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Abstract
Large foundation models require extensive align-
ment to human preferences (Ouyang et al., 2022)
before deployment. Existing methods typically
collect large amounts of pairwise comparisons
from humans (“Do you prefer output A or B?”)
and utilize the Bradley-Terry-Luce (BTL) model
(Bradley & Terry, 1952) and generally suffer from
assuming a universal preference shared by all hu-
mans, which lacks the flexibility to adapt to a
plurality of opinions and preferences (Durmus
et al., 2024). In this work, we propose PAL, a
framework to model human preference comple-
mentary to existing pretraining strategies, which
incorporates plurality from the ground up. We
propose using the ideal point model (Coombs,
1950) as a lens to view alignment using preference
comparisons. Together with our novel reformula-
tion and using mixture modeling, our framework
captures the plurality of population preferences
while simultaneously learning a common pref-
erence latent space across different preferences,
which can few-shot generalize to new, unseen
users. With simple multi-layer perceptron, PAL
achieves competitive reward model accuracy on
Summary (Stiennon et al., 2020) (language), Pick-
a-Pic (Kirstain et al., 2024) (image generation),
and Persona (Perez et al., 2022) (semi-synthetic)
induced heterogeneous datasets, matching state-
of-the-art performance with greater efficiency. Fi-
nally, our experiments also highlight the short-
comings of current preference datasets created
using rigid rubrics that wash away heterogene-
ity, and we call for more nuanced data collection
approaches.
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1. Introduction
Large pre-trained “foundation” models (Bommasani et al.,
2021), such as large language models (LLMs) for language
generation (Achiam et al., 2023; Anil et al., 2023; Anthropic,
2024; Hoffmann et al., 2022; Rae et al., 2021; Reid et al.,
2024; Touvron et al., 2023) and text-to-image (TTI (Luc-
cioni et al., 2023)) models for image generation (Ding et al.,
2022; Kang et al., 2023; Ramesh et al., 2022; Rombach
et al., 2022; Saharia et al., 2022; Sauer et al., 2023; Yu et al.,
2022), are trained on massive amounts of data, including
data from the internet. While such models learn useful rep-
resentations for general language or vision tasks, they are
not readily deployable out-of-the-box to be used in the real
world. Modern machine learning (ML) systems built on
large foundation models go through rigorous fine-tuning or
aligning towards human preferences to make them amenable
to real-world usage. This is usually achieved through super-
vised fine-tuning (SFT) with direct human input on what
the desired outputs should look like for a given context and
then followed by alignment with large amounts of human
preference feedback usually in the form of pairwise compar-
ison of two outputs to a given input context (Ouyang et al.,
2022). This is usually achieved either by (i) fine-tuning
the SFT model with explicitly learned reward as done in
reinforcement learning with human feedback (RLHF) meth-
ods such as proximal policy optimization (PPO) (Schulman
et al., 2017) or implicitly with methods such as direct pref-
erence optimization (DPO) (Rafailov et al., 2024), or (ii)
inference-time policy adaptation (Lu et al., 2023) without
fine-tuning the original large policy model.

While aligning ML/AI models to human preferences, it is
imperative to ask ourselves whose preferences are we align-
ing the ML/AI models to? (Santurkar et al., 2023) The status
quo of the alignment phase is to assume a homogeneous pref-
erence shared by all humans and attempt to learn a reward
model to learn this preference with the Bradley-Terry-Luce
(BTL) model (Bradley & Terry, 1952) of paired preferences.
We challenge these notions in an attempt to capture diverse,
heterogeneous preferences (Durmus et al., 2024; Bakker
et al., 2022; Nadal & Chatterjee, 2019; Wildavsky, 1987).
The importance of capturing the plurality of preferences and
values among humans has also been highlighted recently by
Sorensen et al.. However, the methods suggested therein and
other recent works that look at learning multiple rewards
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as a top-down approach where the system designer decides
the number and axes that one should care about (Ouyang
et al., 2022; Santurkar et al., 2023; Cheng et al., 2023; Choi
& Li, 2024; Kovač et al., 2023), e.g., helpfulness vs. harm-
fulness (Bai et al., 2022b;a; Ganguli et al., 2022; Rame
et al., 2024). In reality, human preference is more complex
than the designer-specified axes (Bakker et al., 2022), which
leads us to propose the following goal.

Goal: Develop a framework for pluralistic alignment
that uses diverse human preferences from the ground up.

Our Contributions. Towards this goal, we make the fol-
lowing contributions,

1. Novel Reformulation: We reframe the problem of align-
ment from human preferences by introducing the lens of
the ideal point model (Coombs, 1950) and metric learn-
ing (Kulis, 2013). This re-framing enables leveraging
modeling and algorithmic techniques from a richer set
of toolboxes (Sections 2 and 3.1).

2. New Framework for Pluralistic Alignment: We pro-
pose PAL, a general framework for pluralistic alignment
using diverse human preferences from the ground up.
Our framework uses a mixture modeling approach com-
bined with the ideal point and metric learning reframing
that is interpretable (Figure 1, Section 3). It can work
with the output of any foundation model and learn reward
function to generalize to a population of diverse people.
Our framework is versatile to be applied to a wide variety
of application domains.

3. Empirical Validation on Benchmark Datasets: We
evaluate our framework through extensive experiments
on both synthetic and real datasets (Sections 4.1 and 4.3).
Our experiments highlight the ability and versatility of
the PAL framework to learn from diverse preferences
when heterogeneity exists in both language and vision
data. Our experiments also reveal that even when the
datasets are collected homogeneously, PAL can learn
reward functions using very simple models, e.g., 2-layer
MLP, on top of foundation models and are competitive
with state-of-the-art (SoTA) models that fine-tune large
foundation models. We discuss broader impacts, limita-
tions, and areas for future work in Section 6.

2. Notations and Background
We begin with a brief discussion of the BTL model and
how it is currently used in reward learning from pairwise
preference comparisons, followed by motivating the ideal
point model.

Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952)
is a parametric model for ranking. Given m items or alter-

natives, the assumption is that there is a universal ranking:
σ(1) ≻ σ(2) ≻ · · · ≻ σ(m) which are a reflection of the
unknown true scores or weights associated with each of
these items s⋆σ(1) > s⋆σ(2) > · · · s⋆σ(m), where σ(.) denotes
permutation and the scores s⋆ are positive real numbers.
Then, the probability that “i beats j" when comparing them,
denoted by i ≻ j is given by,

Pr(i ≻ j) =
s⋆i

s⋆i + s⋆j
=

exp (ri)

exp (ri) + exp (rj)
, (1)

where the variables r re-parameterize s > 0.

Notation: We set up some notations for further discussion.
Let D denote the dimension of the representation space
of the foundation models. Let xc ∈ RD denote the repre-
sentation of the prompt or the context. Let xl ∈ RD and
xr ∈ RD denote the embeddings of two items where the
subscripts denote left and right respectively. Note that while
we take the dimensions of the representation space for the
prompt and the output to be the same, it need not be the
same in general.

In the literature on alignment with human feedback, the
scores re-parametrized with reward, denoted here by r, are
modeled using a neural network denoted by rθ. More con-
cretely, given a context or prompt xc, the probability that
output xl is preferred to output xr under the BTL model is
given by,

Pr(xl ≻ xr|xc)

=
exp (rθ(xl;xc))

exp (rθ(xl;xc)) + exp (rθ(xr;xc))

=
1

1 + exp (rθ(xr;xc)− rθ(xl;xc))

(2)

The goal then is to learn this reward function rθ that takes
the output x ∈ RD for a given context xc ∈ RD, denoted
by (x;xc), as input and map it to a real-valued reward score
to approximate human preference. This learning of rθ is
done using lots of pairwise comparison data obtained by
querying humans. Such a learned reward function can be
used to align the model (Ouyang et al., 2022; Christiano
et al., 2017; Leike et al., 2018), score the generations during
inference time to output more aligned answers (Wang et al.,
2023), and rank the generations of multiple models (Dong
et al., 2023; Yuan et al., 2023). Recent work from Rafailov
et al. bypasses the status quo two-stage reward learning +
RL pipeline and directly finetune on pairwise preferences,
but still implicitly assumes the BTL model for ranking.

