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Abstract

In large-scale recommendation systems, multimodal (MM) content is increasingly
introduced to enhance the generalization of ID features. The rise of Multimodal
Large Language Models (MLLMs) enables the construction of unified user and
item representations. However, the semantic distribution gap between MM and
ID representations leads to convergence inconsistency during joint training: the
ID branch converges quickly, while the MM branch requires more epochs, thus
limiting overall performance. To address this, we propose a two-stage framework
including MM representation learning and joint training optimization. First, we
fine-tune the MLLM to generate unified user and item representations, and intro-
duce collaborative signals by post-aligning user ID representations to alleviate
semantic differences. Then, we propose an Adaptive Gradient Masking (AGM)
training strategy to dynamically regulate parameter updates between ID and MLLM
branches. AGM estimates the contribution of each representation with mutual in-
formation, and applies non-uniform gradient masking at the sub-network level to
balance optimization. We provide theoretical analysis of AGM’s effectiveness and
further introduce an unbiased variant, AGM*, to enhance training stability. Experi-
ments on offline and online A/B tests validate the effectiveness of our approach in
mitigating convergence inconsistency and improving performance.

1 Introduction

Large-scale industrial recommendation systems have traditionally relied on ID-based features, such
as cross ID features (e.g., FM [1], DCN [2]), list-wise ID features (e.g., DIN [3], TWIN [4]), to
model user–item interactions. These features offer strong memorization capabilities and are effective
in capturing co-occurrence patterns. However, they suffer from limited generalization, making them
inadequate for addressing long-tail items, data sparsity, and cold-start scenarios. To mitigate these
limitations, recent research [5, 6, 7] has incorporated multimodal (MM) content (e.g., images and
textual descriptions) to enrich the semantic representations of users and items.

The emergence of Multimodal Large Language Models (MLLMs) facilitates the generation of unified,
high-level semantic embeddings from diverse modalities, offering promising avenues for enhancing
recommendation performance. As is demonstrated in many recent studies, integrating categorical
features (e.g., ID and category) with MLLM-based representations (e.g., images and texts) can
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Figure 1: (a) Validation-set AUC comparison between the ID-only model (ID) and the combined
model (ID-MM), where “ID in ID-MM” denotes the contribution of the ID component within the
combined model; (b) Validation-set AUC comparison between the multimodal-only model (MM) and
the combined model (ID-MM), where “MM in ID-MM” denotes the contribution of the multimodal
component within the combined model. (c) The illustration of Adaptive Gradient Masking.

effectively foster the performance of recommendation system [8, 9, 10, 11]. Works like FREEDOM
[9] introduce auxiliary losses on multimodal data to refine ID embeddings through graph structures.
Recent self-supervised learning models such as BM3 [10] adopt joint training of content-based and
user-item objectives. AlignRec [12] proposes a unified alignment framework that aligns visual,
textual, and categorical modalities using pretraining and contrastive learning.

Despite these advances, integrating ID and MLLM-based representations remains challenging due to
convergence inconsistency during joint training. This stems from a semantic gap—ID embeddings
encode co-occurrence patterns, while MLLM features capture high-level semantics—and an opti-
mization imbalance, as ID embeddings are trainable whereas MLLM parameters are typically frozen.
As a result, the ID branch quickly dominates training, leading to biased gradients that suppress the
multimodal branch and ultimately degrade overall performance. To address this issue, although
AlignRec [12] alleviates this convergence speed mismatch between multimodal and ID features by
adopting a two-stage strategy: first, pre-training the alignment of content modes and then performing
joint training, it does not fundamentally address the imbalance during the joint optimization phase. In
contrast, we take a more fine-grained approach by dynamically balancing gradient updates between
ID and multimodal branches.

In more detail, we propose a two-stage framework consisting of multimodal representation learning
and joint training optimization. Firstly, we fine-tune a pretrained Multimodal Large Language
Model (MLLM) to generate unified multimodal representations for items and users from visual and
textual content. Specifically, Item representations are obtained from multimodal prompts through
a designated output token, while user representations are derived by aggregating historical item
representations. Besides, to bridge the semantic gap between ID and MM representations, we
introduce collaborative alignment by post-aligning multimodal embeddings with their corresponding
ID embeddings. In the second stage, we jointly train the recommendation model by combining
ID and MLLM-based representations under the binary cross-entropy objective, and propose an
Adaptive Gradient Masking (AGM) strategy to dynamically regulate their parameter updates during
optimization. AGM estimates the informativeness of each representation through mutual information,
and applies non-uniform gradient masking at the subnetwork level to encourage balanced convergence.
This adaptive mechanism prevents the ID branch from dominating training and ensures consistent
convergence across both branches. To demonstrate the effectiveness of our approach, we provide a
theoretical analysis showing that AGM leads to more balanced gradient updates, thereby promoting
consistent convergence of both branches. Furthermore, we propose an unbiased variant, AGM*,
which improves training stability by correcting the bias introduced by binary masking.

Our contributions are summarized as follows:

• We analyze convergence inconsistency issue between ID and MLLM-based representations
during joint training in recommendations, and propose a two-stage method to address it.

• We propose Adaptive Gradient Masking (AGM), a subnetwork-level optimization strategy
that dynamically balances gradient updates between ID and multimodal branches. We also
introduce AGM*, an unbiased variant that enhances stability.
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• We fine-tune MLLMs to generate unified user and item representations, and introduce
a collaborative alignment mechanism to bridge the semantic gap between ID and MM
embeddings.

• We provide theoretical analysis on the convergence properties of our method, and validate
their effectiveness through extensive offline experiments and online A/B testing in a large-
scale industrial recommendation system.

