

$$\text{EdiVal-CC}(I^t, I^0, P^{1:t}) = \frac{1}{2} \left(s_{\text{bg}}^t + \frac{1}{|\mathcal{P}_t^{\text{unch}}|} \sum_{o \in \mathcal{P}_t^{\text{unch}}} s_o^t \right). \quad (3)$$

Figure 3: **Beautification vs. preservation** under the prompt: “*Change the background to a library.*” GPT-Image-1 tends to increase HPSv3 via beautification, while FLUX.1-Kontext-max emphasizes fidelity to the input.

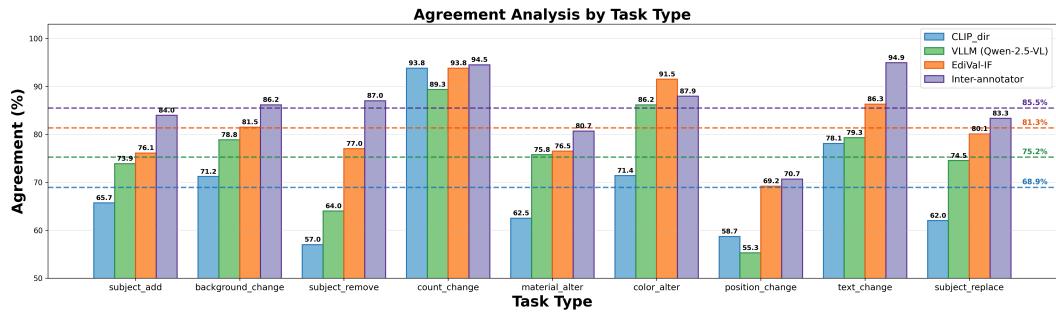


Figure 4: Results of human agreement. Dashed lines represent the average accuracy of each method. EdiVal-IF achieves 81.3% human agreement accuracy, significantly outperforming the VLM (Qwen-2.5-VL) at 75.2% and thresholded CLIP_dir at 65.4%. Note that the CLIP_dir threshold is tuned separately for each task.

EdiVal-CC aligns with the *intuitive* notion of consistency, providing a precise measurement.

EdiVal-VQ. Zero-shot VLMs are not trained for reliable assessment of image quality—particularly artifacts and aesthetics—and we find they are imprecise as scoring functions (see Appx. N). Consequently, we adopt Human Preference Score v3 (HPSv3) Ma et al. (2025) as our visual-quality (VQ) evaluator. In practice, applying preference models to unedited, real photographs often yields relatively low aesthetic scores. We also observe divergent behaviors across editors (See Fig. 3): some (e.g., GPT-Image-1) tend to *beautify* images and increase HPSv3, whereas others (e.g., FLUX.1-Kontext-max) *preserve* the original appearance with minimal aesthetic change. Because aesthetic preference is inherently user- and task-dependent, and beautification can trade off with content consistency (already incorporated into our overall score), we report EdiVal-VQ separately and do not fold it into the aggregate metric.

EdiVal-O. We aggregate *Instruction Following* (EdiVal-IF) and *Content Consistency* (EdiVal-CC) into a single overall score. Since both metrics are unit-free and normalized to $[0, 1]$ but capture complementary aspects, we follow prior work and use the geometric mean to balance them and penalize imbalance (Liu et al., 2025; Ku et al., 2023). Formally, $\text{EdiVal-O} = \sqrt{\text{EdiVal-IF} \cdot \text{EdiVal-CC}}$.

Design Scope and Limitations. We omit `style_change` from our taxonomy because style categories are inherently ill-defined, which makes instruction-following (EdiVal-IF) difficult to evaluate reliably. Extending **EdiVal-Agent** with style-aware recognition is promising future work. After language-based extraction, we validate objects using Grounding-DINO Liu et al. (2024a) and prune low-confidence or ambiguous detections. This stabilizes the object pool and reduces error propagation during instruction generation and IF evaluation. By default, we employ Grounding-DINO as the open-vocabulary detector, Qwen-2.5-VL as the VLM, and DINOv3 Siméoni et al. (2025) as the image feature extractor due to their state-of-the-art performance and open-source availability, which facilitates community use. The agentic pipeline is tool-agnostic and can be readily strengthened by substituting more advanced modules in the future.

2.5 MEASURING HUMAN AGREEMENT

Setup. We conduct human study on edits made by four exemplary models, Step1X-Edit, AnyEdit, Gemini 2.0 Flash and Flux.1-Kontext-dev, on **EdiVal-Bench**, generated by **EdiVal-Agent** as described in Sec. 2.3. In total, we collect 4,576 human annotations of edits. During evaluation, raters were shown the original image, the edited image, and the corresponding instruction, and asked a binary question: “Evaluate whether the edited image successfully follows the given instruction.”

Results. Figure 4 summarizes the findings. EdiVal-IF achieves a human agreement accuracy of **81.3%**, significantly higher than VLM-only (*Qwen-2.5-VL*, 75.2%), CLIP_dir (65.4%), and other zero-shot VLMs. These results verify that integrating VLMs reasoning with object detection leads to better alignment with human judgment compared to existing methods. The inter-annotator’s agreement rate (85.5%) indicates the best performance any evaluation tool can reach.

We attribute the improvement in instruction-following evaluation to two factors. First, for symbolically verifiable instruction types—`subject_add`, `subject_remove`, `subject_replace`, `position_change`, and `count_change`—EdiVal-IF relies solely on Grounding-DINO. It determines the success of an edit by checking object presence/absence, the positions of object centers, and the number of bounding boxes. Results for `position_change` and `subject_remove` show that these fixed rules, combined with Grounding-DINO, can significantly outperform Qwen2.5-VL in edit evaluation. We hypothesize that errors in `position_change` stem from poor spatial reasoning, while failures in `subject_remove` are due to hallucinations regarding object existence. Second, semantically verifiable types—`color_alter`, `material_alter`, `text_change`, and `background_change`—are evaluated using Qwen2.5-VL combined with Grounding-DINO. The decomposition stage in **EdiVal-Agent** can support evaluation by localizing text regions, enabling the LLM to reason more precisely about text edits. These findings indicate that EdiVal-IF not only enhances interpretability but also improves the practical applicability of evaluation pipelines in real-world settings that demand human-like understanding. Nonetheless, EdiVal-IF has failure modes, which we document and analyze in Appendix K.

3 BENCHMARKING MULTI-TURN EDITING

Table 3: Results of multi-turn editing. EdiVal-IF, EdiVal-CC, and EdiVal-O across three sequential editing turns. Best per column in **dark red**; second-best in **lighter red**.

Technique	Model	In-Context	Date	Latency		EdiVal-IF			EdiVal-CC			EdiVal-O			Rank
				(s/img)		T1	T2	T3	T1	T2	T3	T1	T2	T3	
Unknown	Seedream 4.0	✗	25.09.10	14.55	75.93	55.58	41.59	92.51	88.03	85.86	83.81	69.95	59.76	1	
	Nano Banana	✓	25.08.26	9.20	70.70	50.66	35.35	93.91	90.48	89.48	81.48	67.70	56.24	2	
	GPT-Image-1	✓	25.07.16	26.47	73.12	54.89	38.35	81.00	77.78	75.50	76.96	65.34	53.81	3	
	Gemini 2.0 Flash	✓	25.02.05	8.34	68.07	45.96	28.42	90.58	85.10	80.88	78.52	62.54	47.94	5	
Flow Matching	FLUX.1-Kontext-max	✗	25.06.03	10.13	69.49	46.89	31.83	93.93	90.90	88.40	80.79	65.29	53.04	4	
	Qwen-Image-Edit	✗	25.08.04	115.08	72.90	44.06	22.55	84.22	80.52	77.98	78.36	59.56	41.93	6	
	StepIX-Edit	✗	25.04.25	20.42	61.89	34.97	17.83	92.76	88.52	85.21	75.77	55.64	38.98	7	
	FLUX.1-Kontext-dev	✗	25.06.25	29.21	59.97	32.69	16.61	95.32	92.24	90.22	75.61	54.91	38.71	8	
	OmniGen	✗	24.09.11	19.70	54.72	24.48	10.66	93.00	88.42	83.92	71.34	46.52	29.91	9	
Diffusion	AnyEdit	✗	24.11.24	3.93	41.07	16.32	7.22	86.42	78.91	70.10	59.58	35.89	22.50	10	
	UltraEdit	✗	24.07.07	3.15	51.37	17.70	6.36	86.80	84.50	82.40	66.78	38.67	22.89	11	
	MagicBrush	✗	23.06.16	4.08	42.31	15.73	4.90	86.96	81.26	76.86	60.66	35.75	19.41	12	
	IP2P	✗	23.12.15	4.09	37.41	10.66	2.80	76.85	68.36	60.30	53.62	26.99	12.99	13	

Summary of Results. Table 3 shows that *Seedream 4.0* achieves the strongest overall performance, leading in *EdiVal-O* across all three turns (83.81/69.95/59.76) with competitive latency (15.8 s/img)² *Nano Banana* offers the best speed-quality trade-off at 9.7 s/img, ranking second in *EdiVal-O* and staying close to *Seedream 4.0* in both instruction following and consistency. *GPT-Image-1* excels in instruction following, but its very high latency (71.3 s/img) and weaker consistency lower its overall score, consistent with more regenerative behavior that prioritizes aesthetics over stability. Among open-source systems, *Qwen-Image-Edit* performs well initially (*EdiVal-O* 78.36 at T1) but degrades rapidly with additional turns, likely due to exposure bias as discussed below. We can see that there is a clear gap between the performance of closed-source and open-source systems. With the exception of *Qwen-Image-Edit*, our model rankings exactly match those reported on the Artificial Analysis leaderboard (rank by human vote) as of September 12, 2025; see Appendix J.

3.1 INSTRUCTION FOLLOWING

Marginal Task Success Rate. For a given turn, the *marginal task success rate* (Eqns. 1 and 2) is the proportion of prompts for which the edit requested at that turn is successfully executed. By

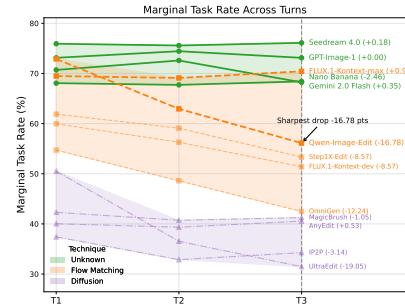


Figure 5: Marginal Task Success rate across turns.

²Closed-source latencies are measured using API-budgeted throughput for proprietary models; open-source latencies are measured on a single NVIDIA A100 GPU with default settings.

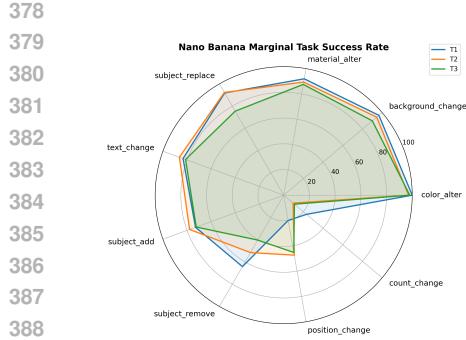


Figure 6: Marginal task success rate grouped by task types for Nano Banana.

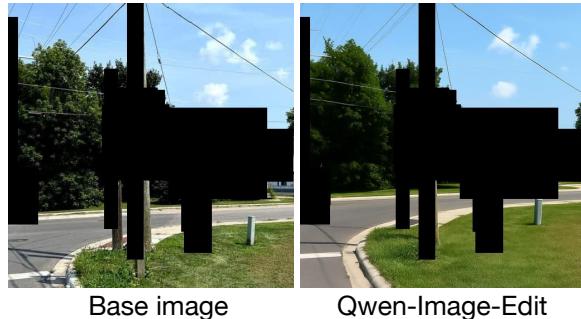


Figure 7: **Illustration of background consistency.** Instruction: “Remove beige brick house.” The grounding box is the union of all object regions from the raw and edited images.

contrast, the *instruction-following* score in Table 3 reports the *multi-turn task success rate* at turn i : the logical AND of the EdiVal-IF scores across all edits along the chain. Figure 5 summarizes per-turn performance. High-ranking models—such as Seedream 4.0, Nano Banana, and FLUX.1-Kontext-max—maintain relatively stable EdiVal-IF across turns, even though Seedream 4.0 and FLUX.1-Kontext-max are *not* in-context editors (they do not condition on prior prompts or intermediate images). In contrast, several other models exhibit a clear decline in marginal success as the number of turns increases.

A particularly salient case is **Qwen-Image-Edit**. Although it is the strongest open-source system at turn 1 (EdiVal-O 78.36 vs. 81.48 for Nano Banana), its performance degrades more rapidly over subsequent turns. We hypothesize that this stems from *exposure bias* (Ning et al., 2023; Schmidt, 2019): many single-turn editors are trained to operate on real images and ground-truth inputs rather than on their own previous outputs. When asked to edit their own generations, small distributional mismatches compound across turns, reducing stability; this effect is further aggravated when the model can only attend to a limited history.

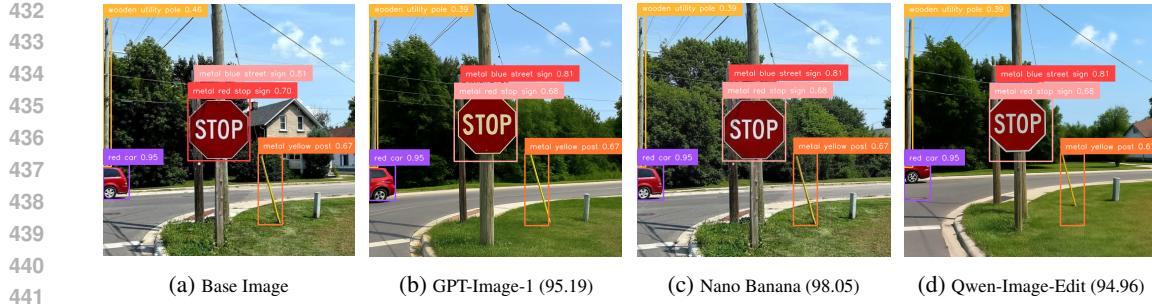
Marginal Task Success Rate Across Instruction Types. We analyze marginal subtask success rates across turns for different instruction types. The results for Nano Banana are shown in Fig. 6. Other editing models exhibit similar behavior. Nano Banana performs relatively well on attribute-centric tasks such as `color.Alter` and `material.Alter`, but poorly on `position_change` and `count_change`, indicating weaknesses in spatial and numerical reasoning, respectively.

3.2 CONTENT CONSISTENCY

We evaluate two aspects: (i) **unchanged-object consistency** (Fig. 8), which measures whether objects that are not edited up to turn i remain unchanged, and (ii) **background consistency** (Fig. 7), which assesses whether the background remains stable when it is not explicitly modified. When calculating consistency, the grounding box is extracted from the raw input image and applied to all edited images. We therefore choose to report DINOv3 over L_1 distance for consistency computation because even small shifts in object location can lead to large variations in pixel-wise L_1 loss, even if unchanged objects are well preserved. By relying on DINO features, we ensure that consistency is measured semantically, capturing attributes such as object identity, attributes, and texture, etc. Nevertheless, the consistency scores from DINOv3 remain highly correlated with those computed using pixel-wise L_1 loss (See results in the Appendix. P). Based on the results, the most consistent editing model is **FLUX.1-Kontext-dev**, followed by **Nano Banana** and **FLUX.1-Kontext-max**. In contrast, **GPT-Image-1** ranks near the bottom, showing notably poor consistency across turns. Representative qualitative examples are shown in Figure 8 and Figure 7.

3.3 VISUAL QUALITY

Besides EdiVal-VQ, we report the absolute change in VQ score relative to the base image: $\text{EdiVal-VQ}\Delta_i = |\text{EdiVal-VQ}_{\text{turn } i} - \text{EdiVal-VQ}_{\text{base}}|$. Smaller Δ indicates stronger style fidelity to



442 Figure 8: **Illustration of object consistency.** Instruction: “Remove brick beige house.” The ground-
443 box, extracted from the raw input image, highlights the localized region used to compute
444 unchanged-object consistency. The corresponding consistency score is shown in brackets.
445 the base image; larger Δ reflects greater beautification or stylistic drift. As summarized in Table 4,
446 **GPT-Image-1** achieves the highest aesthetic scores across turns and the biggest Δ , indicating a sig-
447 nificant stylistic shift (Fig. 3). For preserving the base image’s look (small Δ), **Gemini 2.0 Flash**
448 shows the least drift, with **Nano Banana** also performing well. We provide low-level exposure
449 statistics analysis in Appendix M.

450 Table 4: EdiVal-VQ and EdiVal-VQ Δ results across
451 turns. **dark red** denotes the *best* value in the column;
452 **lighter red** denotes the *second-best*. For HPS, higher
453 values are stronger aesthetics. For Δ , smaller values
454 are stronger fidelity preservation.