While most alignment literature focuses on the BTL model-
ing approach, we want to draw attention to the ideal point
model (Coombs, 1950) for preference learning.

The ideal point model was proposed by Coombs for hu-
man preference modeling in the psychology literature. The
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Figure 1: Illustration of PAL framework for learning from diverse preferences (Section 3). For any user i, the probability of
preferring xl to xr for the context xc is given by a reward model r(i)θ which uses a mixture modeling approach to capture
diverse user preferences – each user’s preference is modeled as a convex combination of K prototypes. Reward function
formulated using the PAL framework can be used flexibly, e.g., with fixed preference points (Model A), with preference
points that are functions of the context/prompt xc (Model B).

key idea behind this model is to exploit the geometry of
the problem, assuming there exists a meaningful represen-
tation space for the items/alternates being compared. Let
X ⊆ RD denote the domain of feature space of the con-
cepts (items, objects, images, choices, etc.) with a distance
associated with it. Preference learning based on the ideal
point model (Coombs, 1950; Canal et al., 2022; Ding, 2016;
Huber, 1976; Jamieson & Nowak, 2011; Singla et al., 2016;
Xu & Davenport, 2020) assumes that there is an unknown
ideal preference point a ∈ X that represents the reference
point people use for their preference judgments based on
distances. So, when asked “Do you prefer i or j?”, they re-
spond with i as their preference if dist(xi,a) < dist(xj ,a)
and vice versa, where xi,xj ∈ X are the feature representa-
tions of i and j respectively. That is, items that are closer to
the user’s ideal preference points are preferred by the user
over those that are farther away. The goal of preference
learning then is to use the responses for pairwise compar-
ison queries from people and learn the preference point a.
Once we learn a, we can predict the choices people make
between new unseen pairs. More formally, in general, the
probability that i beats j in preference for user a is given
by,

Pr(i ≻ j) ∝ h(dist2(xj ,a)− dist2(xi,a)),

where h is a link function (Nelder & Wedderburn, 1972)
which can be any monotonic function. Essentially, the idea
here is that the larger the difference in distance between the
alternates, the easier it is to decide and hence the answer is
less noisy. In contrast, if the difference of distance is zero
or closer to zero, that means that the alternates seem to be
equally good to the user and therefore the probability of
i ≻ j will be close to random.

3. Framework for Pluralist Alignment (PAL)
In this section, we begin by describing how to view existing
approaches that use the BTL model for alignment through
the lens of the ideal point model, and then introduce our
framework for pluralistic alignment.

3.1. Viewing alignment through the lens of the ideal
point model and metric learning

The assumption in the ideal point model (Section 2) that
the items being compared have representations in a vector
space is mild, especially while working with foundation
models. However, assuming that the Euclidean distance or a
known distance function in the representation space of these
foundation models to be the correct notion of similarity and
dissimilarity in human judgments is strong. We re-formulate
the goal of alignment, i.e. learning a reward function, to
learning a (potentially non-linear) transformation of the rep-
resentation output by the foundation model where a known
distance function, e.g., Euclidean distance or cosine similar-
ity, is a good approximation (in the transformed space) to
capture human judgments of similarity and dissimilarity.

Looking at the current alignment approaches using
the BTL model through the lens of the ideal point
model, we can re-interpret the Equation 2, 1/(1 +
exp (rθ(xr;xc)− rθ(xl;xc))), as an ideal point model
where the difference of rewards is a proxy for the differ-
ence of distances1 and the link function being the Sigmoid
or logistic function.

By relaxing the requirement of the Sigmoid link function

1We note that here the reward function is a proxy and not a real
distance function.
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used by the BTL model and the known distance function by
the ideal point model, we propose to view alignment from
human preferences as learning a reward function that can
generalize to the following:2

Pr(xl ≻ xr|xc) = h(rθ(xr;xc)− rθ(xl;xc)), (3)

where h is any monotonic link function appropriately nor-
malized to obtain probabilities.

We instantiate the reward function in the following ways:

1. With an unknown but fixed ideal point, unknown repre-
sentation space for jointly representing the prompt input
xc and the corresponding output x from the foundation
model and Euclidean distance, we model the reward
function as, rθ(x,xc) = ||f(x;xc) − f(a)||2, where
mapping f : R2D → Rd and ideal point a ∈ R2D

are unknown and learned from pairwise comparison
queries. This corresponds to the following pairwise rank-
ing model,

Pr(xl ≻ xr|xc)

= h(||f(xr;xc)− f(a)||22 − ||f(xl;xc)− f(a)||22).

2. The user ideal point is an unknown function of the prompt
xc and distance is the angle between the ideal point
conditioned on the prompt and the unknown representa-
tion space for the output x from the foundation model,
rθ(x,xc) = ⟨f(x), z(xc)⟩, where the mappings f and z
map RD → Rd and are unknown and are learned from
pairwise comparisons. Here we assume that the range
spaces of f and z are normalized to use the angle as
the distance function. This corresponds to the following
pairwise ranking model,

Pr(xl ≻ xr|xc) = h(⟨f(xr), z(xc)⟩)−⟨f(xl), z(xc)⟩).

3.2. Modeling diverse preferences

So far our discussion has focused on viewing the cur-
rent alignment methods which assume a homogeneous
model. That is, all users’ preferences are assumed to ar-
rive from a universal model with disagreements modeled
as noise. A natural extension to individualized modeling
can be written as follows. For user i, Pri(xl ≻ xr|xc) =

h(i)(r
(i)
θ (xr;xc) − r

(i)
θ (xl;xc)),where h(i) is any mono-

tonic link function that can be dependent on the individual
and the query, and r(i)(.) denotes the reward function for
individual i. We do not assume the knowledge of the link
function for our learning algorithms (Section 3.3.2). One
could use these models at a single-user level to learn a per-
sonalized model using lots of data from that specific user.

2Note that in this view, the reward is lesser when it is preferred.
So, one could rather think of this as a cost or penalty function
rather than a reward function.

However, such models will not generalize to other individu-
als.

In reality, different people can have different preferences
that are not just noisy perturbations of a universal model.
That is, people can differ in systematically different ways.
However, there are shared aspects across subgroups of
people, e.g., owing to demographics, educational, socio-
cultural, or other types of similarities. We propose a frame-
work to capture human preferences by considering these
differences and similarities by modeling the preferences of
individuals with a low-rank model. In particular, we use
a mixture modeling approach for capturing diverse prefer-
ences where we model each user as a convex combination
of K prototypes.

Model A: Diverse preference with fixed preference
points. Here each user’s ideal point is modeled as a convex
combination of K prototypical ideal points, {p1, ...,pK}
with pi ∈ R2D. The corresponding preference model is
given as follows:

Model A: Pri(xl ≻ xr|xc)

= h(||f(xr;xc)− f(a(i))||22
− ||f(xl;xc)− f(a(i))||22),

(4)

where a(i) :=
∑K

k=1 w
(i)
k pk with the weights w

(i)
k ≥ 0

and
∑K

k=1 w
(i)
k = 1. Denoting P := [p1, · · · ,pK ] and

w(i) := [w
(i)
1 , · · · , w(i)

K ]⊤,a(i) = Pw(i), where w(i) lies
in K-dimensional simplex denoted by ∆K .

Model B: Diverse preference with preference points as a
function of the input prompt. Here each user’s ideal point
is modeled as a convex combination of K prototypical func-
tions that map input prompts to ideal points, {g1, ..., gK}.
The corresponding preference model is given as follows:

Model B: Pri(xl ≻ xr|xc)

= h
(
⟨f(xr), z

(i)(xc)⟩ − ⟨f(xl), z
(i)(xc)⟩

)
,

(5)

where z(i)(xc) =
∑K

k=1 w
(i)
k gk(xc) = G(xc)w

(i) with
G(xc) := [g1(xc), · · · , gK(xc)] and w(i) ∈ ∆K .