2 Related works

Multi-modal recommendation Multi-modal recommendation extends the classic collaborative
filtering paradigm by integrating diverse content modalities (e.g., images, text, videos) to capture
richer contextual signals and thereby enhance recommendation accuracy. Early approaches, such as
VBPR [13] and methods fusing visual features with ID embeddings [14, 15], showed that combining
basic item side information can significantly improve user–item matching. Subsequently, attention-
based architectures, including VECF [16] and MAML [17], explored finer-grained user preferences
by leveraging mechanisms like image segmentation [18] and multi-modal feature interactions. With
the surge of Graph Neural Networks (GNNs) in recommendation [19], models like MMGCN [20],
GRCN [21], and DualGNN [22] pushed multi-modal recommendation further by injecting high-
order neighbor relationships or user attentions across item modalities into node representations. To
better reveal item–item semantic similarities, LATTICE [23] constructs separate item–item graphs
for each modality and fuses them into a latent graph, while MVGAE [24] employs a modality-
specific variational graph autoencoder to combine multi-modal embeddings. Later, MGCN [8]
constructs separate graph views to fuse text, image, and user–item interactions more effectively.
Recent work like GUME [25] focuses on leveraging semantic neighbors and refining user modality
embeddings to strengthen long-tail item connectivity, while LGMRec [26] separates local user–item
interactions from global attribute relationships via hypergraph modeling. FREEDOM [9] tackles
noisy item–item structures by freezing precomputed graphs and pruning user–item edges. Self-
supervised learning method such as BM3 [10] proposes a self-supervised learning framework that
relies on latent embedding dropout to create view augmentations. AlignRec [12] addresses alignment
challenges across different modalities by unifying multi-modal content and ID-based features through
a multi-stage alignment process. In addition, the remarkable progress of foundation models in
various modalities [27, 28, 29] has prompted researchers to adopt large-scale pretrained encoders for
capturing more holistic multi-modal representations. Typical examples include VIP5 [30], which
extends the text-based P5 [31] by incorporating a CLIP image encoder, and MMGRec [32], which
reveals item IDs from both collaborative and multi-modal signals via a Graph RQ-VAE. Moreover,
IISAN [33] proposes a lightweight Decoupled PEFT architecture that simultaneously tackles intra-
and inter-modal adaptation in a plug-and-play manner.

Multi-modal Large Language Model Multi-modal Large Language Models (MLLMs) have
recently achieved significant progress in integrating language with other modalities, driven by the
surge in large-scale pretraining [29, 34, 35, 36]. Research efforts generally begin with multimodal
understanding and text generation, with representative models such as BLIP-2 [37] and LLAVA [38].
Models like LLaMA-Adapter [39, 40] and mPLUG-Owl [41, 42] align text and image features via
extensive image–text pairs, while InstructBLIP [43] reshapes multiple tasks into instruction-based
formats. Despite such progress, enhancing the visual encoder resolution [44, 45, 46, 47, 48, 49]
can result in prohibitive memory overhead, especially in multi-page scenarios. To address such a
problem, TextMonkey [50] employs token resampling to reduce the visual token load. Similarly,
more recent models such as Qwen2-VL [51] and GPT-4 [52] have exhibited outstanding proficiency
in multimodal reasoning and generation.

3 Methodology

3.1 Problem formulation

We consider the Click-through Rate (CTR) task defined on a dataset D = {(ui, vi, yi)}Ni=1, where
each sample consists of a user u = (eidu , emm

u ), an item v = (eidv , emm
v ), and a binary label y ∈ {0, 1}

indicating whether the user engaged with the item. Here, eidu and eidv denote trainable ID embeddings
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for user and item, respectively, while emm
u and emm

v represent multi-modal representations of user
and item, extracted from MLLM. The goal is to learn a prediction function f(ui, vi;θ) that estimates
the probability of user–item interaction. The model is trained to minimize binary cross-entropy loss.

3.2 Multimodal representation learning

Multimodal information, such as text, images, and other item-related metadata, provides substantial
advantages by enhancing the representation of both items and users in recommendation systems.
However, although pre-trained Multimodal Large Language Models (MLLMs) excel at understanding
the data representation [52, 53, 54], their original evaluation metrics are not specifically designed to
meet the unique demands of recommendation tasks. As a result, when faced with extensive user and
item information, these pre-trained models often struggle to extract key, effective feature embeddings.
To address this limitation and improve the extraction of multimodal features, we introduce a novel
approach to efficiently generate task-relevant embeddings by harnessing multimodal features.

3.2.1 Item embedding

In this section, we fine-tune the MLLM using three novel alignment objectives aimed at enhancing
cross-modal consistency. Furthermore, we append a special token, [Item_cls], to the end of each item
description, which allows the model to condense lengthy multimodal token sequences into compact
and informative embeddings.

For item i, we first combine its textual and visual attributes into a unified input description. This
is accomplished using a specific prompt template designed to guide the model’s multimodal under-
standing: "Integrate text and visual information into an embedding representation. Textual:[Text],
Visual: [Image/video]." Then the MLLM encodes the input and generates a corresponding token
sequence including [item_cls], in the form of {t1, t2, ..., tm, [item_cls]}. Finally, the hidden state
associated with the [Item_cls] token is extracted as the multimodal embedding for item i.

emm
v = MLLM(texti, imagei), (1)

where emm
v donates the multimodal item embedding of item v.

In the fine-tuning phase, we introduce three specialized alignment tasks for multimodal recommenda-
tion, aimed at improving the MLLM’s performance and suitability in recommendation scenarios.

Text-image alignment: To align visual and textual features, we adopt a method inspired by BERT
[55]. For item i with image Vi and text Ti, we mask 20% of Ti’s tokens with a special [MASK] token,
obtaining T̂i. The model then takes (Vi, T̂i) as input, with the corresponding original description Ti

as the target output. This reconstruction task compels the model to leverage visual information to
infer missing textual content, thereby learning the meaningful relationship between visual features
and textual context for improved cross-modal understanding.

Meta-data processing: Recommendation systems leverage both structured metadata (e.g., title, price,
tags) and unstructured descriptions. Since metadata directly reflects item characteristics, its effective
processing enhances MLLMs’ encoding performance. Thus, for item i, we propose predicting its
detailed description Ti from its metadata, establishing a robust mapping between structured attributes
and unstructured text.

User behavior understanding: The model explicitly captures interest evolution patterns by predicting
users’ future interactions based on their multimodal historical behavior sequences, enabling adaptive
optimization of recommendation strategies. For this purpose, we create fine-tuning samples where a
user’s interaction history (containing both textual and visual item features) serves as input, while the
next interacted item provides the supervision signal.