Technique	Model	EdiVal-VQ			EdiVal-VQ Δ		
		T1	T2	T3	T1	T2	T3
Unknown	Seedream 4.0	5.14	5.15	5.15	0.76	0.77	0.77
	Nano Banana	4.94	5.12	5.26	0.56	0.73	0.88
	GPT-Image-1	6.63	6.59	6.56	2.27	2.21	2.18
	Gemini 2.0 Flash	4.44	4.23	4.07	0.05	0.15	0.32
Flow Matching	FLUX.1-Kontext-max	5.12	5.07	5.04	0.41	0.49	0.47
	Qwen-Image-Edit	5.86	5.72	5.15	1.47	1.34	0.77
	StepIX-Edit	4.06	3.34	2.76	0.33	1.04	1.63
	FLUX.1-Kontext-dev	5.12	5.07	5.04	0.73	0.69	0.65
	OmniGen	4.61	4.07	3.50	0.23	0.31	0.89
Diffusion	AnyEdit	3.66	2.80	1.95	0.72	1.58	2.44
	UltraEdit	4.79	4.68	4.36	0.41	0.30	0.02
	MagicBrush	3.85	3.08	2.36	0.54	1.30	2.02
	IP2P	3.20	2.38	1.44	1.18	2.01	2.94

465 3.4 MULTI-TURN EDITING VS. COMPLEX EDITING

466 We compare two strategies for composing multiple edits. In *multi-turn* editing, instructions are
467 executed sequentially—apply instruction 1, then apply instruction 2 to the result, and so on. In
468 *complex* editing, we concatenate C instructions into a single prompt and perform one edit (“complex
469 level” C , with $C \in \{1, 2, 3\}$). Empirically (Fig. 9), when a model does *not* suffer from exposure
470 bias, multi-turn editing tends to yield higher success rates, consistent with a step-by-step “chain of
471 edits” (analogous to chain-of-thought in reasoning). For instance, Nano Banana benefits from the
472 multi-turn formulation. Conversely, when exposure bias is pronounced, compressing instructions
473 into a single, complex prompt can perform better; see Qwen-Image-Edit in Fig. 9.

475 3.5 PARETO FRONT

477 After constructing the leaderboard using EdiVal-O, we further analyze the trade-offs between dif-
478 ferent evaluation dimensions. To ensure that no model “games” the benchmark by excelling in only
479 one dimension, we plot the Pareto boundary at Turn 3 for all pairwise combinations of our three
480 evaluated dimensions: EdiVal-IF, EdiVal-CC, and EdiVal-VQ (see Figure 10). Additional Pareto
481 plots for Turn 1 and Turn 2 are provided in Figures 14 and 15.

482 3.6 ABLATION STUDY ON COMPLEX EDITING COMPRESSION

484 We conduct an ablation study on how to compress three-turn instructions into a single “complex
485 edit” prompt. In the previous experiment, we adopt the simplest concatenation strategy: {prompt
T1}. {prompt T2}. {prompt T3}. We further evaluate three alternative variants on Qwen-Image-

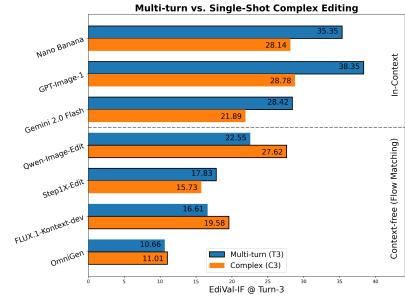


Figure 9: Turn-3 instruction following: Multi-turn vs. single-shot complex prompts.

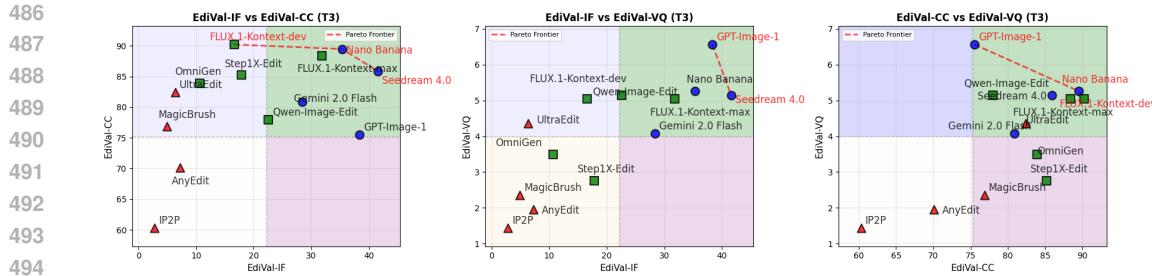


Figure 10: Pareto front plot for Turn 3 editing across EdiVal-IF, EdiVal-CC, and EdiVal-VQ.

Table 5: Complex Editing Performance for compression variants.

Connector Variant	Complex(C3) (%)
Default	27.62
Random shuffle	27.10
Sequential connector	26.92
Keep-unchanged	25.87

Table 6: Tool swap analysis (correlations).

Type	Default	Variant	Metric	Pearson	Spearman
VLM	Qwen2.5-7B-VL	Qwen2.5-32B-VL	IF	0.9544	0.9298
		InternVL3-8B	IF	0.9790	0.9544
		IP2P	IF	0.9660	0.9228
Threshold	[0.3, 0.4]	Threshold = 0.4	IF	0.9817	0.9860
		Threshold = 0.3	IF	0.9772	0.9457
Filter	Has filter	No filter	IF	0.9982	0.9930
Detector	Grounding DINO	OWL-ViT	IF	0.8157	0.7929
Feature	DINOv3	DINOv2	CC	0.9987	1.0000

507 **Edit:** 1) *Random shuffle*: randomly shuffle the three per-turn prompts before concatenation. 2)
508 *Sequential connector*: explicitly encode the order as: first, {prompt T1}, then, {prompt T2}, last,
509 {prompt T3}. 3) *Keep-unchanged objects*: append an explicit constraint: {prompt T1}. {prompt
510 T2}. {prompt T3}. Keep {unchanged objects} unchanged. Table 5 reports the resulting complex
511 editing success rate(%) at $C = 3$. The results show these compression variants have only a very
512 mild effect on performance.

513 3.7 TOOL SWAP ANALYSIS

515 We analyze the effect of swapping individual components in our evaluation stack, including the
516 VLM, detector, detector threshold, and image feature extractor. We find that modifying the VLM
517 (Appendix C.1), adjusting the detector threshold (Appendix C.2), changing the detector (Ap-
518 pendix C.3), or changing the image feature extractor (Appendix C.4) has only a minor impact on the
519 final evaluation outcomes. The summary statistics are shown in Tab. 6, which demonstrates that for
520 each configuration replacement, our evaluation results remain highly correlated with those obtained
521 under the default stack. As for **EdiVal-VQ**, we found that HPSv3 is the only human preference
522 model trained on images generated after SD3.5. This suggests that other preference models, such as
523 HPSv2, cannot provide reliable assessments of recent, more advanced generations, as they are only
524 sensitive to earlier-stage generations that are significantly lower in quality.

525 However, we note that replacing Grounding DINO with OWL-ViT Minderer et al. (2022) (Ap-
526 pendix C.3) fails to filter out failure cases originally caused by Grounding DINO and also reduces
527 agreement with human annotations. This highlights that detector accuracy should be prioritized
528 when considering detector substitutions.

529 We further examine component-specific tasks, such as counting, where we compare the per-
530 formance of density-map estimation methods (Appendix D). Finally, we include preliminary ex-
531 periments on style transfer (Appendix F), which indicate that existing VLMs still struggle to reliably
532 judge whether a style transfer succeeds.

533 4 CONCLUSION

536 We introduced **EdiVal-Agent**, an automated, and interpretable framework for evaluating instruction-
537 based image editing. By leveraging symbolic object decomposition, structured instruction genera-
538 tion, and a hybrid evaluation pipeline integrating both specialist tools and vision-language reasoning
539 models, **EdiVal-Agent** enables fine-grained, object-centric assessment of modern multi-turn editing
systems. Limitations and discussions are deferred to Appendix H.

540
541
ETHICS STATEMENT

542 Our work focuses on developing reliable and interpretable evaluation methods for instruction-based
 543 image editing. While such technology holds promise for creative design, accessibility, and efficient
 544 content creation, it may also be misused for harmful purposes such as generating misleading, de-
 545 ceptive, or inappropriate content. We emphasize that our benchmark and evaluation framework are
 546 intended solely for advancing research in safe and trustworthy generative AI. To mitigate risks, we
 547 build on publicly available datasets, apply safety filters to generated images, and encourage respon-
 548 sible use aligned with ethical standards and community guidelines.

549
550
REPRODUCIBILITY STATEMENT
551

552 We provide complete prompting templates and pseudo-code in the Appendix, along with imple-
 553 mentation details and API links. Comprehensive results, datasets, and evaluation metrics are also
 554 documented. To ensure full reproducibility, we will release all code, data, and model checkpoints
 555 upon acceptance of this manuscript.

556
557
REFERENCES
558

559 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 560 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 561 2025.

562 Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng
 563 Shou. Hallucination of multimodal large language models: A survey. *arXiv preprint*
 564 *arXiv:2404.18930*, 2024.

565 Tim Brooks, Aleksander Holynski, and Alexei A Efros. Instructpix2pix: Learning to follow image
 566 editing instructions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 567 *recognition*, pp. 18392–18402, 2023.

568 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 569 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of*
 570 *the International Conference on Computer Vision (ICCV)*, 2021.

571 Yingshan Chang, Yasi Zhang, Zhiyuan Fang, Ying Nian Wu, Yonatan Bisk, and Feng Gao. Skews in
 572 the phenomenon space hinder generalization in text-to-image generation. In Aleš Leonardis, Elisa
 573 Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision –*
 574 *ECCV 2024*, pp. 422–439, Cham, 2025. Springer Nature Switzerland. ISBN 978-3-031-73021-4.

575 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 576 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings*
 577 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465,
 578 2024.

579 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 580 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. *Advances in*
 581 *Neural Information Processing Systems*, 37:135062–135093, 2024.

582 Google Deepmind. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
 583 context, and next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

584 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
 585 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*
 586 *preprint arXiv:2505.14683*, 2025.

587 Rinon Gal, Or Patashnik, Haggai Maron, Amit H Bermano, Gal Chechik, and Daniel Cohen-
 588 Or. Stylegan-nada: Clip-guided domain adaptation of image generators. *ACM Transactions on*
 589 *Graphics (TOG)*, 41(4):1–13, 2022.

594 Yu Gao, Lixue Gong, Qiushan Guo, Xiaoxia Hou, Zhichao Lai, Fanshi Li, Liang Li, Xiaochen Lian,
 595 Chao Liao, Liyang Liu, et al. Seedream 3.0 technical report. *arXiv preprint arXiv:2504.11346*,
 596 2025.

597 Google Gemini2. Experiment with gemini 2.0 flash native image generation. <https://developers.googleblog.com/en/experiment-with-gemini-20-flash-native-image-generation/>, 2025.
 598 Accessed: 2025-06-22.

602 Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
 603 Prompt-to-prompt image editing with cross-attention control. In *ICLR*, 2023.

604 Mude Hui, Siwei Yang, Bingchen Zhao, Yichun Shi, Heng Wang, Peng Wang, Yuyin Zhou, and
 605 Cihang Xie. Hq-edit: A high-quality dataset for instruction-based image editing. *arXiv preprint*
 606 *arXiv:2404.09990*, 2024.

608 Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhui Chen. Viescore: Towards explainable
 609 metrics for conditional image synthesis evaluation. *arXiv preprint arXiv:2312.14867*, 2023.

610 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 611 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
 612 Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
 613 Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
 614 editing in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.

616 Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
 617 Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-
 618 training. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 619 pp. 10965–10975, 2022.

620 Yuhong Li, Xiaofan Zhang, and Deming Chen. Csrnet: Dilated convolutional neural networks for
 621 understanding the highly congested scenes. In *Proceedings of the IEEE conference on computer*
 622 *vision and pattern recognition*, pp. 1091–1100, 2018.

623 Youwei Liang, Junfeng He, Gang Li, Peizhao Li, Arseniy Klimovskiy, Nicholas Carolan, Jiao
 624 Sun, Jordi Pont-Tuset, Sarah Young, Feng Yang, Junjie Ke, Krishnamurthy Dj Dvijotham, Katie
 625 Collins, Yiwen Luo, Yang Li, Kai J Kohlhoff, Deepak Ramachandran, and Vidhya Navalpakkam.
 626 Rich human feedback for text-to-image generation. In *Proceedings of the IEEE/CVF Conference*
 627 *on Computer Vision and Pattern Recognition*, 2024.

629 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 630 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

631 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 632 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 633 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 634 2024a.

636 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 637 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 638 for open-set object detection. In *European Conference on Computer Vision*, pp. 38–55. Springer,
 639 2024b.

640 Shiyu Liu, Yucheng Han, Peng Xing, Fukun Yin, Rui Wang, Wei Cheng, Jiaqi Liao, Yingming
 641 Wang, Honghao Fu, Chunrui Han, et al. Step1x-edit: A practical framework for general image
 642 editing. *arXiv preprint arXiv:2504.17761*, 2025.

643 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 644 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

646 Yiwei Ma, Jiayi Ji, Ke Ye, Weihuang Lin, Zhibin Wang, Yonghan Zheng, Qiang Zhou, Xiaoshuai
 647 Sun, and Rongrong Ji. I2ebench: A comprehensive benchmark for instruction-based image editing.
Advances in Neural Information Processing Systems, 37:41494–41516, 2024.

648 Yuhang Ma, Xiaoshi Wu, Keqiang Sun, and Hongsheng Li. Hpsv3: Towards wide-spectrum human
 649 preference score, 2025. URL <https://arxiv.org/abs/2508.03789>.
 650

651 Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
 652 Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Sim-
 653 ple open-vocabulary object detection. In *European conference on computer vision*, pp. 728–755.
 654 Springer, 2022.

655 Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, and Itir Onal Ertugrul. Elucidating the
 656 exposure bias in diffusion models. *arXiv preprint arXiv:2308.15321*, 2023.
 657

658 OpenAI. Introducing 4o image generation. <https://openai.com/index/introducing-4o-image-generation/>, 2025. Accessed: 2025-06-22.
 659

660 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 661 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 662 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 663 <https://openreview.net/forum?id=di52zR8xgf>.
 664

665 Muhammad Fetrat Qharabagh, Mohammadreza Ghofrani, and Kimon Fountoulakis. Lvlm-
 666 count: Enhancing the counting ability of large vision-language models. *arXiv preprint arXiv:2412.00686*, 2024.
 667

668 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 669 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 670 models from natural language supervision. In *International conference on machine learning*, pp.
 671 8748–8763. PMLR, 2021.
 672

673 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 674 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.
 675

676 Tianhe Ren, Qing Jiang, Shilong Liu, Zhaoyang Zeng, Wenlong Liu, Han Gao, Hongjie Huang,
 677 Zhengyu Ma, Xiaoke Jiang, Yihao Chen, Yuda Xiong, Hao Zhang, Feng Li, Peijun Tang, Kent
 678 Yu, and Lei Zhang. Grounding dino 1.5: Advance the “edge” of open-set object detection, 2024.

679 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 680 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 681 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 682

683 Florian Schmidt. Generalization in generation: A closer look at exposure bias. *arXiv preprint arXiv:1910.00292*, 2019.
 684

685 Shelly Sheynin, Adam Polyak, Uriel Singer, Yuval Kirstain, Amit Zohar, Oron Ashual, Devi Parikh,
 686 and Yaniv Taigman. Emu edit: Precise image editing via recognition and generation tasks. In *Pro-
 687 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 8871–
 688 8879, 2024.
 689

690 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 691 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv preprint arXiv:2508.10104*, 2025.
 692

693 An Vo, Khai-Nguyen Nguyen, Mohammad Reza Taesiri, Vy Tuong Dang, Anh Totti Nguyen, and
 694 Daeyoung Kim. Vision language models are biased. *arXiv preprint arXiv:2505.23941*, 2025.
 695

696 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng ming Yin, Shuai
 697 Bai, Xiao Xu, Yilei Chen, Yuxiang Chen, Zecheng Tang, Zekai Zhang, Zhengyi Wang, An Yang,
 698 Bowen Yu, Chen Cheng, Dayiheng Liu, Deqing Li, Hang Zhang, Hao Meng, Hu Wei, Jingyuan
 699 Ni, Kai Chen, Kuan Cao, Liang Peng, Lin Qu, Minggang Wu, Peng Wang, Shuteng Yu, Tingkun
 700 Wen, Wensen Feng, Xiaoxiao Xu, Yi Wang, Yichang Zhang, Yongqiang Zhu, Yujia Wu, Yuxuan
 701 Cai, and Zenan Liu. Qwen-image technical report, 2025a. URL <https://arxiv.org/abs/2508.02324>.
 702

702 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
 703 Jiang, Yexin Liu, Junjie Zhou, Ze Liu, Ziyi Xia, Chaofan Li, Haoge Deng, Jiahao Wang, Kun
 704 Luo, Bo Zhang, Defu Lian, Xinlong Wang, Zhongyuan Wang, Tiejun Huang, and Zheng Liu.
 705 *Omnigen2: Exploration to advanced multimodal generation.* *arXiv preprint arXiv:2506.18871*,
 706 2025b.