We drop the superscript i on h for simplicity, however, we
note that the link function need not be the same for all users,
and our learning algorithm described in Section 3.3 does
not need to know the link function(s). We illustrate the PAL
framework in Figure 1 and Figure 5 (Appendix B).

3.3. Learning PAL models from Diverse Preferences

Given a dataset of answers to pairwise comparison queries,{
{(xl,xr;xc)

(i)
j }mi

j=1

}N

i=1
, where mi denotes the number
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of pairs answered by user i, the goal of the learning algo-
rithm in the PAL framework is to learn the mappings and
prototypes shared across the population, and for each user
i the weights w(i) := [w

(i)
1 , ..., w

(i)
K ] with w

(i)
k ≥ 0 and∑K

k=1 w
(i)
k = 1. For model A, mapping f and the proto-

types {pk}Kk=1 are shared, while for model B, the mapping
f and the prototype mappings {gk}Kk=1 shared. Without loss
of generality, we have assumed that xl is preferred over xr.
So, this learning problem can be looked at as a supervised
learning setting with binary labels.

3.3.1. GENERALIZATION OF seen USERS VERSUS unseen
USERS

When learning a reward function from diverse preferences,
there are two types of generalization to consider. (1) Gen-
eralization for unseen pairs for seen users, i.e., predicting
well for new pairs for the people for whom the weights have
already been learned from the training data. We call this
seen accuracy. (2) Generalization is for unseen users, i.e.,
predicting well for people whose data was not part of the
training data at all. For such new users, some part of their
new data will be used to localize them within the learned
model by only learning the weights for the new user by
keeping the shared mappings and prototypes fixed. We call
this unseen accuracy.

We also note that we can use the weighted combination of
the prototypes, i.e., an average of all the seen users, as the
zero-shot ideal point for new users. However, we emphasize
that it is important for reward functions to generalize to
unseen users and our framework provides a natural way to
localize the new user.

3.3.2. LEARNING ALGORITHM

Given the dataset D =
{
{(xl,xr;xc)

(i)
ji
}mi
ji=1

}N

i=1
, loss

function ℓ and model class for fθ, the learning algorithm
for model A starts by randomly initializing the proto-
types P = [p1, ...,pK ], pk ∈ RD, user weights W =
[w(1), ...,w(N)], where w(i) ∈ ∆K . Then, in each iteration
until convergence criteria, the following steps are repeated,

• Sample a random mini-batch
{
(xl,xr;xc)

(i)
j

}
of com-

parison data from D.
• Compute user ideal points: a(i) = P ·w(1).
• Compute distances: d

(i)
l,j = ||fθ (xl;xc) − fθ(a

(i))||22,

d
(i)
r,j = ||fθ (xr;xc)− fθ(a

(i))||22.
• Loss for each comparison j for user i:
ℓ
(i)
j (xl,xr;xc) = ℓ(d

(i)
r,j − d

(i)
l,j ).

• Update Step: argmaxθ,P,{w(i)}N
i=1

∑
i,j ℓ

(i)
j (xl,xr;xc).

The above steps describe updating the learning algorithm
for model A. For model B, the steps are similar except that

prototypes now are the functions g′s and the distance is the
angle. See Appendix E for pseudocode details.

4. Experiments
We conduct extensive experiments on simulated (Sec-
tion 4.1), semi-synthetic (Section 4.2), and real (Section 4.3)
preference datasets for both text and image generation tasks
to demonstrate that our proposed PAL (Pluralistic ALign-
ment) framework can: (1) effectively capture the diversity
of user preferences, thereby outperforming existing homo-
geneous reward models; (2) efficiently achieve performance
comparable to the existing SoTA reward models with far
fewer parameters and compute costs; and (3) be versatile
and applied to different domains.

For experiments on semi-synthetic and real preference
datasets, a simple two-layer MLP PAL reward model can
achieve or exceed the performance of existing status quo
reward models, which often contain billions of parameters.

Compute Resources. We conducted most of our exper-
iments using 4 RTX 4090, each with 24 GB of VRAM.
All of our experiments can be run on a single RTX 4090
with RAM and VRAM usage of less than 16 GB. A typical
experiment can be finished within 2 hours.

4.1. Heterogeneous Synthetic Dataset

Dataset. We synthesize a simple preference dataset with the
normal distribution (we use a setting similar to (Canal et al.,
2022)) and true f∗ : Rd → Rd is linear and the weight
W ∼ N (0, I). Let xi ∼ N (0, (1/d)I) denote the ith item.

Experiment Setup. Assume K∗ user prototypes {pi}K
∗

i=1,
where pi ∼ N (0, (1/d)I) with the minimum distance con-
straint ∥pi − pj∥ ≥ δ, ∀i, j ∈ [K∗], i ̸= j. We consider
two settings: 1) a mixture setting, where we assume each
user is located in the convex hull of K prototypes; 2) a sim-
pler partition setting, where we assume N users are evenly
sampled from K prototypes, with ai ∈ {pk}Kk=1. Each sam-
ple is generated as follows: we randomly draw two items
{xl,xr} and one user ai, and label the user’s preference as
sign(∥f∗(xl)− f∗(ai)∥2 −∥f∗(xr)− f∗(ai)∥2). We gen-
erate a total of n samples per user to learn the user’s ideal
point. We use model A with a single-layer MLP (without
bias) with hinge loss and evaluate on the held-out test set.

Results. We simulate datasets with multiple settings (differ-
ent true K∗, K, and d in both mixture and partition settings
– see Appendix D.1 for details) and evaluate our model A
on these simulation datasets with different # samples and
# prototypes. Figure 2(a) shows that PAL can align the
user ideal points to the true user ideal points in the represen-
tation space. See Appendix D.1 for more detailed results.
Figure 2(b) shows that the homogeneous reward model (#
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Figure 2: The performance of model A on the simulation datasets with d = 16, K = {1, 2, 3, 4, 5}, K∗ = {2, 3, 4},
N = 50 ∗K∗, and mixture user ideal point setting. For the fig 2(a) visualization, we set d = 2, K = 3, K∗ = 3.

prototypes = 1) can only achieve sub-optimal performance
on the simulated dataset when diverse preferences exist.
When we learn pluralistic preferences by setting multiple
learnable prototypes with PAL, we gain a significant 7%
accuracy boost. Figure 2(c) shows that as we increase the
number of training samples for seen users, PAL achieves
higher test accuracy, and is also more accurate in capturing
the true number of prototypes in the dataset (which we know
from simulations).

Remark. Recall that seen users are the users whose data
is a part of the training data and the accuracy for them is
measured on prediction on unseen pairs using the weights
learned during training. Notice that without enough samples
per user, learning diverse preferences can harm performance,
which indicates the importance of sample size in pluralistic
preference learning. Figure 2(d) presents PAL’s potential
to generalize to unseen users. Without any further fine-
tuning of the well-trained PAL reward model (trained with
100 samples per seen user), we can simply learn a new
weight for new unseen users with limited labeled samples
to achieve prediction accuracy similar to that of seen users.
That is, we keep the prototypes and mappings learned fixed,
but only train the weights for the new user using a few
comparison samples. We note that for alignment to be truly
effective, it needs to generalize to new users beyond the
set of users whose comparison data are part of the training
dataset. Therefore, we clearly distinguish between accuracy
for unseen pairs for seen users versus accuracy for unseen
users.

4.2. Heterogeneous Semi-Synthetic Datasets

We evaluate the performance of PAL on semi-synthetic
datasets which we construct by injecting diversity into real
preference datasets for both text generation and image syn-
thesis tasks. Our results show that PAL can achieve or
surpass existing state-of-the-art (SoTA) large reward models
with only 2-layer MLP networks.

4.2.1. PERSONA DATASET

Anthropic’s Persona dataset (Perez et al., 2022) consists
of a series of personalities (personas), each correspond-
ing with 500 statements that agree with the persona and
500 statements that do not. We denote the set of state-
ments that agrees with a persona ρ as S(ρ). We construct a
semi-synthetic dataset using Anthropic’s Persona to evaluate
PAL.