3.2.2 User embedding

Despite the basic user information, analyzing historical item sequences is also crucial for predicting
user preferences. However, handling extensive user histories and aligning textual information with
corresponding images presents a significant challenge in multimodal recommendation scenarios. To
address the efficient aggregation of long multimodal sequences, we propose the User Embedding Gen-
erator (UEG). This module is designed to efficiently aggregate the sequence multimodal information
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Figure 3: Adaptive Gradient Masking(AGM).

of user historical items into a unified user multimodal representation. For user u,

emm
u = UEG(emm

v1 , emm
v2 , ..., emm

vs ) (2)

As illustrated in Fig. 2, the UEG is a learnable neural network module that takes both the multimodal
representations of a user’s historical interactions and their unique identifier as input, producing
a comprehensive multimodal user embedding emm

u . To stabilize the learning of multimodal user
representations, we further incorporate a pre-trained ID-based embedding layer(with frozen parame-
ters), which generates an ID-based user representation eidu from the user’s identifier and historical
interactions. The UEG module is optimized via an alignment loss:

Lalign = ∥eidu − emm
u ∥22 (3)

This objective ensures the learned multimodal representations maintain consistency with established
ID-based embeddings while capturing rich multimodal patterns.

3.3 AGM

Forward propagation and convergence inconsistency Before computing interaction logits, we
first obtain ID-based embeddings (eidu , eidv ) through trainable embedding layers and multimodal
embeddings (emm

u , emm
v ) using the method described in Section 3.2. These are processed through

separate backbones gid(·, ·;θid) and gmm(·, ·;θmm), with their outputs concatenated and fused
through φ to produce the final logit:

f(u, v;θ) = φ([gid(eidu , eidv ;θid); gmm(emm
u , emm

v ;θmm)]) (4)

We train using binary cross-entropy loss:

L = − 1

N

N∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) , (5)

where ŷi = σ(f(u, v;θ)). By decomposing φ’s weight matrix into W id and Wmm, we can express
Equation 4 as:

f(u, v;θ) = W id ∗ gid(eidu , eidv ;θid) +Wmm ∗ gmm(emm
u , emm

v ;θmm) + b (6)

5



As shown in Appendix C, the ID and MM branches update nearly independently. However, ID
features converge faster with stronger signals, dominating predictions and gradient updates. This
creates a feedback loop where MM components receive weakened optimization signals, remaining
under-utilized at convergence. Consequently, the ID pathway determines the final logit while the MM
pathway stays inadequately optimized, causing the observed convergence inconsistency.

Mask ratio via modal significance As discussed, ID and MM representations carry signals of
varying strengths during training. To quantify the influence of different representations within the
training objective, we introduce a contribution score s. For a given sample, the contribution score is
formulated as:

s = y ∗ p+ (1− y) ∗ (1− p), where p = σ(W ∗ g(eu, ev;θ) + b/2) (7)

The relative contribution ratios ρid and ρmm are calculated per mini-batch B:

ρid =

∑
xi∈B sidi∑

xi∈B smm
i

, ρmm = 1/ρid (8)

To prevent abrupt fluctuations, we employ exponential moving average (EMA) smoothing with
momentum λ when updating these ratios across iterations.

ρt = λρt + (1− λ)ρt−1 (9)

In order to mitigate optimization imbalance, we need to provide adequate optimization opportunities
to the non-dominant modality while suppressing the parameter updates of the dominant modality.
Therefore, inspired by softmax normalization [56], we define the update ratio γid and γmm as follows:

γid =
exp(ρmm)

exp(ρid) + exp(ρmm)
, γmm = 1− γid (10)

A higher value of γ indicates fewer parameters are frozen and more parameters are updated in the
corresponding branch.

Adaptive Gradient Masking To implement modality-specific gradient updates, we utilize the
Fisher Information Matrix (FIM) [57] , donated as F(θ), which allows us to effectively measure
the relative importance of model parameters across modalities. Specifically, the Fisher Information
Matrix is defined as:

F(θ) = E

[(
∂ log p(ŷ | x;θ)

∂θ

)(
∂ log p(ŷ | x;θ)

∂θ

)⊤
]

(11)

Following [58], given a batch of data, we estimate the importance of parameters using the diagonal
elements of F(θ). Formally, the Fisher information for the j-th parameter is calculated as follows:

Fj(θ) =
1

|B|

|B|∑
i=1

(
∂ log p(ŷi | xi;θ)

∂θj

)2

(12)

Subsequently, we normalize these diagonal elements and denote πj as the importance score of the j-th
parameter. Aggregating the importance scores of all parameters, we obtain a probability distribution
π over the parameter space:

π = {π1, π2, ..., π|θ|}, where πj =
Fj(θ)∑|θ|
j=1 Fj(θ)

(13)

Given the update ratio γ of each modality and the parameter-wise probability distribution π, we
employ the non-uniform adaptive sampling [59] to generate the gradient mask m(t) ∈ {0, 1}|θ|,
where 1 indicates the parameter will be updated during backpropagation and 0 means it remains frozen.
This sampling method primarily directs our focus toward parameters carrying richer information.
Concurrently, probabilistic sampling extends coverage to a broader range of parameters, promoting
more thorough exploration and enhancing the model’s generalization capability across the entire
parameter space.

Finally, the parameter update rule with gradient masking thus becomes:
θ(t+ 1) = θ(t)− η ∗ ∇L(θ(t)) ∗m(t) (14)
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3.4 Theoretical analysis and AGM*

In this section, we present our theoretical analysis of the Asymmetric Gradient Masking (AGM)
approach and its improved variant AGM. We begin by establishing the convergence properties of
the original AGM method, then introduce an importance weighting scheme that leads to better
convergence guarantees in AGM. The convergence of AGM is complicated by the bias introduced
through gradient masking. Theorem 1 formalizes this behavior:
Theorem 1 (Convergence of AGM). Suppose the loss function L(·) is L-smooth and ∇l(θ(t))
is unbiased, i.e. E(∇l(θ(t))) = ∇L(θ(t)), which is commonly used in non-convex optimization.
However, 0/1 mask makes ∇ℓ(θ(t)) ⊙m(t) biased, i.e., E[∇ℓ(θ(t)) ⊙m(t)] ̸= ∇L(θ(t)), since
∇l(θ(t)) and m(t) are not independent. Under the Mask-Incurred Error assumption, we have the
following convergence result for AGM over T steps:

1

T

T∑
t=1

E[∥∇L(θ(t))∥2] ≤ O
(

1 + (1 + ν)2

(1− δ2)(1 + ν)
√
T

)
, (15)

where δ ∈ (0, 1) and ν ≥ 0 are two constants.

