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Abstract

Understanding crisis events from social media posts to support response and
rescue efforts often requires robust multimodal reasoning over both visual
and textual content. However, existing models often struggle to fully lever-
age the complementary nature of these modalities, particularly in noisy and
information-sparse settings. In this work, we propose a novel multimodal
framework, CapFuse-Net, that integrates pretrained vision-language models
(VLMs) with a guided fusion strategy for improved crisis event classifica-
tion. We first augment textual input with VLM-generated image-grounded
captions, providing richer context for textual reasoning. A Cross-Feature
Fusion Module (CFM) is then used to fuse the original and generated text
using cross-attention, followed by a Guided Cross-Attention module that
enables fine-grained interaction between visual and textual features. To fur-
ther refine this fusion, we incorporate a Differential Attention mechanism
that enhances salient feature selection while suppressing noise. Extensive
experiments on three crisis classification benchmarks demonstrate that our
method consistently outperforms unimodal and standard multimodal base-
lines. In addition, an ablation study demonstrates the importance of each
proposed component, in particular, the synergy between VLM-based cap-
tioning and attention-guided fusion. Finally, we present results for qual-
itative interpretability through Grad-CAM visualizations and robustness
across diverse crisis scenarios.

1 Introduction

The Internet and social networks have become sources of real-time information and news
broadcasts. During crisis events such as wildfires, hurricanes, floods, and tsunamis, people
actively share updates, images, and videos on social networks. This can create a vast pool
of data that can aid in humanitarian response and decision-making. Extracting important
information from this ongoing stream of data can help make quick decisions and use re-
sources more effectively. However, not all social media posts contain relevant or actionable
information. Hence, it becomes essential to filter out noninformative content and identify
meaningful posts that support crisis management efforts. This challenge has led to more
research on analyzing multimodal data with social media data containing text, images, links,
and videos. However, this analysis requires advanced methods to combine and understand
all these different types of information.
Multimodal machine learning has shown immense potential across various applications, in-
cluding sentiment analysis, misinformation detection, mental health prediction, sarcasm
detection in memes, etc. Lai et al. (2023); Shu (2022); Chancellor & De Choudhury (2020);
Bandyopadhyay et al. (2023); Ngiam et al. (2011); Vielzeuf et al. (2018); Kiela et al. (2018);
Abavisani et al. (2019). Despite its advantages, multimodal learning remains challenging
due to complex interactions between different modalities and the difficulty of aligning het-
erogeneous data sources Baltrusaitis et al. (2018). Prior research has shown that training
multimodal classification networks is often more difficult than their unimodal counterparts
due to issues such as modality imbalance, misalignment, and varying levels of noise in data
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Figure 1: Proposed CapFuse-Net: the pipeline starts with Caption Augmentation using a
VLM, where a hallucination filter (inference only) mitigates spurious information. VLM-
generated caption and original text information are fused in the Cross-Feature Module to
get enriched text feature; image and text features are aligned and fused in the Guided Cross-
Attention; and refined in the Decision Module with Differential Attention for predictions on
informativeness, humanitarian categories, and damage severity.

Wang et al. (2020). Addressing these challenges is crucial for building robust models capable
of effectively supporting crisis response efforts.
Vision-language models (VLMs) have made significant progress in aligning image and text
modalities across various tasks, including image captioning, visual question answering, and
cross-modal retrieval Li et al. (2022); Alayrac et al. (2022); Yu et al. (2022); Liu et al. (2023).
By learning to combine visual and text information, these models make it easier to integrate
and understand multimodal data together, helping to improve interpretability and context
Radford et al. (2021); Li et al. (2022); Liu et al. (2023). Models such as CLIP Radford et al.
(2021), BLIP Li et al. (2022), Perception Encoder (PE) Bolya et al. (2025), and LlaVA Liu
et al. (2023) leverage large-scale pretraining on diverse datasets to learn fine-grained visual
and semantic associations from text and images and provide strong contextual representa-
tions. These models can be applied in crisis situations, where images often have complex
information that can be difficult to understand without additional context. While CLIP and
PE learn contrastive embeddings, generative VLMs such as BLIP and LLaVA can produce
rich, free-form captions or dialogue about images, which can be leveraged to summarize
complex crisis scenes into concise, actionable descriptions. We incorporate LLaVA to gen-
erate detailed image captions, enriching the textual information available for multimodal
learning. This augmentation can provide more contextually relevant descriptions, therefore
helping to reduce ambiguity in image-text alignment. We integrate this augmented cap-
tion into our classification pipeline using a Cross-Feature Fusion Module (CFM), inspired
by the Cross-Adapter Module (CAM) Liu et al. (2025). In CAM, two pretrained models
are employed to extract enriched feature representations from textual inputs, which are
subsequently fused via cross-attention. In our proposed CFM, we similarly leverage pre-
trained models; however, we obtain features from both the original and augmented textual
inputs and fuse them using a cross-attention mechanism. This enables the model to capture
complementary semantic information from both views of the input, thereby enhancing the
quality of the joint representation.
Furthermore, to advance multimodal learning for the classification of crisis events, we com-
bine our proposed CFM architecture with the Guided Cross-Attention mechanism to refine
the fusion process between the textual and visual modalities Gupta et al. (2024). We also
employ a differential attention mechanism Ye et al. (2024) to emphasize more informational
modalities while downweighting less relevant ones. Unlike conventional attention mech-
anisms Vaswani et al. (2017), which treat all modalities uniformly, our approach assigns
adaptive attention weights based on the contextual importance of each modality in a given
instance. This ensures that the most informative signals receive higher focus, leading to
improved interpretability and classification accuracy. Our model effectively captures the
intricate dependencies between images and textual descriptions, resulting in more precise
crisis assessment and response strategies. Our contributions are summarized below.
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• A novel multimodal reasoning model (CapFuse-Net) to enhance text-image align-
ment through caption augmentation and knowledge fusion

• An innovative fusion module (CFM) leveraging original and augmented textual
inputs with cross-attention to enhance joint representation learning

• Extensive evaluation across multiple tasks on multimodal crisis and non-crisis
benchmark datasets, demonstrating the superiority of our proposed CapFuse-Net
over existing multimodal fusion methods

• Detailed analyses including comprehensive ablation studies showcasing the robust-
ness, generalizability, and interpretability of the proposed model in understanding
crisis events
.

