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ABSTRACT

Instruction-based image editing has advanced rapidly, yet reliable and inter-
pretable evaluation remains a bottleneck. Current protocols either (i) depend on
paired reference images—resulting in limited coverage and inheriting biases from
prior generative models—or (ii) rely solely on zero-shot vision—language mod-
els (VLMs), whose prompt-based assessments of instruction following, content
consistency, and visual quality are often imprecise.

To address this, we introduce EdiVal-Agent, an automated and fine-grained evalu-
ation framework grounded in an object-centric perspective, designed to assess not
only standard single-turn but also multi-turn instruction-based editing with preci-
sion. Given an input image, EdiVal-Agent first decomposes it into semantically
meaningful objects, then synthesizes diverse, context-aware editing instructions
while dynamically updating object pools across turns. These two stages enable
two novel object-centric metrics tailored for multi-turn evaluation and one global
metric of visual quality: 1) EdiVal-IF, which measures instruction following by
combining open-vocabulary object detectors for symbolic checks with VLMs for
semantic verification on detector-guided crops; 2) EdiVal-CC, which evaluates
content consistency by calculating semantic similarity of unchanged objects and
background using the evolving object pools; and 3) EdiVal-VQ, which quantifies
changes in overall visual quality with human preference models.

Instantiating this pipeline, we build EdiVal-Bench, a multi-turn editing bench-
mark covering 9 instruction types and 13 state-of-the-art editing models spanning
in—context[ﬂ, flow-matching, and diffusion paradigms. We further conduct experi-
ments comparing multi-turn editing with single-shot complex editing, highlighting
the distinctive characteristics of different model paradigms. We demonstrate that
EdiVal-Agent can be used to identify existing failure modes, thereby informing
the development of the next generation of editing models.

1 INTRODUCTION

What truly defines the success of an image editor? At its core, editing requires making targeted,
instruction-driven changes while preserving contextual consistency and perceptual realism—often
across multiple refinement turns. Yet current evaluation practice struggles to capture this multi-
faceted objective.

When ground-truth edited images are available, a common strategy is to compare model outputs
against these references (e.g., MagicBrush Zhang et al.|(2023), UltraEdit Zhao et al.|(2024)), AnyEdit
Yu et al.| (2025)), EmuEdit|Sheynin et al.|(2024)). Typical metrics include pixel-level distances (e.g.,
L1/L2) and semantic similarities (e.g., DINO [Caron et al.[|(2021)) and CLIP |[Radford et al.| (2021)).
While informative, such metrics suffer from two structural issues: (i) the space of acceptable edits
is inherently large, whereas a single reference provides only one realization; and (ii) references are

'In this paper, we label certain closed-source models—GPT-Image-1, Nano Banana, and Gemini 2.0 Flash
Image—as in-context, since they are integrated into autoregressive language models in the web UI and support
in-context multi-turn editing.
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Figure 1: Overview of our workflow and representative model’s performance. For visualization, we
adopt two thresholds: a consistency score of at least 90 and a visual quality score of at least 6. Details
of the automated evaluation pipeline are provided in Figure [2] and Section |2} In multi-turn editing,
models exhibit distinct weaknesses: GPT-Image- 1 struggles with content consistency, Qwen-Image-
Edit underperforms in both visual quality and content consistency, and FLUX. I-Kontext-dev lags in
instruction following, whereas Nano Banana shows no single dominant weakness.

frequently synthesized by existing editing models (e.g., Prompt-to-PromptHertz et al.| (2023), SDXL
Podell et al.[(2024)), DALLE-2 Ramesh et al.|(2022))), thereby importing their biases and limitations
into the evaluation itself. Consequently, high reference similarity does not necessarily imply faithful
instruction following, preservation of irrelevant content, or aesthetically plausible outcomes.

A complementary line of work employs zero-shot VLMs as interpretable evaluators (e.g., VIEScore

u et al. (2023), GEdit-Bench (2025)), I2EBench (2024), HQ-Edit Hui et al,
(2024), Complex-Edit [Yang et al. (2025), and ImgEdit [Ye et al. (2025)) and queries VLMs about

specific aspects of an edit. While VLMs offer holistic, language-mediated judgments, they remain
insufficient for precise editing assessment for several reasons. First, for instruction-following evalu-
ation, they are notoriously poor at spatial reasoning|[Zhang et al|(2025b)); [Chen et al.|(2024);|Chang]
et al| (2025)) and are prone to object hallucinations in existence, category, attributes, and relations
Bai et al. . These issues together undermine their ability to assess common object-related edit
instructions. Second, they have limited sensitivity to pixel-level changes and frequently miss subtle,
localized modifications (e.g., fine structures, small attribute shifts, etc.), which are
crucial for evaluating content consistency. Third, since they are predominantly pretrained on natural
images rather than synthetic generations, their priors are miscalibrated for artifacts and aesthetics,
leading to failures in detecting common generative defects (e.g., extra fingers) and in modeling
perceptual “naturalness” [Liang et al.| (2024); Xu et al.| (2023)); [Ma et al.| (2025)), which humans
are sensitive to. Consequently, VLM-only scoring lacks the precision and reliability required for
fine-grained evaluation across instruction following, content consistency, and visual quality. How-
ever, we find recently open-source state-of-the-art editing models (e.g., Qwen-Image-EditWu et al.|

(2025a)), Step1X-Edit|Liu et al.|(2025)), BagelDeng et al.|(2025))) solely rely on VLM:s for evaluation.

To address these challenges, we introduce EdiVal-Agent: an automated and fine-grained evaluation
agent for multi-turn instruction-based image editing from an object-centric perspective, designed to
assess not only standard single-turn but also multi-turn instruction-based editing with precision. As
shown in Fig. 2| EdiVal-Agent first decomposes it into semantically meaningful objects, then syn-
thesizes diverse, context-aware editing instructions while dynamically updating object pools across
turns. These two stages enable two novel object-centric metrics tailored for multi-turn evaluation and
one global metric of visual quality: 1) EdiVal-IF, which measures instruction following by combin-
ing open-vocabulary object detectors for symbolic checks with VLMs for semantic verification on
detector-guided crops; 2) EdiVal-CC, which evaluates content consistency by calculating semantic
similarity of unchanged objects and background using the evolving object pools; and 3) EdiVal-
VQ, which quantifies changes in overall visual quality with human preference models. We show
that EdiVal-IF yields stronger agreement with human judgments in instruction-following evalua-
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Figure 2: Framework of EdiVal-Agent. It first decomposes images into semantically meaningful
objects, such as metal yellow sign and metal brown pole, and identifies their contextual relationships,
e.g., they are both in foreground. It then generates diverse and proper editing scenarios at scale
which are based on the initial analysis, e.g., Change the color of metal brown pole to gray. Finally,
it systematically evaluates editing model outputs from multiple axes with our proposed metrics:
EdiVal-IF, EdiVal-CC, and EdiVal-VQ. Our agentic pipeline is agnostic to the expert tools used and
can be readily enhanced with more advanced tools in the future.

does not

Table 1: Key attributes of open-source edit benchmarks. Note that Ingdit
include multi-turn editing experiments in the paper.

Benchmark | #Size Object-centric Automated Multi-Turn Free from Ref. Images  Tools used

3,055 X v X X L1, CLIP, DINO

1,053 x x x X L1, L2, DINO, CLIP

1,250 X X X X L1, CLIP, DINO

2,240 X X X v VLM

606 X X X v VLM

1,651 X 4 X v VLM

811 X v X v VLM

1,026 X X X 4 Human Annotation
EdiVal-Bench (ours 1,716 v v v v Detector, VLM, L1, DINO, HPS

tion compared to thresholded CLIP directional (CLIP_dir) scores (2022) and using VLMs
alone, as evidenced in Sec.

Instantiating the agentic pipeline, we curate a new multi-turn image editing benchmark, EdiVal-
Bench, featuring 9 instruction types and 13 existing editing models—spanning in-context, flow-
matching, and diffusion paradigms, across both closed- and open-source systems—conduct fine-
grained analyses, and draw actionable insights. Empirically, as demonstrated in Fig. [I] and Tab.
Bl GPT-Image-1 excels at instruction following yet ranks near the bottom in content consistency,
whereas Seedream 4.0 and Nano Banana performs strongly on both axes. Besides, open-sourced
models like Qwen-Image-Edit significantly degrade in instruction following and visual quality when
editing turns increase, while FLUX. I-Kontext-max and FLUX. 1-Kontext-dev lags in instruction fol-
lowing. We further contrasts multi-turn editing with single-shot complex prompts (2025),
highlighting complementary strengths and failure modes. We hope that our agent pipeline, bench-
mark, and analyses accelerate the transition of multi-turn editing toward practical applications.

Key contributions. 1) Agent: EdiVal-Agent is a fully automated evaluator that performs object-
centric decomposition, generates diverse multi-turn editing instructions, and measures overall edit-
ing quality using two object-centric metrics (EdiVal-IF and EdiVal-CC) plus EdiVal-VQ for visual
quality. 2) Benchmark: using EdiVal-Agent, we construct EdiVal-Bench with 1,716 instructions
across nine types and three turns on 572 real-world images, with comparisons to prior benchmarks
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in Tab. [1] 3) Human agreement: EdiVal-IF attains 81.3% agreement with human ratings for in-
struction following, outperforming zero-shot VLMs and CLIP-based baselines. 4) Evaluation: we
assess 13 editors (diffusion, flow-matching, and close source) along instruction following, content
consistency, and visual quality. 5) Insights: overall ranking—Seedream 4.0 > Nano Banana >
FLUX.1-Kontext-max > GPT-Image-1; the strongest open-source editor, Qwen-Image-Edit, ex-
hibits exposure bias under multi-turn editing. 6) Artifacts & settings: we reveal luminance drift
across turns, and contrast multi-turn against complex single-shot editing to delineate strengths and
weaknesses across model families.

2 @ EDIVAL-AGENT

2.1 OVERVIEW

As illustrated in Fig. 2] The pipeline comprises three stages: (1) Decomposition uses a VLM
(e.g., GPT-40; other VLMs are viable alternatives) to extract structured, object-level descrip-
tions—objects, attributes, and relations—enabling symbolic reasoning; (2) Instruction Generation
produces multi-turn, diverse, compositional prompts by maintaining an explicit object pool and
sampling from nine instruction types spanning subject-, attribute-, relational-, text-, count-, and
global-level edits; (3) Evaluation scores edited images with EdiVal-IF, Edival-CC, and EdiVal-VQ.

2.2 STEP 1: DECOMPOSITION

Given an image, a VLM-based agent parses clearly visible foreground objects and returns per-object
JSON with fields object, color, material, text, count, and a boolean foreground.
Names follow "{material} {color} {object}"; unknown fields are omitted; person iden-
tity is never recorded (only wearables/accessories). Example: {"metal yellow sign":
{"object":"sign","color":"yellow", "material™:"metal", "text":"SCHOO
L","count":1,"foreground":true}}. An aggregated all_objects string concisely
lists objects (e.g., “metal yellow sign . metal brown pole”). We apply this stage to GEdit-Bench
Liu et al.|(2025) (606 images), exclude 34 images with sensitive personal content, and retain 572
images. After extraction, Grounding-DINO validates objects and detects bounding boxes; only reli-
able detections are kept to seed instruction generation and evaluation. The filtered objects are stored
inthe A11_Objects_Pool and later used to initialize three distinct object pools that dynamically
track the evolving state of instruction generation.

2.3 STEP 2: INSTRUCTION GENERATION

From the decomposed scene, the agent generates multi-turn edits that are grounded in the cur-
rent object state. The instruction taxonomy (nine types; six categories) appears in Table We
maintain three evolving pools at turn t: P (all objects ever present), P! (original objects
not edited up to t), and P! (objects currently editable). With a turn budget MAX_TURNS, at
each turn the agent (i) selects a type—defaulting to subject_add if P = (), otherwise
sampling a type not yet used in the chain; (ii) selects object(s) from P4, (iii) emits a natural-
language instruction via GPT-4o0 referencing those objects and the scene state; and (iv) updates
Py, PoAl and PP according to the intended edit. When a background_change edit ap-
plies at turn ¢, background-consistency scoring is disabled since this turn, and we append “make
{objects_in_foreground} unchanged” to the instruction to preserve object-level compara-
bility, where objects_in_foreground = {0 € pPavail . o foreground = true }. The
loop is adaptive by expanding/contracting P! and naturally compositional. Our default sets
MAX_TURNS= 3 (In our implementation, each turn is assigned a distinct instruction type.), though
longer chains are easily obtained by allowing repetition or adding types.

2.4 STEP 3: EVALUATION

The first two stages enable two novel object-centric metrics for multi-turn editing evaluation for
instruction following and content consistency, respectively, and one global metric for visual quality:
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Table 2: Instruction types in EdiVal-Bench created by EdiVal-Agent, grouped by semantic cate-
gory. Counts are shown per turn (T1-T3).

Category Instruction Type Example Instruction Tl T2 T3 Total
subject_add Add bench on the left of metal red fire hydrant. 67 77 93 237
Subject-centric subject_remove Remove wooden brown door. 75 69 61 205
subject_replace Replace stone gray railing with wooden fence. 54 57 55 166
Attribute-centric  ©© lor_alter Change the color of metal white airplane to blue. 56 73 57 186
material_alter Change the material of plastic black pen to metal. 66 50 72 188
Text-related text_change Replace the text 'BEARS CONTROL’ on cotton 64 70 54 188
black cap with "WILD PATH’.
Relational position_change Change the position of ceramic white cup to right 52 63 48 163
of plastic white laptop.
Counting count_change Change the count of fur brown bear to 3. 73 58 60 191
Global background_change Change the background to forest, remain the 65 55 72 192

brown fur bear unchanged.