The key limitation here is the bias in gradient estimates caused by the interaction between the mask
m(t) and the stochastic gradients. This bias manifests in the (1− δ2) term in the denominator, which
slows down convergence. To address this issue, we propose AGM* which incorporates importance
weighting through a modified mask m̂(t). The weights are defined as:

m̂j(t) =


1

πj + c
, if mj(t) = 1,

0, otherwise.
(16)

where πj represents the probability of the j-th parameter being unmasked and c is a small constant for
numerical stability. This weighting scheme helps compensate for the bias introduced by the original
masking operation. The update rule for AGM* becomes:

θ(t+ 1) = θ(t)− η∇L(θ(t))⊙ m̂(t). (17)

The importance weighting in AGM* leads to better theoretical guarantees, as shown in Theorem 2:
Theorem 2 (Convergence of AGM*). Under some assumptions for ∇ℓ(θ(t))⊙m(t), we have:

1

T

T∑
t=1

E[∥∇L(θ(t))∥2] ≤ O
(
1 + (1 + ν)2

(1 + ν)
√
T

)
, (18)

Comparing Theorems 1 and 2, we see that AGM* removes the problematic (1 − δ2) term from
the denominator, leading to faster convergence. This improvement comes from the fact that the
importance weights in m̂(t) help maintain the unbiasedness of the gradient estimates despite the
masking operation. The complete proofs and additional technical details can be found in the Appendix.

4 Experiments

4.1 Setup

Dataset We conduct offline experiments on four open-source datasets from diverse recommendation
domains. First, we choose the Microlens dataset [60], which features user-item interactions, video
introductions, and video cover images. In addition, we adopt three categories from the Amazon
dataset–Baby, Sports, and Electronics [61, 62]–which contain user-item interactions, product descrip-
tions, and images. All raw datasets are preprocessed with a 5-core setting on both items and users, as
described in [12, 10]. Detailed statistics of the datasets are provided in Appendix A.1.

Baselines and Evaluation In our experiments, we conduct two parts of evaluation. We first compare
AGM with several recent advanced multimodal recommendation models, including VBPR [13], BM3
[10], FREEDOM [9], AlignRec [12], MGCN [8], LGMRec [26], GUME [25], and MM-Rec [63], to
demonstrate its effectiveness. Next, to examine the generalization capability of AGM, we test our
framework with diverse backbones, including MLP [64], DCN [65], and Fibinet [66]. To evaluate the
performance of all models, we adopt two widely-used classification metrics: AUC (Area Under the
ROC Curve) [67] and LogLoss (Logarithmic Loss) [68].
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Table 1: Performance comparison of AGM and ID, MM, ID+MM models across different backbone
architectures, measured by AUC.

Model MLP DCN Fibinet
Baby Elec. Sports Micro. Baby Elec. Sports Micro. Baby Elec. Sports Micro.

ID 0.6741 0.7215 0.7012 0.6883 0.6696 0.7192 0.6854 0.6825 0.6792 0.7196 0.7043 0.6901
MM 0.6237 0.6577 0.6295 0.6279 0.6202 0.6527 0.6251 0.6227 0.6154 0.6548 0.6223 0.6245

ID+MM 0.6719 0.7218 0.7072 0.6904 0.6685 0.7123 0.6827 0.6857 0.6641 0.7269 0.7115 0.6915
AGM* 0.6864 0.7308 0.7145 0.6992 0.6827 0.7256 0.7062 0.6965 0.6832 0.7310 0.7129 0.6973

Table 2: Comparison of AUC (higher is better) and LogLoss (lower is better) between AGM and
other multimodal recommendation methods. Boldface indicates the best performance, and underlined
values indicate the second-best.

Model Baby Electronics Sports MicroLens
AUC Logloss AUC Logloss AUC Logloss AUC Logloss

VBPR 0.6729 0.6739 0.7158 0.6032 0.6985 0.6533 0.6758 0.6054
FREEDOM 0.6802 0.6708 0.7221 0.5973 0.7023 0.6472 0.6772 0.5957

BM3 0.6715 0.6712 0.7119 0.6084 0.6932 0.6515 0.6705 0.6021
AlignRec 0.6832 0.6681 0.7274 0.5988 0.7101 0.6438 0.6869 0.5906
MGCN 0.6810 0.6695 0.7239 0.5994 0.7085 0.6417 0.6851 0.5881

LGMRec 0.6823 0.6687 0.7247 0.6012 0.7009 0.6480 0.6778 0.5935
GUME 0.6834 0.6679 0.7270 0.5991 0.7119 0.6399 0.6968 0.5876

MM-Rec 0.6643 0.6691 0.7136 0.5987 0.6703 0.6415 0.6735 0.5885
AGM 0.6852 0.6683 0.7285 0.5974 0.7126 0.6405 0.6974 0.5856

AGM* 0.6864 0.6656 0.7310 0.5969 0.7145 0.6391 0.6992 0.5841
∆AGM∗−AGM +0.0012 -0.0027 +0.0025 -0.0005 +0.0019 -0.0014 +0.0018 -0.0015

4.2 Performance Comparison

Compared to different backbones Table 1 illustrates the AUC performance of four methods
(AGM* and other three traditional model frameworks) evaluated on different backbone architectures.
More specifically, to analyze the individual and combined effects of different training features
and compare their performance to AGM*, we conducted experiments on three traditional model
frameworks: (i) ID: A baseline model that utilizes only ID features (e.g., user ID, item ID). (ii) MM:
A variant that relies solely on multimodal features (e.g., image, text). (iii) ID+MM: A straightforward
combination of ID and multimodal features, without specialized fusion or alignment mechanisms.

The results reveal the following key insights: (i) AGM* consistently achieves the highest AUC across
all backbone architectures, demonstrating that AGM* not only achieves superior performance but
also maintains robustness and generalizability across various backbones. (ii) Models that rely solely
on multimodal features (MM) consistently exhibit the lowest AUC scores across all settings. This
suggests that multimodal signals alone are insufficient to capture user preferences, likely due to noise
and sparse semantics in text or image modalities.