707 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li,
 708 Shuting Wang, Tiejun Huang, and Zheng Liu. *Omnigen: Unified image generation.* In *Proceed-
 709 ings of the Computer Vision and Pattern Recognition Conference*, pp. 13294–13304, 2025.

710

711 Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
 712 Dong. *Imagereward: learning and evaluating human preferences for text-to-image generation.* In
 713 *Proceedings of the 37th International Conference on Neural Information Processing Systems*, pp.
 714 15903–15935, 2023.

715 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 716 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 717 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 718 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 719 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 720 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. *Qwen2.5 technical report.* *arXiv preprint
 721 arXiv:2412.15115*, 2024.

722 Siwei Yang, Mude Hui, Bingchen Zhao, Yuyin Zhou, Nataniel Ruiz, and Cihang Xie. *Complex-
 723 edit: Cot-like instruction generation for complexity-controllable image editing benchmark.* *arXiv
 724 preprint arXiv:2504.13143*, 2025.

725

726 Yang Ye, Xianyi He, Zongjian Li, Bin Lin, Shenghai Yuan, Zhiyuan Yan, Bohan Hou, and Li Yuan.
 727 *Imgedit: A unified image editing dataset and benchmark.* *arXiv preprint arXiv:2505.20275*, 2025.

728 Qifan Yu, Wei Chow, Zhongqi Yue, Kaihang Pan, Yang Wu, Xiaoyang Wan, Juncheng Li, Siliang
 729 Tang, Hanwang Zhang, and Yueting Zhuang. *Anyedit: Mastering unified high-quality image
 730 editing for any idea.* In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 731 pp. 26125–26135, 2025.

732

733 Kai Zhang, Lingbo Mo, Wenhui Chen, Huan Sun, and Yu Su. *Magicbrush: A manually annotated
 734 dataset for instruction-guided image editing.* *Advances in Neural Information Processing Systems*,
 735 36:31428–31449, 2023.

736 Yasi Zhang, Peiyu Yu, Yaxuan Zhu, Yingshan Chang, Feng Gao, Ying Nian Wu, and Oscar Leong.
 737 Flow priors for linear inverse problems via iterative corrupted trajectory matching. In *The Thirty-
 738 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=1H2e7USI09>.

739

740 Yasi Zhang, Peiyu Yu, and Ying Nian Wu. Object-conditioned energy-based attention map align-
 741 ment in text-to-image diffusion models. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Rus-
 742 sakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision – ECCV 2024*, pp. 55–71, Cham,
 743 2025a. Springer Nature Switzerland. ISBN 978-3-031-72946-1.

744

745 Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-image crowd count-
 746 ing via multi-column convolutional neural network. In *Proceedings of the IEEE conference on
 747 computer vision and pattern recognition*, pp. 589–597, 2016.

748

749 Zheyuan Zhang, Fengyuan Hu, Jayjun Lee, Freda Shi, Parisa Kordjamshidi, Joyce Chai, and Ziqiao
 750 Ma. Do vision-language models represent space and how? evaluating spatial frame of reference
 751 under ambiguities. In *The Thirteenth International Conference on Learning Representations*,
 752 2025b. URL <https://openreview.net/forum?id=84pD0CD41H>.

753

754 Haozhe Zhao, Xiaoqian Shawn Ma, Liang Chen, Shuzheng Si, Rujie Wu, Kaikai An, Peiyu Yu,
 755 Minjia Zhang, Qing Li, and Baobao Chang. Ultraedit: Instruction-based fine-grained image
 editing at scale. *Advances in Neural Information Processing Systems*, 37:3058–3093, 2024.

756
757
758
759
760
761
762
763**People Scenes**

(a) One person (b) Cartoon person (c) Crowd (d) Kids

764
765
766
767
768
769
770
771
772**Outdoor / Nature**

(e) Forest (f) Outdoor (g) Outdoor (h) View

773
774
775
776
777
778
779
780**Special Scenes**

(i) Snow (j) Volcano (k) Dusk (l) Romance

781
782
783
784
785
786
787
788
789**Indoor Scenes**

(m) Furniture (n) Cake (o) Cat (p) Dog

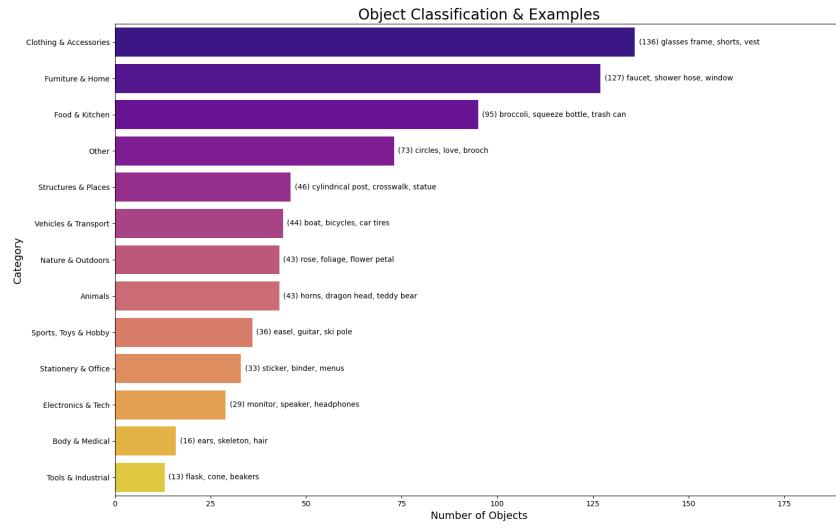
790
791
792
793
794
795
796
797
798**Special Items**

(q) Book Cover (r) Ads (s) Logo (t) Menu

799
800
801
802
803
804
805
806
807
808
809**Artistic / Cartoon Scenes**

(u) Artistic (v) Cartoon (w) Poster (x) Statue

Figure 11: **Scene diversity** of our dataset across multiple environments and content types.

810 A DIVERSITY OF OUR DATASET
811829 Figure 12: Images of different **lightning** sorted from very dark to very bright.
830848 Figure 13: Categories and examples of objects in the base images.
849850
851 All base images can be found here: the GEdit-Bench's official Huggingface link <https://huggingface.co/datasets/stepfun-ai/GEdit-Bench>.
852853 Our dataset could reflect real-world editing scenarios in the following senses.
854855 **Data Source** We first stress that our images
856

1. are from real-world user editing cases as stated in GEdit-Bench Liu et al. (2025).
2. include both synthetic and real images
3. are carefully selected by the GEdit team to ensure the diversity.

862 **Different Scenes** We demonstrate example images of different scenes in Fig. 11 which covers
863 assorted environments and content types, including but not limited to indoor/outdoor, person, special
items, and artistic scenes. This diversity helps our dataset to better reflect the real-world user cases.

864 **Different Lightning** We demonstrate images of lightning conditions in Fig. 12 sorted from very
 865 dark to very bright. Our dataset includes a variety of illumination scenarios that aim to cover the
 866 spectrum of very bright to very dark environments. This variation reflects the real-world complex
 867 editing scenes.
 868

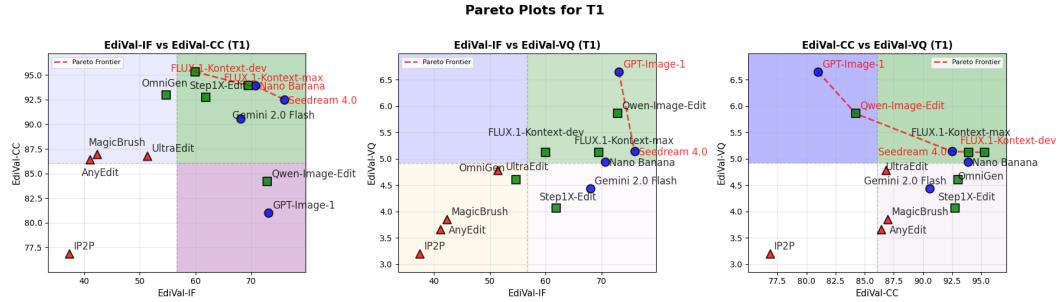
869 **Object categories.** After decomposition, we analyzed and found that there are a total of 724 dis-
 870 tinct objects in the dataset. We classify them into 13 categories, ranging from everyday items such
 871 as furniture and kitchenware to special entities like vehicles and animals. Specifically, they are (The
 872 distribution of these objects is presented in Fig. 13.):

- 873 1. Clothing & Accessories
- 874 2. Furniture & Home
- 875 3. Food & Kitchen
- 876 4. Structures & Places
- 877 5. Vehicles & Transport
- 878 6. Nature & Outdoors
- 879 7. Animals
- 880 8. Sports, Toys & Hobby
- 881 9. Stationery & Office
- 882 10. Electronics & Tech
- 883 11. Body & Medical
- 884 12. Tools & Industrial
- 885 13. Other

890 B PARETO PLOT

893 In addition to presenting a leaderboard in Table 14, we also visualize the trade-offs among the
 894 three EdiVal dimensions—EdiVal-IF, EdiVal-CC, and EdiVal-VQ—using Pareto plots. These plots
 895 illustrate the performance frontier for each turn, providing a more concrete view of the trade-off and
 896 allowing users to select the most suitable model according to their preference.

897 We present the Pareto plots for Turn 1 in Figure 14, Turn 2 in Figure 15, and Turn 3 in Figure 10.



909 Figure 14: Pareto plot for Turn 1.

912 C TOOL SWAP ANALYSIS

914 C.1 VLM SWAP

916 To assess how our evaluation results depend on the choice of VLM, we swap the default VLM
 917 in our stack (Qwen2.5-7B-VL) with several alternatives: Qwen2-7B-VL, Qwen2.5-32B-VL, and
 InternVL3-8B. For each configuration, we recompute the per-turn instruction-following success

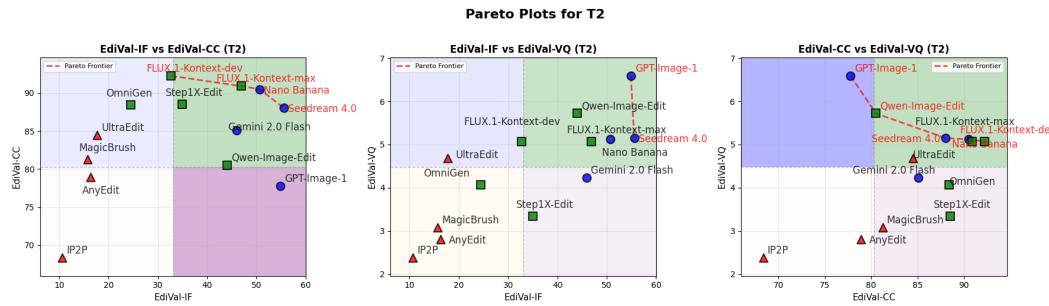


Figure 15: Pareto plot for Turn 2.

rates for four representative editors: GPT-Image-1, Seedream 4.0, Nano Banana, and FLUX.1-Kontext-max.

Across all VLM choices, the relative ranking of these editors remains unchanged. While the absolute scores shift slightly (e.g., the Qwen2.5- and InternVL-based stacks tend to assign somewhat lower scores than the Qwen2.5-7B-VL stack), the overall ordering is stable. When we compare per-turn/marginal success rates between the default Qwen2.5-7B-VL stack and each swapped VLM, both Pearson and Spearman correlations remain high over all (model, turn) pairs.

Concretely, Table 7 reports correlations between the per-turn success rates under our default VLM (Qwen2.5-7B-VL) and those obtained with each alternative VLM. All Pearson correlations exceed 0.95 and all Spearman correlations exceed 0.92, indicating that changing the VLM has only a modest effect on the absolute scores and largely preserves the relative ordering of the four models. In particular, on the EdiVal-IF leaderboard we consistently observe

$$\text{Seedream 4.0} > \text{GPT-Image-1} > \text{Nano Banana} > \text{FLUX.1-Kontext-max}.$$

Table 7: Correlations between per-turn instruction-following success rates under the default VLM (Qwen2.5-7B-VL) and three strong vision-language baselines. All correlations are computed over 12 (model, turn) points.

Baseline Model	Pearson	Spearman
Qwen2-7B-VL	0.9544	0.9298
Qwen2.5-32B-VL	0.9790	0.9544
InternVL3-8B	0.9660	0.9228

C.2 GROUNDING DINO THRESHOLD AND LARGE-BOX FILTER SWAP

In this section, we ablate the effect of changing Grounding DINO’s detection threshold and disabling the large-box filter. By default, we use a threshold of 0.30 for `subject_remove`, 0.40 for `position_change`, and 0.35 for all other tasks. In addition, during detection we discard any box whose normalized height *and* width are both larger than 0.98, in order to filter out degenerate predictions that cover almost the entire image.

To investigate sensitivity to these choices, we re-run the evaluation under three alternative settings: (1) a global threshold of 0.30, (2) a global threshold of 0.40, and (3) the default thresholds but with the large-box filter disabled. The results are reported in Table 8. Across all settings, the instruction-following metrics (image success, task success, and overall scores) change only slightly, and the ranking of models remains unchanged. This suggests that our conclusions are robust to reasonable variations in the detector threshold and the large-box filtering heuristic.

C.3 DETECTOR SWAP

We also perform an ablation study by swapping the open-vocabulary detector in our pipeline from Grounding DINO to alternative detectors, such as OWL-ViT Minderer et al. (2022) and GLIP Li

972 Table 8: Per-turn image success, task success, and overall scores under different evaluation settings
973 (ranked).
974

975 Config	976 Model	977 Img. Success			978 Task Success			979 Overall		980 Rank
		981 T1	982 T2	983 T3	984 T1	985 T2	986 T3	987 T1	988 T2	
989 Default	Seedream 4.0	990 75.930	991 55.580	992 41.590	993 75.930	994 75.580	995 76.110	996 83.811	997 69.948	998 59.757 1
	Nano Banana	999 70.700	999 50.660	999 35.350	999 70.700	999 72.590	999 68.240	999 81.483	999 67.703	999 56.242 2
	GPT-Image-1	999 73.120	999 54.890	999 37.970	999 73.120	999 74.440	999 72.740	999 76.959	999 65.340	999 53.542 3
	FLUX.1-Kontext-max	999 69.490	999 46.890	999 31.830	999 69.490	999 69.110	999 70.430	999 80.791	999 65.286	999 53.045 4
999 Threshold 0.3	Seedream 4.0	999 73.450	999 53.270	999 38.940	999 73.450	999 74.870	999 74.870	999 82.431	999 68.479	999 57.822 1
	Nano Banana	999 69.940	999 49.340	999 33.460	999 69.940	999 71.640	999 67.490	999 81.044	999 66.815	999 54.717 2
	GPT-Image-1	999 71.430	999 52.820	999 37.030	999 71.430	999 74.060	999 72.180	999 76.065	999 64.096	999 52.875 3
	FLUX.1-Kontext-max	999 68.170	999 45.570	999 30.510	999 68.170	999 68.360	999 68.930	999 80.020	999 64.361	999 51.933 4
999 Threshold 0.4	Seedream 4.0	999 73.980	999 52.570	999 38.940	999 73.980	999 73.450	999 74.510	999 82.728	999 68.027	999 57.822 1
	Nano Banana	999 68.810	999 47.260	999 31.950	999 68.810	999 69.570	999 64.460	999 80.386	999 65.392	999 53.469 2
	GPT-Image-1	999 70.110	999 50.190	999 35.150	999 70.110	999 72.560	999 71.240	999 75.359	999 62.480	999 51.515 3
	FLUX.1-Kontext-max	999 66.290	999 43.690	999 28.630	999 66.290	999 67.230	999 67.420	999 78.909	999 63.019	999 50.308 4
999 No Large-Box Filter	Seedream 4.0	999 75.930	999 55.220	999 41.240	999 75.930	999 75.220	999 76.110	999 83.811	999 69.721	999 59.505 1
	Nano Banana	999 70.700	999 50.660	999 35.350	999 70.700	999 72.590	999 68.240	999 81.483	999 67.703	999 56.242 2
	GPT-Image-1	999 72.930	999 54.890	999 38.350	999 72.930	999 74.440	999 73.120	999 76.859	999 65.340	999 53.809 3
	FLUX.1-Kontext-max	999 69.490	999 46.890	999 31.830	999 69.490	999 69.110	999 70.430	999 80.791	999 65.286	999 53.045 4

999 et al. (2022). For this swap, detector accuracy is the primary factor we must prioritize, since a more
999 accurate detector directly translates to higher agreement with human annotations.

999 Table 9 summarizes the performance of several popular open-vocabulary detectors on standard de-
999 tection benchmarks. In the open-set setting ODinW (object detection in the wild), which most
999 closely resembles our scenario, Grounding DINO outperforms GLIP. It also achieves the best AP
999 on COCO, a widely used benchmark with 80 common objects. LVIS is a challenging benchmark
999 with more than 1k categories spanning rare, common, and frequent objects; on LVIS^{val}, OWL-ViT
999 attains strong performance, but Grounding DINO still provides a better trade-off for our open-world
999 editing setting, particularly when ODinW performance is considered.