Dataset. Let ρ = {ρ1, . . . , ρK⋆} denote the set of personas
that exists in our semi-synthetic heterogeneous dataset with
K⋆ “true” preference groups i.e. each person (user) has one
of the K⋆ personalities. For each ρj ∈ ρ, we generate N
synthetic seen and unseen users, where a seen user provides
preference samples in the training and test sets, while the
unseen user only provides samples in the test set. For each
seen synthetic user, we generate np queries that ask if the
user agrees with a given statement from the persona dataset.
For each unseen synthetic user, we generate np,unseen queries.
If the statement aligns with the persona ρj of the user, i.e.
the statement belongs to S(ρj), then the user answers yes,
otherwise no. In the Appendix, Table 5 lists the personas
we used to create the dataset for each K⋆ and Figure 10
shows a sample question.

Experiment Setup. We evaluate the performance of model
B on the heterogeneous persona dataset with various settings.
We conduct the following experiments varying the number
of:

1. prototypical groups K = 1, . . . , 8, while fixing the num-
ber of people per group N = 10, 000 and the number of
queries per seen user np = 1, 000.

2. queries per seen user np = 2, 5, 25, 50, 75, 100, 200, 500
while fixing N = 10, 000.

3. latent dimension d = 4, 8, 16, 32, 64 while fixing N =
10, 000 and np = 500.

4. queries per unseen user np,unseen =
1, 3, 5, 6, 9, 20, 50, 100 while fixing N = 10, 000.

6



Modeling the Plurality of Human Preferences via Ideal Points

Figure 3: Seen accuracy (a,b,c) and unseen accuracy (d) evaluated on the heterogeneous persona dataset across the number
of prototypes K used in the model. We vary (a) the number of true prototypes K⋆, (b) the number of comparisons per seen
user np, (c) the size of latent dimension d, (d) the number of comparisons per unseen user np,unseen.

For more details regarding the dataset and experiment, see
Appendix D.3.

Results. We repeat these experiments five times and report
the mean ± one standard deviation as bar plots in Figure 3.
Figure 3 (a, b) illustrates the generalization performance of
PAL on the heterogeneous persona dataset. We observe that
as K → K⋆, the seen accuracy increases to 100% given a
sufficient number of users and number of comparisons per
user. Figure 3 (b) shows that as we get more comparisons per
user, we achieve reasonable seen user accuracy, i.e. we can
generalize to unseen pairs for users who are seen (provide
training samples) in the dataset. Figure 3 (c) shows that the
size of latent dimension d does not affect the seen accuracy
dramatically. Figure 3(d) shows the accuracy for unseen
users, i.e., users who do not provide training samples. When
K = 1, there is no further learning needed to generalize
to new users. However, when K > 1, we require weights
over the K prototypes that we have not yet learned. To
learn these new user weights, as discussed in Section 3.3.1,
we fix the K prototypes and the mapping f and use only a
few test data samples to learn the user weights (few-shot).
We use these learned weights to make predictions on the
remaining test data (Also see Remark, Section 4.1). From
Figure 3(d) we see that for K = 1 the number of samples
used to learn weights makes no difference since there are no
weights to learn over a single prototype. For K = 2, we see
that as we use more data for learning the new user weights,
the performance shows diminishing returns until saturation.
We also demonstrate that as the number of prototypes K
increases, more comparisons per user are needed to learn
the new user weights, since the dimension of the weight
vector increases with K.

4.2.2. PICK-A-FILTER DATASET

We construct a semi-synthetic heterogeneous preference
dataset which we call Pick-a-Filter and show that our PAL
reward model can significantly surpass the homogeneous
reward model when pluralistic preferences are present.

Dataset. The Pick-a-Pic dataset (Kirstain et al., 2024) is a
large, open dataset for human feedback in text-to-image gen-
eration, designed to align pre-trained models with human
preferences. It contains around a million samples of text-
to-image prompts and real user preferences over generated
images from multiple open-source popular diffusion models,
with anonymous user IDs. Motivated by a natural human
color preference distribution (Palmer & Schloss, 2010), we
construct the Pick-a-Filter dataset by adding different color
filters to the generated images to explicitly "inject" diverse
user preferences into the Pick-a-Pic V1 dataset. Further
details are provided in Figure 6 and Appendix C. The mag-
nitude of heterogeneous preference injection is determined
by a hyperparameter called mixture ratio. The mixture ra-
tio β reflects the proportion between the original pairs from
the Pick-a-Pic dataset and the color-filtered pairs. The larger
the β, the more color-filtered pairs.

Experiment Setup. We train model B with logistic loss
on the Pick-a-Filter dataset with different mixture ratios.
Detailed training setups are deferred to Appendix D.2.

Results. Figure 4 shows that PAL-B effectively captures
diverse preferences across mixture ratios in Pick-a-Filter.
We can view these mixture ratios as indicating the extent
to which the two user groups prefer their respective color
filters. The figure illustrates that PAL enables learning
beyond a universal preference (K > 1) to identify diverse
user preference groups. PAL significantly outperforms the
homogeneous reward model in predicting user preferences –
at a mixture ratio of 1, PAL achieves 95.2% test accuracy
compared to 75.4% from the homogeneous reward model.

4.3. Real Datasets

4.3.1. SUMMARY DATASET

Dataset. Reddit TL;DR summary dataset curated by (Sti-
ennon et al., 2020) contains a series of preferences over
summaries generated by language models. For each pair
of summaries, xl and xr, a worker i determines if xl is
preferred or not. Moreover, each pair is also accompanied
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by the unique identifier of the worker who provides the pref-
erence. This would allow us to apply our model to such a
dataset.

Experiment Setup. We evaluate our model A with hinge
loss on a trimmed version of the summary dataset described
in (Li et al., 2024). Details regarding how the dataset is
constructed and comparisons to other baselines are deferred
to Appendix D.4.

Results. Table 1 compares the performance of our method
to the one proposed in (Li et al., 2024). We use the weighted
average of prototypes learned as the general ideal point
for new users to conduct zero-shot learning. We empha-
size that even though our model only has 594K parameters
and the sentence embeddings we used are generated from
all-mpnet-base-v2 sentence transformer (Reimers &
Gurevych, 2019), which contains around 105M parameters,
we still can achieve on-par performance, especially in terms
of unseen accuracy.

Figure 4: PAL Model B test accuracy on Pick-a-Filter com-
pared to CLIP-H.

4.3.2. PICK-A-PIC DATASET

We conduct experiments on the Pick-a-Pic dataset (Kirstain
et al., 2024) and show two benefits of our proposed ideal
point model compared with existing reward models, in-
cluding the ability to learn diverse user preferences and
a competitive reward model with only 2-layer MLP net-
works. Recent works on the existing reward models usually
require fine-tuning foundation models with billions of pa-
rameters (Ouyang et al., 2022; Kirstain et al., 2024). Our
model can achieve comparable performance without any
large model fine-tuning stage, which in turn saves plenty of
computing costs.

Dataset. There are two versions of Pick-a-Pic datasets, v1
and v2, where the Pick-a-Pic v2 dataset extends v1. To
ensure fair model evaluation, we divide the Pick-a-Pic v2
test set (Kirstain et al., 2024) into “no-leakage" and “leak-
age" subsets due to overlap (“leakage”) with the v1 train

set. Specifically, the Pick-a-Pic v2 test set contains 18391
samples with no preference ties, i.e. one generated image is
preferred to the other. Out of these, 10587 samples (∼ 58%)
overlap with the training and validation sets of Pick-a-Pic
v1, which was used to train Pickscore (Kirstain et al., 2024)
– we call this the v2 “leakage" subset. The remaining 7804
test samples (∼ 42%) in the v2 dataset do not overlap with
the v1 training and validation datasets, ensuring they are
distinct for evaluation purposes – we call this the v2 “no-
leakage" subset.

Experiment Setup. We trained model B with logistic loss
on both v1 and v2 datasets over 10 epochs, using CLIP-H/14
or PickScore (Kirstain et al., 2024) latent embeddings as
input. We adopt the same hyperparameters used in earlier
Pick-a-Filter experiments, avoiding extensive hyperparame-
ter tuning (see Appendix D.2).