EdiVal-IF To evaluate instruction following, we introduce EdiVal-IF, which assesses multi-turn
edits by comparing the image from the previous turn, I, to the current image, I*. For a given
instruction P? at turn ¢, the score is determined differently for symbolically and semantically ver-
ifiable tasks. Symbolically verifiable types (Tgym)—such as subject_add, subject_remove,
subject_replace, position_change, and count_change—are evaluated using an open-
vocabulary object detector M geect [Liu et al.| (2024b). The detector’s outputs, including bounding
boxes and confidence, are assessed against geometric and logical criteria Fgyy, derived from the
instruction. For example, for a position_change instruction “Move [A] to the left of [B]”,
Fsym verifies that the x-coordinate of A’s bounding box B center is less than that of B in [ toie.,
center,,(B%)) < center,(B%). In this case,

EdiVal-IF(I", I' ' P' € Tyym) = Fogm(Maeear (I, I'|PY)). (1)

Semantically verifiable types (Tiem)—color_alter, material_alter, text_change, and
background_change—are evaluated with a VLM My v [Yang et al.| (2024). To focus the eval-
uation, the VLM is applied to detector-guided object crops (/,) using instruction-specific templates.
EdiVal-TF(I*, I'™", P* € Tiem) = Mvim(Iy ™, Ij|P) = Myim(Maeea(I' 1, TH[PY)). (2)
We show that EdiVal-IF achieves superior human agreement (Sec. [2.5). The multi-turn editing

success rate is defined as the logical AND of the EdiVal-IF scores across all edits along the chain,
whereas the marginal task rate at turn ¢ is defined according to the formulas[T]and 2] provided above.

EdiVal-CC To assess content consistency,
EdiVal-CC measures the preservation of non-
target content between the base image I° and
the current image I*. Given editing instruc-
tions P from turn 1 to turn ¢, the object pools N /
Punch and P! are dynamically updated. Let A \B
2 denote the entire image area. Using object )
bounding boxes from the base image () and
the current image (B?), extracted by the detec-
tor M getect> the background region is defined as
Qe = Q2= Upepa (BS U B!), i.e., the region
obtained by excluding all objects that have ap-
peared. Background consistency is then com-
puted as s, = (I3, It ), where I, = Qf o I*
denotes the background of the image, and ¢ is a similarity function such as L; distance or DINO-
based similarity. For unchanged objects, we compute the per-object consistency st = ¢(I19, I!) for
each 0 € P and then average them. Formally, the final EdiVal-CC score emphasizes semantic
preservation by averaging the feature-level similarities of the background and unchanged objects
(see Appendix.[0.3|for details):

(a) Base image (b) GPT-Image-1 (c) FLUX.1-max

Figure 3: Beautification vs. preservation under
the prompt: “Change the background to a li-
brary.” GPT-Image-1 tends to increase HPSv3 via
beautification, while FLUX.1-Kontext-max em-
phasizes fidelity to the input.

EdiVal-CC(I*, I°, P'*) = § sgg+W1mhl > skl (3)
ogPunch
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Figure 4: Results of human agreement. Dashed lines represent the average accuracy of each
method. EdiVal-IF achieves 81.3% human agreement accuracy, significantly outperforming the
VLM (Qwen2.5-VL) at 75.2% and thresholded CLIP_dir at 65.4%. Note that the CLIP_dir threshold
is tuned separately for each task.

EdiVal-CC aligns with the intuitive notion of consistency, providing a precise measurement.

EdiVal-VQ. Zero-shot VLMs are not trained for reliable assessment of image qual-
ity—particularly artifacts and aesthetics—and we find they are imprecise as scoring functions (see
Appx. [N). Consequently, we adopt Human Preference Score v3 (HPSv3) Ma et al, (2025) as our
visual-quality (VQ) evaluator. In practice, applying preference models to unedited, real photographs
often yields relatively low aesthetic scores. We also observe divergent behaviors across editors (See
Fig. [B): some (e.g., GPT-Image-1) tend to beautify images and increase HPSv3, whereas others
(e.g., FLUX.1-Kontext-max) preserve the original appearance with minimal aesthetic change. Be-
cause aesthetic preference is inherently user- and task-dependent, and beautification can trade off
with content consistency (already incorporated into our overall score), we report EdiVal-VQ sepa-
rately and do not fold it into the aggregate metric.

EdiVal-O. We aggregate Instruction Following (EdiVal-IF) and Content Consistency (EdiVal-CC)
into a single overall score. Since both metrics are unit-free and normalized to [0, 1] but capture com-
plementary aspects, we follow prior work and use the geometric mean to balance them and penalize

imbalance (Liu et al., [2025; Ku et al.,2023). Formally, EdiVal-O = VEdiVal-IF - EdiVal-CC .

Design Scope and Limitations. We omit style_change from our taxonomy because style cate-
gories are inherently ill-defined, which makes instruction-following (EdiVal-IF) difficult to evaluate
reliably. Extending EdiVal-Agent with style-aware recognition is promising future work. After
language-based extraction, we validate objects using Grounding-DINO |Liu et al.| (2024a) and prune
low-confidence or ambiguous detections. This stabilizes the object pool and reduces error propaga-
tion during instruction generation and IF evaluation. By default, we employ Grounding-DINO as
the open-vocabulary detector, Qwen2.5-VL as the VLM, and DINOV3 |Siméoni et al.| (2025)) as the
image feature extractor due to their state-of-the-art performance and open-source availability, which
facilitates community use. The agentic pipeline is tool-agnostic and can be readily strengthened by
substituting more advanced modules in the future.

2.5 MEASURING HUMAN AGREEMENT

Setup. We conduct human study on edits made by four exemplary models, Step1X-Edit, AnyEdit,
Gemini 2.0 Flash and Flux.1-Kontext-dev, on EdiVal-Bench, generated by EdiVal-Agent as de-
scribed in Sec. In total, we collect 4,576 human annotations of edits. During evaluation, raters
were shown the original image, the edited image, and the corresponding instruction, and asked a
binary question: “Evaluate whether the edited image successfully follows the given instruction.”

Results. Figure 4] summarizes the findings. EdiVal-IF achieves a human agreement accuracy of
81.3%, significantly higher than VLM-only (Qwen-2.5-VL, 75.2%), CLIP_dir (65.4%), and other
zero-shot VLMs. These results verify that integrating VLMs reasoning with object detection leads
to better alignment with human judgment compared to existing methods. The inter-annotator’s
agreement rate (85.5%) indicates the best performance any evaluation tool can reach.
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We attribute the improvement in instruction-following evaluation to two factors. First, for sym-
bolically verifiable instruction types—sub ject _add, subject_remove, subject_replace,
position_change, and count_change—EdiVal-IF relies solely on Grounding-DINO. It de-
termines the success of an edit by checking object presence/absence, the positions of object centers,
and the number of bounding boxes. Results for position_change and subject_remove show
that these fixed rules, combined with Grounding-DINO, can significantly outperform Qwen2.5-VL
in edit evaluation. We hypothesize that errors in position_change stem from poor spatial rea-
soning, while failures in subject_remove are due to hallucinations regarding object existence.
Second, semantically verifiable types—color_alter, material_alter, text_change, and
background_change—are evaluated using Qwen2.5-VL combined with Grounding-DINO. The
decomposition stage in EdiVal-Agent can supports evaluation by localizing text regions, enabling
the LLM to reason more precisely about text edits. These findings indicate that EdiVal-IF not only
enhances interpretability but also improves the practical applicability of evaluation pipelines in real-
world settings that demand human-like understanding. Nonetheless, EdiVal-IF has failure modes,
which we document and analyze in Appendix.

3 BENCHMARKING MULTI-TURN EDITING

Table 3: Results of multi-turn editing. EdiVal-IF, EdiVal-CC , and EdiVal-O across three sequen-
tial editing turns. Best per column in dark red; second-best in

Latency EdiVal-IF EdiVal-CC EdiVal-O Rank
Technique Model In-Context Date (s/img) T1 T2 T3 T1 T2 T3 T1 T2 T3
Seedream 4.0 X 25.09.10 14.55 7593 5558 4159 9251 88.03 8586 [83.81 69.95 59.76 1
Unknown Nano Banana 25.08.26 9.20 70.70 50.66 3535 9391 90.48 = 89.48 8148 67.70 56.24 2
GPT-Image-1 25.07.16 2647 73.12 54.89 3835 81.00 77.78 7550 76.96 6534 53.81 3
Gemini 2.0 Flash 25.02.05 834 68.07 4596 2842 9058 85.10 80.88 7852 62.54 47.94 5
FLUX.1-Kontext-max X 25.06.03 10.13 69.49 46.89 31.83 9393 9090 8840 80.79 6529 53.04 4
Qwen-Image-Edit X 25.08.04 115.08 7290 44.06 2255 8422 80.52 7798 7836 59.56 4193 6
Flow Matching ~ Step1X-Edit X 25.04.25 2042 6189 3497 17.83 9276 8852 8521 7577 55.64 3898 7
FLUX.1-Kontext-dev X 25.06.25 29.21 5997 32.69 16.61 [9532 9224 9022 7561 5491 38.71 8
OmniGen X 24.09.11 19.70 5472 2448 10.66 93.00 88.42 83.92 71.34 4652 2991 9
AnyEdit X 24.11.24 393 4107 1632 722 8642 7891 70.10 59.58 3589 2250 10
Diffusion UltraEdit X 24.07.07 3.15 5137 1770 636 86.80 8450 82.40 66.78 38.67 22.89 11
MagicBrush X 23.06.16 4.08 4231 1573 490 8696 8126 76.86 60.66 3575 19.41 12
1P2P X 23.12.15 409 3741 1066 280 7685 6836 60.30 53.62 2699 12.99 13

Marginal Task Rate Across Turns

Summary of Results. Table[3|shows that Seedream 4.0~ *
achieves the strongest overall performance, leading in
EdiVal-O across all three turns (83.81/69.95/59.76) with
competitive latency (15.8 s/img)"|Nano Banana offers the
best speed—quality trade-off at 9.7 s/img, ranking second
in EdiVal-O and staying close to Seedream 4.0 in both
instruction following and consistency. GPT-Image-1 ex-
cels in instruction following, but its very high latency
(71.3s/img) and weaker consistency lower its overall
score, consistent with more regenerative behavior that pri-
oritizes aesthetics over stability. Among open-source sys-
tems, Qwen-Image-Edit performs well 1n1t1a11y (EdiVal-O Figure 5: Margina] Task Success rate
78.36 at T1) but degrades rapidly with additional turns, across turns.

likely due to exposure bias as discussed below. We can

see that there is a clear gap between the performance of closed-source and open-source systems.
With the exception of Qwen-Image-Edit, our model rankings exactly match those reported on the
Artificial Analysis leaderboard (rank by human vote) as of September 12, 2025; see Appendix.[J}

P Sharpest drop -16.78 pts

Marginal Task Rate (%)

Technique
unknown
Flow Matching
Diffusion

T 2 3

3.1 INSTRUCTION FOLLOWING

Marginal Task Success Rate. For a given turn, the marginal task success rate (Eqns. [T) and [2)
is the proportion of prompts for which the edit requested at that turn is successfully executed. By

2Closed-source latencies are measured using API-budgeted throughput for proprietary models; open-source
latencies are measured on a single NVIDIA A100 GPU with default settings.
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Nano Banana Marginal Task Success Rate —n

Base image Qwe-lmage-Edit

Figure 6: Marginal task success Figure 7: Illustration of background consistency. Instruc-
rate grouped by task types for tion: “Remove beige brick house.” The grounding box is the
Nano Banana. union of all object regions from the raw and edited images.

contrast, the instruction-following score in Table [3|reports the multi-turn task success rate at turn i
the logical AND of the EdiVal-IF scores across all edits along the chain. Figure [5] summarizes
per-turn performance. High-ranking models—such as Seedream 4.0, Nano Banana, and FLUX.1-
Kontext-max—maintain relatively stable EdiVal-IF across turns, even though Seedream 4.0 and
FLUX.1-Kontext-max are not in-context editors (they do not condition on prior prompts or interme-
diate images). In contrast, several other models exhibit a clear decline in marginal success as the
number of turns increases.

A particularly salient case is Qwen-Image-Edit. Although it is the strongest open-source system
at turn 1 (EdiVal-O 78.36 vs. 81.48 for Nano Banana), its performance degrades more rapidly over
subsequent turns. We hypothesize that this stems from exposure bias (Ning et al. [2023; |Schmidt,
2019): many single-turn editors are trained to operate on real images and ground-truth inputs rather
than on their own previous outputs. When asked to edit their own generations, small distributional
mismatches compound across turns, reducing stability; this effect is further aggravated when the
model can only attend to a limited history.

Marginal Task Success Rate Across Instruction Types. We analyze marginal subtask success
rates across turns for different instruction types. The results for Nano Banana are shown in Fig. [6]
Other editing models exhibit similar behavior. Nano Banana performs relatively well on attribute-
centric tasks such as color_alter and material_alter, but poorly on position_change
and count_change, indicating weaknesses in spatial and numerical reasoning, respectively.

3.2 CONTENT CONSISTENCY

We evaluate two aspects: (i) unchanged-object consistency (Fig. [§), which measures whether
objects that are not edited up to turn ¢ remain unchanged, and (ii) background consistency (Fig.
[7), which assesses whether the background remains stable when it is not explicitly modified. When
calculating consistency, the grounding box is extracted from the raw input image and applied to all
edited images. We therefore choose to report DINOv3 over L; distance for consistency computation
because even small shifts in object location can lead to large variations in pixel-wise L; loss, even
if unchanged objects are well preserved. By relying on DINO features, we ensure that consistency
is measured semantically, capturing attributes such as object identity, attributes, and texture, etc.
Nevertheless, the consistency scores from DINOv3 remain highly correlated with those computed
using pixel-wise L; loss (See results in the Appendix. [P). Based on the results, the most consistent
editing model is FLUX.1-Kontext-dev, followed by Nano Banana and FLUX.1-Kontext-max.
In contrast, GPT-Image-1 ranks near the bottom, showing notably poor consistency across turns.
Representative qualitative examples are shown in Figure [§|and Figure

3.3 VISUAL QUALITY

Besdies EdiVal-VQ, we report the absolute change in VQ score relative to the base image:
EdiVal-VQA; = |EdiVal-VQ,,; — EdiVal-VQy,|. Smaller A indicates stronger style fidelity to
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(a) Base Image (b) GPT-Image-1 (95.19) (¢) Nano Banana (98.05) (d) Qwen-Image-Edit (94.96)

Figure 8: Illustration of object consistency. Instruction: “Remove brick beige house.” The ground-
ing box, extracted from the raw input image, highlights the localized region used to compute
unchanged-object consistency. The corresponding consistency score is shown in brackets.

the base image; larger A reflects greater beautification or stylistic drift. As summarized in Table 4]
GPT-Image-1 achieves the highest aesthetic scores across turns and the biggest A, indicating a sig-
nificant stylistic shift (Fig. [3). For preserving the base image’s look (small A), Gemini 2.0 Flash
shows the least drift, with Nano Banana also performing well. We provide low-level exposure
statistics analysis in Appendix.