999 We do not adopt other available detectors such as Grounding DINO 1.5, because they are closed-
999 source and thus unsuitable for a community benchmark where users may need to run evaluation
1000 many times or adapt the pipeline to their own models. Moreover, our current configuration already
1001 achieves better alignment with human judgment (81.3%) than strong zero-shot VLM baselines, so
1002 switching to a closed-source detector would reduce reproducibility without a clear benefit.

1003 When we swap Grounding DINO for OWL-ViT in our EdiVal-IF pipeline, the *relative* ranking of
1004 models (based on Img.Success at Turn 3) remains unchanged, but the *absolute* scores drop. Never-
1005 theless, the per-turn/marginal success rates still exhibit high correlation with those under Grounding
1006 DINO (Pearson 0.82, Spearman 0.79). OWL-ViT frequently fails to detect objects that are clearly
1007 present in the image, which leads to many spurious “reject” decisions and thus lower Task.Success
1008 and Img.Success across all models. This bias is largely consistent across models, so EdiVal-IF pre-
1009 serves the same ordering, but the absolute values are shifted downward. A qualitative example is
1010 shown in Figure 17, where OWL-ViT fails to detect objects that are clearly present in the image.

1011 We therefore do not recommend replacing Grounding DINO with OWL-ViT, GLIP, or other weaker
1012 open-vocabulary detectors in our framework. Grounding DINO remains a widely adopted state-of-
1013 the-art open-vocabulary detector, and weaker detectors not only reduce absolute performance scores
1014 but also harm agreement with human judgments. For example, when swapping Grounding DINO for
1015 OWL-ViT, the human agreement of EdiVal-IF drops from 81.30% to 53.67%. In general, upgrading
1016 to a stronger open-vocabulary detector should preserve the relative EdiVal-IF ranking while impro-
1017 ving absolute scores and human agreement, whereas downgrading to significantly weaker detectors
1018 has the opposite effect and is therefore undesirable.

1019 **Can detector swapping avoid failure cases?** No. We also examine the same failure cases of
1020 Grounding DINO under OWL-ViT and GLIP. In these examples, OWL-ViT behaves differently
1021 from Grounding DINO but does not fix the underlying issue: regardless of whether the object truly
1022 exists in the image, OWL-ViT often detects nothing at all. GLIP, on the other hand, exhibits similar
1023 false-positive behavior to Grounding DINO, but with denser and less precise bounding boxes. Thus,
1024 switching to OWL-ViT or GLIP does not eliminate such failure cases; it merely changes them into
1025 systematic missed detections or more cluttered false positives.

1026	Method	Backbone	Pre-training data	COCO		LVIS ^{minival}				LVIS ^{val}				ODinW35	ODinW13
				AP _{all}	AP _{all}	AP _r	AP _c	AP _f	AP _{all}	AP _r	AP _c	AP _f	AP _{avg}	AP _{avg}	
1027	OWL-ViT	ViT-L	O365, OID, VG, LiT	42.2	-	-	-	-	34.6	31.2	-	-	-	-	
1028	GLIP	Swin-L	FourODs, GoldG, Cap24M	49.8	37.3	28.2	34.3	41.5	26.9	17.1	23.3	35.4	-	52.1	
1029	Grounding DINO	Swin-L	O365, OID, GoldG	52.5	-	-	-	-	-	-	-	-	26.1	56.9	
1030															

Table 9: Performance of popular detectors including OWL-ViT, GLIP, and Grounding DINO (Swin-L). Numbers are copied from Table 1 of Grounding DINO 1.5 Ren et al. (2024). In the open-set setting ODinW, which is most similar to our scenario, Grounding DINO outperforms GLIP. It also achieves the best AP on COCO. LVIS is a large-scale benchmark with over 1k categories spanning rare, common, and frequent objects.

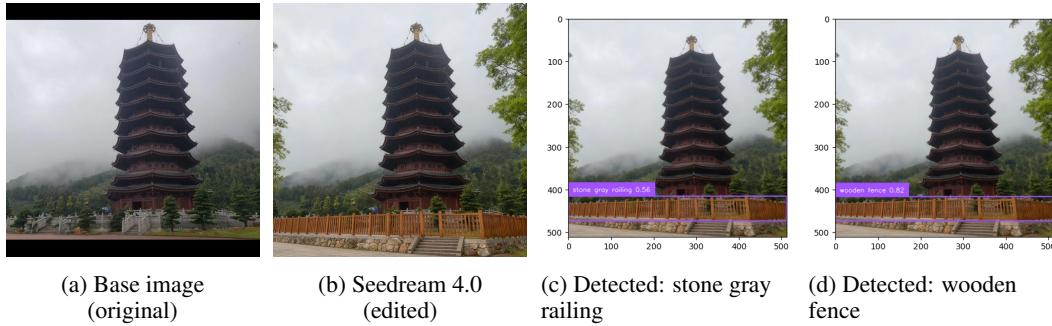


Figure 16: **Failure due to detector false positives.** Although the edit visually replaces the railing with a wooden fence, Grounding DINO fires on both “stone gray railing” and “wooden fence” in overlapping regions, causing an incorrect failure in our instruction-following metric.

Figure 17: OWL-ViT fails to detect the queried objects regardless of whether they are actually present in the image, and therefore does not resolve this failure case.

Figure 18: GLIP produces substantially more false positives than Grounding DINO, hallucinating objects such as a “stone gray railing” and misclassifying the tower region as a “wooden fence” or “stone gray railing”.

1080 C.4 IMAGE FEATURE EXTRACTOR SWAP: DINOV3 TO DINOV2
1081

1082 We further ablate the image feature extractor by swapping the default backbone (DINOV3) with
1083 DINOV2. As with our other component swaps (VLM, detector, and threshold), we observe the
1084 same qualitative behavior: the *relative* ranking of models remains unchanged, while the *absolute*
1085 consistency scores shift.

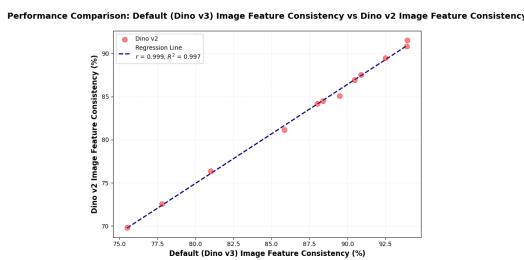
1086 Concretely, DINOV2 systematically produces lower EdiVal-CC values than DINOV3, but the or-
1087 dering across models is identical. When we compare per-turn consistency scores across the two
1088 backbones over all (model, turn) pairs, we obtain Pearson correlation 0.9987 and Spearman corre-
1089 lation 1.0000, indicating that DINOV2 and DINOV3 induce essentially the same ranking and very
1090 similar relative differences between models, despite the shift in absolute scale.

1091
1092 Table 10: DINO-v2 feature backbone results with EdiVal-CC Rank.
1093

Model	Turn 1	Turn 2	Turn 3	EdiVal-CC Rank
Seedream 4.0	89.455	84.185	81.120	3
Nano Banana	90.820	86.900	85.070	1
GPT-Image-1	76.360	72.555	69.845	4
FLUX.1-Kontext-max	91.530	87.535	84.460	2

1099 Table 11: DINO-v3 feature backbone results with EdiVal-CC Rank.
1100

Model	Turn 1	Turn 2	Turn 3	EdiVal-CC Rank
Seedream 4.0	92.51	88.03	85.86	3
Nano Banana	93.91	90.48	89.48	1
GPT-Image-1	81.00	77.78	75.50	4
FLUX.1-Kontext-max	93.93	90.90	88.40	2



1115 Figure 19: Per-turn EdiVal-CC scores under DINOV3 (x-axis) vs. DINOV2 (y-axis) for the four re-
1116 presentative models. Each point is a (model, turn) pair; Pearson correlation is 0.9987 and Spearman
1117 correlation is 1.0000, confirming that the feature-extractor swap only shifts the absolute scale while
1118 preserving the ranking.

1119
1120 D IMPROVEMENT TOWARDS COUNTING
1121

1122 When we generate prompts, the target count is never higher than 10. Under this regime, Grounding
1123 DINO is sufficiently reliable for counting the relevant objects.

1125 Potentially there are two other families of methods to do counting: tracking-based counting and
1126 density-map estimation. Tracking-based methods are typically designed for videos, where they
1127 exploit multiple frames to track objects over time. In our case, we only use single edited images to
1128 do counting, so such tracking-based approaches are not applicable.

1129 Density-map estimation methods (e.g., CSRNet Zhang et al. (2016); Li et al. (2018)) are usually
1130 developed for crowd counting of a *fixed* target category (such as humans) on specific datasets, rather
1131 than open-vocabulary object counting. When the objects to be counted are not aligned with the
1132 training data distribution, these methods can fail dramatically. To make this concrete, we apply
1133 CSRNet to one of our examples: CSRNet outputs an estimated count of 44.86, whereas Grounding
DINO correctly predicts 3 bounding boxes for the target objects.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144



1145 Figure 20: Illustration of counting with an open-vocabulary detector (Grounding DINO) vs. a
1146 density-map-based crowd counter (CSRNet). CSRNet severely overestimates the count in this open-
1147 vocabulary setting.

E COMPLEX EDITING COMPRESSION CONNECTOR

1151 As the reviewer pointed out, the way we connect individual instructions may influence the final
1152 instruction-following performance. In the main paper, we adopt the most straightforward strategy:
1153 we simply concatenate per-turn instructions in order as `{prompt for turn 1}`. `{prompt`
1154 `for turn 2}`. `{prompt for turn 3}`. We fully agree that alternative connectors or
1155 prompt templates could potentially change performance, as suggested by the reviewer.

1156 To study this effect, we experiment with three additional variants of the complex-edit prompt
1157 construction. For concreteness and reproducibility, we conduct this analysis on Qwen-Image-Edit, since
1158 it is the strongest open-source model in our pool and thus a natural candidate for investigating such
1159 effects.

- 1160 1. Random shuffle: randomly shuffle the sequence of the three per-turn prompts and then concatenate
1161 them with periods.
- 1163 2. Sequential connector: explicitly indicate ordering using connectors such as `first`, `{prompt`
1164 `1}`, `then`, `{prompt 2}`, `last`, `{prompt 3}`.
- 1165 3. Keep-unchanged clause: append an explicit constraint about unchanged objects at the end, while
1166 still concatenating by periods, e.g., `{prompt 1}`. `{prompt 2}`. `{prompt 3}`. `Keep`
1167 `{unchanged objects}` `unchanged`.

1168 We then measure the Turn-3 instruction-following rate under these four variants (default + three
1169 connectors). The results are summarized in Table 12.

1171 Table 12: Turn-3 instruction-following rate for different complex-edit connector variants (Qwen-
1172 Image-Edit).

1174 Connector Variant	1175 Complex(C3) (%)
1176 Vanilla (default concatenation)	27.62
1177 Random shuffle	27.10
1178 Sequential connector	26.92
1179 Keep-unchanged clause	25.87

1180 Overall, these connector variants do not substantially change the instruction-following performance
1181 in our setting. The differences are relatively small, and the qualitative behavior remains similar. We
1182 will add a brief discussion of these variants and their impact to the revised version.

F STYLE CHANGE: PRELIMINARY EXAMINATION

1184 We also conducted a preliminary examination of style-change edits. Concretely, we generated stylized
1185 images (e.g., “Ghibli style” or “Pixar style”) and then asked both GPT-4o and Gemini to classify

(a) Base image.

(b) GPT-Image-1.

(c) Qwen-Image-Edit.

Figure 21: Examples of edits targeting a “Ghibli style”.

(a) Base image.

(b) GPT-Image-1.

(c) Qwen-Image-Edit.

Figure 22: Examples of edits targeting a “Pixar style”.

them. For each generated image, we prompted the VLMs with a yes/no question such as: “Is this image in Ghibli style?” or “Is this image in Pixar style? Please answer only ‘yes’ or ‘no’.” In all cases, both models answered “no”, even for images that humans would generally agree are successful style transfers (see Fig. 21 and Fig. 22). This preliminary experiment highlights a key limitation: current VLMs struggle to reliably judge whether a style-transfer edit has succeeded, even when evaluating images produced by the same model being queried (e.g., GPT-4o answering “no” for its own generations).

Beyond this limitation, we identify two additional factors that make style-transfer edits particularly challenging for fair instruction-following evaluation. First, style transfer is an inherently ill-defined and subjective editing category: the boundaries between styles can be vague (e.g., watercolor anime vs. Ghibli), which naturally induces lower human agreement. Second, when performing style-transfer edits with closed-source models, we often encounter copyright-related refusals (e.g., declining to apply a specific proprietary style), which further complicates systematic evaluation under our framework.

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 G RELATED WORK

1244 **Instruction-based editing models.** InstructPix2Pix (IP2P) Brooks et al. (2023) introduced a two-
 1245 stage recipe that converts a text-to-image diffusion model Rombach et al. (2022); Zhang et al.
 1246 (2025a) into an editor: (i) synthesize paired editing data using Stable Diffusion Rombach et al.
 1247 (2022) and training-free techniques such as Prompt-to-Prompt Hertz et al. (2023); (ii) fine-tune the
 1248 diffusion model on these pairs. Subsequent systems—MagicBrush Zhang et al. (2023), UltraEdit
 1249 Zhao et al. (2024), and AnyEdit Yu et al. (2025)—scale this paradigm to large, fine-grained real-
 1250 image editing. More recent work (e.g., OmniGen Xiao et al. (2025); Wu et al. (2025b), Step1X-Edit
 1251 Liu et al. (2025), FLUX.1 Kontext Labs et al. (2025), and Qwen-Image-Edit Wu et al. (2025a), See-
 1252 dream Gao et al. (2025)) adopts task-aware architectures and increasingly leverages flow matching
 1253 Liu et al. (2022); Lipman et al. (2022); Zhang et al. (2024).

1254 A complementary line explores autoregressive (AR) editors such as Gemini 2.0 Flash Image Gemini2 (2025), Gemini 2.5 Flash Image (“Nano Banana”) Deepmind (2025), and GPT-Image-1 OpenAI
 1255 (2025). These models enable **in-context multi-turn editing**: users iteratively refine an image within
 1256 a conversational interface, with the model maintaining a coherent editing history. To our knowledge,
 1257 we provide the first systematic comparison of in-context multi-turn AR editing versus context-free
 1258 multi-turn editing with non-AR models across instruction following, content consistency, and visual
 1259 quality.

1260 **Editing evaluation.** Early evaluations (e.g., Brooks et al. (2023)) rely on CLIP-based similarity
 1261 Radford et al. (2021), including directional variants Gal et al. (2022), to approximate editing quality.
 1262 However, CLIP emphasizes semantic alignment and is less sensitive to fine, pixel-level changes.
 1263 When ground-truth edited images exist, it is natural to compare model outputs against references
 1264 using pixel distances (L_1) and semantic similarities (DINO Caron et al. (2021), CLIP Radford et al.
 1265 (2021)) Zhang et al. (2023); Zhao et al. (2024); Yu et al. (2025); Sheynin et al. (2024). Yet references
 1266 are imperfect: the space of valid edits is inherently multimodal, while a single reference captures
 1267 only one realization; moreover, many references are themselves synthesized by prior editors (e.g.,
 1268 Prompt-to-Prompt Hertz et al. (2023), SDXL Podell et al. (2024), DALLE-2 Ramesh et al. (2022)),
 1269 importing their biases into evaluation.

1270 Recent work relies exclusively on VLMs as interpretable judges—e.g., VIEScore Ku et al. (2023),
 1271 HQ-Edit Hui et al. (2024), and Complex-Edit Yang et al. (2025)—by querying models such as GPT-
 1272 4o OpenAI (2025) about specific aspects of an edit. While VLMs offer holistic, language-mediated
 1273 assessments, they are insufficient on their own: they are notoriously poor at spatial reasoning Zhang
 1274 et al. (2025b); Cheng et al. (2024); Chen et al. (2024); Qharabagh et al. (2024); Chang et al. (2025)
 1275 and are prone to object hallucinations in existence, category, attributes, and relations Bai et al.
 1276 (2024); they have limited sensitivity to pixel-level changes and frequently miss subtle, localized
 1277 modifications Vo et al. (2025) (e.g., fine structures, small attribute shifts, etc.), which are crucial
 1278 for evaluating content consistency; they are miscalibrated for artifacts and aesthetics Liang et al.
 1279 (2024); Xu et al. (2023); Ma et al. (2025), which humans are sensitive to. Our approach, **EdiVal-**
 1280 **Agent**, addresses these gaps by integrating VLM-based reasoning with grounding tools, symbolic,
 1281 object-centric pixel- and semantic-level tools, and human preference models, yielding a precise and
 1282 interpretable evaluation of instruction-based editing.