Compared to different baselines Table 2 presents the AUC and LogLoss results of our proposed
AGM* and AGM framework in comparison with several state-of-the-art multimodal recommendation
baselines across four benchmark datasets. From the experimental results, we derive the following
observations: (i) AGM* consistently achieves the best performance on all datasets, although it is
based on relatively simple neural network architectures. These gains can be attributed to AGM*’s
ability to adaptively modulate feature contributions during training. (ii) Compared with other
MLLM-based methods such as AlignRec [12] and GUME [25], AGM* achieves consistently better
performance across all datasets. This superiority can be partially attributed to our fine-tuning strategy,
which enhances the semantic alignment of multimodal features and ensures better adaptation of the
pretrained MLLM to the recommendation domain. (iii) Experimental results prove the effectiveness
of our proposed unbiased version AGM*, as it outperforms the biased AGM.

4.3 Ablation Study

In this part, we conduct ablation studies to evaluate the contribution of each core component in AGM
and AGM*. Specifically, we compare the full models with the following variants: For AGM: (i)
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Table 3: Ablation results (AUC) of different modules in AGM.
Dataset ID+MM Random w/o BM w/o FM AGM w/o BM* w/o FM* AGM*

Baby 0.6719 0.6792 0.6773 0.6815 0.6852 0.6789 0.6837 0.6864
Elec. 0.7218 0.7267 0.7252 0.7271 0.7285 0.7254 0.7281 0.7308

Sports 0.7072 0.7103 0.7095 0.7112 0.7126 0.7107 0.7121 0.7145
Micro. 0.6904 0.6949 0.6938 0.6954 0.6974 0.6946 0.6967 0.6992

Table 4: The performance of Online A/B Testing at the platform.
Main watch-time app usage long view short view

+MM +0.022% +0.008% +0.132% -0.160%
AGM* +0.175% +0.124% +0.678% -0.235%

Random: When generating the gradient mask m(t), this variant adopts purely random sampling that
ignores parameter importance distributions, instead of the non-uniform adaptive sampling [59]. (ii)
w/o Backbone Masking (-BM): This variant disables gradient modulation on the backbone1,2 in
Fig. 3. In other words, no additional gradient masking is applied to the backbone network layers;
the gradients flow through these two layers in their original form. (iii) w/o Fusion Masking (-FM):
This variant omits gradient modulation on the fusion block in Fig. 3, so the gradients are propagated
through this block in their original form without adaptive gradient masking. For AGM*, we apply the
same ablations: (iv) w/o Backbone Masking (-BM*): Gradient modulation on the backbone1,2 is
removed in AGM*. (v) w/o Fusion Masking (-FM*): Gradient modulation on the fusion block is
removed in AGM*.

Table 3 presents the experimental results, demonstrating two key observations: (i) The removal of
any module leads to a noticeable drop in AUC performance, from which we can conclude that all
components make contributions to AGM and AGM*. (ii) Among all the ablation variants, removing
the dynamic gradient masking on the backbone1,2 (-BM/-BM*) results in the most significant
performance drop. This may be because without proper gradient regulation at this early level,
imbalanced learning signals can lead to biased feature extraction from each modality. Consequently,
these biases are carried forward and accumulated through the subsequent layers which substantially
undermines the downstream fusion process, leading to a more pronounced overall performance loss
compared to removing other modules.

4.4 Industrial Application

To further assess the real-world effectiveness of our model, we integrate AGM into the industrial
recommendation system of a large-scale short video platform that serves hundreds of millions of
users. The model is deployed in a 14-day online A/B test to evaluate its performance in a production
environment.

We adopt widely-used industry metrics, such as app usage time and watch time, to measure per-
formance. As shown in Table 4, our model achieves substantial improvements over the baseline,
further confirming AGM’s effectiveness. Notably, the model has now been fully deployed across the
platform, actively serving hundreds of millions of users every day.

5 Conclusion

In this paper, we tackle the convergence inconsistency problem in joint training of ID-based and
MLLM-based representations within large-scale recommendation systems. We propose a two-
stage framework that first learns semantically aligned multimodal representations through MLLM
fine-tuning and post-alignment with ID features, and then introduces a novel Adaptive Gradient
Masking (AGM) strategy to balance optimization across modalities. Our theoretical analysis and
extensive empirical results—across both offline benchmarks and real-world A/B testing—demonstrate
that the proposed framework effectively mitigates the convergence gap, stabilizes training, and
significantly boosts recommendation performance. These findings highlight the importance of
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coordinated optimization in multimodal recommendation and pave the way for more robust integration
of pretrained models into industrial systems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions and scope of the paper are included in the abstract and
Section 1. Please refer to the first and last paragraph of Section 1 for scope and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations of our work in the Appendix F
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide required assumptions and some proofs in Section 3 and the detailed
proofs are shown in Appendix C, D, and E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Model architectures can be seen in Section 3, and datasets as well as experi-
mental hyperparameters can be seen in Section 4 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A public code repository is included in Appendix A.3
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Datesets and training details can be seen in Appendix A.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical metrics we used are all officially defined and well-established.
The experimental results are the average of five experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information on the computer resources can be seen in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive impacts that our model will bring in Ap-
pendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release high risk models and the datasets used in the paper are
open-sourced.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper for all the existing assets used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: MLLM is utilized as part of our model for multimodal embeddings.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplemental Material: Adaptive Gradient Masking for
Balancing ID and MLLM-based Representations in

Recommendation

A Experimental details

A.1 Dataset

The detailed descriptions of the datasets used in the main text are as follows:

• Amazon Baby: This dataset consists of user-generated reviews on baby-related products
sold on Amazon, such as bottles, diapers, and infant toys. It typically includes product names,
review texts, and star ratings, making it a valuable resource for research in recommendation
systems.

• Amazon Sports: This dataset includes Amazon user reviews pertaining to sports and
outdoor products, including equipment, camping gear, and fitness devices. Alongside textual
reviews and ratings, the dataset provides insights into consumer preferences and opinions,
supporting various applications in recommendation modeling.

