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Abstract

We introduce Neural Latent Dynamics Models (NLDMs), a neural ordinary differ-
ential equations (ODEs)-based architecture to perform end-to-end nonlinear latent
dynamics discovery, without the need to include any inductive bias related to either
the underlying physical model or the latent coordinates space. The effectiveness
of this strategy is experimentally tested in the framework of reduced order mod-
eling, considering a set of problems involving high-dimensional data generated
from nonlinear time-dependent parameterized partial differential equations (PDEs)
simulations, where we aim at performing extrapolation in time, to forecast the PDE
solution out of the time interval and/or the parameters range where training data
were acquired. Results highlight NLDMs’ capabilities to perform low-dimensional
latent dynamics learning in three different scenarios.

1 Introduction

The progress in the field of data-driven model discovery has been recently pushed by the adoption of
deep learning-based methods (Raissi [2018], Champion et al. [2019]), by relying on autoencoders
architectures to perform nonlinear dimensionality reduction; this latter represents a key step in
view of learning low-dimensional latent coordinates systems. Recent advancements in the field
of reduced order modeling also started to consider deep learning methods, with the introduction
of hybrid techniques (Fresca and Manzoni [2022]), combining standard methods such as proper
orthogonal decomposition (POD), together with autoencoders, allowing to overcome the main
limitations of traditional projection-based techniques, related to their poor performances when
modeling nonlinear phenomena. Classical model discovery methods usually require assumptions on
the involved coordinates, prior knowledge about the underlying physical model, typically enforced via
specific formulations of the loss function, and/or libraries of candidate functions and their derivatives
to perform sparse regression on (Rudy et al. [2017], Chen et al. [2021]). All these assumptions allow
to shed light on model interpretability, but might be difficult to fulfill in real-world scenarios due to
data scarcity, or because they imply infeasible computational loads.

The concept of neural ODEs (Chen et al. [2018], Kidger [2022]) represents a bridge between
dynamical systems and deep learning models, naturally leading to the formulation of latent continuous
dynamics discovery frameworks. In this contribution we propose Neural Latent Dynamics Models
(NLDMs), a neural ODEs-based continuous-time architecture, to perform end-to-end latent dynamics
learning, as first-order ODEs, without the need to incorporate any inductive bias. We test the proposed
architecture in reduced order modeling settings, applying the framework to multi-dimensional, linear
and nonlinear, time-dependent parameterized PDEs, such as a 1D Burgers’ equation, a 2D heat
equation, and a 3D nonlinear parameterized elastodynamics problem.
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2 Methods

In this section we describe the general formulation of Neural Latent Dynamics Models (NLDMs) and
the architecture for their employment in a reduced order modeling setting.

2.1 Neural Latent Dynamics Models

NLDMs combine autoencoders architecture together with neural ODEs to learn the latent dynamics
of the observed time-dependent data. Recently, multiple time-series modeling approaches combining
autoencoders and neural ODEs have been proposed, like generative latent ODEs (Chen et al. [2018])
and ODE-RNNs (Rubanova et al. [2019]). Differently from these strategies, our approach is non-
variational, due to the need to perform deterministic dimensionality reduction as a parallel end
goal, and tries to decouple the dimensionality reduction stage from the model discovery one, by
defining an architecture made by (i) an encoder, (ii) a latent neural ODE, and (iii) a decoder. The
proposed architecture is presented in a general setting, since it can also be employed to perform
standard time-series modeling, by using the latent dynamics module only for time advancements, and
disregarding any interest in performing latent model discovery.