Results. Table 3 highlights the effectiveness of our proposed
ideal point model framework: while training on Pick-a-Pic
v1, PAL exceeds SoTA reward model performance on the
no-leakage subset (i.e. fair comparison) by 2%. Addi-
tionally, the performance of model B trained on PickScore
(trained on v1 train) latent embeddings is inferior to that of
model B trained on default CLIP-H/14 embeddings. PAL
exceeds SoTA Pickscore performance while training a sim-
ple two-layer MLP network on a single RTX 4090 GPU,
whereas PickScore requires fine-tuning a significant por-
tion of CLIP-H/14 (∼ 1B parameters) with 8×A100 GPUs
– this highlights the potential of PAL for efficient reward
modeling.

Remark. Since the data collection process for existing
datasets involves the usage of strict rubrics (Stiennon et al.,
2020; Kirstain et al., 2024; Wu et al., 2023), labeler perfor-
mance monitoring (Xu et al., 2024), and a disproportionate
amount of data provided by a small fraction of users, these
datasets may not be heterogeneous. We note that a strict
rubric leads to uniformity as it essentially crowdsources the
criteria of the rubric instead of eliciting the preferences of
the users. Therefore, even using PAL with K = 1, we can
surpass existing SoTA performance. These results motivate
the need for more nuanced approaches to collect datasets
that elicit diverse opinions.

5. Summary of Related Works
We provide a brief summary of related works here and a
more detailed description of related works can be found in
Appendix A.

Popular foundation models (Achiam et al., 2023; Anthropic,
2024; Ouyang et al., 2022; Touvron et al., 2023) typically
use RLHF (Azar et al., 2024; Christiano et al., 2017; Etha-
yarajh et al., 2024; Rafailov et al., 2024; Stiennon et al.,
2020) to align models after pretraining. These methods

8



Modeling the Plurality of Human Preferences via Ideal Points

Table 1: Seen accuracy and unseen accuracy of our model with K = 1, 5, 10 compared to the individual user model proposed
in (Li et al., 2024). With only 594K parameters, we achieve on-par performance compared to a method that requires a
supervised-finetuned 6B model.

Accuracy K = 1 K = 5 K = 10 Li et. al. (Li et al., 2024)
Seen 59.28± 0.14 59.66± 0.09 59.51± 0.12 61.72
Unseen (zero-shot) 59.20± 0.16 59.45± 0.12 59.15± 0.11 60.65

Table 2: Test Accuracy of PAL compared to CLIP-H and PickScore baselines on Pick-a-Pic v2. Entries with asterisk∗ have
inflated accuracies due to V2 test set overlap with V1 train.

Model Train Dataset Test Accuracy on Pick-a-Pic v2 (%)
No-leakage Leakage

CLIP-H14 - 62.57 58.59
PickScore pickapic v1 68.04 74.16∗

model B (CLIP-H) pickapic v1 70.02 ± 0.39 79.32 ± 1.68∗

model B (CLIP-H) pickapic v2 70.51 ± 0.22 68.67 ± 0.51
model B (PickScore) pickapic v2 70.16 ± 0.19 74.79 ± 0.13∗

Table 3: PAL test accuracy can match SoTA
PickScore (Kirstain et al., 2024) on the Pick-a-Pic-
v1 test set with a fraction of the compute.

Model Test Accuracy(%)
Pick-a-Pic v1 test

CLIP-H14 59.23
PickScore 71.85

model A on CLIP-H 69.29 ± 0.66
model B on CLIP-H 71.13 ± 0.31

assume homogeneity either explicitly or implicitly by us-
ing BTL-model (Bradley & Terry, 1952). Consensus-based
methods (Bakker et al., 2022) aims to find agreement among
labelers for specific designer-specified goals (Bai et al.,
2022b;a; Irvine et al., 2023; Ganguli et al., 2022), which
inherently prioritize the universal preference (and biases) in-
duced by the labelers (Cheng et al., 2023; Kovač et al., 2023;
Santurkar et al., 2023). Many works have highlighted that
in reality, humans have diverse preferences (Bakker et al.,
2022; Nadal & Chatterjee, 2019; Sorensen et al., 2024; Wil-
davsky, 1987). However, the approaches are still top-down
in nature, e.g., rewarded soups (Rame et al., 2024), where
the system designer decides the diverse apriori to collect
separate datasets to train multiple rewards. There is a rich
literature on preference learning (Fürnkranz & Hüllermeier,
2010) and metric learning (Bellet et al., 2022). For the
ideal point model, several works (Ding, 2016; Huber, 1976;
Jamieson & Nowak, 2011; Massimino & Davenport, 2021;
Singla et al., 2016) study sample complexity of ranking
and localization when the distance is known, and some re-
cent works (Canal et al., 2022; Wang et al., 2024c; Xu &

Davenport, 2020) have studied simultaneous learning of
the Mahalanobis distance which is equivalent to learning a
common linear map along with unknown user preference
point(s).

6. Conclusions, Limitations and Future Work
We proposed a novel reformulation of the problem of align-
ment with human preferences (Section 3.1) and proposed a
new framework for pluralistic alignment with diverse pref-
erences from the ground up (Sections 3.2 and 3.3) by lever-
aging shared structures across the population while learning
to personalize using a mixture modeling approach. We
demonstrate the PAL framework is agnostic to modality,
showing flexibility adaptivity to heterogeneous preferences
for synthetic data (Section 4.1), semi-synthetic and real text
data (Sections 4.2.1 and 4.3.1), and semi-synthetic and real
image data (Sections 4.2.2 and 4.3.2). Our work aids in
building much-needed foundations toward plurality for the
alignment of ML/AI models. Our experiments also high-
light the limitations of many real human preference datasets
that are collected with rubrics that make the dataset homo-
geneous, thus calling for a more nuanced approach to data
collection in the future (Section 4.3.2). While the mixture
modeling approach of PAL is flexible and interpretable, a
limitation of using it is that it will not generalize to users
who fall out of the convex hull of the learned prototypes
(Section 4.1). A more pragmatic and exciting approach
would be a continual learning approach of adding proto-
types to adapt to new users over time, which we leave for
future work.
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A. Extended Related Works
Alignment Status Quo. Popular existing foundation models (Achiam et al., 2023; Anthropic, 2024; Ouyang et al., 2022;
Touvron et al., 2023) typically use RLHF (Christiano et al., 2017; Stiennon et al., 2020) to align models after pretraining.
Recent foundation models such as Zephyr (Tunstall et al., 2023) and the Archangel suite3 have shifted to directly optimizing
on human preferences (Azar et al., 2024; Ethayarajh et al., 2024; Rafailov et al., 2024) to avoid the nuances of RL
optimization (Dulac-Arnold et al., 2021). There has also been significant recent work in collecting large human preference
datasets for reward model training in the text-to-image (typically diffusion model (Rombach et al., 2022)) space (Kirstain
et al., 2024; Wu et al., 2023; Xu et al., 2024).

Reward Modeling. These existing alignment frameworks generally assume that all humans share a single unified preference
(e.g. LLM “helpfulness” or “harmlessness” (Bai et al., 2022a)) and ascribe to the Bradley-Terry (Bradley & Terry,
1952) model of pairwise preferences. Consensus-based methods (Bakker et al., 2022) aim to find agreement among
labelers for specific goals like harmlessness (Bai et al., 2022b; Ganguli et al., 2022), helpfulness (Bai et al., 2022a), or
engagement (Irvine et al., 2023). By design, these methods inherently prioritize the universal preference (and biases)
induced by the labelers (Cheng et al., 2023; Kovač et al., 2023; Santurkar et al., 2023). In reality, humans have diverse,
heterogeneous preferences (Nadal & Chatterjee, 2019; Sorensen et al., 2024; Wildavsky, 1987) that depend on individual
contexts, and may even share a group structure (Bakker et al., 2022). Rewarded soups (Rame et al., 2024) make a case to
capture diversity through post-hoc weight-space interpolation over a mixture of experts that learn diverse rewards. However,
these rewards are learned by pre-defining what aspects are important which is done by the system designer. Separate datasets
are collected to elicit human preferences on these axes as to how much people care of them. DPA (Wang et al., 2024b)
models rewards as directions instead of scalars, and trains a multi-objective reward model for RLHF. Wu et al. propose
fine-grained multi-objective rewards to provide more focused signal for RLHF. Recently, Li et al. propose personalized
reward modeling by learning a general user embedding and treating each individual as a perturbation to the embedding.
As this preference formulation is still homogeneous, they can only generalize to unseen users using the fixed general user
embedding.