1283 **Editing tasks.** We consider three settings: (i) **Single-turn vs. multi-turn.** Multi-turn editing
 1284 Zhang et al. (2023); Zhao et al. (2024) is more demanding than single-turn, as the model must
 1285 maintain consistency across sequential instructions. In contrast to *context-free* multi-turn pipelines
 1286 (each turn consumes the previous image and the next instruction), AR models Gemini2 (2025);
 1287 Deepmind (2025); OpenAI (2025) support *in-context* multi-turn editing by conditioning on the full
 1288 conversational history. (ii) **Complex single-shot vs. multi-turn.** Following Yang et al. (2025),
 1289 a sequence of edits can be concatenated into a single complex prompt and executed in one pass;
 1290 we compare this setting to genuine multi-turn editing. (iii) **Other tasks.** We focus on instruction-
 1291 based editing, the most common regime; other scenarios (e.g., prompt-to-prompt/caption-to-caption
 1292 Hertz et al. (2023)) are outside our scope. To the best of our knowledge, this paper offers the first
 1293 comprehensive comparison covering single-turn, multi-turn, and complex single-shot editing within
 1294 a unified framework.

1296 H LIMITATION AND DISCUSSION

1298 Given the object-centric evaluations conducted in this study, several limitations warrant considera-
 1299 tion. First, our instruction types are limited to object-centric prompts, which may not capture the
 1300 full range of creative editing requests typical in real-world scenarios. Future research should explore
 1301 a broader spectrum of instructions, including those involving stylistic changes or complex narrative
 1302 elements. Additionally, while our work provides a reliable and comprehensive evaluation frame-
 1303 work for multi-turn editing, it does not apply the evaluation results to improve the editing models
 1304 themselves. A straightforward extension would be to use evaluation scores for Best-of-N selection
 1305 to improve inference-time performance. Future work could also explore post-training methods such
 1306 as reinforcement learning, treating the evaluation scores as reward signals.

1308 I MORE METRICS FOR HUMAN AGREEMENT

1310 The most straightforward metric is accuracy. Here, we provide more metrics measuring human
 1311 agreement: Pearson Linear Correlation Coefficient (PLCC), Cohen’s Kappa Coefficient (Kappa)
 1312 and F1 scores as shown in Tab. 13. However, we note that for 0/1 predictions, correlation metrics
 1313 like PLCC and Kappa may be considered not suitable for measuring the agreement with human
 1314 annotators.

1315 **Table 13: Task-specific and overall performance comparison across models.** Metrics reported:
 1316 Pearson Linear Correlation Coefficient (PLCC), Cohen’s Kappa, and F1. Best per column high-
 1317 lighted in **bold**.

Task Type	Model	PLCC	Kappa	F1
subject_add	CLIP_dir	0.2110	0.1764	0.6914
	Qwen2.5-VL	0.5331	0.5264	0.7893
	EdiVal-IF	0.5365	0.5364	0.7786
background_change	CLIP_dir	-0.0329	-0.0076	0.8745
	Qwen2.5-VL	0.5792	0.5686	0.8889
	EdiVal-IF	0.5244	0.5157	0.8763
subject_remove	CLIP_dir	-0.0011	-0.0002	0.6592
	Qwen2.5-VL	0.1891	0.1758	0.4896
	EdiVal-IF	0.5473	0.5409	0.7837
count_change	CLIP_dir	0.0456	0.0142	0.0782
	Qwen2.5-VL	0.1998	0.1748	0.2162
	EdiVal-IF	0.3431	0.3274	0.3571
material_alter	CLIP_dir	0.2086	0.2038	0.4561
	Qwen2.5-VL	0.8658	0.8616	0.8971
	EdiVal-IF	0.4778	0.4624	0.6364
color_alter	CLIP_dir	0.1841	0.0874	0.8542
	Qwen2.5-VL	0.8409	0.8407	0.9573
	EdiVal-IF	0.7820	0.7744	0.9338
position_change	CLIP_dir	0.0996	0.0430	0.3285
	Qwen2.5-VL	-0.0381	-0.0374	0.1798
	EdiVal-IF	0.3907	0.3271	0.5000
text_change	CLIP_dir	0.6178	0.6173	0.8063
	Qwen2.5-VL	0.7161	0.6947	0.8651
	EdiVal-IF	0.7438	0.7347	0.8571
subject_replace	CLIP_dir	0.0420	0.0121	0.8219
	Qwen2.5-VL	0.6028	0.5994	0.8699
	EdiVal-IF	0.5533	0.5429	0.8410
Overall	CLIP_dir	0.3186	0.2568	0.6858
	Qwen2.5-VL	0.6162	0.6161	0.7922
	EdiVal-IF	0.6278	0.6273	0.8030

1350 **J ARTIFICIAL ANALYSIS LEADERBOARD**
13511352 We report the leaderboard from the Artificial Analysis website as of **September 12, 2025** (Fig. 23).
1353 To ensure a fair comparison, we align on the intersection of models evaluated by both platforms and
1354 *exclude* Qwen-Image-Edit. Among the overlapping systems—Seedream 4.0, Nano Banana (Gemini 2.5 Flash),
1355 GPT-Image-1 (GPT-4o), FLUX.1-Kontext-max, and Gemini 2.0 Flash—the relative
1356 ordering of human votes on Artificial Analysis matches our EdiVal rankings exactly (Table 14),
1357 supporting the accuracy of our methodology.1358 **Table 14: Model rankings on the overlapping set.** Relative ranks from Artificial Analysis (human
1359 votes) vs. EdiVal (ours) as of Sep 12, 2025.
1360

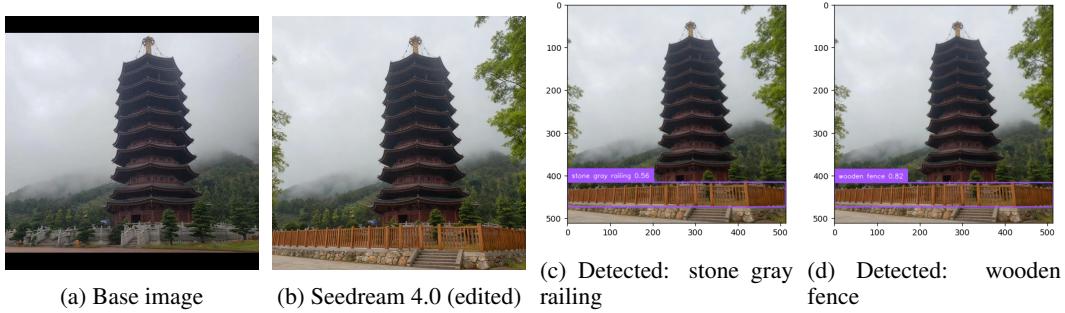
Model	Artificial Analysis (Rank)	EdiVal (Rank)
Seedream 4.0	1	1
Nano Banana (Gemini 2.5 Flash)	2	2
GPT-Image-1 (GPT-4o)	3	3
FLUX.1-Kontext-max	4	4
Gemini 2.0 Flash	5	5

Creator	Model	ELO	95% CI	Appearances
ByteDance Seed	Seedream 4.0	1,205	-20/+23	1,607
Google	Gemini 2.5 Flash	1,201	-13/+13	5,783
Block Forest Labs	FLUX.1 Kontext [pro]	1,089	-12/+12	5,993
OpenAI	GPT-4o	1,088	-12/+13	5,781
Alibaba	Qwen-Image-Edit	1,087	-12/+12	6,103
Block Forest Labs	FLUX.1 Kontext [max]	1,083	-12/+12	5,947
ByteDance seed	SeedEdit 3.0	1,076	-21/+21	1,372
HiDream	HiDream-E1.1	1,005	-13/+13	5,112
Google	Gemini 2.0 Flash Preview	1,000	+0/+0	5,521
Block Forest Labs	FLUX.1 Kontext [dev]	995	-13/+13	5,679

1383 **Figure 23: Artificial Analysis leaderboard (Sep 12, 2025).** Screenshot of the public leaderboard
1384 used for comparison in Table 14.
1385

1404
 1405 **K FAILURE CASE**

1406 We discuss a representative failure mode of our evaluation. The most severe errors arise from
 1407 false positives in *Grounding-DINO*, despite its strong open-vocabulary performance. Consider the
 1408 prompt: “*Replace [stone gray railing] with [wooden fence]*.” As shown in Fig. 24, Seedream 4.0
 1409 produces an edit that is visually correct. Our rule for `subject_replace` declares success if, on
 1410 the edited image, the *source* object (stone gray railing) is no longer detected while the *target* object
 1411 (wooden fence) is detected. However, *Grounding-DINO* occasionally reports both the source and
 1412 target objects in the same region with high confidence, incorrectly suggesting that the source object
 1413 remains and thereby degrading the measured instruction-following accuracy. Improving the reli-
 1414 ability of open-vocabulary detection—particularly reducing false positives—would directly improve
 1415 the fidelity of our evaluation.



1427 **Figure 24: Failure due to detector false positives.** Although the edit visually replaces the railing
 1428 with a wooden fence, *Grounding-DINO* fires on both “stone gray railing” and “wooden fence” in
 1429 overlapping regions, causing an incorrect failure in our instruction-following metric.

1458 L DISCUSSION ON SINGLE-SHOT COMPLEX EDITING

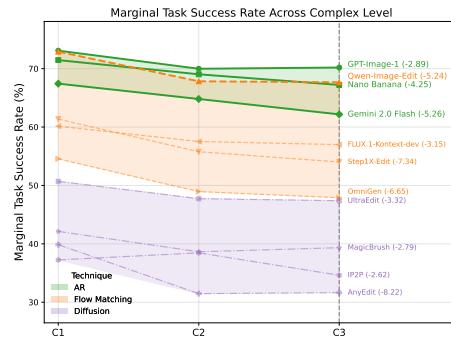
1460 Figure 25 shows that marginal success for the final instruction remains largely stable as complex
 1461 prompt length increases. Together with the multi-turn drops seen in Figure 5, this pattern supports
 1462 an *exposure-bias* explanation: performance degradation primarily stems from error accumulation
 1463 across sequential edits rather than an intrinsic inability to handle multiple instructions in a single
 1464 prompt.

1466 M DISCUSSION ON VISUAL QUALITY

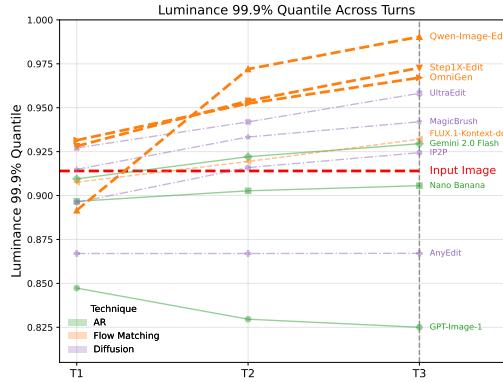
1468 Beyond instruction following and content consistency, the perceptual *quality* of the edited image is
 1469 a key dimension. We therefore report (i) a learned aesthetic score and (ii) several low-level image
 1470 statistics that can surface systematic artifacts and drift in multi-turn editing pipelines.

1472 Table 15: Turn-3 instruction following: Multi-turn
 1473 vs. single-shot complex prompts, grouped by
 1474 technique. **Bold** indicates which setting is higher for
 1475 each model.

Technique	Model	Multi-turn (T3)	Complex (C3)
In-Context	Nano Banana	35.35	28.14
	GPT-Image-1	38.35	28.78
	Gemini 2.0 Flash	28.42	21.89
Flow Matching	Qwen-Image-Edit	22.55	27.62
	Step1X-Edit	17.83	15.73
	FLUX.1-Kontext-dev	16.61	19.58
	OmniGen	10.66	11.01
Diffusion	AnyEdit	7.22	2.80
	UltraEdit	6.36	8.22
	MagicBrush	4.90	4.55
	IP2P	2.80	2.80



1487 Figure 25: Marginal task-success rate of
 1488 the *last* instruction as a function of complex
 1489 prompt length (levels $C = 1, 2, 3$).



1500 Figure 26: Per-image 99.9% luminance quantile across turns. Higher values indicate more extreme
 1501 bright pixels and greater risk of over-exposure.

1503 **Low-level image statistics** In addition to learned aesthetic scores, we compute several low-level
 1504 image statistics that help reveal systematic, multi-turn editing artifacts. Concretely, we convert RGB
 1505 pixels to luminance using the Rec. 709 luma coefficients: $Y = 0.2126 R + 0.7152 G + 0.0722 B$,
 1506 and for each edited image we extract the **99.9% luminance quantile** (the per-image pixel value
 1507 below which 99.9% of pixels fall). The 99.9% quantile is sensitive to high-exposure pixels and
 1508 therefore highlights over-exposure and bright streaks while being robust to single-pixel outliers. In
 1509 Figure 26 we plot the trend of this statistic across turns.

1511 The measured trend shows a clear pattern: **Qwen-Image-Edit** and several other flow-matching
 1512 models (with the notable exception of **FLUX.1-Kontext-dev**) exhibit a pronounced increase in the

99.9% luminance quantile over turns, indicating progressive brightening and increased risk of over-exposure. By contrast, regeneration-style editors such as **GPT-Image-1** tend to produce lower luminance values than the input (reflecting darker, more conservative reconstructions), and several models remain stable across turns.

Figure 27 provides qualitative examples from Qwen-Image-Edit. The edited images exhibit elevated luminance and noticeable high-frequency bright artifacts (e.g., white streaks or “line” textures) that degrade perceptual quality, with luminance quintiles increasing substantially. Correspondingly, HPS drops from 6.19 to 4.19 and 3.34, suggesting that HPS is sensitive to over-exposure to some extent. In contrast, when querying VLMs about the visual quality of these images, the returned scores do not change in the first two turns and remain consistently above 50, reflecting a *positive* evaluation under the [0, 100] scale, while the T2/T3 edited images show significant artifacts.

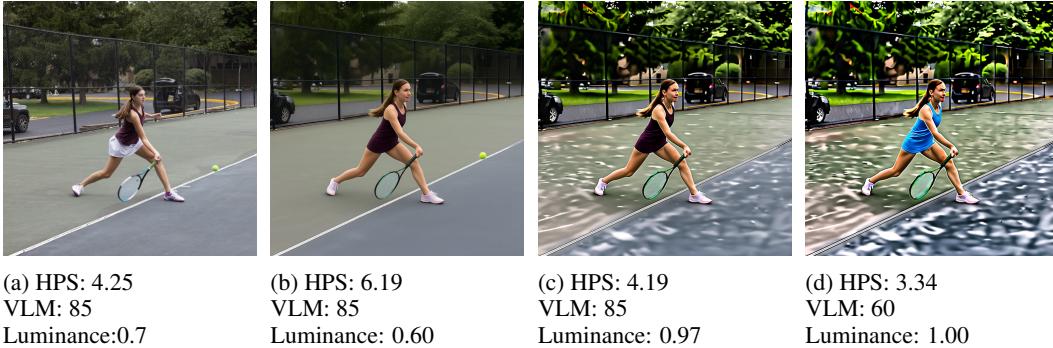


Figure 27: Representative Qwen-Image-Edit examples illustrating over-exposure and bright artifact formation across turns. Although editing instructions are often satisfied, the images show elevated luminance and high-frequency bright streaks that accompany the edits (visible especially in T2/T3). Editing instructions: [Remove polyester white skirt, Change the count of tennis ball to 4, Change the color of tank top to blue]. Note that VLM gives a *positive* score to all the images.

N VLMs FAILING TO JUDGE VISUAL QUALITY

The following is the zero-shot prompt for visual quality with VLMs. The example results are shown in Fig. 27.

You are an expert at evaluating image visual quality and naturalness.

I will show you an image.

Please analyze whether the image is visually pleasing and natural. Consider:

1. Is the image visually pleasing?
2. Is the image natural?
3. Does the image look natural and coherent?

Respond only with a score between 0 and 100, where 100 is the highest score.

100 means the image is visually pleasing and natural.

0 means the image is not visually pleasing and natural.

50 means the image is neutral.

1566 **Algorithm 1** Object Listing and Grounding Filter

1567 **Require:** image I

1568 **Ensure:** object pool \mathcal{O} with grounding metadata

1569 1: $J \leftarrow \text{LISTOBJECTS}(I)$ ▷ see Sec. O.2.1

1570 2: $\mathcal{O} \leftarrow \emptyset$

1571 3: **for all** $(\text{name}, \text{attrs}) \in J$ excluding key All Objects **do**

1572 4: $(\text{boxes}, \text{phrases}, \text{scores}) \leftarrow \text{GROUND}(I, \text{name})$ ▷ thresholds 0.3–0.4

1573 5: **if** $\text{boxes} \neq \emptyset$ **and** each box has $w, h < 0.9$ **and** $\text{area} \leq 0.4$ **then**

1574 6: $\mathcal{O}[\text{name}] \leftarrow \text{attrs}$; attach grounding metadata (count, boxes, phrases, scores)

1575 7: **end if**

1576 8: **end for**

1577 9: $\mathcal{O}[\text{Filtered All Objects}] \leftarrow \text{JOIN}(\text{KEYS}(\mathcal{O}), ".")$ and then append "."