2 Related Work

2.1 Multimodal Learning

Multimodal learning, which involves fusing information from multiple modalities such as
text, images, audio, and video, has become increasingly prominent due to its ability to
capture richer contextual information than unimodal approaches. Early fusion approaches
concatenate raw or low-level features, while late fusion approaches combine predictions
from separate unimodal models. However, these approaches often struggled to capture
intricate inter-modal relationships Baltrusaitis et al. (2018). More recent advances, including
attention mechanisms, such as the Transformer architecture (Vaswani et al., 2017), have been
adapted to process and integrate multimodal data effectively Li et al. (2019); Huang et al.
(2020); Kim et al. (2021); Kaduri et al. (2025). For example, ViLT (Vision and Language
Transformer) (Kim et al., 2021), which processes image patches and textual tokens through a
unified transformer without relying on a separate visual encoder, shows strong performance
in tasks such as image-text matching and visual question answering. Similarly, UNITER
(Chen et al., 2020) learns joint visual-linguistic representations using cross-modal attention
and has achieved state-of-the-art results on several benchmark datasets. Parallel to this,
contrastive learning has emerged as a powerful paradigm for learning aligned multimodal
representations. CLIP Radford et al. (2021), ALIGN Jia et al. (2021), and Perception
Encoder Bolya et al. (2025) align images and text in a shared embedding space using large-
scale noisy web data and contrastive loss and demonstrate impressive zero-shot transfer
across diverse vision-language tasks. Generative vision-language models have further pushed
the field forward. BLIP Li et al. (2022), Flamingo Alayrac et al. (2022), CoCa (Yu et al.,
2022), and LLaVA Liu et al. (2023) unify vision and language for generation tasks using
encoder-decoder or instruction-tuned models. These models excel at captioning, visual
question answering, and multimodal dialogue, especially when fine-tuned with instruction-
following datasets.

2.2 Crisis Event Analysis

Crisis event analysis has emerged as a critical area of research in both computer vision
and natural language processing, motivated by the need for timely and reliable situational
awareness during natural disasters, conflicts, and humanitarian emergencies. The availabil-
ity of diverse data sources such as satellite imagery, social media posts, and sensor feeds
has driven the development of multimodal methods for detecting, classifying, and assess-
ing crisis events. Early research in crisis informatics leveraged textual data from platforms
such as Twitter to extract crisis-related information, including situational updates, resource
needs, and damage reports (Olteanu et al., 2014). Crowd-sourced labeling and supervised
classification techniques have proven to be effective for real-time filtering of relevant crisis
tweets Imran et al. (2014). To improve information extraction and situational awareness,
researchers have collected and shared multimodal datasets that combine textual and visual
information. CrisisMMD (Alam et al., 2018; Ofli et al., 2020a) is one of the most compre-
hensive such resources, containing tweets paired with images, annotated for informativeness,
humanitarian categories (e.g., infrastructure damage, injured people), and severity levels.
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This dataset facilitated the development of multimodal models that can align textual and
visual signals to improve classification and retrieval performance. Multimodal deep learning
approaches have exploited both images and text to enhance crisis information processing.
Early models often used convolutional neural networks (CNNs) for visual features and re-
current neural networks (RNNs) or transformers for textual data, with late or intermediate
fusion strategies (Ofli et al., 2020b). An event detection model that integrated both low
and high-level features to leverage their complementary strengths was proposed in prior
work (Wang et al., 2021a). The study in Abavisani et al. (2020) highlights the challenges
of aligning heterogeneous modalities and demonstrates that multimodal models outperform
unimodal approaches in classifying disaster-related data. Building upon this, CrisisKAN
Gupta et al. (2024) was proposed as a knowledge-augmented attention mechanism that en-
hances interpretability and classification accuracy. By incorporating external crisis-related
knowledge from Wikipedia, CrisisKAN improved contextual understanding and robustness,
particularly in low-resource scenarios Gupta et al. (2024). Complementing knowledge-based
attention, the Multimodal Channel Attention (MMCA) mechanism was introduced to em-
phasize informative channels in textual and visual representations, thereby improving fusion
effectiveness and achieving stronger crisis categorization performance Rezk et al. (2023). The
above studies have demonstrated the importance of multimodal fusion and the integration
of external knowledge in crisis response applications. More recent work, such as CaMN,
introduced a cross-aligned multimodal framework that generates Abstract Meaning Rep-
resentation (AMR) graphs and integrates visual, textual, and AMR graph representations
using a cross-alignment loss and masked autoencoding Rajora et al. (2025). Another work
proposed a multimodal extractive abstractive summarization model for crisis-related mi-
croblogs, combining pretrained vision-language models to fuse text and image information,
achieving significant improvements Kumar et al. (2024).

3 Method

Our proposed multimodal architecture is shown in Fig. 1. For a multi-modal data instance
(xi, xt, y), where xi represents an image, xt represents tweet text, and y is the task-specific
class label. The unimodal models are designed to evaluate the individual contributions of
the visual and textual modalities in the absence of multimodal fusion. The objective is
to improve classification performance by leveraging VLMs for knowledge fusion and cross-
modal alignment.

3.1 Unimodal Model

In the image-only model, we input an image xi into a frozen vision encoder EV , such as
DenseNet Huang et al. (2017) or CLIP Vision Radford et al. (2021). The encoder produces
a visual feature representation ei, which is subsequently passed through a self-attention
module to enhance relevant spatial and semantic features. The attended features are then
forwarded to a multilayer perceptron (MLP) classifier to generate the predicted label ŷ. The
text-only model follows a parallel structure but operates on textual input xt, such as a tweet
associated with the image. The text is encoded using a frozen text encoder ET . For robust
analysis, we experiment with Electra Clark et al. (2020) and the CLIP Text model. The
resulting text embedding et is refined via a self-attention module and passed to an MLP
classifier to produce the prediction ŷ. The unimodal model architecture is shown in the
Appendix Fig. 4.