Recent survey works provide excellent summaries of literature for alignment (Ji et al., 2023) and reward modeling (Wang
et al., 2024a).

Human Preference Datasets. The preference universality assumption also extends into the data annotation/labeling
processing, where labelers are given a rubric to select preferences (e.g. to rank an image pair considering image aesthetics
and image-prompt alignment (Kirstain et al., 2024)). Due to this rubric, the current largest scale text-to-image generation
preference datasets (Kirstain et al., 2024; Wu et al., 2023; Xu et al., 2024) show limited diversity among labelers. In the
Pick-a-Pic (Kirstain et al., 2024) train set, there are only 701 disagreements among the 12487 image pairs labeled by
different users (94.38% agreement), and there are zero disagreements in validation (1261 pairs) and test (1453 pairs) sets.
HPS (Wu et al., 2023) found that labeler agreement over diffusion model generations was higher for models of similar
quality or size, though this diversity comes with the caveat of the labelers being provided a rubric to provide their preferences.
Imagereward (Xu et al., 2024) use researcher agreement as a criteria to hire labelers. In the LLM domain, the popular
Summarize from Feedback dataset (Stiennon et al., 2020) is also collected with rigid rubric, with labeler performance
measured via agreement to the preferred answer of the authors. During the data collection period, only labelers with
satisfactory agreement were retained, which led to a small number of users, all in agreement with the authors’ rubric, being
responsible for a majority of labeled comparisons. Status quo preference datasets used to align foundation models thus
suffer from a lack of diversity due to the nature of their data collection.

Preference learning. There is rich literature on preference learning and ranking in various domains ranging from psychology,
marketing, recommendation systems, quantifying social science surveys to crowdsourced democracy, voting theory and
social choice theory. We provide a few relevant works here and direct reader to surveys such as (Fürnkranz & Hüllermeier,
2010). Ranking based models, e.g., BTL-model (Bradley & Terry, 1952; Luce, 1959), stochastic transitivity models (Shah
et al., 2016) focus on finding ranking of m items or finding top-k items by pairwise comparisons (Hunter, 2004; Kenyon-
Mathieu & Schudy, 2007; Braverman & Mossel, 2007; Negahban et al., 2012; Eriksson, 2013; Rajkumar & Agarwal, 2014;
Shah & Wainwright, 2017). Ranking m items in these settings requires O(m logm) queries. There is also rich literature that
stems from ideal point model proposed by Coombs (Coombs, 1950; Huber, 1976; Jamieson & Nowak, 2011; Ding, 2016;
Singla et al., 2016; Xu & Davenport, 2020; Canal et al., 2022). Under the ideal point based models, the query complexity for
ranking m items reduces to O(d logm), where d is the dimension of the domain of representations which is usually much

3https://github.com/ContextualAI/HALOs
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Figure 5: Illustration of PAL framework for learning from diverse preferences (Section 3). For any user i, the probability
of preferring xl to xr for the context xc is computed by a reward model r(i)θ which uses a mixture modeling approach to
assign a scalar reward to a sample (e.g. xl or xr) given context (xc). In PAL-A, each user i’s preference a(i) is modeled
as a convex combination of K prototypical preferences, i.e. a(i) = Pw(i). In PAL-B, each user i’s preference z(i)(xc) is
modeled as a convex combination of K prototypical functions g1 · · · gK , i.e. z(i)(xc) =. Reward functions formulated
using the PAL framework can be used flexibly, e.g., with fixed preference points (Model A), with preference points that are
functions of the context/prompt xc (Model B).

smaller than the number of items being ranked (Jamieson & Nowak, 2011). This is due to the fact that once the preference
point is learned, it can then be used to predict rankings of new items without needing more comparisons.

Metric learning has been studied quite extensively and we direct the reader to surveys (Kulis, 2013) and books (Bellet et al.,
2022). In particular, metric learning based on triplet querying has also been quite extesively studied (Shepard, 1962a;b;
1966; Schultz & Joachims, 2003; Kulis, 2013; Tamuz et al., 2011; Kleindessner & Luxburg, 2014; Bellet et al., 2015;
Bellet & Habrard, 2015; Mason et al., 2017) which aims to learn the underlying unknown metric under the assumption that
the people base their judgement for a triple query with concepts xa,xb,xc ∈ D on the relative similarities based on the
distances between these concepts under the unknown metric.

Simultaneous metric and preference learning. More recently a few works have considered the problem of unknown
metric in preference learning and proposed methods (Xu & Davenport, 2020; Canal et al., 2022; Wang et al., 2024c) and
provided sample complexity analysis (Canal et al., 2022; Wang et al., 2024c) for simultaneously learning an unknown
Mahalanobis metric and unknown user preference(s). Learning the unknown Mahalanobis metric can be viewed as learning
linear layer on top of the embeddings from a foundation model. From our reframing of alignment, these works can be
looked as model A with linear function for f and individual user preferences instead of having any structure over them.

B. Model Design
We illustrate the modeling mechanism of PAL (Section 3.2) in slightly more detail in Figure 5.
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Table 4: Number of samples in each split of the newly constructed Pick-a-Filter dataset.

Category Train Val Test

Group 1
Seen 58831 628 1597
Unseen 9527 79 1886
Total 68358 707 3483

Group 2
Seen 57200 404 2096
Unseen 9402 52 1812
Total 66602 456 3908

C. Dataset Design
Pick-a-Filter : due to the high level of “agreement” among labelers over image preferences on Pick-a-Pic V1 (Kirstain
et al., 2024), we construct a semi-synthetic dataset by applying filters to a subset of Pick-a-Pic V1, which we call the
Pick-a-Filter dataset. To construct the dataset, we consider only samples that have no ties, i.e. the labeler decides that
one image is decisively preferable to the other, given the text prompt. As Pick-a-Pic provides unique and anonymous user
IDs for all preference pairs, we consider a subset of users who provide samples in both the train and test sets (468 / 4223
users). We further only consider users who provide more than 50 labels (234 / 468 users) and sort the users by number
of samples provided. We split these users into equal groups of 117 each, and we assume without loss of generality that
the first group of users (G1) prefers “cold” tones (blue filter) and the second group (G2) prefers “warm” tones (red filter).
Lastly, we arbitrarily consider the first 50 users (who provide the most number of samples) as “seen" users, i.e. users that
provide samples in both the train and test sets of Pick-a-Filter. We add this seen vs. unseen distinction to evaluate how well
PAL can adapt to unseen (i.e. new) users after training. Currently, our experiments on Pick-a-Filter (Section 4.2.2) train on
V1-train-seen (116031 samples) and evaluate on V1-test-seen (3693 samples). We show the number of samples in each of
these splits in Table 4. After constructing splits, we apply the following filtering logic:

1. Apply “winning” and “losing” filters to appropriate images depending on label. For G1 the winning filter is blue, and
for G2 the winning filter is red.

2. Randomly shortlist β% of samples to add filters. The remaining (1− β)% of samples will remain unaltered (default
images from Pick-a-Pic v1).

3. Randomly select 50% of above-shortlisted samples to apply a filter to only the winning image, and the remaining 50%
to apply a filter to only losing image

We add these sources of randomness to make learning preferences on Pick-a-Filter less prone to hacking (e.g. the model
could trivially learn to predict an image with a filter as the preferred image).