O ALGORITHMIC DETAILS

This appendix provides the algorithmic details of our pipeline: object discovery and grounding-based filtering (decomposition), instruction generation for multi-turn editing, and evaluation (instruction following, consistency, and perceptual quality). We also list the exact prompts and implementation specifics needed for reproducibility, and summarize the model-generation configurations.

O.1 DECOMPOSITION

We first enumerate visible objects in an input image using a vision-language model (VLM) prompt, then filter these objects via visual grounding.

- Object listing: We use GPT-4o with the prompt in Section O.2.1. The model returns a JSON with one entry per object and a terminal aggregated string key ‘‘All Objects’’.
- Grounding filter: We use GroundingDINO SwinT-OGC Liu et al. (2024a) to retain only objects that can be visually grounded. We resize images to 512×512 . We keep detections meeting text/box thresholds (0.35) and reject oversized boxes by checking width/height in normalized coordinates; we use $\text{max_box_size}=0.9$ and filter large regions if $\text{area} > 0.4$. The output augments each kept object with grounding counts, phrases, boxes, and scores, and creates a ‘‘Filtered All Objects’’ string listing retained objects.

O.2 INSTRUCTION GENERATION

We generate multi-turn editing instructions from the grounded object pool. We support nine task types: local edits {subject_replace, subject_remove, material_alter, color_alter, subject_add, text_change, position_change, count_change} and the global edit {background_change}. We set MAX_TURNS=3. At each turn, we sample a new task type without repetition where feasible. Feasibility is checked against the current object pool (e.g., position_change requires at least two objects). If a sampled task is infeasible, we fall back to subject_add. We maintain an available-objects pool that is updated after each instruction according to its semantics (adds, removes, or modifies attributes). If a background change occurs, we mark bg_consistency=false for subsequent turns and restrict the pool to foreground objects for the remainder of the episode.

Prompts (Full Text) Below we reproduce the prompts used by our generators, reformatted for readability in print (content preserved).

O.2.1 OBJECT LISTING PROMPT

You will be given an image. Your task is to identify and describe all clearly visible objects in the image in a structured JSON format.

Output rules:

1620 **Algorithm 2** Multi-Turn Instruction Generation

1621 **Require:** grounded pool \mathcal{O}_0 , turns $T=3$

1622 **Ensure:** tasks $\{\tau_t\}$, instructions $\{I_t\}$, formats $\{F_t\}$, flag has_bg, set all_objects_ever

1623 1: used $\leftarrow \emptyset$; $\mathcal{O} \leftarrow \mathcal{O}_0$; has_bg \leftarrow false

1624 2: all_edited $\leftarrow \emptyset$; all_objects_ever \leftarrow keys(\mathcal{O}_0)

1625 3: **for** $t = 1$ to T **do**

1626 4: cand $\leftarrow \{\text{all task types}\} \setminus \text{used}$

1627 5: $\tau_t \leftarrow \text{sample}(\text{cand})$;

1628 6: **if** not feasible(τ_t, \mathcal{O}) **then** $\tau_t \leftarrow \text{subject_add}$

1629 7: **end if**

1630 8: $F_t \leftarrow \text{format_instruction}(\tau_t, \mathcal{O})$ ▷ Query VLM by prompts in Section O.2.2

1631 9: $I_t \leftarrow \text{render_instruction}(F_t, \tau_t, \mathcal{O})$ ▷ strip brackets; add unchanged list for background

1632 10: used $\leftarrow \text{used} \cup \{\tau_t\}$; append F_t, I_t

1633 11: Update *all_object_pool* by adding any objects introduced in instruction I_t .

1634 12: Update *available_object_pool* by adding or removing objects as specified in I_t .

1635 13: Update *unchanged_objects_pool* by removing any objects affected by I_t .

1636 14: **if** $\tau_t = \text{background_change}$ **then**

1637 15: has_bg \leftarrow true; $\mathcal{O} \leftarrow \text{filter_foreground}(\mathcal{O})$

1638 16: **end if**

1639 17: **end for**

1640 18: **return** $\{\tau_t\}, \{I_t\}, \{F_t\}$, has_bg, all_objects_ever

1641

1642 1. Each object must be listed as a key in the JSON, using the format: “{material} {color} {object name}”. If the material or color is unknown, omit that part. Do not include any visible text in the key. Do not use “person” as an object name; instead, describe wearable items (e.g., “blue cotton shirt”).

1643 2. For each object, the value is a dictionary with fields: “object” (type, e.g., shirt, cup), “color” (dominant color, use null if unknown), “material” (likely material, use null if unknown), “text” (visible text, null if none), “count” (number of instances), and “foreground” (boolean).

1644 3. Do not include objects that are too small to describe, mostly occluded/incomplete, or only background scenery (e.g., distant sky, wall, floor).

1645 4. Add a final key “All Objects” whose value is a single string listing all object names, formatted as: “{material} {color} {object name}. {color} {object name}. {material} {object name}. {object name}.” Exclude “null”/“None” and separate entries by “.” (period + space). Do not include any text content in this list.

1646 **Example output (abridged JSON):**

1647 • “cotton blue shirt”: {object: “shirt”, color: “blue”, material: “cotton”, text: null, count: 1, foreground: true}

1648 • “ceramic white cup”: {object: “cup”, color: “white”, material: “ceramic”, text: “GOOD DAY”, count: 1, foreground: false}

1649 • “leather bag”: {object: “bag”, color: null, material: “leather”, text: null, count: 2, foreground: true}

1650 • “red scarf”: {object: “scarf”, color: “red”, material: null, text: null, count: 1, foreground: true}

1651 • “All Objects”: “cotton blue shirt. ceramic white cup. leather bag. red scarf.”

1652 **O.2.2 TASK PROMPTS**

1653 **Subject Replace**

1654 You are given an image and asked to suggest a replacement object for a specific object in the scene.

1655 **Given object to replace:** *object_name*

1656 **Your task:**

1657 1. Understand the scene context.

1658 2. Suggest a new object that naturally replaces “*object_name*”.

1674 3. Ensure the suggestion is realistic for the scene.
 1675 4. Respond with only the object name (e.g., “chair”, “lamp”, “book”).
 1676
 1677 **Examples:** In a kitchen: “bowl”, “mug”; on a street: “bus”, “truck”; in an office: “stool”,
 1678 “bench”.
 1679 **Answer format:** New object name:

1680 Material Alter

1681
 1682 You are given an image and asked to suggest a new material for a specific object.
 1683 **Object:** *object_name* **Current material:** *current_material*
 1684 **Your task:**
 1685 1. Identify the object.
 1686 2. Suggest a realistic alternative material that is easy to distinguish from the current one.
 1687 3. Respond with only the material name (e.g., “wood”, “metal”, “plastic”, “leather”).
 1688
 1689 **Examples:** cup: ceramic, glass, metal, plastic; chair: wood, metal, plastic, fabric; bag:
 1690 leather, canvas, nylon, fabric.
 1691 **Answer format:** New material:

1692 Position Change

1693
 1694 You are given an image and asked to create a position change instruction.
 1695 **Available objects:** *available objects* **Positions:** left, right, above, below
 1696 **Your task:**
 1697 1. Select a target object to move and a reference object.
 1698 2. Choose a relative position (left, right, above, below).
 1699 3. Ensure the instruction is physically reasonable.
 1700 4. **Format:** “Change the position of [target object] to [position] of [reference object]”.
 1701
 1702 **Examples:** “Change the position of [cup] to [right] of [book]”; “Change the position of
 1703 [lamp] to [above] of [table]”.
 1704 **Answer format:** Position change instruction:

1705 Count Change

1706
 1707 You are given an image and asked to create a count change instruction.
 1708 **Available objects:** *available objects* **Target count:** *target count*
 1709 **Your task:**
 1710 1. Identify a suitable object for the requested count.
 1711 2. Ensure the target count is realistic for the scene.
 1712 3. **Format:** “Change the count of [object name] to [target count]”.
 1713
 1714 **Examples:** “Change the count of [cup] to [3]”; “Change the count of [book] to [2]”.
 1715 **Answer format:** Count change instruction:

1716 Text Change

1717
 1718 You are given an image and asked to generate new text content.
 1719 **Context:** *text situation*
 1720 **Your task:**
 1721 1. Generate text that fits the scene.
 1722 2. Keep text short: *max 2 words in English or 4 Chinese characters*.
 1723 3. Respond with only the text content (no quotes or extra words).
 1724
 1725 **Examples:** coffee shop: “COFFEE”, “OPEN”; book: “NOVEL”, “GUIDE”; sign: “EXIT”,
 1726 “STOP”; Chinese: “咖啡”, “出口”.
 1727 **Answer format:** New text:

1728 Color Alter

1728 You are given an image and asked to suggest a new color for a specific object.
 1729 **Object:** *object name* **Current color:** *current color*
 1730 **Your task:**
 1731 1. Suggest a simple, common color that fits the object.
 1732 2. Use only basic colors: red, blue, green, yellow, black, white, brown, gray, orange,
 1733 purple, pink.
 1734 3. Choose a color different from the current color and answer with the color name only.
 1735 **Answer format:** New color:
 1736

1737 **Subject Add**

1738 You are given an image and asked to suggest a new object to add to the scene.
 1739 **Reference object:** *reference object* **Position:** *position*
 1740 **Your task:**
 1741 1. Propose an object that would naturally fit at the specified position relative to the ref-
 1742 erence object.
 1743 2. Ensure the suggestion is realistic and contextually appropriate.
 1744 3. Respond with only the object name (e.g., “lamp”, “book”, “cup”).
 1745 **Examples:** next to a desk: “chair”, “lamp”, “computer”; near a kitchen counter: “bowl”,
 1746 “plate”, “mug”; by a window: “plant”, “curtain”, “book”.
 1747 **Answer format:** New object:
 1748

1749 **Background Change**

1750 You are given an image and asked to suggest a new background for the scene. The existing
 1751 objects should remain unchanged.
 1752 **Your task:**
 1753 1. Propose a new background that works with the current setting.
 1754 2. Keep it simple and realistic; use 1–2 words (e.g., “kitchen”, “office”, “garden”,
 1755 “beach”, “forest”).
 1756 3. Respond with only the background name.
 1757 **Answer format:** New background:
 1758

1759 O.3 EVALUATION

1760 We evaluate in two modes: (i) **Multi-turn** (each turn edits the output of the previous turn), and (ii)
 1761 **Complex Editing** (compress all instructions to a single prompt).
 1762

1763 **Instruction Following.** We compute a binary success per instruction with a detector combining
 1764 GroundingDINO Liu et al. (2024a) and a VLM (Qwen2-VL-7B) Bai et al. (2025). Representative
 1765 details:
 1766

- 1767 • Detector thresholds. Unless noted per task, GroundingDINO thresholds are 0.3–0.4; detec-
 1768 tions return normalized boxes $[x_1, y_1, x_2, y_2]$.
- 1769 • Cropping and small objects. For object-level checks we crop by detected boxes; very small
 1770 boxes (< 0.05 in width/height) can be enlarged before VLM queries.
- 1771 • Replace. Detect old and new objects in source/target; success if both are detected and any
 1772 IoU between a source box (old) and a target box (new) is > 0 . A VLM pre-check rejects
 1773 obvious non-replacements. See details in Alg 3.
- 1774 • Remove. Detect the object in the source; success if the object is absent in the target. See
 1775 details in Alg 4.
- 1776 • Position change. Detect target and reference objects and verify the requested spatial relation
 1777 using object centers; also ensure the object count did not increase spuriously. See details in
 1778 Alg 6.
- 1779 • Count change. Use the detector to locate instances of the target object and take the number
 1780 of validated detections as the count. See details in Alg 7.

1782 **Algorithm 3** Evaluate Subject Replace

1783 **Require:** base B , target T , old object name o , new object name n
 1784 **Ensure:** success flag succ

1785 1: $S \leftarrow \text{DETECT}(B, o, \tau); T_n \leftarrow \text{DETECT}(T, n, \tau)$
 1786 2: **if** $S \neq \emptyset \wedge T_n \neq \emptyset$ **then**
 1787 3: succ $\leftarrow \max_{b \in S, t \in T_n} \text{IOU}(b, t) > 0$
 1788 4: **else**
 1789 5: succ $\leftarrow \text{false}$
 1790 6: **end if**
 1791 7: **return** succ

1792 **Algorithm 4** Evaluate Subject Remove

1793 **Require:** base B , target T , object name o
 1794 **Ensure:** success flag succ

1795 1: $S \leftarrow \text{DETECT}(B, o, \tau); T_o \leftarrow \text{DETECT}(T, o, \tau)$
 1796 2: succ $\leftarrow (S \neq \emptyset \wedge T_o = \emptyset)$
 1797 3: **return** succ

1800

- 1801 • Color/material. Crop the object in the target and ask the VLM a yes/no question about the
 1802 new color/material. See details in Alg 8 and Alg 9.
- 1803 • Text change. If the instruction adds text anywhere, run the VLM on the whole image; if it
 1804 replaces text on a specific object, first crop that object’s box, ask the VLM to extract the
 1805 text, and compare it to the requested text. See details in Alg 10.
- 1806 • Background change. Ask the VLM yes/no whether the requested background category is
 1807 present. See details in Alg 11.

1808 **Consistency.** We measure object and background stability as follows:

1809

- 1810 • Object consistency (unchanged objects): DINOv3 ViT-B/16 Siméoni et al. (2025) feature
 1811 similarity between crops of unchanged objects in base vs. target; we also report pixel L1
 1812 consistency and average across objects per image.
- 1813 • Background consistency: detect objects in `all_objects_pool` in base/target (Ground-
 1814 ingDINO), mask them to isolate background, then compute masked L1 between back-
 1815 grounds (optionally DINOv3 masked similarity). Background consistency is evaluated only
 1816 when no background change occurred earlier (`bg_consistency=true`).

1817 **Perceptual Quality.** We report HPSv3 Ma et al. (2025) plausibility and aesthetics, plus luminance
 1818 metrics. Quality is *not* folded into the *Overall* score.

1821 O.4 OVERALL SCORE AND AGGREGATION DETAILS

1822 Let α_t be the image success rate at turn t : the fraction of images for which *all* edits up to and
 1823 including turn t are successful (aggregated per task type, then averaged). Let κ denote the average
 1824 content-consistency score combining object and background DINOv3 similarities when applicable.

1825

- 1826 • Overall score. We report

1827

$$\text{Overall} = [\text{mean}_t(\alpha_t) \times \text{mean}(\kappa)]^{1/2}.$$

1828

- 1829 • Missing outputs across turns. For summary tables, we include only images that produce all
 1830 required outputs for the evaluated mode. If a model fails to generate a later turn, that image
 1831 is omitted from later-turn aggregates for that mode. Some edits will be rejected by some
 1832 models since the sensitive content flag.
- 1833 • No unchanged objects. If the unchanged-object list is empty, object consistency is recorded
 1834 as `None` and excluded from averages; background consistency is still computed when
 1835 `bg_consistency=true`.

1836 **Algorithm 5** Evaluate Subject Add

1837 **Require:** base B , target T , new object name n , optional reference object name r , optional position
 1838 $p \in \{\text{left, right, above, below}\}$

1839 **Ensure:** success flag

1840 1: $B_n \leftarrow \text{DETECT}(B, n, \tau); T_n \leftarrow \text{DETECT}(T, n, \tau)$

1841 2: **if** $T_n = \emptyset \vee B_n \neq \emptyset$ **then**

1842 3: **return** false

1843 4: **end if**

1844 5: **if** r and p are provided **then**

1845 6: $B_r \leftarrow \text{DETECT}(B, r, \tau); T_r \leftarrow \text{DETECT}(T, r, \tau)$

1846 7: **if** $T_r = \emptyset$ **then**

1847 8: **return** false

1848 9: **end if**

1849 10: Choose max logits boxes $t \in T_n, u \in T_r$

1850 11: $(x_t, y_t) \leftarrow \text{CENTER}(t); (x_u, y_u) \leftarrow \text{CENTER}(u)$

1851 12: **if** $p = \text{left} \wedge x_t < x_u - \varepsilon_x$ **then**

1852 13: **return** true

1853 14: **end if**

1854 15: **if** $p = \text{right} \wedge x_t > x_u + \varepsilon_x$ **then**

1855 16: **return** true

1856 17: **end if**

1857 18: **if** $p = \text{above} \wedge y_t < y_u - \varepsilon_y$ **then**

1858 19: **return** true

1859 20: **end if**

1860 21: **if** $p = \text{below} \wedge y_t > y_u + \varepsilon_y$ **then**

1861 22: **return** true

1862 23: **end if**

1863 24: **return** false

1864 25: **else**

1865 26: **return** true

1866 27: **end if**

1867 • Turn-level reporting. We also report per-turn (T1, T2, T3) instruction-following and
 1868 consistency, and per-task-type success rates $\alpha_{t,\text{type}}$. Quality metrics are reported separately and
 1869 are not folded into *Overall*.