• Amazon Electronics: This dataset is derived from Amazon reviews on electronic products,
covering items such as mobile phones, cameras, laptops, and home appliances. In addition
to review content and ratings, it contains product metadata, facilitating extensive research in
product recommendation.

• Microlens: This dataset contains user–item interaction records, video introductions, and
video cover images. Each video within MicroLens contains multiple modalities, including
text descriptions, images, audio, and raw video information. This extensive coverage enables
robust benchmarking of both classical and state-of-the-art recommendation systems.

Table 5: Statistical Information of datasets.
Dataset Baby Sports Electronics Microlens

#User 19,445 35,598 192,403 25,411
#Item 7,050 18,357 63,001 20,276

#Interaction 160,792 296,337 1,689,188 223,263
Sparsity 99.88% 99.95% 99.99% 99.96%

A.2 Baselines

We summarize the key characteristics of the baseline methods used in our comparative evaluation:

• VBPR [13]: This model incorporates visual features into matrix factorization by treating
them as auxiliary information for user preference, learning with BPR loss.

• BM3 [10]: This model simplifies the self-supervised multimodal recommendation frame-
work by using a latent representation dropout mechanism instead of graph augmentation to
generate contrastive views, enhancing representation learning.

• FREEDOM [9]: This model refines ID-based item representations through auxiliary con-
trastive losses on multimodal data, and leverages graph structures to align different modalities
in a unified embedding space.

• AlignRec [12]: This model addresses modality misalignment and optimization imbalance
by proposing a two-stage training strategy that first pre-trains inter-content alignment, then
jointly optimizes with the recommendation task.
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• MGCN [8]: This model purifies modality features using item behavior data to reduce noise,
and models user-modal preference through multi-view graph convolution networks.

• LGMRec [26]: This model enhances multimodal recommendation by learning both local
and global semantic relations in item-user graphs, effectively capturing fine-grained user
preferences.

• GUME [25]: This model improves long-tail multimodal recommendation by incorporating
user-specific modality preferences and behavior graphs to enhance personalized modeling.

• MM-Rec [63]: This model enhances multimodal news recommendation by jointly encoding
news text and image ROIs using a visiolinguistic model, and introduces a candidate-aware
attention mechanism to identify relevant historical news.

A.3 Training details

The code and model are available at: AGM.

In the fine-tuning phase, we adopted Qwen2vl-2b[51] as the backbone model. The model was
fine-tuned for 5 epochs across four distinct datasets, utilizing a batch size of 128 on 4 A100 GPUs.

For AGM, offline evaluations were conducted using TensorFlow 2.15.0 on a single RTX 4090 GPU,
selecting Adam as the optimizer. Hyperparameters, including batch size and learning rate, were
systematically tuned across candidate sets of {256, 512, 1024, 2048} and {1e− 3, 1e− 4, 1e− 5},
respectively. The best model was selected based on the minimum validation loss, and early stopping
was applied with a patience of 5 to prevent over-fitting.

B In-depth analysis

B.1 Evaluation of multimodal representations

To assess the quality of the multimodal representations generated by AGM, we conduct zero-shot
recommendation experiments on the Amazon dataset following the protocol of AlignRec [12]. For
each user, the last interacted item is regarded as the target item, and the rest form the historical
sequence. We average the multimodal features of historical items to construct the user representation,
then compute its similarity with the candidate items’ features to evaluate if the target item ranks
within top-K. We compare the following methods: (i) Amazon, which uses separately trained visual
(CNN) and textual (Transformer) encoders; (ii) MLLM, which directly uses the frozen MLLM
outputs; (iii) w/o Lalign, a variant of AGM that disables the feature alignment loss; and (iv) Ours
(AGM), which includes all proposed components. We report Recall@20 and Recall@50 in Table 6.
The results reveal three key observations: (i) AGM significantly outperforms traditional feature
extractors and raw MLLM features, indicating the benefit of task-specific representation refinement.
(ii) Removing the alignment loss leads to noticeable performance drops, highlighting its importance
in guiding effective feature selection and fusion. (iii) AGM achieves consistent improvements across
all categories, demonstrating its robust capability in modeling multimodal user-item relationships in
a zero-shot scenario.

Table 6: Evaluation of multimodal representations

Generation Methods Baby Elec. Sports
R@20 R@50 R@20 R@50 R@20 R@50

Amazon 0.0052 0.0150 0.0093 0.0135 0.0040 0.0072
MLLM 0.0140 0.0345 0.0202 0.0364 0.0053 0.0089

w/o Lalign 0.0225 0.0426 0.0251 0.0417 0.0120 0.0159
Ours 0.0276 0.0509 0.0293 0.0478 0.0175 0.0206

B.2 Convergence analysis

To better illustrate the convergence performance of different methods, we plot the AUC values
across training epochs for AGM, AGM*, and the combined model (ID-MM) on Amazon Baby,
Electronics, Sports and Microlens. As shown in Fig.4, both AGM and AGM* demonstrate increasing
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Figure 4: Validation-set AUC comparison of the combined model (ID-MM), AGM, and AGM* across
four datasets

AUC throughout training epochs, indicating effective joint learning. In contrast, ID-MM exhibits a
downward trend in AUC as training progresses. This degradation can be attributed to the ID features
dominating the training process of ID-MM, especially in the absence of any modulation mechanism
on gradients during the backpropagation phase. Consequently, as the model overfits the ID space
over time, the performance of ID-MM degrades. This dominance suppresses the contribution of
multimodal features, resulting in suboptimal representations and overall performance decline. In
contrast, our AGM and AGM* introduce Gradient Modulation, which dynamically balances the
gradient flow between the ID and multimodal branches, preventing ID features from overwhelming
MM features, allowing both to contribute meaningfully to the final prediction.

In addition, AGM* shows better overall performance compared to AGM, especially in larger datasets
(e.g., Amazon Electronics). Specifically, by compensating for the gradient masking bias introduced by
the original masking operation in the AGM, AGM* improves the gradient update process, promoting
faster convergence, and ultimately improving the final AUC of the model.