3.2 Multi-modal Model

We employ a vision–language model (VLM) to generate descriptive text specific to images.
A major concern in VLM-based augmentation is the tendency of these models to introduce
hallucinations, where objects or attributes not present in the image are falsely described.
Several approaches have been proposed to mitigate this problem Jiang et al. (2025); Liu et al.
(2024). In our work, we adopt the method of Jiang et al. (2025), which leverages middle-
layer attention consistency to detect and suppress hallucinations during the inference stage
of LLaVA (implementation details are provided in the appendix D.1).
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Following Jiang et al. (2025), we construct an instruction I that incorporates the original text
xt1 . Details on the instruction I can be found in the Appendix Section D. This instruction,
along with the corresponding image xi, is provided as input to the VLM (LLaVA). The
VLM model then generates a descriptive caption (xt2) that reflects the visual content of the
image. The caption generation process can be formally expressed as: xt2 = VLM(I, xi).
We also augment knowledge from Wikipedia following the CrisisKAN method Gupta et al.
(2024). At this stage, we have two textual inputs; we denote the original text as xt1
and the VLM-generated image description as xt2 . We employ the cross-feature module to
effectively combine semantic information from both sources. We utilize the text encoder from
a pretrained foundational multimodal ET (e.g., CLIP or PE) to extract text embeddings
from both inputs. Specifically, the encoder generates enriched embeddings et1 for the original
text and et2 for the generated caption, as defined below: et1 = ET (xt1), et2 = ET (xt2).
In the cross-feature fusion module, we improve the interaction between the original text xt1
and the VLM-generated image caption xt2 by applying a cross-attention mechanism between
their corresponding embeddings. We compute the cross-attentive feature representation et′

by using the embedding of the VLM-generated caption et2 as the query, while the embedding
of the original text et1 serves as both the key and value in the cross-attention mechanism:

et′ = Cross-Attn(Q = et2 , K = et1 , V = et1). (1)

To obtain the final fused textual representation et′ , we concatenate the attended feature
et2 with the original text embedding et1 . We introduce a scaling factor λ to control the
contribution of the cross-attentive feature. Here, we set λ = 0.5, which serves as a balancing
parameter that amplifies the informative signals from cross-fusion while suppressing less
relevant information, thereby ensuring a more robust textual representation. et = Concat(λ·
e′

t, et1).
Here, λ is a hyperparameter that balances the influence of VLM-generated information rela-
tive to the original text. In addition to CFM, we also experiment with a simple concatenation
of the original text and the VLM-generated text and pass the concatenated text to the text
encoder to obtain the combined textual representation et. In parallel, a vision encoder EV
from a pre-trained foundation model is used to extract the visual feature representation ei

from the input image xi: ei = EV(xi).
We freeze all pre-trained models during training to maintain the conceptual alignment be-
tween the text and image modalities. Next, we apply the Guided Cross-Attention module,
following the approach proposed in Gupta et al. (2024). We begin by applying self-attention
independently to each modality (image and text). Given a feature vector V of d dimention,
we compute self-attention as:

Self-Attn(V ) = softmax
(

V V T

√
d

)
V. (2)

This operation enhances contextual understanding within each modality before cross-modal
fusion. After applying self-attention to the image and text feature vectors ei and et, we
obtain their updated representations:

zi = Self-Attn(ei), zt = Self-Attn(et). (3)

Next, we compute new projections of the image and text features along with their corre-
sponding attention masks. For each modality, we apply a linear transformation followed by
an activation function F , and compute the attention mask using the sigmoid function σ:

e′
i = F (Wizi + bi), eimask

= σ(W
′

i zi + bi). (4)

We follow a similar process for the text modality:
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e′
t = F (Wtzt + bt), etmask

= σ(W
′

t zt + bt). (5)

Next, we apply Guided Cross-Attention by modulating each modality’s projected feature
with the attention mask of the other modality. Specifically, we multiply the attention mask
of the text modality etmask

with the projected image feature e′
i, and the attention mask

of the image modality eimask
with the projected text feature e′

t. This cross-modulation
enriches the feature representations by incorporating complementary information from the
other modality. Finally, we concatenate the resulting attention-weighted features to obtain
the joint multimodal representation: efused = concat(etmask

· e′
i, eimask

· e′
t).

After obtaining the final fused representation by concatenation, we apply a differential
attention mechanism to further refine the feature vector Ye et al. (2024). Given the input
matrix X ∈ RN×dmodel , we compute the query, key, and value projections using learnable
parameter matrices:

[Q1; Q2] = XW Q, [K1; K2] = XW K , V = XW V , (6)

Here, W Q, W K , W V ∈ Rdmodel×2d are the weight matrices for the query, key, and value
projections, respectively. We then compute the differential attention output by subtracting
a scaled secondary attention from the primary attention, as follows:

DiffAttn(X) =
(

softmax
(Q1KT

1√
d

)
− γ · softmax

(Q2KT
2√

d

))
V, (7)

Here, γ is a learnable scalar parameter that controls the strength of the differential sig-
nal. This mechanism enables the model to capture contrastive patterns between different
attention pathways, promoting more discriminative feature learning.
We then obtain the final refined multimodal representation z by applying the differential
attention mechanism to the fused feature vector z = DiffAttn(efused). Finally, we pass this
refined representation through a fully connected classification head, followed by a softmax
layer, to produce the predicted class label ŷ = softmax(FC(z)).

4 Experimental Evaluation

4.1 Data

We utilize three different datasets to evaluate our proposed CapFuse-Net model. Crisis-
MMD: We evaluate our model on three different tasks by using image-text pairs of crisis
events from the CrisisMMD dataset Alam et al. (2018). The dataset includes manual an-
notations for Task 1: binary classification of informative vs. non-informative posts, Task
2: categorization into five humanitarian classes (infrastructure and utility damage, vehicle
damage, rescue volunteering or donation efforts, affected individuals, other relevant infor-
mation), and Task 3: assessment of damage severity (severe, mild, or little/no damage).
We follow the evaluation framework of Abavisani et al. (2020) and adopt the train/valida-
tion/test splits from Gupta et al. (2024). DMD: To test the generalizability of the model, we
use 4,882 image–text pairs from the Damage Multimodal Dataset (DMD) dataset Mouzan-
nar et al. (2018). Due to Task 2 label inconsistency with CrisisMMD, we focus on Tasks
1 and 3 for evaluation. N24News: We validate CapFuse-Net using 6,125 samples (train:
4,899, validation: 613, test: 613) from the multimodal news article dataset Wang et al.
(2021b). Please refer to Section C for the dataset details.