Table 4: EdiVal-VQ and EdiVal-VQA results across

turns. dark red denotes the best value in the column,; : Muti-turn vs. Single-Shot Complex Editing
denotes the second-best. For HPS, higher
. wet® o
values are stronger aesthetics. For A, smaller values -
. . A S
are stronger fidelity preservation. o £
e
Technique Model EdiVal-vQ EdiVal-VQA I €3t — g
T T2 T3 TI T2 T3 e N ]
Seedream 4.0 5.14 515 515 076 0.77 0.77 e é
Unknown Nano Banana 4.94 512 1526 0.56 0.73 0.88 o ¢
GPT-Image-1 227 221 218 e H
Gemini 2.0 Flash 444 423 407 0.32 o - = vt 1) £
FLUX.l-Kontext-max 5.12 5.07 5.04 041 049 047 o s Complex (C3)
Qwen-Image-Edit 586 5720 515 147 134 077 ‘ : N ® edvaF@TUn3
Flow Matching  Step1X-Edit 406 334 276 033 1.04 1.63
FLU)_(, 1-Kontext-dev ~ 5.12 5.07 5.04 0.73 0.69 0.65
im"E‘je" ‘3‘:; ‘2”8’; :;;’ g:i ?2; gjz Figure 9: Turn-3 instruction follow-
nyEdit X § . . . X . . .
Diffusion Ul 479 468 436 041 [030N RN ing: Multi-turn vs. single-shot complex
agicBrush 385 308 236 054 130 2.02
1P2P 320 238 144 LI18 201 294 prompts.

3.4 MULTI-TURN EDITING VS. COMPLEX EDITING

We compare two strategies for composing multiple edits. In multi-turn editing, instructions are
executed sequentially—apply instruction 1, then apply instruction 2 to the result, and so on. In
complex editing, we concatenate C instructions into a single prompt and perform one edit (“complex
level” C, with C' € {1,2,3}). Empirically (Fig. EI), when a model does not suffer from exposure
bias, multi-turn editing tends to yield higher success rates, consistent with a step-by-step “chain of
edits” (analogous to chain-of-thought in reasoning). For instance, Nano Banana benefits from the
multi-turn formulation. Conversely, when exposure bias is pronounced, compressing instructions
into a single, complex prompt can perform better; see Qwen-Image-Edit in Fig. [0

3.5 PARETO FRONT

After constructing the leaderboard using EdiVal-O, we further analyze the trade-offs between dif-
ferent evaluation dimensions. To ensure that no model “games” the benchmark by excelling in only
one dimension, we plot the Pareto boundary at Turn 3 for all pairwise combinations of our three
evaluated dimensions: EdiVal-IF, EdiVal-CC, and EdiVal-VQ (see Figure @) Additional Pareto
plots for Turn 1 and Turn 2 are provided in Figures[[4]and [T3}

3.6 ABLATION STUDY ON COMPLEX EDITING COMPRESSION

We conduct an ablation study on how to compress three-turn instructions into a single “complex
edit” prompt. In the previous experiment, we adopt the simplest concatenation strategy: {prompt
T1}. {prompt T2}. {prompt T3}. We further evaluate three alternative variants on Qwen-Image-
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EdiVal-IF vs EdiVal-CC (T3) EdiVal-IF vs EdiVal-vQ (T3) diVal-CC vs Edival-vQ (T3)
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Figure 10: Pareto front plot for Turn 3 editing across EdiVal-IF, EdiVal-CC, and EdiVal-VQ.

Table 5: Complex Editing Performance for com- Table 6: Tool swap analysis (correlations).
pression variants.
Type Default Variant Metric  Pearson ~ Spearman
Connector Variant Complex(C3) (%) VLM Qwen2.5-7B-VL 8&::5?;.%2\1/3%% I 0290 oo
InternVL3-8B IF 09660 09228
Default 27.62 . Threshold = 0.4 IF 09817  0.9860
Random shuffle 27.10 Threshold  [0.3,0.4] Threshold = 0.3 IF 09772 0.9457
Sequential connector 26.92 Filter Has filter No filter IF 09982 09930
Keep-unchanged 25 . 87 Detector Grounding DINO  OWL-ViT IF 0.8157 0.7929
Feature  DINOV3 DINOv2 CC 09987  1.0000

Edit: 1) Random shuffle: randomly shuffle the three per-turn prompts before concatenation. 2)
Sequential connector: explicitly encode the order as: first, {prompt T1}, then, {prompt T2}, last,
{prompt T3}. 3) Keep-unchanged objects: append an explicit constraint: {prompt T1}. {prompt
T2}. {prompt T3}. Keep {unchanged objects} unchanged. Table[5reports the resulting complex
editing success rate(%) at C' = 3. The results show these compression variants have only a very
mild effect on performance.

3.7 TooL SWAP ANALYSIS

We analyze the effect of swapping individual components in our evaluation stack, including the
VLM, detector, detector threshold, and image feature extractor. We find that modifying the VLM
(Appendix [C.1)), adjusting the detector threshold (Appendix , changing the detector (Ap-
pendix[C.3)), or changing the image feature extractor (Appendix @has only a minor impact on the
final evaluation outcomes. The summary statistics are shown in Tab. [6] which demonstrates that for
each configuration replacement, our evaluation results remain highly correlated with those obtained
under the default stack. As for EdiVal-VQ, we found that HPSv3 is the only human preference
model trained on images generated after SD3.5. This suggests that other preference models, such as
HPSv2, cannot provide reliable assessments of recent, more advanced generations, as they are only
sensitive to earlier-stage generations that are significantly lower in quality.

However, we note that replacing Grounding DINO with OWL-ViT Minderer et al.| (2022) (Ap-
pendix [C.3) fails to filter out failure cases originally caused by Grounding DINO and also reduces
agreement with human annotations. This highlights that detector accuracy should be prioritized
when considering detector substitutions.

We further examine component-specific tasks, such as counting, where we compare the perfor-
mance of density-map estimation methods (Appendix [D). Finally, we include preliminary experi-
ments on style transfer (Appendix [F), which indicate that existing VLMs still struggle to reliably
judge whether a style transfer succeeds.

4 CONCLUSION

We introduced EdiVal-Agent, an automated, and interpretable framework for evaluating instruction-
based image editing. By leveraging symbolic object decomposition, structured instruction genera-
tion, and a hybrid evaluation pipeline integrating both specialist tools and vision-language reasoning
models, EdiVal-Agent enables fine-grained, object-centric assessment of modern multi-turn editing
systems. Limitations and discussions are deferred to Appendix [H]

10
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ETHICS STATEMENT

Our work focuses on developing reliable and interpretable evaluation methods for instruction-based
image editing. While such technology holds promise for creative design, accessibility, and efficient
content creation, it may also be misused for harmful purposes such as generating misleading, de-
ceptive, or inappropriate content. We emphasize that our benchmark and evaluation framework are
intended solely for advancing research in safe and trustworthy generative Al. To mitigate risks, we
build on publicly available datasets, apply safety filters to generated images, and encourage respon-
sible use aligned with ethical standards and community guidelines.

REPRODUCIBILITY STATEMENT

We provide complete prompting templates and pseudo-code in the Appendix, along with imple-
mentation details and API links. Comprehensive results, datasets, and evaluation metrics are also
documented. To ensure full reproducibility, we will release all code, data, and model checkpoints
upon acceptance of this manuscript.
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People Scenes
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Figure 11: Scene diversity of our dataset across multiple environments and content types.
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A DIVERSITY OF OUR DATASET

)

BLACK MYTH

Figure 12: Images of different lightning sorted from very dark to very bright.

Object Classification & Examples

(136) glasses frame, shorts, vest

Clothing & Accessories
Furniture & Home (127) faucet, shower hose, window
(95) broccoli, squeeze bottle, trash can

Food & Kitchen

Other (73) circles, love, brooch

Structures & Places (46) cylindrical post, crosswalk, statue

Vehicles & Transport (44) boat, bicycles, car tires

Nature & Outdoors (43) rose, foliage, flower petal

Category

Animals (43) homs, dragon head, teddy bear

Sports, Toys & Hobby (36) easel, guitar, ski pole

Stationery & Office (33) sticker, binder, menus

Electronics & Tech (29) monitor, speaker, headphones

Body & Medical (16) ears, skeleton, hair

Tools & Industrial (13) flask, cone, beakers

100

0 2
Number of Objects

Figure 13: Categories and examples of objects in the base images.

All base images can be found here: the GEdit-Bench’s official Huggingface link https://
huggingface.co/datasets/stepfun—ai/GEdit—-Bench.

Our dataset could reflect real-world editing scenarios in the following senses.

Data Source We first stress that our images
1. are from real-world user editing cases as stated in GEdit-Bench [Liu et al.| (2025).

2. include both synthetic and real images
3. are carefully selected by the GEdit team to ensure the diversity.

Different Scenes We demonstrate example images of different scenes in Fig. [TT] which covers
assorted environments and content types, including but not limited to indoor/outdoor, person, special
items, and artistic scenes. This diversity helps our dataset to better reflect the real-world user cases.
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Different Lightning We demonstrate images of lightning conditions in Fig. [I2|sorted from very
dark to very bright. Our dataset includes a variety of illumination scenarios that aim to cover the
spectrum of very bright to very dark environments. This variation reflects the real-world complex
editing scenes.

Object categories. After decomposition, we analyzed and found that there are a total of 724 dis-
tinct objects in the dataset. We classify them into 13 categories, ranging from everyday items such
as furniture and kitchenware to special entities like vehicles and animals. Specifically, they are (The
distribution of these objects is presented in Fig. [[3]):

Clothing & Accessories
Furniture & Home
Food & Kitchen
Structures & Places
Vehicles & Transport
Nature & Outdoors
Animals

Sports, Toys & Hobby
Stationery & Office
Electronics & Tech

. Body & Medical

. Tools & Industrial

. Other

® NNk =

S G SR —
®» P =S 0

B PARETO PLOT

In addition to presenting a leaderboard in Table [T[4] we also visualize the trade-offs among the
three EdiVal dimensions—EdiVal-IF, EdiVal-CC, and EdiVal-VQ—using Pareto plots. These plots
illustrate the performance frontier for each turn, providing a more concrete view of the trade-off and
allowing users to select the most suitable model according to their preference.

We present the Pareto plots for Turn 1 in Figure[T4] Turn 2 in Figure T3] and Turn 3 in Figure [I0}

Pareto Plots for T1
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Figure 14: Pareto plot for Turn 1.

C ToOOL SWAP ANALYSIS

C.1 VLM Swap
To assess how our evaluation results depend on the choice of VLM, we swap the default VLM

in our stack (Qwen2.5-7B-VL) with several alternatives: Qwen2-7B-VL, Qwen2.5-32B-VL, and
InternVL3-8B. For each configuration, we recompute the per-turn instruction-following success
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Pareto Plots for T2
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Figure 15: Pareto plot for Turn 2.

rates for four representative editors: GPT-Image-1, Seedream 4.0, Nano Banana, and FLUX.1-
Kontext-max.

Across all VLM choices, the relative ranking of these editors remains unchanged. While the ab-
solute scores shift slightly (e.g., the Qwen2.5- and InternVL-based stacks tend to assign somewhat
lower scores than the Qwen2-7B-VL stack), the overall ordering is stable. When we compare per-
turn/marginal success rates between the default Qwen2.5-7B-VL stack and each swapped VLM,
both Pearson and Spearman correlations remain high over all (model, turn) pairs.

Concretely, Table [7] reports correlations between the per-turn success rates under our default VLM
(Qwen2.5-7B-VL) and those obtained with each alternative VLM. All Pearson correlations exceed
0.95 and all Spearman correlations exceed 0.92, indicating that changing the VLM has only a modest
effect on the absolute scores and largely preserves the relative ordering of the four models. In
particular, on the EdiVal-IF leaderboard we consistently observe

Seedream 4.0 > GPT-Image-1 > Nano Banana > FLUX.I-Kontext-max.

Table 7: Correlations between per-turn instruction-following success rates under the default VLM
(Qwen2.5-7B-VL) and three strong vision—language baselines. All correlations are computed over
12 (model, turn) points.

Baseline Model Pearson Spearman

Qwen2-7B-VL 0.9544 0.9298
Qwen2.5-32B-VL  0.9790 0.9544
InternVL3-8B 0.9660 0.9228

C.2 GROUNDING DINO THRESHOLD AND LARGE-BOX FILTER SWAP

In this section, we ablate the effect of changing Grounding DINO’s detection threshold and dis-
abling the large-box filter. By default, we use a threshold of 0.30 for subject_remove, 0.40 for
position_change, and 0.35 for all other tasks. In addition, during detection we discard any
box whose normalized height and width are both larger than 0.98, in order to filter out degenerate
predictions that cover almost the entire image.

To investigate sensitivity to these choices, we re-run the evaluation under three alternative settings:
(1) a global threshold of 0.30, (2) a global threshold of 0.40, and (3) the default thresholds but with
the large-box filter disabled. The results are reported in Table[8] Across all settings, the instruction-
following metrics (image success, task success, and overall scores) change only slightly, and the
ranking of models remains unchanged. This suggests that our conclusions are robust to reasonable
variations in the detector threshold and the large-box filtering heuristic.

C.3 DETECTOR SWAP

We also perform an ablation study by swapping the open-vocabulary detector in our pipeline from
Grounding DINO to alternative detectors, such as OWL-ViT Minderer et al.| (2022) and GLIP
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Table 8: Per-turn image success, task success, and overall scores under different evaluation settings
(ranked).