1870 **O.5 MODEL GENERATIONS**

1871 We evaluate a mix of closed- and open-source editors using each model’s default settings (no hyper-
 1872 parameter tuning):

1873 • GPT-Image-1, Nano Banana, and Gemini 2.0 Flash: called via their APIs with default
 1874 parameters.

1875 • QWEN Image Edit: default settings from <https://huggingface.co/Qwen/Qwen-Image-Edit>.

1876 • InstructPix2Pix (IP2P): settings from <https://github.com/timothybrooks/instruct-pix2pix>.

1877 • Magicbrush: same settings as IP2P; model weights from <https://huggingface.co/vinesmsuic/magicbrush-jul7>.

1878 • UltraEdit: settings from <https://github.com/HaozheZhao/UltraEdit>; we
 1879 apply a black mask since no explicit mask is provided.

1880 • AnyEdit: repository at <https://github.com/weichow23/AnySD/tree/9e7d36ef88e237b527695efc90b1abc18fa51218> with `edit_type` set to
 1881 `general`.

1882 • Step1X-Edit: repository at <https://github.com/stepfun-ai/Step1X-Edit>;
 1883 weights at <https://huggingface.co/stepfun-ai/Step1X-Edit>.

1890 **Algorithm 6** Evaluate Position Change

1891

1892 **Require:** base B , target T , target object name a , reference object r , position p

1893 **Ensure:** success flag

1894 1: $B_a \leftarrow \text{DETECT}(B, a, \tau); \quad T_a \leftarrow \text{DETECT}(T, a, \tau)$

1895 2: $B_r \leftarrow \text{DETECT}(B, r, \tau); \quad T_r \leftarrow \text{DETECT}(T, r, \tau)$

1896 3: **if** $T_a = \emptyset \vee T_r = \emptyset$ **then**

1897 4: **return** false

1898 5: **end if**

1899 6: **if** $|T_a| > |B_a|$ **then**

1900 7: **return** false

1901 8: **end if**

1902 9: Select max logits boxes $t \in T_a, u \in T_r$

1903 10: $(x_t, y_t) \leftarrow \text{CENTER}(t); \quad (x_u, y_u) \leftarrow \text{CENTER}(u)$

1904 11: **if** $p = \text{left}$ **then**

1905 12: **return** $x_t < x_u - \varepsilon_x$

1906 13: **end if**

1907 14: **if** $p = \text{right}$ **then**

1908 15: **return** $x_t > x_u + \varepsilon_x$

1909 16: **end if**

1910 17: **if** $p = \text{above}$ **then**

1911 18: **return** $y_t < y_u - \varepsilon_y$

1912 19: **end if**

1913 20: **if** $p = \text{below}$ **then**

1914 21: **return** $y_t > y_u + \varepsilon_y$

22: **end if**

23: **return** false

▷ No count inflation

Algorithm 7 Evaluate Count Change

```

1917 Require: target  $T$ , name  $o$ , requested count  $c^*$ 
1918 Ensure: success flag
1919   1:  $\hat{c} \leftarrow |\text{DETECT}(T, o)|$ 
1920   2: return ( $\hat{c} = c^*$ )

```

- OmniGen: repository at <https://github.com/VectorSpaceLab/OmniGen>.
- FLUX: default settings from <https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev>.

Modes. For clarity in the paper: we report both **Multipass** and **Complex Editing** (renamed from *singlepass* for consistency with the rest of the paper).

1930 Reproducibility Notes. Prompts are provided in full (Section O.2); thresholds are specified above.
1931 Grounding uses SwinT-OGC weights; consistency uses DINOv3 ViT-B/16; the quality head follows
1932 our RAHF implementation, and HPSv3 is included when available. All other parameters are left at
1933 defaults.

1944
1945
1946
1947

Algorithm 8 Evaluate Color Alter

1949
1950 **Require:** target image T , object name o , color k
1951 1: **return** VLMYESNO(T , “Is the o k ?”)

1952
1953
1954
1955
1956
1957
1958
1959
1960

Algorithm 9 Evaluate Material Alter

1961
1962 **Require:** target image T , object name o , material m
1963 **Ensure:** success flag
1964 1: **return** VLMYESNO(T , “Is the o made of m ?”)

1965
1966
1967
1968
1969
1970
1971
1972
1973

Algorithm 10 Evaluate Text Change

1974
1975 **Require:** target T , desired text t^* (optionally object name)
1976 **Ensure:** success flag
1977 1: $t \leftarrow \text{VLMTEXT}(T)$
1978 2: Normalize t and t^* (case, punctuation, whitespace)
1979 3: **return** TEXT-MATCH(t, t^*)

1981
1982
1983
1984
1985
1986
1987
1988
1989

Algorithm 11 Evaluate Background Change

1990
1991 **Require:** target T , category g
1992 **Ensure:** success flag
1993 1: **return** VLMYESNO(T , “Does the background show g ?”)

1994
1995
1996
1997

1998
1999

Table 16: Image success rates and overall task success rates across turns. (Multi-turn model)

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

Model	Image Success Rate			Overall Task Rate		
	T1	T2	T3	T1	T2	T3
Seedream 4.0	75.93	55.58	41.59	75.93	75.58	76.11
Nano Banana	70.70	50.66	35.35	70.70	72.59	68.24
GPT-Image-1	73.12	54.89	38.35	73.12	74.44	73.12
FLUX.1-Kontext-max	69.49	46.89	31.83	69.49	69.11	70.43
Gemini 2.0 Flash	68.07	45.96	28.42	68.07	67.72	68.42
Qwen-Image-Edit	72.90	44.06	22.55	72.90	62.94	56.12
Step1X-Edit	61.89	34.97	17.83	61.89	59.09	53.32
FLUX.1-Kontext-dev	59.97	32.69	16.61	59.97	56.29	51.40
OmniGen	54.72	24.48	10.66	54.72	48.60	42.48
UltraEdit	51.37	17.70	6.36	50.52	36.54	31.47
AnyEdit	41.07	16.32	7.22	40.03	39.34	40.56
MagicBrush	42.31	15.73	4.90	42.31	40.73	41.26
IP2P	37.41	10.66	2.80	37.41	32.87	34.27

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

Table 17: Task success rates (%) across five instruction types and three turns (multi-turn mode).

Model	Subject Replace			Subject Remove			Material Alter			Color Alter			Subject Add		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
Seedream 4.0	90.74	91.23	88.89	68.92	47.69	50.00	95.31	96.00	95.77	100.00	98.59	100.00	83.08	89.61	81.52
Nano Banana	91.84	92.31	75.47	64.18	51.61	40.35	91.94	89.36	87.50	100.00	97.18	98.11	73.02	77.94	72.41
GPT-Image-1	84.31	94.64	85.71	70.77	55.93	47.37	96.83	95.65	87.88	100.00	97.06	100.00	80.95	72.46	72.41
FLUX.1-Kontext-max	92.31	88.89	88.00	67.16	55.56	56.36	87.30	79.07	80.30	100.00	95.65	98.04	77.05	71.23	72.73
Gemini 2.0 Flash	83.33	92.98	78.18	58.67	53.62	50.82	90.91	82.00	83.33	100.00	89.04	98.21	77.61	72.73	75.27
Qwen-Image-Edit	87.04	82.46	70.91	70.67	31.88	37.70	93.94	90.00	79.17	100.00	97.26	94.74	77.61	55.84	39.78
Step1X-Edit	90.74	96.49	67.27	53.33	30.43	21.31	95.45	80.00	87.50	100.00	100.00	91.23	64.18	57.14	45.16
FLUX.1-Kontext-dev	85.19	80.70	72.73	54.67	42.03	32.79	84.85	74.00	73.61	100.00	98.63	94.74	67.16	61.04	39.78
OmniGen	88.89	84.21	58.18	46.67	21.74	19.67	84.85	72.00	70.83	100.00	90.41	91.23	53.73	51.95	37.63
UltraEdit	88.89	63.16	38.18	26.67	5.80	6.56	87.88	66.00	63.89	98.21	80.82	78.95	38.81	23.38	9.68
AnyEdit	74.07	66.67	61.82	37.33	39.13	36.07	78.79	68.00	68.06	78.57	68.49	78.95	22.39	38.96	25.81
MagicBrush	83.33	75.44	63.64	28.00	18.84	18.03	83.33	86.00	80.56	94.64	87.67	91.23	37.31	41.56	37.63
IP2P	75.93	66.67	65.45	25.33	8.70	18.03	74.24	70.00	65.28	87.50	82.19	75.44	23.88	28.57	19.35

2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

P ADDITIONAL EVALUATION RESULTS

In this section, we provide extended evaluation results. We separate the analysis into two modes: *multi-turn editing* and *complex editing*. Each mode is evaluated across three aspects: instruction following, consistency, and quality.

For the multi-turn editing mode, the overall instruction-following success rate is reported in Table 16, while success rates for individual instruction types appear in Tables 17 and 18. Consistency results are summarized in Table 22. We also observed that some input images are non-square after resizing, which can leave black padding on the top/bottom or left/right edges. Certain editing models, such as GPT-Image-1 and Qwen-Image-Edit, attempt to fill these areas, whereas others preserve them. To account for this, we separately report consistency for square (Table 23) and non-square inputs (Table 24). The conclusions remain consistent with the overall evaluation. Quality results for multi-turn editing are presented in Table 26.

For the complex editing mode, the overall instruction-following success rate is shown in Table 19, and per-instruction-type results are in Tables 20 and 21. Consistency and quality results are reported in Tables 25 and 27, respectively.

In consistency table, p99 means 99% quantile of luminance value, and p999 means 99.9% quantile of luminance value.

Table 18: Task success rates (%) across four instruction types and three turns (multi-turn mode).

Model	Text Change			Position Change			Count Change			Background Change		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
Seedream 4.0	95.31	97.14	96.23	39.22	39.68	48.94	18.06	19.30	20.00	98.46	96.36	93.06
Nano Banana	83.33	86.36	81.25	20.00	47.37	45.24	23.19	9.62	10.91	96.67	94.44	90.00
GPT-Image-1	88.33	97.01	97.96	31.11	40.68	50.00	11.27	18.52	18.18	98.39	94.44	91.30
FLUX.1-Kontext-max	80.36	86.15	82.69	18.75	38.18	44.44	8.82	9.09	12.28	96.88	92.59	92.54
Gemini 2.0 Flash	90.32	94.29	96.30	21.15	28.57	31.91	10.96	7.14	10.00	86.15	83.64	80.56
Qwen-Image-Edit	98.44	92.86	72.22	21.15	34.92	33.33	12.33	1.72	0.00	98.46	80.00	77.78
Step1X-Edit	60.94	51.43	44.44	13.46	31.75	27.08	0.00	1.72	1.67	87.69	87.27	83.33
FLUX.1-Kontext-dev	50.00	41.43	27.78	15.38	26.98	33.33	0.00	1.72	5.00	90.77	80.00	77.78
OmniGen	29.69	35.71	18.52	17.31	22.22	20.83	5.48	5.17	0.00	76.92	56.36	56.94
UltraEdit	28.12	15.71	7.41	21.15	36.51	35.42	5.48	6.90	5.00	75.38	38.18	43.06
AnyEdit	3.12	10.00	11.11	21.15	25.40	27.08	0.00	1.72	1.67	56.92	40.00	52.78
MagicBrush	7.81	12.86	3.70	19.23	15.87	20.83	0.00	0.00	3.33	43.08	34.55	43.06
IP2P	1.56	8.57	5.56	13.46	15.87	25.00	1.37	0.00	5.00	47.69	20.00	31.94

Table 19: Image rates, overall task rates, and marginal means across three turns (complex mode).

Model	Image Success Rate			Overall Task Rate			Marginal Task Rate		
	T1	T2	T3	T1	T2	T3	T1	T2	T3
GPT-Image-1	73.08	48.45	28.78	73.08	69.77	68.25	73.08	69.98	70.19
Nano Banana	71.46	46.56	28.14	71.46	68.83	67.27	71.46	69.03	67.21
Gemini 2.0 Flash	67.43	40.63	21.89	67.43	64.54	61.94	67.43	64.80	62.17
Qwen-Image-Edit	72.90	46.15	27.62	72.90	69.23	68.07	72.90	67.83	67.66
Step1X-Edit	61.36	32.34	15.73	61.36	57.69	55.01	61.36	55.77	54.02
FLUX.1-Kontext-dev	60.14	33.74	19.58	60.14	59.53	57.87	60.14	57.52	56.99
OmniGen	54.55	23.43	11.01	54.55	50.96	49.83	54.55	48.95	47.90
AnyEdit	39.86	10.31	2.80	39.86	34.79	34.27	39.86	31.47	31.64
UltraEdit	50.70	22.03	8.22	50.70	48.34	46.62	50.70	47.73	47.38
MagicBrush	42.13	14.86	4.55	42.13	38.46	38.81	42.13	38.64	39.34
IP2P	37.24	12.41	2.80	37.24	37.76	35.14	37.24	38.46	34.62

Table 20: Success rates (%) for five instruction types across three turns (complex mode).

Model	Subject Replace			Subject Remove			Material Alter			Color Alter			Subject Add		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
GPT-Image-1	82.22	80.65	78.99	70.31	63.87	58.54	96.49	90.20	84.66	100.00	97.27	91.88	81.67	70.73	69.00
Nano Banana	91.67	88.89	79.33	67.16	55.83	59.88	92.59	85.13	83.33	97.87	98.15	94.19	69.84	71.21	67.77
Gemini 2.0 Flash	85.19	82.88	75.90	57.33	55.56	54.15	93.94	75.00	74.87	100.00	96.90	93.01	70.15	65.97	66.67
Qwen-Image-Edit	87.04	86.49	80.72	70.67	58.33	54.63	93.94	86.21	85.64	100.00	99.22	98.39	77.61	75.69	73.84
Step1X-Edit	90.74	84.68	76.51	52.00	41.67	42.93	93.94	82.76	79.26	100.00	93.02	90.86	64.18	59.03	54.01
FLUX.1-Kontext-dev	85.19	82.88	74.10	54.67	47.92	40.00	86.36	75.00	76.06	100.00	99.22	98.39	67.16	68.75	63.29
OmniGen	88.89	82.88	75.90	46.67	39.58	41.95	86.36	73.28	72.34	100.00	96.12	93.01	53.73	48.61	49.37
AnyEdit	66.67	58.56	49.40	33.33	20.14	22.44	77.27	76.72	70.21	78.57	68.99	72.04	28.36	22.92	21.10
UltraEdit	88.89	87.39	78.31	26.67	30.56	31.71	87.88	79.31	77.66	98.21	93.02	90.32	38.81	46.53	43.46
MagicBrush	83.33	74.77	69.28	28.00	27.78	29.27	83.33	69.83	73.94	92.86	84.50	83.87	37.31	35.42	32.91
IP2P	75.93	73.87	61.45	25.33	31.25	24.88	71.21	63.79	59.57	87.50	82.95	79.03	23.88	31.94	29.11

Table 21: Success rates (%) for four instruction types across three turns (complex mode).