4.2 Experimental Setup & Evaluation Metrics

We trained our model on all three tasks using the SGD optimizer with categorical cross-
entropy loss for 50 epochs. All experiments were carried out with a base learning rate of
1 × 10−3 and a batch size of 16. To reduce overfitting, we applied early stopping based on

6
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Table 1: Quantitative comparison against state-of-the-art multimodal models on the Crisis-
MMD tasks. Best results are Bolded and second best results are underlined.
Model Task 1 Task 2 Task 3

Accuracy Macro F1 W-F1 Accuracy Macro F1 W-F1 Accuracy Macro F1 W-F1
MMBT Kiela et al. (2019) 86.4 85.3 86.2 88.7 64.9 89.6 70.1 59.2 68.7
GMU Arevalo et al. (2017) 87.2 84.6 85.7 88.7 64.3 89.1 70.6 57.1 68.2
ViLT Kim et al. (2021) 87.6 85.1 88,0 86.7 61.2 87.2 67.6 58.4 65.0
CentralNet Vielzeuf et al. (2018) 87.8 85.3 86.1 89.3 64.7 89.8 71.1 57.4 68.7
CBGP Kiela et al. (2018) 88.1 86.7 87.3 84.7 65.1 88.7 67.9 50.7 64.6
VisualBERT Li et al. (2019) 88.1 86.7 88.6 87.5 64.7 86.1 66.3 56.7 62.1
ViLBERT Lu et al. (2020) 88.4 86.5 88.7 88.2 65.1 86.6 65.9 56.3 61.8
TinyCLIP Wu et al. (2023) 84.2 81.1 83.7 86.7 59.5 86.4 64.8 41.2 56.0
PixelBERT Huang et al. (2020) 88.7 86.4 87.1 89.1 66.5 88.9 65.2 57.3 63.7
Cross-attention Abavisani et al. (2020) 88.4 87.6 88.7 90.0 67.8 90.2 72.9 60.1 69.7
MCAModel Rezk et al. (2023) 89.0 87.2 88.9 89.7 59.3 89.7 62.3 43.5 58.4
UniS-MMC Zou et al. (2023) 90.9 89.6 90.2 88.7 68.1 88.6 70.7 58.1 69.5
CrisisKAN Gupta et al. (2024) 86.8 85.3 86.9 91.3 66.1 91.2 64.7 44.6 61.0
CaMN Rajora et al. (2025) 92.8 91.3 92.7 92.4 67.5 92.2 73.2 60.7 71.1
CapFuse-Net (Ours) 93.6 92.8 93.6 95.7 71.5 95.3 71.1 60.9 69.5

Table 2: Comparison of unimodal and multimodal models on the CrisisMMD dataset using
different visual encoders, textual encoders, knowledge fusions (KF), and cross-modal fusion
strategies. [CA = Cross-Attention, Diff Attn = Differential Attention, CFM = Cross-Feature
Fusion Module]. Detailed results in Table 6.)

Modality Vision Text KF Fusion Accuracy
Task 1 Task 2 Task 3

Image-only DenseNet - - - 82.89 86.25 62.57
Image only CLIP Vision - - - 89.20 91.43 69.50
Image only PE Vision - - - 91.07 91.28 70.70
Text-only - Electra Wiki - 84.64 87.36 62.45
Text only - CLIP text tweet - 87.33 86.10 61.81
Text only - CLIP text Wiki - 83.53 83.15 59.48
Text only - CLIP text LLaVA - 87.64 86.33 62.13
Multi-modal DenseNet Electra Wiki Guided CA 86.80 91.34 64.65
Multi-modal DenseNet Electra Wiki Cross Attention 87.32 89.28 63.07
Multi-modal DenseNet Electra Wiki Guided CA+Self Attn 88.36 91.43 63.83
Multi-modal DenseNet Electra Wiki Cross Diff Attn 85.74 86.55 61.69
Multi-modal DenseNet Electra Wiki Guided CA+Diff Attn 89.33 91.58 63.14
Multi-modal CLIP Vision CLIP text Wiki Guided CA 90.57 94.02 68.94
Multi-modal CLIP Vision CLIP text Wiki Guided CA+Diff Attn 90.44 93.72 68.68
Multi-modal CLIP Vision CLIP text LLaVA Guided CA+Diff Attn 92.52 93.87 68.87
Multi-modal CLIP Vision CLIP text LLaVA Guided CA 92.91 93.92 69.00
Multi-modal PE Vision PE text LLaVA Guided CA 91.29 94.38 70.89
Multi-modal PE Vision CLIP text LLaVA Guided CA 92.98 94.97 70.19
Multi-modal CLIP Vision CLIP text LLaVA CFM + Guided CA 92.33 94.01 70.51
Multi-modal PE Vision CLIP text LLaVA CFM + Guided CA 93.63 95.72 71.14

validation loss, with a patience of five epochs. We implemented all models in Python using
the PyTorch framework and ran our experiments on a machine equipped with an Intel(R)
Xeon(R) processor, 128 GB of RAM, and two NVIDIA RTX A4000 GPUs. For model
training, we trained the entire network when using DenseNet and ELECTRA as encoders,
whereas we kept the pre-trained encoders frozen when using CLIP or PE. We evaluated
performance using accuracy, macro F1 score, and weighted F1 score, and we averaged the
results over three independent runs.

4.3 Results and Discussion

Table 1 presents a comprehensive evaluation of various state-of-the-art multimodal models
across three crisis classification tasks, comparing their performance in terms of accuracy,
macro F1, and weighted F1 scores. Our proposed CapFuse-Net model, CFM with LLaVA-
augmented caption, demonstrates consistent and superior performance in Tasks 1 and 2,
achieving the highest scores across all three evaluation metrics. In Task 1, CapFuse-Net
achieves an accuracy of 93.6%, macro F1 of 92.8%, and weighted F1 of 93.6%, outper-
forming all other baselines, including recent models such as UniS-MMC Zou et al. (2023)
and CaMN Rajora et al. (2025). This result shows the robustness and generalization of
the model across class distributions. In Task 2, which is particularly challenging due to the
lower macro F1 values observed across models, CapFuse-Net again leads with an accuracy of
95.7%, macro F1 of 71.5%, and weighted F1 of 95.3%. Notably, the macro F1 improvement
indicates the model’s effectiveness in addressing class imbalance and performing well across
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Table 3: Ablation study on CrisisMMD, evaluating the impact of text input from LLaVA
and LLaVA-mitigated (with hallucination mitigation applied), the Cross-Feature Fusion
Module (CFM), and Differential Attention (Diff Attn), with results reported in accuracy.

Text CFM Diff Attn Task 1 Task 2 Task 3
LLaVA ✓ ✓ 93.11 ± 0.27 94.95 ± 0.53 70.25 ± 1.27
LLaVA ✓ ✗ 93.63 ± 0.29 95.72 ± 0.34 71.14 ± 0.93
LLaVA-mitigated ✓ ✗ 93.37 ± 0.21 95.57 ± 0.38 71.96 ± 1.43
LLaVA-mitigated ✓ ✓ 93.02 ± 0.20 94.16 ± 0.13 71.39 ± 0.66

Table 4: Robustness analysis under different data sampling demonstrates the superiority of
our CapFuse-Net for both CrisisMMD and DMD datasets. We report accuracy scores and
percentage performance loss (in subscript)/gain (in superscript) from the original split.