The general NLDMs framework employs three learnable functions, an encoder E , a decoder D,
and a latent dynamics function f depending on a vector of parameters θ, to model the observable
high-dimensional state u(t) ∈ Rm evolution, given the initial state u(0), as follows:

z(0) = E(u(0)), (1)

z(t) = z(0) +

∫ t

0

f(z(τ), τ ; θ)dτ t ∈ [0, T ], (2)

û(t) = D(z(t)). (3)

Steps (1) and (3) regard the dimensionality reduction task, via the encoder and the decoder, respec-
tively, while step (2) represents the integration of the latent dynamics function f , linked to the time
evolution of the latent state z(t) ∈ Rn, with n ≪ m. Operating with discrete observations, the
integration step (2) is solved numerically via iterative methods, considering a discretization t0, ..., tN
of the time interval

z(t0), ..., z(tN ) = odesolve(f, z(t0), (t0, ..., tN )), (4)

with the corresponding formulation of the decoding step (3) that reads as

û(ti) = D(z(ti)), ∀i = 0, ..., N. (5)

The training procedure consists of minimizing a loss function given by sum of the squared L2-errors
between the observed and learned trajectories,

L =

M∑
i=1

N∗∑
j=0

∥u(tij)− û(tij)∥22, (6)

given a dataset of N + 1 sequential observations {ti,u(ti)}Ni=0, from which M different sub-
trajectories {u(tj0), ...,u(t

j
N∗)}Mj=1 of length N∗ + 1 have been sampled, with N∗ ≤ N .

2.2 NLDMs for Reduced Order Modeling

Regarding the way NLDMs can be exploited in a reduced order modeling setting, our approach builds
up from Fresca and Manzoni [2022], since our aim is to keep a modular structure of the overall model,
leading to more flexibility when dealing with high-dimensional data, allowing to eventually employ
pre-trained sub-modules. Considering a generic nonlinear parameterized time-dependent PDE, the
associated full-order model (FOM) obtained after space discretization can be expressed in the form
of a nonlinear parameterized dynamical system that reads as{

M(µ)u̇h(t;µ) = f(t,uh(t;µ);µ), t ∈ (0, T )

uh(0;µ) = u0(µ)
, (7)

where uh(t;µ) ∈ RNh represents the time-dependent parameterized solution, M(µ) ∈ RNh×Nh is
the mass matrix, f : (0, T )×RNh ×P → RNh is a nonlinear function encoding the system dynamics.
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Figure 1: A schematic view of the NLDM architecture employed in a reduced order modeling setting,
highlighting the structure of the encoder module E , made by three sub-modules (a state encoder Eu, a parameters
encoder Eµ, and a fusion net F) to produce the parameterized encoding of the initial latent state z(t0;µ).

P is the input parameters set to which µ belongs, while Nh denotes the FOM dimension, related to
the space discretization parameter h > 0. Formulation (7) justifies the search for a nonlinear latent
dynamics describing the evolution of uh(t;µ).

A common requirement, while performing dimensionality reduction of time-dependent parameterized
PDEs, is to include the information coming from the FOM parameters into the reduced order model
(ROM). As shown in Figure 1, in our setting this is achieved by employing a fusion network F ,
to combine the concatenated information, previously encoded by the state encoder Eu and the
parameters encoder Eµ, into the initial latent state z(t0;µ) ∈ Rn, input to the latent neural ODE,
where n represents the dimensionality of the reduced manifold. Both the parameters encoder Eµ
and the fusion network F are feed-forward neural networks, while the state encoder Eu and decoder
Du architectures could differ, depending on the nature of the problem and the complexity of the
observed state. Moreover, a hybrid dimensionality reduction technique has been adopted to deal with
high-dimensional FOMs states, by employing the POD basis matrix U extracted from a snapshots
matrix S = [uh(t0;µ)| · · · |uh(tN ;µ)], through randomized singular value decomposition (SVD).

3 Numerical Experiments

NLDMs capabilities have been tested in a reduced order modeling framework, on datasets coming
from PDEs discretizations, since they usually involve complex time and spatial-dependent dynamics.