Config Model Img. Success Task Success Overall Rank
Tl T2 T3 Tl T2 T3 Tl T2 T3

Default Seedream 4.0 75.930 55580 41.590 75930 75580 76.110 83.811 69.948 59.757 1
Nano Banana 70.700  50.660 35.350 70.700 72.590 68.240 81.483 67.703 56.242 2
GPT-Image-1 73.120 54.890 37.970 73.120 74.440 72.740 76.959 65.340 53.542 3
FLUX.1-Kontext-max 69.490 46.890 31.830 69.490 69.110 70.430 80.791 65286 53.045 4

Threshold 0.3 Seedream 4.0 73450 53270 38940 73.450 74.870 74.870 82.431 68479 57.822 1
Nano Banana 69.940 49340 33.460 69.940 71.640 67.490 81.044 66.815 54.717 2
GPT-Image-1 71430 52.820 37.030 71.430 74.060 72.180 76.065 64.096 52.875 3
FLUX.1-Kontext-max  68.170 45.570 30.510 68.170 68.360 68.930 80.020 64.361 51.933 4

Threshold 0.4 Seedream 4.0 73.980 52.570 38.940 73.980 73.450 74510 82.728 68.027 57.822 1
Nano Banana 68.810 47260 31950 68.810 69.570 64.460 80.386 65.392 53.469 2
GPT-Image-1 70.110 50.190 35.150 70.110 72.560 71.240 75.359 62.480 51.515 3
FLUX.1-Kontext-max  66.290 43.690 28.630 66.290 67.230 67.420 78.909 63.019 50.308 4

No Large-Box Filter ~ Seedream 4.0 75930 55220 41.240 75930 75220 76.110 83.811 69.721 59.505 1
Nano Banana 70.700  50.660 35350 70.700 72.590 68.240 81.483 67.703 56.242 2
GPT-Image-1 72930 54.890 38.350 72.930 74.440 73.120 76.859 65.340 53.809 3
FLUX.1-Kontext-max 69.490 46.890 31.830 69.490 69.110 70.430 80.791 65.286 53.045 4

(2022). For this swap, detector accuracy is the primary factor we must prioritize, since a more
accurate detector directly translates to higher agreement with human annotations.

Table [9] summarizes the performance of several popular open-vocabulary detectors on standard de-
tection benchmarks. In the open-set setting ODinW (object detection in the wild), which most
closely resembles our scenario, Grounding DINO outperforms GLIP. It also achieves the best AP
on COCO, a widely used benchmark with 80 common objects. LVIS is a challenging benchmark
with more than 1k categories spanning rare, common, and frequent objects; on LVIS'¥, OWL-ViT
attains strong performance, but Grounding DINO still provides a better trade-off for our open-world
editing setting, particularly when ODinW performance is considered.

We do not adopt other available detectors such as Grounding DINO 1.5, because they are closed-
source and thus unsuitable for a community benchmark where users may need to run evaluation
many times or adapt the pipeline to their own models. Moreover, our current configuration already
achieves better alignment with human judgment (81.3%) than strong zero-shot VLM baselines, so
switching to a closed-source detector would reduce reproducibility without a clear benefit.

When we swap Grounding DINO for OWL-ViT in our EdiVal-IF pipeline, the relative ranking of
models (based on Img.Success at Turn 3) remains unchanged, but the absolute scores drop. Never-
theless, the per-turn/marginal success rates still exhibit high correlation with those under Grounding
DINO (Pearson 0.82, Spearman 0.79). OWL-ViT frequently fails to detect objects that are clearly
present in the image, which leads to many spurious “reject” decisions and thus lower Task.Success
and Img.Success across all models. This bias is largely consistent across models, so EdiVal-IF pre-
serves the same ordering, but the absolute values are shifted downward. A qualitative example is
shown in Figure [I7} where OWL-ViT fails to detect objects that are clearly present in the image.

We therefore do not recommend replacing Grounding DINO with OWL-ViT, GLIP, or other weaker
open-vocabulary detectors in our framework. Grounding DINO remains a widely adopted state-of-
the-art open-vocabulary detector, and weaker detectors not only reduce absolute performance scores
but also harm agreement with human judgments. For example, when swapping Grounding DINO for
OWL-VIT, the human agreement of EdiVal-IF drops from 81.30% to 53.67%. In general, upgrading
to a stronger open-vocabulary detector should preserve the relative EdiVal-IF ranking while improv-
ing absolute scores and human agreement, whereas downgrading to significantly weaker detectors
has the opposite effect and is therefore undesirable.

Can detector swapping avoid failure cases? No. We also examine the same failure cases of
Grounding DINO under OWL-ViT and GLIP. In these examples, OWL-ViT behaves differently
from Grounding DINO but does not fix the underlying issue: regardless of whether the object truly
exists in the image, OWL-ViT often detects nothing at all. GLIP, on the other hand, exhibits similar
false-positive behavior to Grounding DINO, but with denser and less precise bounding boxes. Thus,
switching to OWL-ViT or GLIP does not eliminate such failure cases; it merely changes them into
systematic missed detections or more cluttered false positives.
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minival val i i
Method Backbone  Pre-training data €oco LVIS LVIS ODinW35  ODinW13
APy APy AP, AP, APy AP, AP, AP. AP; APy AP,y
OWL-ViT ViT-L 0365, OID, VG, LiT 422 - - - - 34.6 312 - - -
GLIP Swin-L FourODs, GoldG, Cap24M ~ 49.8 373 282 343 415 269 17.1 233 354 - 52.1
Grounding DINO  Swin-L 0365, OID, GoldG 525 - - - - - - - 26.1 56.9

Table 9: Performance of popular detectors including OWL-ViT, GLIP, and Grounding DINO (Swin-
L). Numbers are copied from Table 1 of Grounding DINO 1.5 (2024). In the open-set
setting ODinW, which is most similar to our scenario, Grounding DINO outperforms GLIP. It also
achieves the best AP on COCO. LVIS is a large-scale benchmark with over 1k categories spanning
rare, common, and frequent objects.

|

(a) Base image (b) Seedream 4.0 (c) Detected: stone gray  (d) Detected: wooden
(original) (edited) railing fence

Figure 16: Failure due to detector false positives. Although the edit visually replaces the railing
with a wooden fence, Grounding DINO fires on both “stone gray railing” and “wooden fence” in
overlapping regions, causing an incorrect failure in our instruction-following metric.

(a) Base image (b) Seedream 4.0 (c) Nothing detected: (d) Nothing detected:
(original) (edited) “stone gray railing” “wooden fence”

|

Figure 17: OWL-VIT fails to detect the queried objects regardless of whether they are actually
present in the image, and therefore does not resolve this failure case.

== L

(a) Base image (b) Seedream 4.0 (c) GLIP prediction: (d) GLIP prediction:
(original) (edited) “stone gray railing” “wooden fence”

Figure 18: GLIP produces substantially more false positives than Grounding DINO, hallucinating
objects such as a “stone gray railing” and misclassifying the tower region as a “wooden fence” or
“stone gray railing”.
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C.4 IMAGE FEATURE EXTRACTOR SWAP: DINOvV3 1o DINOV2

We further ablate the image feature extractor by swapping the default backbone (DINOvV3) with
DINOv2. As with our other component swaps (VLM, detector, and threshold), we observe the
same qualitative behavior: the relative ranking of models remains unchanged, while the absolute
consistency scores shift.

Concretely, DINOV2 systematically produces lower EdiVal-CC values than DINOv3, but the or-
dering across models is identical. When we compare per-turn consistency scores across the two
backbones over all (model, turn) pairs, we obtain Pearson correlation 0.9987 and Spearman corre-
lation 1.0000, indicating that DINOv2 and DINOv3 induce essentially the same ranking and very
similar relative differences between models, despite the shift in absolute scale.

Table 10: DINO-v2 feature backbone results with EdiVal-CC Rank.

Model Turn1  Turn2 Turn3  EdiVal-CC Rank
Seedream 4.0 89.455 84.185 81.120 3
Nano Banana 90.820 86.900 85.070 1
GPT-Image-1 76.360 72.555 69.845 4
FLUX.1-Kontext-max 91.530 87.535 84.460 2

Table 11: DINO-v3 feature backbone results with EdiVal-CC Rank.

Model Turn1 Turn2 Turn3 EdiVal-CC Rank
Seedream 4.0 92.51 88.03  85.86 3
Nano Banana 93.91 90.48 89.48 1
GPT-Image-1 81.00 77.78  75.50 4
FLUX.1-Kontext-max 93.93 9090  88.40 2

Performance Comparison: Default (Dino v3) Image Feature Consistency vs Dino v2 Image Feature Consistency

nsistency (%)

Dino v2 Image Feature Cor

5 wo s w0 o5 @0 s
Default (Dino v3) Image Feature Consistency (%)

Figure 19: Per-turn EdiVal-CC scores under DINOv3 (x-axis) vs. DINOv2 (y-axis) for the four rep-
resentative models. Each point is a (model, turn) pair; Pearson correlation is 0.9987 and Spearman
correlation is 1.0000, confirming that the feature-extractor swap only shifts the absolute scale while
preserving the ranking.

D IMPROVEMENT TOWARDS COUNTING

When we generate prompts, the target count is never higher than 10. Under this regime, Grounding
DINO is sufficiently reliable for counting the relevant objects.

Potentially there are two other families of methods to do counting: tracking-based counting and
density-map estimation. Tracking-based methods are typically designed for videos, where they
exploit multiple frames to track objects over time. In our case, we only use single edited images to
do counting, so such tracking-based approaches are not applicable.

Density-map estimation methods (e.g., CSRNet [Zhang et al| (2016)); [Li et al| (2018))) are usually
developed for crowd counting of a fixed target category (such as humans) on specific datasets, rather

than open-vocabulary object counting. When the objects to be counted are not aligned with the
training data distribution, these methods can fail dramatically. To make this concrete, we apply
CSRNet to one of our examples: CSRNet outputs an estimated count of 44.86, whereas Grounding
DINO correctly predicts 3 bounding boxes for the target objects.
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(a) Count by Grounding (b) Count by CSRNet
DINO. (density map).

Figure 20: Illustration of counting with an open-vocabulary detector (Grounding DINO) vs. a
density-map-based crowd counter (CSRNet). CSRNet severely overestimates the count in this open-
vocabulary setting.

E CoOMPLEX EDITING COMPRESSION CONNECTOR

As the reviewer pointed out, the way we connect individual instructions may influence the final
instruction-following performance. In the main paper, we adopt the most straightforward strategy:
we simply concatenate per-turn instructions in order as {prompt for turn 1}. {prompt
for turn 2}. {prompt for turn 3}. We fully agree that alternative connectors or
prompt templates could potentially change performance, as suggested by the reviewer.

To study this effect, we experiment with three additional variants of the complex-edit prompt con-
struction. For concreteness and reproducibility, we conduct this analysis on Qwen-Image-Edit, since
it is the strongest open-source model in our pool and thus a natural candidate for investigating such
effects.

1. Random shuffle: randomly shuffle the sequence of the three per-turn prompts and then concate-
nate them with periods.

2. Sequential connector: explicitly indicate ordering using connectors such as first, {prompt
1}, then, {prompt 2}, last, {prompt 3}.

3. Keep-unchanged clause: append an explicit constraint about unchanged objects at the end, while
still concatenating by periods, e.g., {prompt 1}. {prompt 2}. {prompt 3}. Keep
{unchanged objects} unchanged.

We then measure the Turn-3 instruction-following rate under these four variants (default + three
connectors). The results are summarized in Table[T2]

Table 12: Turn-3 instruction-following rate for different complex-edit connector variants (Qwen-
Image-Edit).

Connector Variant Complex(C3) (%)
Vanilla (default concatenation) 27.62
Random shuffle 27.10
Sequential connector 26.92
Keep-unchanged clause 25.87

Overall, these connector variants do not substantially change the instruction-following performance
in our setting. The differences are relatively small, and the qualitative behavior remains similar. We
will add a brief discussion of these variants and their impact to the revised version.

F STYLE CHANGE: PRELIMINARY EXAMINATION

We also conducted a preliminary examination of style-change edits. Concretely, we generated styl-
ized images (e.g., “Ghibli style” or “Pixar style”’) and then asked both GPT-40 and Gemini to classify
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(a) Base image. (b) GPT-Image-1. (c) Qwen-Image-Edit.

Figure 21: Examples of edits targeting a “Ghibli style”.

(a) Base image. (b) GPT-Image-1. (c) Qwen-Image-Edit.

Figure 22: Examples of edits targeting a “Pixar style”.

them. For each generated image, we prompted the VLMs with a yes/no question such as: “Is this
image in Ghibli style?” or “Is this image in Pixar style? Please answer only ‘yes’ or ‘no’.” In all
cases, both models answered “no”, even for images that humans would generally agree are success-
ful style transfers (see Fig.[21]and Fig.[22). This preliminary experiment highlights a key limitation:
current VLMs struggle to reliably judge whether a style-transfer edit has succeeded, even when
evaluating images produced by the same model being queried (e.g., GPT-40 answering “no” for its
own generations).

Beyond this limitation, we identify two additional factors that make style-transfer edits particularly
challenging for fair instruction-following evaluation. First, style transfer is an inherently ill-defined
and subjective editing category: the boundaries between styles can be vague (e.g., watercolor anime
vs. Ghibli), which naturally induces lower human agreement. Second, when performing style-
transfer edits with closed-source models, we often encounter copyright-related refusals (e.g., de-
clining to apply a specific proprietary style), which further complicates systematic evaluation under
our framework.

23



Under review as a conference paper at ICLR 2026

G RELATED WORK

Instruction-based editing models. InstructPix2Pix (IP2P) Brooks et al.| (2023) introduced a two-
stage recipe that converts a text-to-image diffusion model Rombach et al,| (2022)); |[Zhang et al.
(2025a) into an editor: (i) synthesize paired editing data using Stable Diffusion Rombach et al.
(2022) and training-free techniques such as Prompt-to-Prompt |Hertz et al.| (2023)); (ii) fine-tune the
diffusion model on these pairs. Subsequent systems—MagicBrush |Zhang et al| (2023)), UltraEdit
Zhao et al.| (2024), and AnyEdit [Yu et al.| (2025)—scale this paradigm to large, fine-grained real-
image editing. More recent work (e.g., OmniGen |Xiao et al.|(2025);|Wu et al.|(2025b), Step1X-Edit
Liu et al.[(2025), FLUX.1 Kontext|Labs et al.|(2025)), and Qwen-Image-Edit/Wu et al.|(2025a)), See-
dream [Gao et al.|(2025))) adopts task-aware architectures and increasingly leverages flow matching
Liu et al.| (2022)); Lipman et al.| (2022); [Zhang et al.[(2024).