Split Model CrisisMMD Dataset DMD Dataset
Task 1 Task 2 Task 3 Task 1 Task 3

Original CapFuse-Net 93.63 95.72 71.14 89.78 45.26
CrisisKAN 86.80 91.34 64.65 81.35 23.62

Random CapFuse-Net 92.830.85% 93.702.11% 69.871.78% 91.932.39% 41.538.24%
CrisisKAN 85.401.61% 86.305.52% 63.821.28% 82.691.64% 22.863.22%

Stratified CapFuse-Net 92.661.04% 94.291.49% 70.440.98% 88.181.78% 50.7712.17%

CrisisKAN 84.872.22% 85.895.97% 64.310.53% 84.383.72% 21.349.65%

Event-wise CapFuse-Net 89.704.19% 94.041.75% 66.226.91% 86.883.23% 47.585.13%

CrisisKAN 80.327.47% 84.667.31% 60.935.75% 83.252.34% 31.8434.80%

all categories, not just the dominant ones. In Task 3, while CaMN slightly outperforms our
model in terms of accuracy and weighted F1, the CapFuse-Net achieves the highest macro
F1, suggesting that it provides a better balance across all classes. Given that macro F1 is
particularly sensitive to the performance on minority classes, this result confirms the ability
of our approach to provide equitable performance across different classes. To summarize,
these results demonstrate that our proposed CapFuse-Net significantly enhances the model’s
ability to learn meaningful multimodal representations across varied crisis classification sce-
narios, particularly in tasks with imbalanced class distributions.
The results in Table 2 comparing unimodal and multi-modal model results show that image-
based models outperform text-only approaches. CLIP leverages aligned visual-textual em-
beddings to capture semantically meaningful patterns in disaster imagery. Meanwhile, PE
Vision achieves the best image-only performance, even surpassing some multimodal base-
lines, underscoring its strong visual representations. In contrast, text-only models (e.g.,
Electra, raw tweets) underperform due to the brevity and ambiguity of tweets. Yet, VLM-
generated captions substantially boost results. For instance, CLIP Text with LLaVA cap-
tions yields better results over Wiki inputs, showing the benefit of visually grounded lan-
guage. The best model, CapFuse-Net, integrates the full fusion stack: CFM, Guided Cross-
Attention, and VLM-generated text, enabling joint reasoning over explicit tweet content and
implicit visual semantics. This layered fusion delivers significant gains over the strongest
unimodal baselines, producing more balanced and robust humanitarian classification.

4.4 Ablation Study

Module-wise analysis of CapFuse-Net Table 3 shows the impact of text input choice
and fusion modules in CapFuse-Net. Using only raw tweets yields the lowest performance,
reflecting the limitations of short and noisy text. Adding LLaVA captions improves results,
particularly for Task 3, demonstrating the value of visually grounded text. With LLaVA
input, CFM proves essential: the best overall balance is achieved when CFM is retained
without Differential Attention, reaching 95.72% on Task 2 and 71.14% on Task 3. Further
applying hallucination mitigation (explained in the Appendix D.1) during caption generation
slightly raises Task 3 accuracy to 71.96%, but the gap with unmitigated LLaVA is small,
indicating that CFM effectively gathers salient information while discarding noisy signals.
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Table 5: Evaluation on the N24News dataset suggesting the superiority of CapFuse-Net over
the compared methods even in non-crisis tasks.

Model Accuracy Macro-F1 W-F1
Cross-Attention Abavisani et al. (2020) 43.55 38.84 43.04
CrisisKAN Gupta et al. (2024) 29.03 24.05 26.53
MCAModel Rezk et al. (2023) 60.00 52.07 58.14
CapFuse-Net 69.00 66.47 68.28

Generalization across dataset and splits. We evaluated model robustness across dif-
ferent splits of CrisisMMD and further tested transferability to an out-of-distribution DMD
dataset, which lies in the same crisis domain but presents different distributions. As shown
in Table 4, the CapFuse-Net consistently outperformed CrisisKAN on CrisisMMD, achieving
93.63% on Task 1, 95.72% on Task 2, and 71.14% on Task 3 in the original split. These gains
of 6–7% indicate that CapFuse-Net captures richer multimodal representations, leading to
stronger performance across all tasks. Under random and stratified splits, both models ex-
perienced mild accuracy losses relative to the original split, but CapFuse-Net’s degradation
was consistently smaller than CrisisKAN’s. This shows that CapFuse-Net is more stable
under distributional shifts. The event-wise split posed the greatest challenge since models
must generalize to entirely unseen crisis events rather than overlapping scenarios. Stronger
performance in this setting, where CapFuse-Net exceeded CrisisKAN by 9.4% on Task 1
and 5.3% on Task 3, shows its ability to transfer knowledge to novel emergencies, which
is critical for real-world crisis response. For the cross-dataset evaluation, we trained on
CrisisMMD (under each split) and tested on DMD. Here, CapFuse-Net not only preserved
higher absolute accuracy than CrisisKAN but also showed smaller performance drops un-
der resampling. These patterns highlight that although distribution shifts inevitably cause
some losses, CapFuse-Net not only achieves higher baseline accuracy but also adapts more
stability across splits, resulting in stronger transferability to unseen datasets like DMD.

Generalization study on CapFuse-Net. Table 5 presents the results in terms of Ac-
curacy, Macro-F1, and Weighted F1. Cross-attention achieves moderate performance, while
CrisisKAN struggles to adapt to this domain due to its crisis-specific design. MCAModel
provides a stronger baseline with 60% Accuracy and 52.07 Macro-F1. In contrast, CapFuse-
Net achieves 69% Accuracy, 66.47 Macro-F1, and 68.28 Weighted F1, outperforming the
strongest baseline by over 14% in Macro-F1. The superior performance of CapFuse-Net
can be attributed to its Cross-Feature Fusion Module (CFM), which captures complemen-
tary information between image and text representations more effectively than simple cross-
attention. Additionally, the guided attention mechanism mitigates irrelevant or noisy signals
from either modality, which is particularly beneficial for news articles where images may
only weakly correlate with textual content. These design choices enable CapFuse-Net to
generalize beyond crisis data and perform strongly in fine-grained multimodal classification.