D. Experiment Details
D.1. Simulated Dataset

Experiment Setup. We introduce the dataset simulation procedure in the section 4.1. We use the following hyper-parameters
to generate the synthetic dataset d = 16,K = 3, N = 100, n = 100, δ = 1. We generate another 50 comparison pairs
per user as the held-out dataset. (Notice, we didn’t simulate the prompt-guided item generation {xc, xl, xr} procedure.
Instead, we directly draw the item {xl, xr} from a normal distribution for simplicity.) In the experimental setup, we apply
a toy version of the modeling design A, the distance between the synthetic item and the user ideal point is measured by
∥f(x) − f(u)∥2. We use a projection matrix (i.e. one-layer MLP network without bias term and activation function) as
the model architecture. We randomly initialize the learnable parameters of prototypical user groups and user weights. We
use Adam as the optimizer. The learning rate of the projector f is 5e− 4. The learning rate of the learnable parameters of
prototypical user groups and user weights is 5e− 3. The weight decay of the projection matrix f is 1e− 3. To guarantee
convergence, we run a total of 1000 epochs for each run. We run multiple trials to explore the influence of each factor: 1)
varying the number of samples of seen users n = {20, 40, 60, 80, 100, 400, 800, 1000}, d = {2, 16}, K = 5, N = 250, 2)
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Figure 6: Construction of the semi-synthetic Pick-a-Filter dataset (Section 4.2.2). We randomly select approximately
100,000 samples from the Pick-a-Pic dataset and divide the user IDs into two disjoint groups. We assume one group prefers
images with “cold” tones i.e. a blue filter and the other with “warm” tones i.e. a red filter. To incorporate diverse color filter
preferences, we randomly select β% of samples per user to apply filters.

varying the number of samples of new users nnew = {5, 10, 20, 30, 40, 50, 100}, d = {2, 16},K = 5, n = 50, 3) varying
the number of groups K = {2, 3, 4, 5, 6}, d = {2, 16}, n = 50, N = 50 ∗K.

We consider two variants of modeling each user’s ideal point through the lens of a shared group structure of preferences via
prototypical ideal points (henceforth referred to as “prototypes”):

1. Partition Model: a user ideal point is one of K prototypes.

2. Mixture Model: a user ideal point is a convex combination of K prototypes, i.e. lies in the convex hull of all prototypes.

To visualize how well PAL can adjust to the true number of user groups present in data, via learnable prototypical points to
represent each group, we consider a simple setting with d = 2, K∗ = 3, K = {1, 2, 3} and N = 100 and plot the results in
Figure 7 for both partition and mixture settings. We also plot items in the partition setting in Figure 8.

Partition Model : With only a single allowed assignment for a learnable prototype (Figure 7a., K = 1), the predicted
prototype is approximately the centroid of the true prototypes, i.e. the model tries to predict a good group assignment on
average. Also note that since we have a single prototype, all predicted user ideal points lie on the prototype itself and
performance is close to random. As we increase the degrees of freedom for learnable prototypes to two (Figure 7b., K = 2),
the model can predict one prototype close to a true prototype (in red), while the other predicted prototype is approximately an
average of the blue and green true prototypes. User ideal points now lie in the convex hull of these two predicted prototypes,
i.e. the line joining these points. It is only when we increase K = K∗, i.e. we match the “true” number of groups in
the data (Figure 7c., K = 3), the model can correctly predict close to all three true prototypes, and user ideal points are
concentrated around the predicted prototypes. These observations extend to Figure 8, where we additionally plot normally
distributed items. Recall that in our modeling design, the distance between the user ideal point and the item reflects the
user’s preference; hence the closer the predicted user ideal point is to the true ideal point, the higher the performance.

Mixture Model : The results for the mixture model are similar to those of the partition model. With a single allowed
assignment for a learnable prototype (Figure 7d., K = 1), the predicted prototype is approximately the centroid of the true
prototypes. As we increase the degrees of freedom to two (Figure 7e., K = 2), predicted prototypes are close to two true
prototypes, but one is neglected. When we increase K = K∗ (Figure 7f., K = 3), matching the true number of groups in
the data, the mixture model successfully predicts prototypes that lie close to all three true prototypes. This demonstrates that
similar to the partition model, the mixture model can also adjust well to the true number of user groups present in the data.
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a . Partition, K = 1 b . Partition, K = 2 c . Partition, K = 3

d . Mixture, K = 1 e . Mixture, K = 2 f . Mixture, K = 3

Figure 7: In synthetic dataset experiments (Section 4.1), we model user ideal points in two distinct ways: the partition
model and the mixture model. To visualize how PAL performs in these settings, we set d = 2, K∗ = 3, K = {1, 2, 3} and
N = 100 where each user ideal point and prototype is represented as a point in a two-dimensional space. In both scenarios,
as the number of prototypes or user groups in our model (K) approaches the true number in the synthetic dataset (K∗), the
PAL framework effectively learns both the prototypes and the heterogeneous user ideal points.

D.2. Heterogeneous Pick-a-Pic Dataset

Experiment Setup. We choose two-layer MLP networks with ReLU activation and residual connection as the prompt
mapping function gk and the output mapping function f . To avoid the overfitting issue, we set the dropout rate as 0.5 and
weight decay as 1e− 2. We use Adam optimizer with a 1e− 4 learning rate. When we measure the model’s performance,
we load the best checkpoint evaluated on the validation set.

Results. To check whether our model trained on Pick-a-Filter dataset is capturing the users’ preference features or is just
remembering colors, we verify the test accuracy separately on the color-filtered pairs and original pairs in the mixture-ratio
dataset. Figure 9 shows that compared to the CLIP-H14 ∼ 65% test accuracy, our model’s performance on the original
no-filter pairs is still above the baseline, which verifies that our model utilizes both the users’ original preference and the
"injected" heterogeneous color preference.

D.3. Heterogeneous Persona Dataset

Anthropic’s Persona dataset (Perez et al., 2022) consists of a series of personalities (personas), each corresponding with 500
statements that agree with the persona and 500 statements that do not. We denote the set of statements that agrees with a
persona P as S(P ). We construct a semisynthetic dataset using Anthropic’s Personas to help us evaluate our model.

Datasets. Let P = {P1, . . . , PK⋆} denotes the set of personas that exists in our semisynthetic dataset with K preference
groups. That is, each person has one of the K⋆ personalities. Table 5 shows the personas we have selected for our experiment.
For each Pi ∈ P , we generate N synthetic seen people (users) and N synthetic unseen people. For each seen synthetic
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a . K = 1, Test Acc = 72.2% b . K = 2, Test Acc = 83.96% c . K = 3, Test Acc = 91.26%

Figure 8: Here we plot all items, the predicted user ideal points, and predicted and true prototypes in two-dimensional
feature space. The items are normally distributed with d = 2,K∗ = 3, N = 100, n = 100. As seen in the figure, when
we set the number of prototypes in the model K equal to the true number of user groups K∗ = 3, PAL can accurately
capture the group structure and predict each user’s ideal preference point, as well as the prototypes that represent each group
(K = 3).

Table 5: Personas used across various “true” number of user groups K⋆ in our heterogeneous persona dataset.

K⋆ Personas

2 interest in art, interest in literature
3 interest in art, interest in literature, interest in math
4 interest in art, interest in literature, interest in math, interest in music
5 interest in art, interest in literature, interest in math, interest in music, interest in science
6 interest in art, interest in literature, interest in math, interest in music, interest in science, interest in sports

person, we generate np queries that ask if the person agrees with a given statement from the persona dataset. For each
unseen synthetic person, we generate np,unseen queries. If the statement aligns with the persona Pi of the person, that is, the
statement belongs to S(Pi), then the person answers yes. Otherwise, no. Figure 10 shows a sample question. We use
Sentence-BERT (Reimers & Gurevych, 2019) with pretrained model all-MiniLM-L6-v2 to generate text embedding of
the question asked to each synthetic person as well as the embedding for yes and no.

Experiment Setup. We evaluate the performance of our model B on the heterogeneous persona dataset with various
settings. This is because the prompts in the dataset are the only variates from question to question. Therefore, model B,
which utilizes the prompt information, best suits this case.