Model	Text Change			Position Change			Count Change			Background Change		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
GPT-Image-1	87.50	92.24	93.75	30.95	22.11	25.36	13.11	10.38	13.12	98.15	96.08	93.37
Nano Banana	84.21	85.34	84.24	24.44	26.00	22.54	20.34	14.15	13.75	98.15	93.40	93.71
Gemini 2.0 Flash	85.94	86.57	84.04	17.31	23.68	16.67	11.11	10.77	6.84	90.77	84.17	80.73
Qwen-Image-Edit	98.44	97.01	93.62	21.15	22.61	24.54	12.33	3.05	3.66	98.46	95.83	93.75
Step1X-Edit	57.81	59.70	52.13	15.38	21.74	25.15	1.37	3.05	1.57	86.15	80.00	73.44
FLUX.1-Kontext-dev	50.00	48.51	47.87	15.38	26.96	27.61	0.00	1.53	3.66	90.77	90.00	88.54
OmniGen	28.12	32.84	27.13	15.38	21.74	17.18	6.85	1.53	2.09	75.38	70.00	69.79
AnyEdit	3.12	5.22	7.98	25.00	26.96	29.45	1.37	1.53	1.57	56.92	44.17	40.62
UltraEdit	29.69	16.42	11.70	21.15	26.09	22.70	5.48	2.29	3.14	75.38	65.00	64.06
MagicBrush	7.81	4.48	6.38	19.23	22.61	17.18	0.00	0.00	5.24	43.08	36.67	35.42
IP2P	3.12	5.22	6.38	13.46	20.00	20.25	1.37	2.29	1.57	47.69	37.50	38.54

2106
 2107 **Table 22: Consistency scores (%) across DINOv3-based and L1-based object/background metrics.**
 2108 **(multi-turn mode)**

Model	Object DINOv3 Consistency			Background DINOv3 Consistency			Object $1 - L_1$ Consistency			Background $1 - L_1$ Consistency		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
Seedream 4.0	89.50	83.68	81.18	95.52	92.38	90.54	93.31	88.76	86.22	94.30	89.04	85.00
Nano Banana	90.17	85.25	84.38	97.65	95.70	94.58	92.39	90.00	89.10	95.95	94.70	93.88
GPT-Image-1	73.26	68.80	67.21	88.74	86.76	83.78	79.65	78.32	77.60	78.07	76.53	75.79
FLUX.1-Kontext-max	90.91	86.66	83.68	96.95	95.15	93.11	94.16	91.26	89.46	95.88	93.43	91.46
Gemini 2.0 Flash	85.53	77.12	72.02	95.63	93.07	89.74	90.72	86.32	84.11	95.04	93.15	91.73
Qwen-Image-Edit	77.12	71.56	68.51	91.31	89.47	87.45	83.48	79.15	76.32	84.57	81.18	78.43
Step1X-Edit	88.17	81.65	77.33	97.34	95.40	93.09	93.92	90.64	88.80	98.24	97.10	95.73
FLUX.1-Kontext-dev	92.66	87.92	85.29	97.97	96.55	95.14	94.39	91.59	89.91	96.36	95.06	94.13
OmniGen	88.34	80.77	73.64	97.66	96.08	94.21	93.87	91.02	89.43	97.44	97.00	96.34
UltraEdit	78.81	75.11	72.24	94.80	93.89	92.57	91.86	90.47	89.65	97.12	96.62	96.19
AnyEdit	82.02	73.41	63.04	90.82	84.42	77.17	92.52	88.96	84.97	93.72	89.98	86.05
MagicBrush	79.70	70.71	65.46	94.22	91.81	88.27	91.13	87.13	85.56	96.31	94.52	92.87
IP2P	68.24	56.83	48.01	85.47	79.89	72.59	84.44	79.74	77.21	91.31	87.21	83.51

2119
 2120 **Table 23: Consistency and $1 - L_1$ metrics across three turns (multi-turn mode for square image).**
 2122

Model	Object DINOv3 Consistency (Mean)			Background DINOv3 Consistency			Object L_1 Consistency (Mean)			Background L_1 Consistency		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
Seedream 4.0	89.04	85.39	80.74	95.76	92.43	88.27	91.66	88.02	84.43	95.34	92.45	89.69
Nano Banana	88.68	85.19	83.31	96.88	93.79	92.41	89.73	87.64	88.48	94.21	93.77	93.36
GPT-Image-1	73.62	71.27	67.27	90.00	85.72	82.16	80.33	78.80	79.88	85.69	81.86	80.85
FLUX.1-Kontext-max	91.34	89.90	86.04	95.99	94.18	90.10	93.81	92.80	90.58	97.27	95.77	93.94
Gemini 2.0 Flash	84.16	79.91	71.13	91.50	91.83	87.07	88.98	87.07	85.13	95.19	93.35	93.34
Qwen-Image-Edit	75.36	72.68	68.85	88.50	88.98	82.71	81.66	78.47	77.04	91.16	87.85	85.78
Step1X-Edit	87.40	84.03	78.27	97.43	92.42	88.15	93.14	91.57	89.40	98.10	97.12	96.01
FLUX.1-Kontext-dev	92.55	88.92	84.04	96.49	93.57	92.19	92.83	90.61	88.34	96.91	95.74	94.73
OmniGen	89.41	84.51	77.77	97.34	93.13	86.64	93.26	91.48	89.53	95.79	96.44	95.36
UltraEdit	79.43	76.51	71.54	92.83	89.88	86.54	91.74	90.16	89.24	95.87	95.14	94.63
AnyEdit	82.25	72.40	53.59	86.12	78.60	70.09	92.33	88.00	82.10	94.36	91.68	87.55
MagicBrush	79.02	75.60	70.07	92.07	87.33	81.08	89.67	87.53	86.90	95.29	93.88	92.38
IP2P	76.38	66.12	54.94	85.29	81.46	65.50	86.90	82.25	77.79	92.45	88.01	84.51

2132
 2133 **Table 24: Consistency and L_1 metrics across three turns (multi-turn model for unsquared image).**
 2135

Model	Object DINOv3 Consistency (Mean)			Background DINOv3 Consistency			Object $1 - L_1$ Consistency (Mean)			Background $1 - L_1$ Consistency		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
Seedream 4.0	89.55	83.48	81.23	95.49	92.38	90.86	93.50	88.85	86.44	94.17	88.62	84.35
Nano Banana	90.34	85.26	84.50	97.74	95.94	94.88	92.69	90.29	89.17	96.16	94.81	93.95
GPT-Image-1	73.22	68.53	67.20	88.60	86.88	83.99	79.57	78.27	77.35	77.20	75.91	75.14
FLUX.1-Kontext-max	90.86	86.31	83.43	97.06	95.27	93.51	94.20	91.09	89.34	95.73	93.16	91.14
Gemini 2.0 Flash	85.69	76.79	72.12	96.14	93.23	90.10	90.91	86.23	83.99	95.02	93.12	91.51
Qwen-Image-Edit	77.32	71.43	68.47	91.65	89.53	88.10	83.68	79.23	76.23	83.78	80.37	77.43
Step1X-Edit	88.26	81.37	77.22	97.33	95.77	93.77	94.01	90.53	88.73	98.26	97.09	95.70
FLUX.1-Kontext-dev	92.67	87.80	85.44	98.15	96.92	95.54	94.57	91.70	90.10	96.30	94.98	94.05
OmniGen	88.22	80.33	73.14	97.70	96.45	95.25	93.94	90.97	89.42	97.64	97.07	96.47
UltraEdit	78.74	74.95	72.32	95.04	94.39	93.40	91.87	90.51	89.70	97.26	96.80	96.40
AnyEdit	82.00	73.53	64.18	91.39	85.14	78.14	92.54	89.07	85.31	93.64	89.78	85.84
MagicBrush	79.78	70.14	64.90	94.48	92.37	89.27	91.30	87.08	85.40	96.44	94.59	92.94
IP2P	67.32	55.75	47.18	85.50	79.69	73.57	84.17	79.45	77.14	91.18	87.12	83.38

2144
 2145 **Table 25: Consistency scores (%) across object/background DINOv3 and L_1 metrics (complex mode).**
 2146

Model	Object DINOv3			Object $1 - L_1$			Background DINOv3			Background $1 - L_1$		
	T1	T2	T3	T1	T2	T3	T1	T2	T3	T1	T2	T3
GPT-Image-1	73.23	70.02	67.57	79.52	78.03	77.29	88.72	86.77	84.79	77.96	77.38	76.51
Nano Banana	89.23	87.20	86.46	92.15	91.08	90.40	97.39	96.69	95.38	96.39	95.75	95.33
Gemini 2.0 Flash	85.41	80.37	77.38	90.60	88.45	86.53	96.03	94.18	92.83	95.03	94.77	93.46
Qwen-Image-Edit	77.12	76.09	76.69	83.48	83.08	83.11	91.31	91.32	90.51	84.57	84.93	85.35
Step1X-Edit	88.14	85.31	84.38	93.93	92.34	92.11	97.34	96.37	95.44	98.24	98.02	98.04
FLUX.1-Kontext-dev	92.66	90.30	89.19	94.39	92.79	91.61	97.97	96.74	95.40	96.36	95.57	94.04
OmniGen	88.37	85.15	83.14	93.88	92.46	91.06	97.62	97.10	96.07	97.45	97.58	97.40
AnyEdit	81.90	82.94	84.92	92.34	92.43	93.72	90.97	92.63	93.78	94.15	95.11	95.87
UltraEdit	78.81	72.75	71.67	91.86	89.51	88.99	94.80	93.01	92.03	97.12	96.35	96.02
MagicBrush	79.70	75.64	75.53	91.13	89.23	88.69	94.22	94.34	93.13	96.31	96.14	95.83
IP2P	68.24	67.31	69.49	84.44	82.93	83.72	85.47	85.88	86.45	91.31	89.94	90.19

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167

Table 26: Human preference scores, p999, and p99 across three turns (multi-turn mode).

Model	Human Preference Score			p999			p99		
	T1	T2	T3	T1	T2	T3	T1	T2	T3
GPT-Image-1	6.6519	6.5898	6.5609	84.73	82.96	82.50	74.38	71.91	70.54
Nano Banana	4.9431	5.1179	5.2638	89.67	90.27	90.56	81.31	82.01	82.09
Gemini 2.0 Flash	4.4386	4.2332	4.0677	90.95	92.21	92.95	83.08	84.79	86.24
Qwen-Image-Edit	5.8591	5.7198	5.1502	89.16	97.20	99.04	79.60	90.51	95.28
Step1X-Edit	4.0577	3.3443	2.7569	92.81	95.39	97.27	85.10	88.46	91.21
FLUX.1-Kontext-dev	5.1192	5.0701	5.0354	90.76	91.94	93.21	82.05	83.03	84.58
OmniGen	4.6099	4.0743	3.4958	93.15	95.24	96.71	85.55	88.24	90.50
AnyEdit	3.6609	2.8017	1.9457	86.70	86.70	86.71	77.54	76.53	75.82
UltraEdit	4.7934	4.6806	4.3598	92.71	94.19	95.82	85.42	86.76	88.34
MagicBrush	3.8465	3.0805	2.3606	91.49	93.33	94.20	83.42	84.70	85.32
IP2P	3.2020	2.3779	1.4418	89.61	91.59	92.44	81.79	83.78	84.77

2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194

Table 27: Updated human preference scores, p999 scores, and p99 scores across three turns (complex mode).

Model	Human Preference Score			p999			p99		
	T1	T2	T3	T1	T2	T3	T1	T2	T3
GPT-Image-1	6.6328	6.8428	6.9655	85.33	84.14	84.44	74.73	73.92	73.07
Nano Banana	4.9444	5.1700	5.3632	89.65	90.67	91.79	81.02	81.93	82.75
Gemini 2.0 Flash	4.4511	4.5428	4.5732	91.27	92.66	93.48	83.85	85.69	86.75
Qwen-Image-Edit	5.8591	5.8769	5.9155	89.16	90.92	92.23	79.60	81.36	82.62
Step1X-Edit	4.0534	3.9063	3.8648	92.82	93.55	94.05	85.11	85.49	86.01
FLUX.1-Kontext-dev	5.1192	5.2446	5.4645	90.76	91.01	91.29	82.05	81.53	81.55
OmniGen	4.5976	4.3070	3.8122	93.15	93.74	95.65	85.56	86.28	88.57
AnyEdit	3.7020	3.7601	3.8382	86.47	87.16	87.43	77.82	78.60	79.12
UltraEdit	4.7934	4.7647	4.8117	92.71	93.06	93.24	85.42	86.09	86.47
MagicBrush	3.8465	3.6029	3.5523	91.49	91.52	91.64	83.42	83.31	83.07
IP2P	3.2020	3.3552	3.5640	89.61	90.46	90.86	81.79	82.57	82.71

2207
 2208
 2209
 2210
 2211
 2212
 2213

2214 **Q HUMAN AGREEMENT**
2215

2216 The human study was conducted online through Gradio³. Annotators were asked to answer a 2-way
 2217 multiple-choice problem (Yes/No) about an editing instruction, an original image, and an edited
 2218 image. There were very limited potential participant risks, if they were to be exposed to an image
 2219 that was disturbing or not safe for work (NSFW). It is because the source images we used were
 2220 from GEit-Bench Liu et al. (2025), which were not in themselves offensive. Also, our agent already
 2221 filtered out unsafe images during the first decomposition stage. Furthermore, all edited images from
 2222 the models were passed through its own NSFW filters which blacked out any potentially unsafe
 2223 content.

2224 We conducted human study on edits made by four exemplary models—Step1X-Edit, AnyEdit,
 2225 Gemini-Flash 2.0, and Flux.1-Kontext-dev—on **EdiVal-Bench**, generated by **EdiVal-Agent** as
 2226 described in Section O.2. For each edit, we collected two human ratings, yielding a total of
 2227 $572 \times 4 \times 2 = 4,576$ annotations. Depending on the prompt (which affected the editing instruc-
 2228 tion), each annotation took about 1–2 minutes. Raters were recruited online, each holding at least
 2229 a bachelor’s degree. They were shown the original image, the edited image, and the correspond-
 2230 ing instruction, and were asked a binary question: *“Evaluate whether the edited image successfully
 2231 follows the given instruction.”*

2232 **R COUNTING**
2233

2234 Among all subtasks, *count_change* is the most challenging. Even the best-performing model (GPT-
 2235 Image-1) achieves a success rate below 25% at turn 1, while most models remain under 5%. We
 2236 also provide illustrative examples in Figure 28.

2239 Figure 28: Example of the *count_change* task: changing the number of paper cups to five.
2240
2241
2242
2243
2244
2245

³<https://www.gradio.app/>

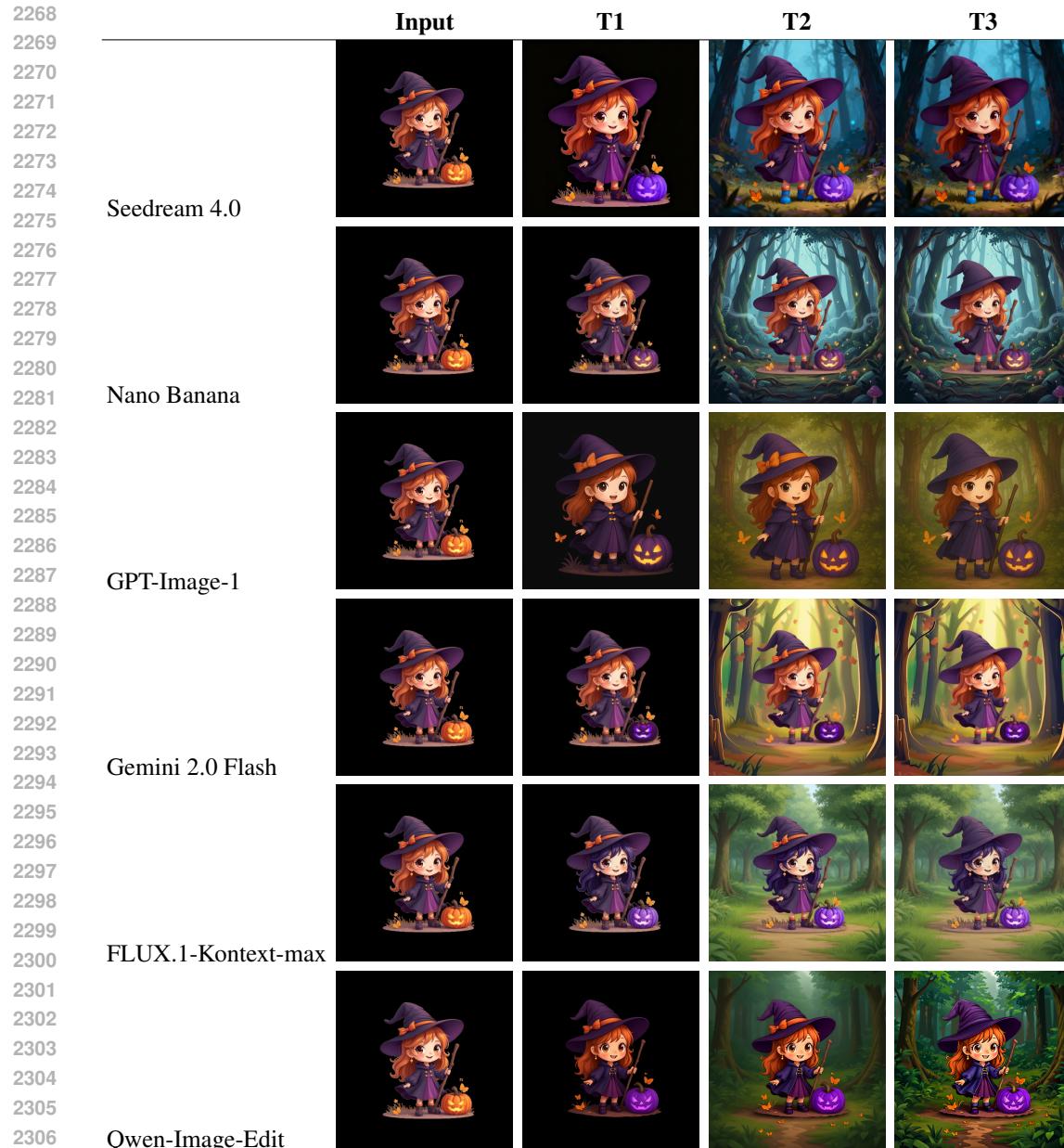


Figure 29: **T1: Change the color of pumpkin to purple; T2: Change the background to forest; T3: Remove fabric orange bow.** Row-wise quality examples for the first six models: Seedream 4.0, Nano Banana, GPT-Image-1, Gemini 2.0 Flash, FLUX.1-Kontext-max, and Qwen-Image-Edit. Each row shows generations for Input and three editing turns.

S MORE QUALITY EXAMPLES

Figure 30: **T1: Change the color of pumpkin to purple; T2: Change the background to forest; T3: Remove fabric orange bow.** Row-wise quality examples for the remaining models: Step1X-Edit, FLUX.1-kontext-dev, OmniGen, AnyEdit, UltraEdit, MagicBrush, and IP2P.