5 Conclusion

In this work, we introduced CapFuse-Net, a multimodal framework that integrates pre-
trained vision-language models with a structured fusion pipeline consisting of the Cross-
Feature Fusion Module (CFM), Guided Cross-Attention, and Differential Attention. By
augmenting tweet text with LLaVA-generated, image-grounded captions, our method en-
riches sparse textual inputs and improves cross-modal alignment. Extensive experiments
on CrisisMMD and transfer to DMD show that CapFuse-Net consistently outperforms uni-
modal baselines and strong multimodal systems, achieving state-of-the-art results on in-
formativeness and humanitarian categorization. Ablation studies further demonstrated the
central role of CFM, while Guided Cross-Attention and Differential Attention refine mul-
timodal reasoning. Grad-CAM visualizations further demonstrated improved grounding in
crisis-relevant regions, enhancing interpretability. Overall, our results demonstrated the im-
portance of carefully designed fusion strategies, coupled with vision-language augmentation
for improved multimodal crisis classification across diverse tasks. Future efforts will extend
this work to multilingual data and real-time deployment for reliable disaster response.
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Valentin Vielzeuf, Alexis Lechervy, Stéphane Pateux, and Frédéric Jurie. CentralNet: a
multilayer approach for multimodal fusion. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pp. 0–0, 2018.

Weiyao Wang, Du Tran, and Matt Feiszli. What makes training multi-modal classification
networks hard? In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 12695–12705, 2020.

Yifan Wang, Xing Xu, Wei Yu, Ruicong Xu, Zuo Cao, and Heng Tao Shen. Combine early
and late fusion together: A hybrid fusion framework for image-text matching. In 2021
IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE, 2021a.

Zhen Wang, Xu Shan, Xiangxie Zhang, and Jie Yang. N24news: A new dataset for multi-
modal news classification. arXiv preprint arXiv:2108.13327, 2021b.

Kan Wu, Houwen Peng, Zhenghong Zhou, Bin Xiao, Mengchen Liu, Lu Yuan, Hong Xuan,
Michael Valenzuela, Xi Stephen Chen, Xinggang Wang, et al. TinyCLIP: CLIP distil-
lation via affinity mimicking and weight inheritance. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 21970–21980, 2023.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu, Gao Huang, and Furu Wei. Differ-
ential transformer. arXiv preprint arXiv:2410.05258, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. CoCa: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Heqing Zou, Meng Shen, Chen Chen, Yuchen Hu, Deepu Rajan, and Eng Siong Chng.
UniS-MMC: Multimodal classification via unimodality-supervised multimodal contrastive
learning. arXiv preprint arXiv:2305.09299, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A Interpretability Analysis

Interpretability is a critical aspect of multimodal crisis classification systems, especially when
deployed in high-stakes environments such as disaster response. We apply Gradient-weighted
Class Activation Mapping (Grad-CAM) to visualize the spatial regions in an image that most
influence the model’s predictions Selvaraju et al. (2017). The resulting heatmaps reveal the
image regions that most influenced the model’s prediction, allowing us to qualitatively assess
whether the model attends to semantically meaningful areas such as damaged buildings,
rescue efforts, or debris.

Task Original Image CrisisKAN CLIP, Guided CA (tweet) CLIP, Guided CA (LLaVA) CapFuse-Net, (LLaVA)

Task 1

Task 2

Task 3

Figure 2: Grad-CAM visualizations for different model variants on the three CrisisMMD
tasks. Compared to CrisisKAN, CLIP with Guided CA (tweet or LLaVA), CapFuse-Net
(LLaVA) attends more consistently to crisis-relevant regions, highlighting its ability to focus
on informative features for classification.

Fig. 2 presents Grad-CAM heatmaps for three representative examples drawn from the crisis
classification tasks. We compare visual attention across four model variants: (i)CrisisKAN,
(ii) Pretrained CLIP model with Guided Cross-Attention (Guided CA) using tweet text
only, (iii) Pretrained CLIP model with Guided CA using tweet text concatenated with
LLaVA-generated captions, and (iv) the CapFuse-Net model with the PE visual encoder,
CLIP text encoder, and the proposed CFM, incorporating both tweet text and LLaVA
captions as input. The CrisisKAN model and the model trained with tweet text (third
column) tend to focus on less informative or noisy visual regions. For example, in Task
1, the model incorrectly attends to the corner of the image, ignoring the central scene.
In Task 2, although the image depicts a rescue operation, and CrisisKAN focuses on the
people, the other model predominantly focuses on the surrounding debris rather than the
volunteers. In Task 3, which involves identifying minor structural damage, both models
fail to localize any meaningful regions, leading to an incorrect prediction. In contrast, the
incorporation of LLaVA-generated captions (fourth column) improves visual grounding by
guiding the model’s attention to more contextually relevant areas. In Task 1, the model
successfully highlights the damaged building; in Task 2, it shows partial attention to the
person involved in the rescue; and in Task 3, it attends to the debris scattered on the
road, an important visual cue for damage severity. The strongest and most semantically
meaningful attention is observed in the CanFuse-Net model (fifth column). This variant
consistently attends to critical regions aligned with the target class across all three tasks,
such as broken structures, human presence, and localized damage. The focused attention
behavior on small details corresponds with the model’s superior quantitative performance
and suggests that the CFM facilitates improved cross-modal alignment between visual and
textual information. These visualizations confirm that our design choices, particularly the
use of structured text and the CFM, improve both model performance and interpretability
by promoting reliance on informative visual evidence.
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Figure 3: Comparison of text and image modality weights across models on the three
CrisisMMD tasks. Textured bars represent image fractions, while plain bars represent text
fractions, showing how CapFuse-Net (LLaVA) balances contributions from both modalities
more effectively.

Contribution of visual and textual modalities: As evident from the unimodal model
results, image-only models consistently outperform text-only models across all tasks, sug-
gesting that visual information provides more discriminative features for crisis classification.
To further investigate the relative influence of each modality in our multimodal architecture,
we conduct a detailed analysis using attribution methods. We utilize the LayerIntegrated-
Gradients technique from the Captum library (Kokhlikyan et al., 2020) to compute attri-
bution scores for the input features from both the image and text encoders. This method
allows us to estimate the contribution of each modality to the final prediction by attributing
relevance scores to the input tokens (for text) and visual embeddings (for image) at the layer
level. Specifically, we extract the attribution scores from the final encoding layers of the
image and text tokens, just before they are passed into the fusion module. This enables
a fair comparison of how much each modality contributes to the model’s decision-making
process.
Fig. 3 presents the average fractional attribution of each modality across different model
variants. Models trained with tweet text or Wikipedia-augmented captions tend to place
greater weight on the textual features, while the contribution from visual features is com-
paratively lower. This imbalance correlates with lower overall performance, suggesting that
reliance on textual information limits the model’s ability to make accurate predictions, as
evidenced by the unimodal models’ performances. In contrast, the model trained with our
proposed CFM module exhibits a higher reliance on image features. The visual modality
contributes significantly to the model’s predictions, indicating that CFM successfully en-
hances visual feature representation and encourages the model to leverage more informative
visual cues. This stronger visual attribution aligns with the observed improvement in classi-
fication performance, particularly in tasks where visual context is critical, such as identifying
damage severity or situational relevance. These findings confirm the importance of effective
modality integration and further motivate the need for architectures that can dynamically
attend to the most informative modality based on the nature of the input.
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Figure 4: Baseline unimodal architectures. (a) Image-only Model. (b) Text-only Model