C Convergence inconsistency analysis of ID-MM combine model

In the joint learning of ID and multimodal representations for recommendation, we observe an
optimization imbalance phenomenon, where one representation dominates the learning process,
causing the other to be under-optimized. We introduce the analysis of the optimization imbalance
phenomenon for the model with concatenation as fusion method. In our recommendation model, the
logits output is formulated as:

φ(xi) = W [f(eid;θid); g(emm;θmm)] + b (19)
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To observe the optimization process of each component individually, W can be represented as the
combination of two matrix: W id and Wmm. The Equation 19 can be rewritten as:

φ(xi) = W id ∗ f(eid;θid) +Wmm ∗ g(emm;θmm) + b (20)
The model is trained using binary cross-entropy loss:

L = − 1

N

N∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi)) , (21)

where the predicted probability is ŷ = σ(φ(xi)). The gradient of the loss with respect to the logit is:
∂L

∂φ(xi)
= σ(φ(xi))− yi. (22)

Applying the chain rule, the gradients for the ID weights and backbone parameters of the ID
representation are as follows:

∂L

∂W id
=

1

N

N∑
i=1

∂L

∂φ(xi)
∗ f(eid;θid) (23)

∂L

∂θid
=

1

N

N∑
i=1

∂L

∂φ(xi)
W id ∂f(e

id;θid)

∂θid
(24)

According to Equations 23 and 24, the optimization of W id and f(·) is nearly independent of
the optimization of multimodal parameters Wmm and g(·), except for the term associated with
the training loss. As a result, the backbone have limited ability to make adjustments based on
feedback from one another. The analysis of the feed-forward and back-propagation stages reveals
that both the model predictions and gradients are governed by the sum of ID and multimodal (MM)
components. Since ID features converge faster and contain stronger discriminative information, they
dominate the model prediction φ(xi) and gradient ∂L

∂φ(xi)
through W id · f(eid;θid). Even if the MM

representations remain under-optimized and produce erroneous outputs during training, the more
informative ID components can still "correct" these errors through summation, thereby influencing
both the feed-forward and back-propagation processes. Consequently, according to Eq. (9) and
Eq. (11), the MM, which has relatively lower confidence in the correct category, receives limited
optimization, leading to its under-utilization. Based on this analysis, ID features play a dominant
role in the optimization process. As the model approaches convergence, MM components may still
require further training to compensate for their under-optimized features.

D Convergence analysis of AGM

In this section, we give a detailed proof of Theorem 1. Recall update step of stochastic gradient
descent (SGD) for AGM is:

θ(t+ 1) = θ(t)− η · ∇ℓ(θ(t))⊙m(t), (25)
where ∇ℓ(θ(t)) is the stochastic gradient of ∇L(θ(t)) and η > 0 is the learning rate, and m(t) is
a binary mask vector. To analyze the convergence of AGM, we have the three following common
assumptions for L(·).
Assumption 1 (Smoothness). The loss function L is L-smooth, which is common for non-convex
optimization. That is, for any θ,θ′, we have:

L(θ)− L(θ′) ≤ ⟨∇L(θ′),θ − θ′⟩+ L

2
∥θ − θ′∥2. (26)

Assumption 2 (Bounded Variance). We assume that the stochastic gradient ∇ℓ(θ)⊙m(t) is biased
and its variance is bounded. That is, for any θ(t) and m(t), we have

E [∇ℓ(θ(t))⊙m(t)] = ∇L(θ(t)) + b(θ(t)), (27)
and

E [∥∇ℓ(θ(t))⊙m(t)− E [∇ℓ(θ(t))⊙m(t)]∥]2 ≤ ν ∥∇L(θ(t)) + b(θ(t))∥2 + σ2, (28)
where σ2 ≥ 0 and ν ≥ 0 are two constants.
Assumption 3 (Mask-Incurred Error). For any θ(t) and m(t), we have

∥E [∇ℓ(θ(t))⊙m(t)−∇ℓ(θ(t))]∥ ≤ δ ∥E [∇ℓ(θ(t))]∥ , (29)
where the constant δ ∈ [0, 1].
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Proof of Theorem 1. As Theorem 1 claims:

1

T

T∑
t=1

∥∇L(θ(t))∥2 ≤ O
(

1 + (1 + ν)2

(1− δ2)(1 + ν)
√
T

)
, (30)

By Assumption 1, and let h(t) := ∇ℓ(θ(t))⊙m(t), we have

L(θ(t+ 1))− L(θ(t)) ≤ ⟨∇L(θ(t)),θ(t+ 1)− θ(t)⟩+ L

2
∥θ(t+ 1)− θ(t)∥2

= −η ⟨∇L(θ(t)), h(t)⟩+ η2L

2
∥h(t)∥2 , (using eq. 25) (31)

Taking expectation over both sides of 31 and by using Assumption 2:

E[L(θ(t+ 1))− L(θ(t))] ≤ −η ⟨∇L(θ(t)),∇L(θ(t)) + b(θ(t))⟩+ η2L

2
E
[
∥h(t)∥2

]
= −η ⟨∇L(θ(t)),∇L(θ(t)) + b(θ(t))⟩+ η2L

2

(
E[∥h(t)− E[h(t)]∥2] + E[∥E[h(t)]∥2]

)
≤ −η ⟨∇L(θ(t)),∇L(θ(t)) + b(θ(t))⟩+ η2L

2

(
(1 + ν)∥∇L(θ(t)) + b(θ(t))∥2 + σ2

)
≤ −η ⟨∇L(θ(t)),∇L(θ(t)) + b(θ(t))⟩+ η

2
∥∇L(θ(t)) + b(θ(t))∥2 + η2Lσ2

2
, (32)

where the last inequality is due to η ≤ 1
(1+ν)L .