A complementary line explores autoregressive (AR) editors such as Gemini 2.0 Flash Image |Gem-
ni2[(2025)), Gemini 2.5 Flash Image (“Nano Banana”) Deepmind! (2025), and GPT-Image-1|OpenAl
(2025)). These models enable in-context multi-turn editing: users iteratively refine an image within
a conversational interface, with the model maintaining a coherent editing history. To our knowledge,
we provide the first systematic comparison of in-context multi-turn AR editing versus context-free
multi-turn editing with non-AR models across instruction following, content consistency, and visual
quality.

Editing evaluation. Early evaluations (e.g., [Brooks et al.| (2023)) rely on CLIP-based similarity
Radford et al.| (2021)), including directional variants|Gal et al.|(2022), to approximate editing quality.
However, CLIP emphasizes semantic alignment and is less sensitive to fine, pixel-level changes.
When ground-truth edited images exist, it is natural to compare model outputs against references
using pixel distances (L) and semantic similarities (DINO Caron et al.[(2021), CLIP Radford et al.
(2021))|Zhang et al.|(2023));/Zhao et al.[(2024); Yu et al.|(2025);\Sheynin et al.| (2024])). Yet references
are imperfect: the space of valid edits is inherently multimodal, while a single reference captures
only one realization; moreover, many references are themselves synthesized by prior editors (e.g.,
Prompt-to-Prompt [Hertz et al.|(2023), SDXL [Podell et al.| (2024), DALLE-2 Ramesh et al.|(2022)),
importing their biases into evaluation.

Recent work relies exclusively on VLMs as interpretable judges—e.g., VIEScore [Ku et al.| (2023),
HQ-Edit/Hui et al.|(2024), and Complex-Edit|Yang et al.|(2025)—by querying models such as GPT-
40|0OpenAl (2025) about specific aspects of an edit. While VLMs offer holistic, language-mediated
assessments, they are insufficient on their own: they are notoriously poor at spatial reasoning Zhang
et al.|(2025b); |Cheng et al.| (2024)); |Chen et al.| (2024); |Qharabagh et al.| (2024);|Chang et al.| (2025])
and are prone to object hallucinations in existence, category, attributes, and relations Bai et al.
(2024); they have limited sensitivity to pixel-level changes and frequently miss subtle, localized
modifications [Vo et al| (2025) (e.g., fine structures, small attribute shifts, etc.), which are crucial
for evaluating content consistency; they are miscalibrated for artifacts and aesthetics [Liang et al.
(2024); Xu et al.| (2023); Ma et al.| (2025)), which humans are sensitive to. Our approach, EdiVal-
Agent, addresses these gaps by integrating VLM-based reasoning with grounding tools, symbolic,
object-centric pixel- and semantic-level tools, and human preference models, yielding a precise and
interpretable evaluation of instruction-based editing.

Editing tasks. We consider three settings: (i) Single-turn vs. multi-turn. Multi-turn editing
Zhang et al.| (2023); Zhao et al. (2024) is more demanding than single-turn, as the model must
maintain consistency across sequential instructions. In contrast to context-free multi-turn pipelines
(each turn consumes the previous image and the next instruction), AR models |Gemini2| (2025);
Deepmind| (2025)); OpenAl (2025) support in-context multi-turn editing by conditioning on the full
conversational history. (ii) Complex single-shot vs. multi-turn. Following Yang et al. (2025),
a sequence of edits can be concatenated into a single complex prompt and executed in one pass;
we compare this setting to genuine multi-turn editing. (iii) Other tasks. We focus on instruction-
based editing, the most common regime; other scenarios (e.g., prompt-to-prompt/caption-to-caption
Hertz et al.| (2023))) are outside our scope. To the best of our knowledge, this paper offers the first
comprehensive comparison covering single-turn, multi-turn, and complex single-shot editing within
a unified framework.
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H LIMITATION AND DISCUSSION

Given the object-centric evaluations conducted in this study, several limitations warrant considera-
tion. First, our instruction types are limited to object-centric prompts, which may not capture the
full range of creative editing requests typical in real-world scenarios. Future research should explore
a broader spectrum of instructions, including those involving stylistic changes or complex narrative
elements. Additionally, while our work provides a reliable and comprehensive evaluation frame-
work for multi-turn editing, it does not apply the evaluation results to improve the editing models
themselves. A straightforward extension would be to use evaluation scores for Best-of-N selection
to improve inference-time performance. Future work could also explore post-training methods such
as reinforcement learning, treating the evaluation scores as reward signals.

I MORE METRICS FOR HUMAN AGREEMENT

The most straightforward metric is accuracy. Here, we provide more metrics measuring human
agreement: Pearson Linear Correlation Coefficient (PLCC), Cohen’s Kappa Coefficient (Kappa)
and F1 scores as shown in Tab. @ However, we note that for 0/1 predictions, correlation metrics
like PLCC and Kappa may be considered not suitable for measuring the agreement with human
annotators.

Table 13: Task-specific and overall performance comparison across models. Metrics reported:
Pearson Linear Correlation Coefficient (PLCC), Cohen’s Kappa, and F1. Best per column high-
lighted in bold.

Task Type Model PLCC Kappa F1
subject_add CLIP_dir 02110  0.1764  0.6914
Qwen2.5-VL  0.5331  0.5264  0.7893
EdiVal-IF 0.5365 0.5364 0.7786
background_change  CLIP_dir -0.0329  -0.0076  0.8745
Qwen2.5-VL  0.5792  0.5686  0.8889
EdiVal-IF 0.5244  0.5157  0.8763
subject_remove CLIP_dir -0.0011  -0.0002  0.6592
Qwen2.5-VL  0.1891  0.1758  0.4896
EdiVal-IF 0.5473  0.5409 0.7837
count_change CLIP_dir 0.0456  0.0142 0.0782
Qwen2.5-VL  0.1998  0.1748  0.2162
EdiVal-IF 0.3431  0.3274 0.3571
material_alter CLIP_dir 0.2086  0.2038  0.4561
Qwen2.5-VL  0.8658  0.8616 0.8971
EdiVal-IF 0.4778  0.4624  0.6364
color_alter CLIP_dir 0.1841  0.0874  0.8542
Qwen2.5-VL  0.8409  0.8407  0.9573
EdiVal-IF 0.7820  0.7744  0.9338
position_change CLIP_dir 0.0996  0.0430 0.3285
Qwen2.5-VL  -0.0381 -0.0374  0.1798
EdiVal-IF 0.3907  0.3271  0.5000
text_change CLIP_dir 0.6178  0.6173  0.8063
Qwen2.5-VL  0.7161  0.6947  0.8651
EdiVal-IF 0.7438  0.7347 0.8571
subject_replace CLIP_dir 0.0420  0.0121  0.8219
Qwen2.5-VL  0.6028  0.5994  0.8699
EdiVal-IF 0.5533  0.5429 0.8410
Overall CLIP_dir 0.3186  0.2568  0.6858
Qwen2.5-VL  0.6162  0.6161  0.7922
EdiVal-IF 0.6278  0.6273  0.8030
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J ARTIFICIAL ANALYSIS LEADERBOARD

We report the leaderboard from the Artificial Analysis website as of September 12, 2025 (Fig. 23).
To ensure a fair comparison, we align on the intersection of models evaluated by both platforms and
exclude Qwen-Image-Edit. Among the overlapping systems—Seedream 4.0, Nano Banana (Gem-
ini 2.5 Flash), GPT-Image-1 (GPT-40), FLUX.1-Kontext-max, and Gemini 2.0 Flash—the relative
ordering of human votes on Artificial Analysis matches our EdiVal rankings exactly (Table [T4),
supporting the accuracy of our methodology.

Table 14: Model rankings on the overlapping set. Relative ranks from Artificial Analysis (human
votes) vs. EdiVal (ours) as of Sep 12, 2025.

Model Artificial Analysis (Rank) EdiVal (Rank)
Seedream 4.0 1 1
Nano Banana (Gemini 2.5 Flash) 2 2
GPT-Image-1 (GPT-40) 3 3
FLUX.1-Kontext-max 4 4
Gemini 2.0 Flash 5 5

Creator Model ELO 95% Cl  Appearances
| I ByteDance Seed Seedream 4.0 1,205 -20/+23 1,607
I G Google Gemini 2.5 Flash 1,201 -13/+13 5,783
I 4. Black Forest Labs FLUX.1 Kontext [pro] 1,089 -12/+12 5,993
| ® openal GPT-4o 1,088 120413 5781
[ €2 Alibaba Qwen-Image-Edit 1,087 -12/+12 6,103
| 4 Block Forest Labs FLUX.1 Kontext [max] 1,083 120412 5,947
| 1 ByteDance seed SeedEdit 30 1076 211421 1372
| @ Hibream HiDream-E11 1,005 -13/+13 5112
| G Google Gemini 2.0 Flash Preview 1,000 +0/+0 5,521

| 2 Black Forest Labs FLUX.1 Kontext [dev] 995 -13/+13 5,679

Figure 23: Artificial Analysis leaderboard (Sep 12, 2025). Screenshot of the public leaderboard
used for comparison in Table Ef}
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K FAILURE CASE

We discuss a representative failure mode of our evaluation. The most severe errors arise from
false positives in Grounding-DINO, despite its strong open-vocabulary performance. Consider the
prompt: “Replace [stone gray railing] with [wooden fence].” As shown in Fig. [24] Seedream 4.0
produces an edit that is visually correct. Our rule for subject_replace declares success if, on
the edited image, the source object (stone gray railing) is no longer detected while the rarget object
(wooden fence) is detected. However, Grounding-DINO occasionally reports both the source and
target objects in the same region with high confidence, incorrectly suggesting that the source object
remains and thereby degrading the measured instruction-following accuracy. Improving the relia-
bility of open-vocabulary detection—particularly reducing false positives—would directly improve
the fidelity of our evaluation.

= o - (c) Detected: stone gray (d) Detected:  wooden
(a) Base image (b) Seedream 4.0 (edited) railing fence

Figure 24: Failure due to detector false positives. Although the edit visually replaces the railing
with a wooden fence, Grounding-DINO fires on both “stone gray railing” and “wooden fence” in
overlapping regions, causing an incorrect failure in our instruction-following metric.
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L DISCUSSION ON SINGLE-SHOT COMPLEX EDITING

Figure [25] shows that marginal success for the final instruction remains largely stable as complex
prompt length increases. Together with the multi-turn drops seen in Figure [3] this pattern supports
an exposure-bias explanation: performance degradation primarily stems from error accumulation
across sequential edits rather than an intrinsic inability to handle multiple instructions in a single
prompt.

M DISCUSSION ON VISUAL QUALITY

Beyond instruction following and content consistency, the perceptual quality of the edited image is
a key dimension. We therefore report (i) a learned aesthetic score and (ii) several low-level image
statistics that can surface systematic artifacts and drift in multi-turn editing pipelines.

Marginal Task Success Rate Across Complex Level

Table 15: Turn-3 instruction following: Multi-turn
vs. single-shot complex prompts, grouped by tech- " %—:—' o
. . . . . . . 3 == N\
nique. Bold indicates which setting is higher for = \\ 7
each model. 2a
Technique Model Multi-turn (T3)  Complex (C3) é 50
Nano Banana 35.35 28.14 ',—L:
In-Context GPT-Image-1 38.35 28.78 £
Gemini 2.0 Flash 28.42 21.89 g®
Qwen-Image-Edit 22.55 27.62 Technique
.. StepIX-Edit 17.83 15.73 Flow taing
Flow Matching - £ {1 1 _Kontext-dev 16.61 19.58 P o
OmniGen 10.66 11.01 ca € c
AnyEdit 722 2.80
. UltraEdit 6.36 8.22 : . . :
Diffusion MagicBrush Yo0 i Figure 25: Marginal task-success rate of

1P2P 2.80 2.80 the [ast instruction as a function of complex
prompt length (levels C' = 1,2, 3).
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Figure 26: Per-image 99.9% luminance quantile across turns. Higher values indicate more extreme
bright pixels and greater risk of over-exposure.

Low-level image statistics In addition to learned aesthetic scores, we compute several low-level
image statistics that help reveal systematic, multi-turn editing artifacts. Concretely, we convert RGB
pixels to luminance using the Rec. 709 luma coefficients: Y = 0.2126 R + 0.7152G + 0.0722 B,
and for each edited image we extract the 99.9% luminance quantile (the per-image pixel value
below which 99.9% of pixels fall). The 99.9% quantile is sensitive to high-exposure pixels and
therefore highlights over-exposure and bright streaks while being robust to single-pixel outliers. In
Figure [26 we plot the trend of this statistic across turns.

The measured trend shows a clear pattern: Qwen-Image-Edit and several other flow-matching
models (with the notable exception of FLUX.1-Kontext-dev) exhibit a pronounced increase in the
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99.9% luminance quantile over turns, indicating progressive brightening and increased risk of over-
exposure. By contrast, regeneration-style editors such as GPT-Image-1 tend to produce lower lu-
minance values than the input (reflecting darker, more conservative reconstructions), and several
models remain stable across turns.

Figure27] provides qualitative examples from Qwen-Image-Edit. The edited images exhibit elevated
luminance and noticeable high-frequency bright artifacts (e.g., white streaks or “line” textures) that
degrade perceptual quality, with luminance quintiles increasing substantially. Correspondingly, HPS
drops from 6.19 to 4.19 and 3.34, suggesting that HPS is sensitive to over-exposure to some extent.
In contrast, when querying VLMs about the visual quality of these images, the returned scores do
not change in the first two turns and remain consistently above 50, reflecting a positive evaluation
under the [0, 100] scale, while the T2/T3 edited images show significant artifacts.