Table 6: Comparison of unimodal and multimodal models on the three CrisisMMD tasks
using different encoders, knowledge fusion methods, and fusion strategies. Results are re-
ported in Accuracy, Macro-F1, and Weighted F1.
Modality Vision Text KF Fusion Task 1 Task 2 Task 3

Accuracy Macro F1 W-F1 Accuracy Macro F1 W-F1 Accuracy Macro F1 W-F1
Image-only DenseNet - - - 82.89 80.81 82.98 86.25 61.39 85.78 62.57 49.63 62.00
Image only CLIP Vision - - - 89.20 87.77 89.20 91.43 54.66 90.22 69.50 57.52 67.86
Image only PE Vision - - - 91.07 89.86 91.06 91.28 57.32 90.26 70.70 59.64 69.33
Text-only - Electra Wiki - 84.64 81.70 84.22 87.36 60.46 87.45 62.45 50.37 62.63
Text only - CLIP text tweet - 87.33 85.24 87.15 86.10 50.88 85.20 61.81 34.12 52.67
Text only - CLIP text Wiki - 83.53 79.90 82.83 83.15 48.46 81.77 59.48 36.29 52.80
Text only - CLIP text LLaVA - 87.64 85.63 87.47 86.33 50.93 85.40 62.13 34.02 53.06
Multi-modal DenseNet Electra Wiki Guided CA 86.80 85.25 86.87 91.34 66.08 91.22 64.65 44.64 61.03
Multi-modal DenseNet Electra Wiki Cross Attention 87.32 85.71 87.36 89.28 62.53 88.82 63.07 42.97 59.32
Multi-modal DenseNet Electra Wiki Guided CA+Self Attn 88.36 87.00 88.44 91.43 60.25 90.75 63.83 44.95 60.92
Multi-modal DenseNet Electra Wiki Cross Diff Attn 85.74 85.74 83.99 86.55 51.42 85.51 61.69 41.21 58.19
Multi-modal DenseNet Electra Wiki Guided CA+Diff Attn 89.33 87.94 89.35 91.58 57.44 90.68 63.14 46.89 61.13
Multi-modal CLIP Vision CLIP text Wiki Guided CA 90.57 89.05 90.45 94.02 70.95 93.65 68.94 53.50 65.69
Multi-modal CLIP Vision CLIP text Wiki Guided CA+Diff Attn 90.44 89.06 90.39 93.72 71.04 93.37 68.68 53.04 65.55
Multi-modal CLIP Vision CLIP text LLaVA Guided CA+Diff Attn 92.52 91.40 92.47 93.87 68.87 93.44 68.87 55.11 66.62
Multi-modal CLIP Vision CLIP text LLaVA Guided CA 92.91 91.91 92.89 93.92 69.45 93.69 69.00 55.14 66.28
Multi-modal PE Vision PE text LLaVA Guided CA 91.29 90.09 91.27 94.38 68.10 93.84 70.89 58.43 68.54
Multi-modal PE Vision CLIP text LLaVA Guided CA 92.98 92.01 92.97 94.97 68.76 94.53 70.19 57.02 67.34
Multi-modal CLIP Vision CLIP text LLaVA CFM + Guided CA 92.33 91.20 92.28 94.01 69.67 93.59 70.51 58.13 67.66
Multi-modal PE Vision CLIP text LLaVA CFM + Guided CA 93.63 92.76 93.62 95.72 71.54 95.30 71.14 60.90 69.51

B Additional Results

In Table 6, we demonstrated the advantage of CapFuse-Net over unimodal and multimodal
baselines on the CrisisMMD dataset, reporting classification results in terms of Accuracy,
Macro-F1, and Weighted-F1 across all three tasks. Fig. 4 shows the unimodal architectures.
We further analyze its predictions through the confusion matrices shown in Fig. 5. These
results show that CapFuse-Net achieves strong per-class accuracy, particularly for dominant
classes such as other relevant information and severe damage, while performance on minor-
ity classes, such as vehicle damage and affected individuals, remains more challenging due
to the limited number of samples. We present confusion matrices on the DMD dataset in
Fig. 6 after training exclusively on CrisisMMD. For Task 1 (informativeness), CapFuse-Net
generalizes well, achieving near-perfect recognition of informative posts, though a portion
of non-informative posts are misclassified as informative. For Task 3 (damage severity), the
model performs reliably for severe damage and little or no damage, but struggles to separate
the intermediate mild damage category, which is often confused with both extremes. These
findings demonstrate that CapFuse-Net transfers reliably across datasets, though its per-
formance is still constrained by data imbalance and the inherent difficulty of distinguishing
intermediate damage levels.
Fig. 7 presents the t-SNE visualization of the joint embeddings learned by CapFuse-Net
across the three CrisisMMD tasks. For Task 1, the embeddings of informative and non-
informative form two clearly separable clusters, indicating that the model effectively cap-
tures the binary distinction. In Task 2, categories such as infrastructure damage and rescue
volunteering exhibit well-formed clusters, while classes such as other information and af-
fected individuals appear more dispersed and overlap. This pattern illustrates both the
inherent semantic ambiguity among certain humanitarian categories and the limited avail-
ability of training data, which makes their boundaries harder to distinguish. Task 3 shows
less distinct boundaries, particularly between mild and severe damage, which aligns with the
subjective and visually subtle nature of severity assessment. To summarize, the visualiza-
tions demonstrate that CapFuse-Net produces discriminative and semantically meaningful
embeddings, with separability strongest in binary settings and more challenging in fine-
grained classification scenarios. We also show the t-SNE visualization of joint embeddings
learned by CapFuse-Net on the DMD dataset after being trained on CrisisMMD in Fig.8.
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(a) Task 1 - counts (b) Task 1 - normalized

(c) Task 2 - counts (d) Task 2 - normalized

(e) Task 3 - counts (f) Task 3 - normalized

Figure 5: Confusion matrices of CapFuse-Net predictions for the three CrisisMMD classi-
fication tasks on the original splits. For each task, the left panel shows raw counts of true
vs. predicted labels, while the right panel shows normalized values, highlighting per-class
classification accuracy.
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(a) Task 1 - counts (b) Task 1 - normalized

(c) Task 3 - counts (d) Task 3 - normalized

Figure 6: Confusion matrices of CapFuse-Net evaluated on the DMD dataset after being
trained on CrisisMMD. Subfigures (a) and (b) show counts and normalized results for Task 1
(informativeness classification), where informative posts are recognized with high precision,
though some non-informative posts are misclassified as informative. Subfigures (c) and (d)
show counts and normalized results for Task 3 (damage severity classification), indicating
reliable detection of severe and little/no damage, with mild damage being the most con-
founded class.