Since −⟨a, b⟩+ ∥b∥2

2 = ∥a−b∥2

2 − ∥a∥2

2 , then 32 implies that

E[L(θ(t+ 1))]− L(θ(t)) ≤ −η ⟨∇L(θ(t)),∇L(θ(t)) + b(θ(t))⟩+ η2L

2
E
[
∥h(t)∥2

]
≤ η

2
∥b(θ(t))∥2 − η

2
∥∇L(θ(t))∥2 + η2Lσ2

2
. (33)

Next, by 27 in Assumption 2 and Assumption 3, we know

∥b(θ(t))∥ = ∥E[∇ℓ(θ(t))⊙m(t)]−∇ℓ(θ(t))∥ ≤ δ ∥E[∇ℓ(θ(t))]∥ = δ∥∇L(θ(t))∥. (34)

Therefore, by (33) and (34) we have

E[L(θ(t+ 1))− L(θ(t))] ≤ −η(1− δ2)

2
∥∇L(θ(t))∥2 + η2Lσ2

2
. (35)

which implies

∥∇L(θ(t))∥2 ≤ 2E[L(θ(t))− L(θ(t+ 1))]

η(1− δ2)
+

ηLσ2

1− δ2
. (36)

By summing up for t = 1, . . . , T , we have

1

T

T∑
t=1

∥∇L(θ(t))∥2 ≤ 2E[L(θ(1))− L(θ(T + 1))]

Tη(1− δ2)
+

ηLσ2

1− δ2

≤ 2L(θ(1))
Tη(1− δ2)

+
ηLσ2

1− δ2
. (37)

By setting η = 1
(1+ν)L

√
T

, we get

1

T

T∑
t=1

∥∇L(θ(t))∥2 ≤ 2(1 + ν)LL(θ(1))√
T (1− δ2)

+
σ2

(1 + ν)
√
T (1− δ2)

= O
(

1 + (1 + ν)2

(1− δ2)(1 + ν)
√
T

)
.

(38)

25



E Convergence analysis of AGM*

For unbiased stochastic gradient, recall that the update step of SGD is

θ(t+ 1) = θ(t)− η∇ℓ(θ(t))⊙ m̂(t), (39)

where ∇ℓ(θ(t)) is the stochastic version of the gradient of loss function ∇L(θ(t)) at θ(t), and η > 0
is the learning rate.

The element of m̂(t) is given by

m̂j(t) =


1

πj(t)
, if mj(t) = 1,

0, otherwise.
(40)

Suppose that stochastic gradient ∇ℓ(θ(t)) is unbiased, i.e., E[∇ℓ(θ(t))] = ∇L(θ(t)). Then we have

E[∇ℓ(θ(t))⊙ m̂(t)] = E[∇ℓ(θ(t))⊙ π(t)−1 ⊙m(t)]

= Em(t)

[
∇ℓ(θ(t))⊙ π(t)−1 ⊙m(t) | ∇ℓ(θ(t))

]
= E[∇ℓ(θ(t))⊙ π(t)−1 ⊙ Em(t)[m(t) | ∇ℓ(θ(t))]]

= E[∇ℓ(θ(t))]

= ∇L(θ(t)), (41)

indicating that ∇ℓ(θ(t))⊙ m̂(t) is also unbiased.

Assumption 4 (Bounded Variance). We assume that the stochastic gradient ∇ℓ(θ)⊙m̂(t) is unbiased
and its variance is bounded. That is, for any θ(t) and m̂(t), we have

E [∇ℓ(θ(t))⊙ m̂(t)] = ∇L(θ(t)), (42)

and
E [∥∇ℓ(θ(t))⊙ m̂(t)− E [∇ℓ(θ(t))⊙ m̂(t)]∥]2 ≤ ν ∥∇L(θ(t))∥2 + σ2, (43)

where σ2 ≥ 0 and ν ≥ 0 are two constants.

Proof of Theorem 2. As Theorem 2 claims: under assumptions 1, 4, we have:

1

T

T∑
t=1

∥∇L(θ(t))∥2 ≤ O
(
1 + (1 + ν)2

(1 + ν)
√
T

)
, (44)

where the learning rate is set as η = 1
(1+ν)L

√
T

.

By Assumption 1, and we set ĥ(t) := ∇ℓ(θ(t))⊙ m̂(t), then we have

L(θ(t+ 1))− L(θ(t)) ≤ ⟨∇L(θ(t)),θ(t+ 1)− θ(t)⟩+ L

2
∥θ(t+ 1)− θ(t)∥2

= −η
〈
∇L(θ(t)), ĥ(t)

〉
+

η2L

2

∥∥∥ĥ(t)∥∥∥2 , (45)

Taking expectation over both sides of (45) and by using Assumption 4, we have

E[L(θ(t+ 1))]− L(θ(t)) ≤ −η∥∇L(θ(t))∥2 + η2L

2
E[∥ĥ(t)∥2]

= −η∥∇L(θ(t))∥2 + η2L

2

(
E
[
∥ĥ(t)−∇L(θ(t))∥2

]
+ ∥∇L(θ(t))∥2

)
≤ −η∥∇L(θ(t))∥2 + η2L

2

(
(1 + ν)∥∇L(θ(t))∥2 + σ2

)
≤ −η∥∇L(θ(t))∥2 + η

2
∥∇L(θ(t))∥2 + η2Lσ2

2
, (46)
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where the last inequality is due to η ≤ 1
(1+ν)L . Therefore, we have

∥∇L(θ(t))∥2 ≤ 2E[L(θ(t))− L(θ(t+ 1))]

η
+ ηLσ2. (47)

By summing up for t = 1, . . . , T , we have

1

T

T∑
t=1

∥∇L(θ(t))∥2 ≤ 2E[L(θ(1))− L(θ(T + 1))]

Tη
+ ηLσ2

≤ 2L(θ(1))
Tη

+ ηLσ2. (48)

Since η = 1
(1+ν)L

√
T

, we get

1

T

T∑
t=1

∥∇L(θ(t))∥2 ≤ 2(1 + ν)LL(θ(1))√
T

+
σ2

(1 + ν)
√
T
. (49)

F Limitation

While our proposed AGM framework demonstrates promising results, several limitations remain.
First, the framework’s performance may depend on the quality and diversity of the multimodal data
available during training. Second, the current experiments focus on recommendation tasks, and
extending the approach to other multimodal applications may require further adaptation.

G Broader Impacts

Our work on Adaptive Gradient Masking for recommendation systems presents several important
societal implications. The improved ability to handle multimodal content could significantly enhance
recommendation quality, particularly for niche and cold-start items, potentially benefiting both users
through more relevant suggestions and content creators through better exposure. The framework’s
ability to balance different feature types may also lead to more diverse recommendations, mitigating
some common filter bubble effects.
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