Burgers’ Equation The first test case, inspired by Raissi [2018], consists of modeling the dynamics
of the following 1D Burgers’ equation

ut + uux − νuxx = 0, u(0, x) = − sin(πx/8), x ∈ (−8, 8), t ∈ [0, 10] (8)

discretized with Nh = 256 elements in space, over Nt = 200 time steps, for a fixed instance of the
parameter ν = 0.1. The model’s architecture followed the structure depicted in Figure 1, with a
latent state dimension n = 2, and a latent dynamics function consisting of one hidden layer with
32 units and tanh activation. The integration was performed by using fifth-order Dormand-Prince
adaptive-step solver, from torchdiffeq library (Chen [2018]).

Figure 2: Burgers’ equation FOM solution (left), NLDM predicted solution (center left) with relative error
(center right), and learned latent dynamics (right). The horizontal line in the prediction plot at t = 7.5s highlights
the start of time extrapolation.
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As shown in Figure 2, the method is able to capture the dynamics with a relative error of 6.33e-07 in
the training time interval [0,7.5)s, and is able to extrapolate in time, on the remaining test interval
[7.5,10]s, with a relative error of 4.95e-06. Moreover, time extrapolation capabilities have been tested
over a much larger timespan, extending the interval to [0,40]s, achieving an overall relative error
of 8.35e-05. The adoption of adaptive-step solvers improve NLDM’s stability and extrapolation
capabilities over longer time horizons, at the cost of a slower training procedure.

Heat Equation The second test concerns modeling the latent dynamics of a 2D heat equation, for a
fixed instance of thermal diffusivity α = 1

ut = α∆u, u(0, x, y) =
1

2
e−(x2+y2), (x, y) ∈ Ω = [−10, 10]2, t ∈ [0, 4] (9)

with a FOM dimension of Nh = 642, and Nt = 400. Since this example involves a 2D domain, the
state encoder Eu and decoder Du both feature a convolutional architecture. The adopted latent state
dimension is n = 2, with a latent dynamics function consisting of two hidden layers with 256 units
each, and tanh activation, integrated via forward Euler method.

Figure 3: Heat equation FOM solution (left) and NLDM predicted solution for t = 4s (center left), relative
error (center right), learned latent dynamics (right).

Figure 4: Elastodynamics prob-
lem FOM solution (top) and
NLDM predicted solution (mid-
dle) for t = 25.32s and param-
eters instance (−0.9782, 0.25),
learned latent dynamics (bottom).

The NLDM learned a two-dimensional dynamics with a mean rela-
tive error of 1.81e-07 on the training [0,3)s interval, and of 1.74e-08
when performing time extrapolation over the interval [3,4]s, whose
last step is shown in Figure 3, together with the latent dynamics
evolution over the complete interval.

Parameterized Elastodynamics Problem The last application
regards a 3D parameterized nonlinear elastodynamics problem for
a restrained micro-beam subject to internal piezoelectric actuation
force, with FOM dimension Nh = 7821, Nt = 400 time-steps
over the interval [0,25.32]s and 10 instances of the two parameters
controlling amplitude and frequency of the piezoelectric oscillating
force. Again, latent state dimension is n = 2, while the latent dynam-
ics net features one hidden layer with 256 units and tanh activation,
integrated via forward Euler method. The model learned a contin-
uous periodic latent dynamics with a mean relative error of 3.9e-03
on the training interval [0,19)s, and 6.3e-03 when performing time
extrapolation considering the whole interval [0,25.32]s, averaged
over all the 10 parameter instances. Moreover, when extrapolating
out of the training parameters’ range, the NLDM achieved a mean
relative error of 7.8e-03.

4 Conclusions

We introduced NLDMs, a model architecture combining autoencoders and neural ODEs, to perform
end-to-end latent dynamics discovery of high-dimensional systems, without the need of prior assump-
tions or knowledge about the physics governing the problem. We investigated NLDMs effectiveness
in the field of reduced order modeling, by defining a specific encoder structure to deal with parame-
terized problems, demonstrating their suitability for learning low-dimensional dynamics of nonlinear
time-dependent parameterized PDEs systems.
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