(a) Task 1 (b) Task 2 (c) Task 3

Figure 7: t-SNE visualization of the learned joint embeddings from our proposed CapFuse-
Net model across three CrisisMMD tasks. Clear separation in Task 1 and Task 2 indicates
that the model produces discriminative and semantically meaningful clusters. Task 3 ex-
hibits a more challenging delineation, especially for the mild or no damage categories.
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(a) Task 1 (b) Task 3

Figure 8: t-SNE visualization of joint embeddings learned by CapFuse-Net on the DMD
dataset, transferred from CrisisMMD. (a) Task 1 shows a clear separation between infor-
mative and non-informative posts. (b) Task 3 illustrates partially overlapping clusters for
damage severity levels, reflecting both the challenge of the task and the model’s ability to
capture severity distinctions.

For Task 1, the embeddings of informative and non-informative form two largely separable
clusters, confirming that the model generalizes well in capturing the binary informativeness
distinction even under distribution shift. In contrast, Task 3 exhibits partially overlapping
clusters for the three severity levels. We observed a similar pattern in the CrisisMMD t-
SNE plots, suggesting that the difficulty in distinguishing mild from severe damage is not
specific to dataset bias but reflects the inherent semantic ambiguity of severity assessment.
This cross-dataset consistency emphasizes both the robustness of CapFuse-Net in learning
transferable embeddings and the persistent challenge of fine-grained damage classification.

C Dataset

CrisisMMD dataset: The CrisisMMD dataset Alam et al. (2018) is a large collection of
Twitter posts from seven major natural disasters in 2017 (hurricanes, earthquakes, floods,
and wildfires). Each post contains both textual and visual information and is manually
annotated for three classification tasks. Task 1 is the binary classification of distinguishing
informative posts from non-informative ones. Task 2 assigns each example to one of five
humanitarian categories: infrastructure damage, vehicle damage, rescue efforts, affected
individuals (encompassing injuries, fatalities, missing persons, and those found), or others.
Task 3 assesses damage severity, labeling instances as severe, mild, or little/no damage.
Table 7 summarizes the distribution of training, validation, and test samples across the
three CrisisMMD tasks. In Fig. 9, we illustrate the number of samples for each class across
the train, validation, and test sets for all three tasks. The figure clearly demonstrates a high
degree of class imbalance in the CrisisMMD dataset. For Task 1, the distribution is skewed
toward the non-informative class, which significantly outnumbers the informative samples.
In Task 2, several classes contain very few instances. To mitigate this extreme sparsity,
we grouped three underrepresented categories: affected individuals, injured or dead people,
and missing or found people, into a single class during training. Similarly, Task 3 exhibits
notable class imbalance, with the severe damage category having substantially more samples
than the mild damage and little or no damage classes.
Damage Multimodal Dataset (DMD): The Damage Multimodal Dataset (DMD)
Mouzannar et al. (2018) is a smaller but complementary multimodal dataset curated for
disaster assessment. It consists of 4,882 social media posts containing paired images and
text, collected during real-world emergencies such as earthquakes, hurricanes, and wildfires.
Each instance is annotated with three labels: informativeness, humanitarian categories, and
damage severity. Although the informativeness and severity annotations align with those
in CrisisMMD, the humanitarian category schema in DMD follows a different annotation
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scheme, making direct comparison between datasets difficult. To ensure consistency in cross-
dataset experiments, we therefore focus on Task 1 (informativeness classification) and Task 3
(damage severity classification). Although smaller in size compared to CrisisMMD, DMD
is more specialized and remains a valuable benchmark for evaluating the transferability and
robustness of multimodal crisis models across datasets.
N24News: N24News dataset Wang et al. (2021b) contains multimodal news articles with
paired images and text, labeled across 24 topical sections (e.g., Sports, Economy, Health).
For this experiment, we randomly sampled 10% of the available data for each split, resulting
in 4,899 samples for training, 613 for validation, and 613 for testing.

(a) Task 1: Informativeness

(b) Task 2: Humanitarian

(c) Task 3: Damage severity

Figure 9: Class-wise train/test/validation splits of the CrisisMMD dataset for all three
tasks.

Table 7: Data distribution across the three tasks in the CrisisMMD dataset, showing the
number of samples in the training, validation, and test sets, along with the total count for
each task.

Task Train Validation Test Total
Informativeness 9599 1573 1534 12706
Humanitarian 2874 477 451 3802
Damage Severity 2468 529 529 3526
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<|im start|>system
- You are LLaVA, a large multimodal assistant trained by UW Madison WAIV Lab.
- You can understand and analyze visual content provided by the user and assist
with a variety of tasks using natural language.
- Follow the instructions carefully and provide detailed, context-aware
explanations. <|im end|>
<|im start|>user
Given the caption: <tweet text >, analyze the corresponding image and describe
it in a very detailed and informative manner, focusing on crisis-relevant
visual elements such as damage level, people, infrastructure, or rescue efforts.
<image > <|im end|> <|im start|>assistant

Figure 10: Instruction prompt used for generating image description using the LLaVA
model.

D Caption Augmentation

We augmented text-captions for all the CrisisMMD data using the LLaVA pretrained model
(microsoft/llava-med-v1.5-mistral-7 ) from the HuggingFace model hub. Fig. 10 presents
the full system prompt used to guide the LLaVA model in generating detailed and context-
aware descriptions of disaster-related imagery. The prompt is structured using special tokens
(< |im start| >, < |im end| >) to delineate roles and message boundaries for system, user,
and assistant interactions.

D.1 Implementation Details for Hallucination Suppression

For hallucination mitigation, we integrate the method of Jiang et al. (2025) into our caption-
ing pipeline using LLaVA-1.5 (7B) with a ViT-L/14 visual encoder. The approach operates
entirely at inference time, hence requiring no retraining. It detects low-grounded object
tokens via the Visual Attention Ratio (VAR) computed from middle-layer attention, and
suppresses hallucinations by adjusting attention logits to enforce consistency across heads.
We follow the default hyperparameters reported in the paper. All remaining details follow
Jiang et al. (2025) and the authors’ repository.1

1https://github.com/ZhangqiJiang07/middle_layers_indicating_hallucinations
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