(a) HPS: 4.25 (b) HPS: 6.19 (c) HPS: 4.19 (d) HPS: 3.34

VLM: 85 VLM: 85 VLM: 85 VLM: 60
Luminance:0.7 Luminance: 0.60 Luminance: 0.97 Luminance: 1.00

Figure 27: Representative Qwen-Image-Edit examples illustrating over-exposure and bright artifact
formation across turns. Although editing instructions are often satisfied, the images show elevated
luminance and high-frequency bright streaks that accompany the edits (visible especially in T2/T3).
Editing instructions: [Remove polyester white skirt, Change the count of tennis ball to 4, Change
the color of tank top to blue]. Note that VLM gives a positive score to all the images.

N VLMS FAILING TO JUDGE VISUAL QUALITY

The following is the zero-shot prompt for visual quality with VLMs. The example results are shown

in Fig. 27
You are an expert at evaluating image visual quality and naturalness.
I will show you an image.

Please analyze whether the image is visually pleasing and natural. Consider:
1. Is the image visually pleasing?

2. Is the image natural?

3. Does the image look natural and coherent?

Respond only with a score between 0 and 100, where 100 is the highest score.
100 means the image is visually pleasing and natural.

0 means the image is not visually pleasing and natural.

50 means the image is neutral.
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Algorithm 1 Object Listing and Grounding Filter

Require: image
Ensure: object pool O with grounding metadata

1: J + LISTOBJECTS(I) > see Sec.[0.2.1]
2: 0«0

3: for all (name, attrs) € J excluding key A11 Objects do

4: (boxes, phrases, scores) <— GROUND(/, name) > thresholds 0.3-0.4
5: if boxes # () and each box has w, h < 0.9 and area < 0.4 then

6: Olname] « attrs; attach grounding metadata (count, boxes, phrases, scores)

7: end if

8: end for

9:

O[Filtered All Objects] + JOIN(KEYS(O),”.”) and then append ”.”

O ALGORITHMIC DETAILS

This appendix provides the algorithmic details of our pipeline: object discovery and grounding-
based filtering (decomposition), instruction generation for multi-turn editing, and evaluation (in-
struction following, consistency, and perceptual quality). We also list the exact prompts and imple-
mentation specifics needed for reproducibility, and summarize the model-generation configurations.

O.1 DECOMPOSITION

We first enumerate visible objects in an input image using a vision-language model (VLM) prompt,
then filter these objects via visual grounding.

* Object listing: We use GPT—-4o with the prompt in Section [0.2.1] The model re-
turns a JSON with one entry per object and a terminal aggregated string key ‘All
Objects’’.

* Grounding filter: We use GroundingDINO SwinT-OGC |[L1u et al.| (2024a) to retain only
objects that can be visually grounded. We resize images to 512 x 512. We keep detections
meeting text/box thresholds (0.35) and reject oversized boxes by checking width/height
in normalized coordinates; we use max_box_size=0.9 and filter large regions if area
> 0.4. The output augments each kept object with grounding counts, phrases, boxes, and
scores, and creates a * ‘Filtered All Objects’’ string listing retained objects.

0.2 INSTRUCTION GENERATION

We generate multi-turn editing instructions from the grounded object pool.  We support
nine task types: local edits {subject_replace, subject_remove, material_alter,
color_alter, subject_add, text_change, position_change, count_change} and
the global edit {background_change}. We set MAX_TURNS=3. At each turn, we sample a new
task type without repetition where feasible. Feasibility is checked against the current object pool
(e.g., position_change requires at least two objects). If a sampled task is infeasible, we fall
back to subject_add. We maintain an available-objects pool that is updated after each instruc-
tion according to its semantics (adds, removes, or modifies attributes). If a background change oc-
curs, we mark bg_consistency=false for subsequent turns and restrict the pool to foreground
objects for the remainder of the episode.

Prompts (Full Text) Below we reproduce the prompts used by our generators, reformatted for
readability in print (content preserved).

0.2.1 OBIJECT LISTING PROMPT

You will be given an image. Your task is to identify and describe all clearly visible objects
in the image in a structured JSON format.

Output rules:
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Algorithm 2 Multi-Turn Instruction Generation

Require: grounded pool Oy, turns 7=3

Ensure: tasks {7}, instructions {I; }, formats { F; }, flag has_bg, set all_objects_ever
1: used <+ 0; O < Op; has_bg « false
2: all_edited « (); all_objects_ever + keys(Oy)

3: fort =1toT do
4: cand « {all task types} \ used
5: 74 + sample(cand);
6: if not feasible(7;, O) then 7; + subject_add
7: end if
8: F; « format_instruction(7;, O) > Query VLM by prompts in Section
9: I} + render_instruction(Fy, ¢, O) > strip brackets; add unchanged list for background
10: used < used U {7 }; append F3, I;
11: Update all_object_pool by adding any objects introduced in instruction I;.
12: Update available_object_pool by adding or removing objects as specified in ;.
13: Update unchanged_objects_pool by removing any objects affected by I;.
14: if » = background_change then
15: has_bg < true; O « filter_foreground(O)
16: end if
17: end for

18: return {7}, {I;}, {F}}, has_bg, all_objects_ever

1. Each object must be listed as a key in the JSON, using the format: “{material} {color}
{object name}”. If the material or color is unknown, omit that part. Do not include
any visible text in the key. Do not use “person” as an object name; instead, describe
wearable items (e.g., “blue cotton shirt”).

2. For each object, the value is a dictionary with fields: “object” (type, e.g., shirt, cup),
“color” (dominant color, use null if unknown), “material” (likely material, use null
if unknown), “text” (visible text, null if none), “count” (number of instances), and
“foreground” (boolean).

3. Do not include objects that are too small to describe, mostly occluded/incomplete, or
only background scenery (e.g., distant sky, wall, floor).

4. Add a final key “All Objects” whose value is a single string listing all object
names, formatted as: “{material} {color} {object name}. {color} {object name}.
{material} {object name}. {object name}.” Exclude “null”/“None” and separate

@

entries by ““. 7 (period + space). Do not include any text content in this list.
Example output (abridged JSON):
* “cotton blue shirt™: {object: “shirt”, color: “blue”, material: “cotton”, text: null,
count: 1, foreground: true}

* “ceramic white cup”: {object: “cup”, color: “white”, material: “ceramic”, text:
“GOOD DAY, count: 1, foreground: false}

¢ “leather bag”: {object: “bag”, color: null, material: “leather”, text: null, count: 2,
foreground: true}

* “red scarf”: {object: “scarf”, color: “red”, material: null, text: null, count: 1, fore-
ground: true}

¢ “All Objects™: “cotton blue shirt. ceramic white cup. leather bag. red scarf.”

0.2.2 TASK PROMPTS

Subject Replace

You are given an image and asked to suggest a replacement object for a specific object in
the scene.

Given object to replace: object_name
Your task:
1. Understand the scene context.
2. Suggest a new object that naturally replaces “object_name”.
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3. Ensure the suggestion is realistic for the scene.

4. Respond with only the object name (e.g., “chair”, “lamp”, “book”).
Examples: In a kitchen: “bowl”, “mug”; on a street: “bus”, “truck”; in an office: “stool”,
“bench”.

Answer format: New object name:

Material Alter

You are given an image and asked to suggest a new material for a specific object.
Object: object_-name Current material: current_material
Your task:

1. Identify the object.

2. Suggest a realistic alternative material that is easy to distinguish from the current one.

3. Respond with only the material name (e.g., “wood”, “metal”, “plastic”, “leather”).
Examples: cup: ceramic, glass, metal, plastic; chair: wood, metal, plastic, fabric; bag:
leather, canvas, nylon, fabric.
Answer format: New material:

Position Change

You are given an image and asked to create a position change instruction.
Available objects: available objects Positions: left, right, above, below
Your task:

1. Select a target object to move and a reference object.

2. Choose a relative position (left, right, above, below).

3. Ensure the instruction is physically reasonable.

4. Format: “Change the position of [target object] to [position] of [reference object]”.
Examples: “Change the position of [cup] to [right] of [book]”; “Change the position of
[lamp] to [above] of [table]”.

Answer format: Position change instruction:

Count Change

You are given an image and asked to create a count change instruction.
Available objects: available objects Target count: target count
Your task:
1. Identify a suitable object for the requested count.
2. Ensure the target count is realistic for the scene.
3. Format: “Change the count of [object name] to [target count]”.
Examples: “Change the count of [cup] to [3]”; “Change the count of [book] to [2]”.
Answer format: Count change instruction:

Text Change

You are given an image and asked to generate new text content.
Context: text situation
Your task:

1. Generate text that fits the scene.
2. Keep text short: max 2 words in English or 4 Chinese characters.
3. Respond with only the text content (no quotes or extra words).

Examples: coffee shop: “COFFEE”, “OPEN"; book: “NOVEL”, “GUIDE”; sign: “EXIT”,
“STOP”; Chinese: “ MIFE ~, « H1 [ .
Answer format: New text:

Color Alter
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You are given an image and asked to suggest a new color for a specific object.
Object: object name Current color: current color
Your task:

1. Suggest a simple, common color that fits the object.

2. Use only basic colors: red, blue, green, yellow, black, white, brown, gray, orange,
purple, pink.

3. Choose a color different from the current color and answer with the color name only.

Answer format: New color:
Subject Add

You are given an image and asked to suggest a new object to add to the scene.
Reference object: reference object Position: position
Your task:
1. Propose an object that would naturally fit at the specified position relative to the ref-
erence object.
2. Ensure the suggestion is realistic and contextually appropriate.
3. Respond with only the object name (e.g., “lamp”, “book™, “cup”).

Examples: next to a desk: “chair”, “lamp”, “computer”’; near a kitchen counter: “bowl”,

LT3 9

“plate”, “mug”; by a window: “plant”, “curtain”, “book”.
Answer format: New object:

Background Change

You are given an image and asked to suggest a new background for the scene. The existing
objects should remain unchanged.

Your task:
1. Propose a new background that works with the current setting.

2. Keep it simple and realistic; use 1-2 words (e.g., “kitchen”, “office”, “garden”,
“beach”, “forest”).

3. Respond with only the background name.

Answer format: New background:

0.3 EVALUATION

We evaluate in two modes: (i) Multi-turn (each turn edits the output of the previous turn), and (ii)

Complex Editing (compress all instructions to a single prompt).

Instruction Following. We compute a binary success per instruction with a detector combining
GroundingDINO |Liu et al.| (2024a) and a VLM (Qwen2-VL-7B) Bai et al.|(2025)). Representative

details:

Detector thresholds. Unless noted per task, GroundingDINO thresholds are 0.3-0.4; detec-
tions return normalized boxes [x1, Y1, T2, Y2].

Cropping and small objects. For object-level checks we crop by detected boxes; very small
boxes (< 0.05 in width/height) can be enlarged before VLM queries.

Replace. Detect old and new objects in source/target; success if both are detected and any
IoU between a source box (old) and a target box (new) is > 0. A VLM pre-check rejects
obvious non-replacements. See details in Alg 3]

Remove. Detect the object in the source; success if the object is absent in the target. See
details in Alg

Position change. Detect target and reference objects and verify the requested spatial relation
using object centers; also ensure the object count did not increase spuriously. See details in

Algel
Count change. Use the detector to locate instances of the target object and take the number
of validated detections as the count. See details in Alg
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Algorithm 3 Evaluate Subject Replace

Require: base B, target T, old object name o, new object name n
Ensure: success flag succ
: S« DETECT(B,0,7); T, < DETECT(T,n,T)
itS#£0 AT, #@then
succ < maxpes, tet, 10U(b,t) > 0
else
succ < false
end if
return succ

h‘@.‘(‘.‘??’.’!\.’?

Algorithm 4 Evaluate Subject Remove

Require: base B, target T, object name o

Ensure: success flag succ
1: § < DETECT(B,0,7); T, < DETECT(T,0,T)
2: succe(S;«é@/\T =0)
3: return succ

* Color/material. Crop the object in the target and ask the VLM a yes/no question about the
new color/material. See details in Alg[8]and Alg[9]

» Text change. If the instruction adds text anywhere, run the VLM on the whole image; if it
replaces text on a specific object, first crop that object’s box, ask the VLM to extract the
text, and compare it to the requested text. See details in Alg

* Background change. Ask the VLM yes/no whether the requested background category is
present. See details in Alg[T1]

Consistency. We measure object and background stability as follows:

* Object consistency (unchanged objects): DINOv3 ViT-B/16 |Siméoni et al.[ (2025) feature
similarity between crops of unchanged objects in base vs. target; we also report pixel L1
consistency and average across objects per image.

* Background consistency: detect objects in all_objects_pool in base/target (Ground-
ingDINO), mask them to isolate background, then compute masked L1 between back-
grounds (optionally DINOv3 masked similarity). Background consistency is evaluated only
when no background change occurred earlier (lbg_consistency=true).

Perceptual Quality. We report HPSv3|Ma et al.| (2025) plausibility and aesthetics, plus luminance
metrics. Quality is not folded into the Overall score.

0.4 OVERALL SCORE AND AGGREGATION DETAILS

Let a; be the image success rate at turn ¢: the fraction of images for which all edits up to and
including turn ¢ are successful (aggregated per task type, then averaged). Let x denote the average
content-consistency score combining object and background DINOVv3 similarities when applicable.

* Overall score. We report
Overall = [mean,(o;) x mean(x)] 2,

» Missing outputs across turns. For summary tables, we include only images that produce all
required outputs for the evaluated mode. If a model fails to generate a later turn, that image
is omitted from later-turn aggregates for that mode. Some edits will be rejected by some
models since the sensitive content flag.