Let K⋆ denote the number of preference groups among the synthetic people. Let K denote the number of prototypical
groups we used in the model. We conduct the following experiments:

1. varying the number of prototypical groups K = 1, . . . , 8, while fixing the number of people per group N = 10, 000, the
number of queries per seen user np = 1, 000, the size of the latent dimension d = 16,

2. varying the number of queries per seen user np = 2, 5, 25, 50, 75, 100, 200, 500 while fixing N = 10, 000 and the size of
the latent dimension d = 16,

3. varying the number of queries per unseen user np,unseen = 1, 3, 5, 6, 9, 20, 50, 100 while fixing N = 10, 000 and the size
of latent dimension d = 16,

4. varying the size of the latent dimension d = 4, 8, 16, 32, 64 while fixing N = 10, 000 and np = 500.

We adopt the hyperparameters used in the experiment described in D.2 to save time on hyperparameter tuning.
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Figure 9: Test accuracy on filtered and original pairs in Pick-a-Filter dataset. Across mixture ratios β, PAL-B outperforms
the CLIP-H baseline (65%).

Figure 10: An example of a pairwise comparison query with a prompt from our heterogeneous persona dataset generated
using Anthropic’s Personas. For example, a synthetic user assigned the persona interest in art will have ground truth
y = −1 by answering no, whereas a synthetic user assigned the persona interest in math will have ground truth y = +1 by
answering yes.

Results. Figure 3 (a) - (d) illustrates the generalization performance of our methods on the heterogeneous persona
dataset.Figure 3 (a, b, c) show the test accuracy on the seen user, unseen pair, whereas Figure 3 (d) shows the test accuracy
on the unseen user, unseen pair.

D.4. Summary Dataset

Dataset. Reddit TL;DR summary dataset curated by (Stiennon et al., 2020) contains a series of preferences over summaries
generated by language models. High-quality workers are hired by the authors to annotate their preferences over the summaries.
Workers hired followed a rubric provided by the authors, who periodically fired those workers who did not meet their
performance criteria.

For each pair of summaries xleft and xright, a worker u determines if xleft is preferred or not. Moreover, each pair is
also accompanied by the unique identifier of the worker who provides the preference, which allows us to analyze the
generalization of PAL to seen and unseen users, as described below.

Experiment Setup and Results: In comparison to (Stiennon et al., 2020), we trained our model A on the modified
summary dataset with K = 1, . . . , 10. We split the original test set into 1) the seen test set, which contains users that
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Table 6: The performance of our method vs. the 1.3B reward model from (Stiennon et al., 2020). Notably, our approach does
not necessitate a supervised fine-tuned model. We leverage the all-mpnet-base-v2 sentence transformer (Reimers &
Gurevych, 2019), with 105M parameters, for summary embeddings, and train a 2-layer MLP, with 592K parameters.

K = 1 K = 2 K = 3 K = 4

Seen user accuracy 60.85± 0.11 60.95± 0.12 60.77± 0.10 60.81± 0.12
Unseen user accuracy 64.13± 0.14 64.18± 0.19 64.04± 0.23 63.99± 0.12
Overall 61.36± 0.12 61.45± 0.13 61.28± 0.13 61.30± 0.12

K = 5 K = 6 K = 7 K = 8

Seen user accuracy 60.91± 0.10 60.81± 0.06 60.71± 0.06 60.88± 0.13
Unseen user accuracy 64.33± 0.10 64.11± 0.15 64.12± 0.17 64.12± 0.13
Overall 61.44± 0.10 61.32± 0.08 61.25± 0.09 61.38± 0.13

K = 9 K = 10 Stiennon et. al. (1.3B)

Seen user accuracy 60.95± 0.10 60.93± 0.12 -
Unseen user accuracy 64.07± 0.20 64.19± 0.11 -
Overall 61.43± 0.12 61.44± 0.12 65.80± 2.00

overlap in the training set 2) the unseen test set, which contains only users that are not in the training set. Our goal is to
evaluate the generalization performance of PAL to unseen users. The seen test set is used to evaluate generalization to
unseen comparisons, for seen users. We adopt the hyperparameters used in D.2 to avoid hyperparameter tuning.

Table 6 compares the performance of PAL to the 1.7B reward model in (Stiennon et al., 2020). The overall accuracy is the
weighted average of seen and unseen user accuracy. We want to emphasize that the main advantage of our model is that we do
not require the existence of a supervised fine-tuned model. We used all-mpnet-base-v2 sentence transformer (Reimers
& Gurevych, 2019), which contains around 105M parameters, to generate the embedding for summaries and trained a
2-layer MLP with roughly 592K parameters.

In comparison to (Li et al., 2024), we evaluate our model A with hinge loss on a trimmed version of the summary dataset
described in (Li et al., 2024), to compare our results with theirs. In (Li et al., 2024), the original training set of the summary
dataset is filtered with summaries generated by SFT policies and only those comparisons made by the top 10 workers who
conduct the most pairwise comparisons are kept. We split this test dataset into 2 folds, where the comparisons made by the
10 most prolific workers are used to evaluate the generalization performance on seen users, and the comparisons made by all
other workers are used to evaluate the generalization performance on unseen users.

Table 1 compares the performance of our method to the one proposed in (Li et al., 2024). We use the weighted average of
prototypes learned as the general ideal point for new users to conduct zero-shot learning. We emphasize that even though
our model only has 594K parameters and the sentence embeddings we used are generated from all-mpnet-base-v2
sentence transformer (Reimers & Gurevych, 2019), which contains around 105M parameters, we still can achieve on-par
performance, especially in terms of unseen accuracy.

E. Modeling Design

F. Broader Impacts
This paper presents novel contributions to the field of machine learning towards foundations for learning from heterogeneous
preferences aiding the development of models and algorithms to move the needle towards plurality.
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Modeling the Plurality of Human Preferences via Ideal Points

Algorithm 1 PAL-A algorithm

Input: Dataset D =
{
{(xl,xr;xc)

(i)
j }mi

j=1

}N

i=1
, loss function ℓ, model class for fθ, prototypes P = [p1, ...,pK ], pk ∈ Rd,

user weights W = [w(1), ...,w(N)], where w(i) ∈ ∆K .
1: for each iteration do
2: sample a mini-batch

{
(xl,xr;xc)

(i)
j

}
▷ random pairs, not ordered by users

3: User Ideal Points: a(i) = P ·w(i)

4: Distances:
5: d

(i)
l,j = ||fθ

(
x
(i)
l,j ;x

(i)
c,j

)
− fθ(a

(i))||22, d
(i)
r,j = ||fθ

(
x
(i)
r,j ;x

(i)
c,j

)
− fθ(a

(i))||22
6: Loss: ℓ(i)j (x

(i)
l,j ,x

(i)
r,j ;x

(i)
c,j) = ℓ(d

(i)
r,j − d

(i)
l,j )

7: Update Step: argmaxθ,P,{w(i)}N
i=1

∑
i,j l

(i)
j (x

(i)
l,j ,x

(i)
r,j ;x

(i)
c,j)

8: end for

Algorithm 2 PAL-B algorithm

Input: Preference data D =
{
{(xl,xr;xc)

(i)
j }mi

j=1

}N

i=1
, loss function ℓ, mapping function fθ, prototype mapping functions

{gθk}Kk=1, user weights {w(i) := [w
(i)
1 , ..., w

(i)
K ]}Ni=1.

1: for each iteration do
2: sample a mini-batch

{
(xl,xr;xc)

(i)
j

}
▷ random pairs, not ordered by users

3: User Ideal Point (condition on prompts):

4: a(i) =
[
gθi(x

(i)
c,j), ..., gθK (x

(i)
c,j)

]⊤
·w(i)

5: Distance:
6: d

(i)
l,j = ⟨fθ

(
x
(i)
l,j

)
,a(i)⟩, d

(i)
r,j = ⟨fθ

(
x
(i)
r,j

)
,a(i)⟩

7: Loss: ℓ(i)j (x
(i)
l,j ,x

(i)
r,j ;x

(i)
c,j) = ℓ(d

(i)
r,j − d

(i)
l,j )

8: Update Step: argmaxΘ,P,{w(i)}N
i=1

∑
ℓ
(i)
j (x

(i)
l,j ≻ x

(i)
r,j |x

(i)
c,j)

9: end for
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