* No unchanged objects. If the unchanged-object list is empty, object consistency is recorded
as None and excluded from averages; background consistency is still computed when
bg_consistency=true.
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Algorithm 5 Evaluate Subject Add

Require: base B, target T', new object name n, optional reference object name r, optional position

p € {left, right, above, below}

Ensure: success flag
1: B, < DETECT(B,n,7); T, < DETECT(T,n,T)
2: ifT,, =0 VvV B, # 0 then

3: return false
4: end if
5: if r and p are provided then
6: B, + DETECT(B,r,7); T, < DETECT(T,r,T)
7: if T,, = () then
8: return false
9: end if
10: Choose max logits boxes t € T,,, u € T)
11: (¢,yt) < CENTER(¢);  (Zy,Yu) < CENTER(u)
12: if p = left A x; < x, — &, then
13: return true
14: end if
15: if p = right A x; > z,, + €, then
16: return true
17: end if
18: if p = above A y; < yy, — €, then
19: return true
20: end if
21: if p = below A y; >y, + ¢, then
22: return true
23: end if
24: return false
25: else
26: return true
27: end if

* Turn-level reporting. We also report per-turn (T1, T2, T3) instruction-following and con-
sistency, and per-task-type success rates o iype. Quality metrics are reported separately and
are not folded into Overall.

0.5 MODEL GENERATIONS

We evaluate a mix of closed- and open-source editors using each model’s default settings (no hyper-
parameter tuning):

* GPT-Image-1, Nano Banana, and Gemini 2.0 Flash: called via their APIs with default
parameters.

* QWEN Image Edit: default settings from https://huggingface.co/Qwen/
Qwen—Image—-Editl

¢ InstructPix2Pix (IP2P): settings from |https://github.com/timothybrooks/
instruct-pix2pix.

* Magicbrush: same settings as IP2P; model weights from https://huggingface.
co/vinesmsuic/magicbrush-jul7.

e UltraEdit: settings from https://github.com/HaozheZhao/UltraEdit; we
apply a black mask since no explicit mask is provided.

* AnyEdit:  repository at https://github.com/weichow23/AnySD/tree/
9e7d36ef88e237b527695efc90blabcl8fab1218 with edit_type set to
general.

» SteplX-Edit: repository at https://github.com/stepfun-ai/SteplX-Edit}
weights at https://huggingface.co/stepfun—-ai/SteplX-Edit.
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Algorithm 6 Evaluate Position Change

Require: base B, target T, target object name a, reference object r, position p
Ensure: success flag
1: B, «+ DETECT(B,a,7); T, + DETECT(T,a,T)
2: B, + DETECT(B,r,7); T+ DETECT(T,r,T)
3:ifT, =0 v T, = () then
4: return false
5. end if
6: if |T,| > |B,| then
7: return false > No count inflation
8: end if
9: Select max logits boxes t € Ty, u € T;.
10: (x¢,y¢) < CENTER(t); (Zy,yy) ¢ CENTER(u)
11: if p = left then
12: return r; < x, — €,
13: end if
14: if p = right then
15: return r; > T, + £,
16: end if
17: if p = above then
18: return y; < y, — &y
19: end if
20: if p = below then
21: return y; > y, + &y
22: end if
23: return false

Algorithm 7 Evaluate Count Change

Require: target 7', name o, requested count c*
Ensure: success flag

1: ¢+ |DETECT(T, 0)|

2: return (¢ = c*)

* OmniGen: repository athttps://github.com/VectorSpaceLab/OmniGen.

e FLUX: default settings from https://huggingface.co/black-forest—-labs/
FLUX.l1-Kontext—-dev.

Modes. For clarity in the paper: we report both Multipass and Complex Editing (renamed from
singlepass for consistency with the rest of the paper).

Reproducibility Notes. Prompts are provided in full (Section|O.2)); thresholds are specified above.
Grounding uses SwinT-OGC weights; consistency uses DINOv3 ViT-B/16; the quality head follows
our RAHF implementation, and HPSv3 is included when available. All other parameters are left at
defaults.
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Algorithm 8 Evaluate Color Alter

Require: target image 7', object name o, color k
1: return VLMYESNO(T, “Is the o k?7)

Algorithm 9 Evaluate Material Alter

Require: target image 7', object name o, material m
Ensure: success flag
1: return VLMYESNO(T), “Is the o made of m?”)

Algorithm 10 Evaluate Text Change

Require: target T', desired text t* (optionally object name)
Ensure: success flag

1: t + VLMTEXT(T)

2: Normalize ¢ and t* (case, punctuation, whitespace)

3: return TEXT-MATCH(¢,t*)

Algorithm 11 Evaluate Background Change

Require: target T, category g
Ensure: success flag
1: return VLMYESNO(T, “Does the background show g?”)
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Table 16: Image success rates and overall task success rates across turns. (Multi-turn model)

M Image Success Rate Overall Task Rate
odel

T1 T2 T3 T1 T2 T3
Seedream 4.0 7593 5558 41.59 7593 7558 76.11
Nano Banana 70.70  50.66 3535 70.70 72.59 68.24
GPT-Image-1 73.12 5489 3835 73.12 7444 73.12
FLUX.1-Kontext-max 69.49 46.89 31.83 6949 69.11 7043
Gemini 2.0 Flash 68.07 4596 2842 68.07 67.72 6842
Qwen-Image-Edit 7290 44.06 2255 7290 6294 56.12
Step1X-Edit 61.89 3497 17.83 61.89 59.09 53.32
FLUX.1-Kontext-dev ~ 59.97 32.69 16.61 59.97 56.29 51.40
OmniGen 5472 2448 10.66 5472 48.60 4248
UltraEdit 51.37 1770 636 50.52 36.54 3147
AnyEdit 41.07 1632 722 40.03 39.34 40.56
MagicBrush 4231 1573 490 4231 4073 41.26
1P2P 37.41 1066 280 37.41 32.87 3427

Table 17: Task success rates (%) across five instruction types and three turns (multi-turn mode).

Model Subject Replace Subject Remove Material Alter Color Alter Subject Add
Tl T2 T3 T1 T2 T3 Tl T2 T3 Tl T2 T3 Tl T2 T3

Seedream 4.0 90.74 9123 88.89 68.92 47.69 50.00 9531 96.00 9577 100.00 98.59 100.00 83.08 89.61 81.52
Nano Banana 91.84 9231 7547 64.18 51.61 4035 91.94 8936 87.50 100.00 97.18 98.11 73.02 77.94 7241
GPT-Image-1 8431 9464 8571 70.77 5593 4737 9683 9565 87.88 100.00 97.06 100.00 80.95 7246 7241
FLUX.1-Kontext-max  92.31 88.89 88.00 67.16 55.56 5636 87.30 79.07 8030 100.00 95.65 98.04 77.05 7123 7273
Gemini 2.0 Flash 8333 9298 78.18 58.67 53.62 50.82 9091 82.00 8333 10000 89.04 9821 77.61 7273 7527
Qwen-Image-Edit 87.04 8246 7091 70.67 31.88 37.70 93.94 90.00 79.17 100.00 97.26 9474  77.61 55.84 39.78
Step1X-Edit 90.74 9649 6727 5333 3043 2131 9545 80.00 87.50 100.00 100.00 91.23 64.18 57.14 45.16
FLUX.1-Kontext-dev ~ 85.19 80.70 72.73 54.67 42.03 3279 84.85 7400 73.61 100.00 98.63 9474 67.16 61.04 39.78
OmniGen 88.80 8421 58.18 46.67 21.74 19.67 84.85 72.00 70.83 100.00 90.41 91.23 5373 5195 37.63
UltraEdit 88.89 63.16 38.18 2667 580 656 87.88 66.00 63.89 9821 80.82 7895 38.81 2338 9.68
AnyEdit 7407 66.67 61.82 3733 39.13 36.07 7879 6800 68.06 7857 6849 7895 2239 3896 2581
MagicBrush 83.33 7544 63.64 28.00 18.84 18.03 8333 86.00 80.56 9464 87.67 9123 37.31 4156 37.63
1P2P 7593 66.67 6545 2533 870 18.03 7424 70.00 6528 87.50 82.19 7544 2388 2857 1935

P ADDITIONAL EVALUATION RESULTS

In this section, we provide extended evaluation results. We separate the analysis into two modes:
multi-turn editing and complex editing. Each mode is evaluated across three aspects: instruction
following, consistency, and quality.

For the multi-turn editing mode, the overall instruction-following success rate is reported in Table([T6]
while success rates for individual instruction types appear in Tables[T7)and [T8] Consistency results
are summarized in Table[22] We also observed that some input images are non-square after resizing,
which can leave black padding on the top/bottom or left/right edges. Certain editing models, such
as GPT-Image-1 and Qwen-Image-Edit, attempt to fill these areas, whereas others preserve them.
To account for this, we separately report consistency for square (Table 23) and non-square inputs
(Table @) The conclusions remain consistent with the overall evaluation. Quality results for multi-
turn editing are presented in Table[26]

For the complex editing mode, the overall instruction-following success rate is shown in Table [T9]
and per-instruction-type results are in Tables[20|and 21] Consistency and quality results are reported
in Tables [25]and 27} respectively.

In consistency table, p99 means 99% quantile of luminance value, and p999 means 99.9% quantile
of luminance value.
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Table 18: Task success rates (%) across four instrcution types and three turns (multi-turn mode).

Model Text Change Position Change Count Change Background Change
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Seedream 4.0 9531 97.14 9623 3922 39.68 4894 18.06 19.30 20.00 98.46 96.36 93.06
Nano Banana 8333 86.36 81.25 20.00 47.37 4524 2319 9.62 1091 96.67 94.44 90.00
GPT-Image-1 88.33 97.01 97.96 31.11 40.68 50.00 11.27 1852 18.18 9839 94.44 91.30
FLUX.1-Kontext-max 80.36 86.15 82.69 1875 38.18 4444 882 9.09 1228 96.88 92.59 92.54
Gemini 2.0 Flash 90.32 9429 9630 21.15 2857 3191 1096 7.14 10.00 86.15 83.64 80.56
Qwen-Image-Edit 98.44 9286 7222 21.15 3492 3333 1233 1.72 0.00 9846 80.00 77.78
Step1X-Edit 6094 5143 4444 1346 31.75 27.08 0.00 172 1.67 87.69 8727 8333
FLUX.1-Kontext-dev ~ 50.00 4143 27.78 1538 2698 3333 000 172 500 90.77 80.00 77.78
OmniGen 29.69 3571 1852 1731 2222 20.83 548 517 0.00 7692 5636 5694
UltraEdit 28.12 1571 741 21.15 3651 3542 548 690 500 7538 38.18 43.06
AnyEdit 312 1000 11.11 21.15 2540 27.08 0.00 1.72 1.67 5692 40.00 52.78
MagicBrush 781 12.86 370 19.23 15.87 20.83 000 000 333 43.08 34.55 43.06
1P2P 1.56 857 556 1346 1587 2500 137 0.00 5.00 47.69 2000 31.94

Table 19: Image rates, overall task rates, and marginal means across three turns (complex mode).

Image Success Rate Overall Task Rate Marginal Task Rate

Model
Tl T2 T3 T1 T2 T3 Tl T2 T3

GPT-Image-1 73.08 4845 2878 73.08 69.77 68.25 73.08 69.98 70.19
Nano Banana 7146 46.56 28.14 7146 68.83 67.27 7146 69.03 67.21
Gemini 2.0 Flash 67.43 40.63 21.89 6743 6454 6194 6743 6480 62.17
Qwen-Image-Edit 7290 46.15 27.62 7290 69.23 68.07 7290 67.83 67.66
Step1X-Edit 61.36 3234 1573 6136 57.69 55.01 6136 5577 54.02
FLUX.1-Kontext-dev = 60.14 33.74 19.58 60.14 59.53 57.87 60.14 57.52 56.99
OmniGen 5455 2343 11.01 5455 5096 49.83 5455 4895 47.90
AnyEdit 39.86 10.31 280 39.86 34.79 3427 39.86 3147 31.64
UltraEdit 50.70 22.03 822 50.70 48.34 46.62 50.70 47.73 47.38
MagicBrush 4213 1486 455 42.13 3846 38.81 42.13 38.64 39.34
1P2P 37.24 1241 280 3724 37776 35.14 3724 3846 34.62

Table 20: Success rates (%) for five instruction types across three turns (complex mode).

Model Subject Replace Subject Remove Material Alter Color Alter Subject Add
Tl T2 T3 Tl T2 T3 Tl T2 T3 Tl T2 T3 T1 T2 T3

GPT-Image-1 8222 80.65 7899 7031 63.87 5854 9649 9020 84.66 100.00 97.27 91.88 81.67 70.73 69.00
Nano Banana 91.67 88.89 7933 67.16 5583 59.88 9259 8515 8333 97.87 98.15 9419 69.84 7121 67.77
Gemini 2.0 Flash 85.19 82.88 7590 57.33 5556 54.15 9394 7500 74.87 100.00 96.90 93.01 70.15 6597 66.67
Qwen-Image-Edit 87.04 8649 80.72 70.67 5833 54.63 9394 8621 85.64 100.00 99.22 9839 77.61 7569 73.84
Step1X-Edit 90.74 84.68 76.51 52.00 41.67 4293 9394 8276 79.26 100.00 93.02 90.86 64.18 59.03 54.01
FLUX.1-Kontext-dev ~ 85.19 82.88 74.10 54.67 47.92 40.00 86.36 75.00 76.06 100.00 99.22 9839 67.16 68.75 63.29
OmniGen 88.89 82.88 7590 46.67 39.58 4195 86.36 73.28 7234 100.00 96.12 93.01 53.73 48.61 4937
AnyEdit 66.67 5856 49.40 33.33 20.14 2244 7727 7672 7021 7857 68.99 7204 2836 2292 21.10
UltraEdit 88.89 87.39 7831 26.67 30.56 31.71 87.88 79.31 77.66 9821 93.02 90.32 3881 46.53 43.46
MagicBrush 83.33 7477 69.28 28.00 27.78 2927 8333 69.83 7394 9286 84.50 8387 37.31 3542 3291
1P2P 7593 7387 6145 2533 3125 2488 71.21 63.79 59.57 87.50 82.95 79.03 23.88 31.94 29.11

Table 21: Success rates (%) for four instruction types across three turns (complex mode).

Model Text Change Position Change Count Change Background Change
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
GPT-Image-1 87.50 9224 9375 30.95 22.11 2536 13.11 1038 13.12 98.15 96.08 93.37
Nano Banana 8421 8534 8424 2444 26.00 2254 2034 14.15 13775 98.15 9340 93.71
Gemini 2.0 Flash 8594 86.57 84.04 17.31 23.68 16.67 11.11 1077 6.84 90.77 84.17 80.73
Qwen-Image-Edit 98.44 97.01 93.62 21.15 22.61 2454 1233 3.05 3.66 9846 95.83 93.75
Step1X-Edit 57.81 59.70 52.13 1538 21.74 25.15 137 3.05 1.57 86.15 80.00 73.44
FLUX.1-Kontext-dev = 50.00 48.51 47.87 1538 2696 27.61 000 153 3.66 90.77 90.00 83.54
OmniGen 28.12 32.84 27.13 1538 21.74 17.18 6.85 1.53 2.09 7538 70.00 69.79
AnyEdit 312 522 798 2500 2696 2945 137 153 1.57 5692 44.17 40.62
UltraEdit 29.69 1642 11.70 21.15 26.09 2270 548 229 3.14 7538 6500 64.06
MagicBrush 781 448 638 1923 2261 17.18 0.00 0.00 524 43.08 36.67 3542
1P2P 312 522 638 1346 2000 2025 137 229 1.57 47.69 3750 38.54
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Table 22: Consistency scores (%) across DINOv3-based and L1-based object/background metrics.
(multi-turn mode)

Object DINOvV3 Consistency Background DINOv3 Consistency Object 1 — L, Consistency Background 1 — L, Consistency

Model
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 89.50 83.68 81.18 95.52  92.38 90.54 9331 88.76 86.22 9430 89.04 85.00
Nano Banana 90.17 85.25 84.38 97.65 95.70 94.58 92.39  90.00 89.10 9595 94.70 93.88
GPT-Image-1 73.26  68.80 67.21 88.74 86.76 83.78 79.65 78.32 77.60 78.07 76.53 75.79
FLUX.1-Kontext-max  90.91  86.66 83.68 96.95 95.15 93.11 94.16 91.26 89.46 95.88 93.43 91.46
Gemini 2.0 Flash 85.53 77.12 72.02 95.63  93.07 89.74 90.72  86.32 84.11 95.04 93.15 91.73
Qwen-Image-Edit 77.12  71.56 68.51 91.31 89.47 87.45 83.48 79.15 76.32 84.57 81.18 78.43
Step1X-Edit 88.17 81.65 71.33 97.34  95.40 93.09 93.92  90.64 88.80 98.24 97.10 95.73
FLUX.1-Kontext-dev ~ 92.66 87.92 85.29 9797 96.55 95.14 9439 91.59 89.91 96.36  95.06 94.13
OmniGen 88.34  80.77 73.64 97.66  96.08 94.21 93.87 91.02 89.43 97.44  97.00 96.34
UltraEdit 78.81 75.11 72.24 94.80 93.89 92.57 91.86 9047 89.65 97.12  96.62 96.19
AnyEdit 82.02 7341 63.04 90.82 84.42 71.17 92.52  88.96 84.97 93.72  89.98 86.05
MagicBrush 79.70  70.71 65.46 9422 9181 88.27 91.13 87.13 85.56 96.31 94.52 92.87
IP2P 68.24 56.83 48.01 85.47 79.89 72.59 84.44 79.74 77.21 91.31 87.21 83.51

Table 23: Consistency and 1 — L; metrics across three turns (multi-turn mode for square image).

Object DINOvV3 Consistency (Mean) Background DINOv3 Consistency Object L, Consistency (Mean) Background L; Consistency

Model
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 89.04 8539 80.74 9576 92.43 88.27 91.66  88.02 84.43 9534 9245 89.69
Nano Banana 88.68 85.19 83.31 96.88  93.79 9241 89.73  87.64 88.48 94.21 93.77 93.36
GPT-Image-1 73.62  71.27 67.27 90.00 85.72 82.16 80.33  78.80 79.88 85.69 81.86 80.85
FLUX.1-Kontext-max  91.34  89.90 86.04 95.99 94.18 90.10 93.81  92.80 90.58 97.27 95.77 93.94
Gemini 2.0 Flash 84.16 7991 71.13 91.50 91.83 87.07 88.98 87.07 85.13 95.19  93.35 93.34
Qwen-Image-Edit 7536 72.68 68.85 88.50 88.98 82.71 81.66 78.47 77.04 91.16 87.85 85.78
Step1X-Edit 87.40 84.03 78.27 97.43 9242 88.15 93.14  91.57 89.40 98.10  97.12 96.01
FLUX.I-Kontext-dev ~ 92.55 88.92 84.04 96.49  93.57 92.19 92.83  90.61 88.34 96.91 95.74 94.73
OmniGen 89.41 8451 7177 97.34  93.13 86.64 9326  91.48 89.53 9579 96.44 95.36
UltraEdit 79.43 7651 71.54 92.83  89.88 86.54 91.74  90.16 89.24 9587 95.14 94.63
AnyEdit 8225 7240 53.59 86.12  78.60 70.09 9233 88.00 82.10 94.36 91.68 87.55
MagicBrush 79.02  75.60 70.07 92.07 87.33 81.08 89.67 87.53 86.90 9529 93.88 92.38
IP2P 76.38  66.12 54.94 8529 81.46 65.50 86.90 82.25 7179 9245 88.01 84.51

Table 24: Consistency and L; metrics across three turns (multi-turn model for unsquared image).

Object DINOv3 Consistency (Mean) Background DINOv3 Consistency ~Object 1 — L; Consistency (Mean) Background 1 — L, Consistency

Model
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Seedream 4.0 89.55 83.48 81.23 9549 9238 90.86 93.50 88.85 86.44 94.17  88.62 84.35
Nano Banana 90.34  85.26 84.50 97.74  95.94 94.88 92.69 90.29 89.17 96.16  94.81 93.95
GPT-Image-1 7322 68.53 67.20 88.60 86.88 83.99 79.57 7827 7135 7720 7591 75.14
FLUX.1-Kontext-max 90.86 86.31 83.43 97.06 95.27 93.51 9420 91.09 89.34 9573 93.16 91.14
Gemini 2.0 Flash 85.69 76.79 72,12 96.14  93.23 90.10 90.91 86.23 83.99 95.02  93.12 91.51
Qwen-Image-Edit 7732 7143 68.47 91.65 89.53 88.10 83.68 79.23 76.23 83.78 80.37 77.43
Step1X-Edit 88.26  81.37 71.22 97.33 9577 93.77 94.01  90.53 88.73 98.26  97.09 95.70
FLUX.1-Kontext-dev ~ 92.67 87.80 85.44 98.15  96.92 95.54 94.57 91.70 90.10 96.30 94.98 94.05
OmniGen 88.22  80.33 73.14 97.70  96.45 95.25 93.94 90.97 89.42 97.64 97.07 96.47
UltraEdit 78.74  74.95 72.32 95.04 94.39 93.40 91.87  90.51 89.70 97.26  96.80 96.40
AnyEdit 82.00 73.53 64.18 91.39 85.14 78.14 92.54  89.07 85.31 93.64 89.78 85.84
MagicBrush 79.78  70.14 64.90 94.48 92.37 89.27 91.30 87.08 85.40 96.44 94.59 92.94
IP2P 67.32 5575 47.18 85.50 79.69 73.57 84.17 79.45 77.14 91.18 87.12 83.38

Table 25: Consistency scores (%) across object/background DINOv3 and L; metrics (complex
mode).

Model Object DINOvV3 Object 1 — L, Background DINOv3  Background 1 — I,
T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
GPT-Image-1 7323 70.02 67.57 79.52 78.03 7729 88.72 86.77 84.79 7796 77.38 76.51
Nano Banana 89.23 8720 86.46 92.15 91.08 90.40 9739 96.69 9538 96.39 9575 9533
Gemini 2.0 Flash 8541 8037 77.38 90.60 88.45 86.53 96.03 94.18 92.83 95.03 94.77 93.46
Qwen-Image-Edit 77.12  76.09 76.69 83.48 83.08 83.11 91.31 91.32 90.51 84.57 8493 8535
Step1X-Edit 88.14 8531 84.38 9393 9234 9211 9734 9637 9544 9824 98.02 98.04
FLUX.1-Kontext-dev = 92.66 90.30 89.19 9439 9279 91.61 9797 96.74 9540 96.36 9557 94.04
OmniGen 88.37 85.15 83.14 93.88 9246 91.06 97.62 97.10 96.07 9745 97.58 97.40
AnyEdit 81.90 8294 8492 9234 9243 9372 9097 92.63 93.78 94.15 95.11 9587
UltraEdit 78.81 72775 71.67 91.86 89.51 88.99 94.80 93.01 92.03 97.12 9635 96.02
MagicBrush 79.70  75.64 75.53 91.13 89.23 88.69 9422 9434 93.13 9631 96.14 95.83
1P2P 68.24 6731 6949 8444 8293 8372 8547 8588 8645 91.31 89.94 90.19
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Table 26: Human preference scores, p999, and p99 across three turns (multi-turn mode).

Model Human Preference Score p999 p99
Tl T2 T3 T1 T2 T3 T1 T2 T3

GPT-Image-1 6.6519 6.5898 6.5609 84.73 8296 82.50 7438 7191 70.54
Nano Banana 4.9431 51179 5.2638 89.67 90.27 90.56 8131 82.01 82.09
Gemini 2.0 Flash 4.4386 4.2332 4.0677 90.95 9221 9295 83.08 84.79 86.24
Qwen-Image-Edit 5.8591 5.7198 5.1502 89.16 9720 99.04 79.60 90.51 95.28
Step1X-Edit 4.0577 3.3443 27569 9281 9539 97.27 85.10 8846 91.21
FLUX.1-Kontext-dev  5.1192  5.0701 5.0354 90.76 91.94 9321 82.05 83.03 84.58
OmniGen 4.6099 4.0743 34958 93.15 9524 96.71 85.55 88.24 90.50
AnyEdit 3.6609 2.8017 1.9457 86.70 86.70 86.71 77.54 76.53 75.82
UltraEdit 47934  4.6806 4.3598 9271 94.19 9582 8542 86.76 88.34
MagicBrush 3.8465 3.0805 23606 91.49 9333 9420 8342 8470 85.32
1P2P 32020 23779 14418 89.61 9159 9244 81.79 8378 84.77

Table 27: Updated human preference scores, p999 scores, and p99 scores across three turns (com-
plex mode).

Model Human Preference Score p999 P99
T1 T2 T3 T1 T2 T3 Tl T2 T3

GPT-Image-1 6.6328 6.8428 6.9655 8533 84.14 8444 7473 7392 73.07
Nano Banana 49444 5.1700 5.3632 89.65 90.67 91.79 81.02 8193 82.75
Gemini 2.0 Flash 44511 45428 45732 9127 92.66 9348 8385 8569 86.75
Qwen-Image-Edit 5.8591 5.8769 59155 89.16 90.92 9223 79.60 8136 82.62
Step1X-Edit 4.0534 39063 3.8648 92.82 9355 94.05 85.11 8549 86.01
FLUX.1-Kontext-dev ~ 5.1192 5.2446 5.4645 90.76 91.01 91.29 82.05 81.53 81.55
OmniGen 45976 43070 3.8122 93.15 93.74 95.65 8556 86.28 88.57
AnyEdit 3.7020 3.7601 3.8382 8647 87.16 8743 77.82 78.60 79.12
UltraEdit 47934 47647 48117 92771 93.06 9324 8542 86.09 86.47
MagicBrush 3.8465 3.6029 3.5523 9149 91.52 91.64 8342 8331 83.07
1P2P 32020 3.3552 3.5640 89.61 9046 90.86 81.79 8257 82.71
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Q HUMAN AGREEMENT

The human study was conducted online through Gradicﬂ Annotators were asked to answer a 2-way
multiple-choice problem (Yes/No) about an editing instruction, an original image, and an edited
image. There were very limited potential participant risks, if they were to be exposed to an image
that was disturbing or not safe for work (NSFW). It is because the source images we used were
from GEit-Bench|Liu et al.| (2025)), which were not in themselves offensive. Also, our agent already
filtered out unsafe images during the first decomposition stage. Furthermore, all edited images from
the models were passed through its own NSFW filters which blacked out any potentially unsafe
content.

We conducted human study on edits made by four exemplary models—Step1X-Edit, AnyEdit,
Gemini-Flash 2.0, and Flux.1-Kontext-dev—on EdiVal-Bench, generated by EdiVal-Agent as
described in Section [0.2] For each edit, we collected two human ratings, yielding a total of
572 x 4 x 2 = 4,576 annotations. Depending on the prompt (which affected the editing instruc-
tion), each annotation took about 1-2 minutes. Raters were recruited online, each holding at least
a bachelor’s degree. They were shown the original image, the edited image, and the correspond-
ing instruction, and were asked a binary question: “Evaluate whether the edited image successfully
follows the given instruction.”

R COUNTING

Among all subtasks, count_change is the most challenging. Even the best-performing model (GPT-
Image-1) achieves a success rate below 25% at turn 1, while most models remain under 5%. We
also provide illustrative examples in Figure 28]

?
3
L

(a) Base Image (b) GPT-Image-1 (v) (c) Nano Banana (v')  (d) Gemini 2.0 Flash (x) (€) Qwen-Image-Edit (x)

Figure 28: Example of the count_change task: changing the number of paper cups to five.

Shttps://www.gradio.app/
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Seedream 4.0

Nano Banana

GPT-Image-1

Gemini 2.0 Flash

FLUX.1-Kontext-max

Qwen-Image-Edit
Figure 29: T1: Change the color of pumpkin to purple; T2: Change the background to forest;
T3: Remove fabric orange bow. Row-wise quality examples for the first six models: Seedream

4.0, Nano Banana, GPT-Image-1, Gemini 2.0 Flash, FLUX.1-Kontext-max, and Qwen-Image-Edit.
Each row shows generations for Input and three editing turns.

S MORE QUALITY EXAMPLES
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Step1X-Edit

FLUX.1-kontext-dev

OmniGen

AnyEdit

UltraEdit

MagicBrush

1P2P
Figure 30: T1: Change the color of pumpkin to purple; T2: Change the background to forest;

T3: Remove fabric orange bow. Row-wise quality examples for the remaining models: Step1X-
Edit, FLUX.1-kontext-dev, OmniGen, AnyEdit, UltraEdit, MagicBrush, and IP2P.
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