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ABSTRACT

The demand for efficient natural language processing (NLP) systems has led to
the development of lightweight language models. Previous work in this area
has primarily focused on manual design or training-based neural architecture
search (NAS) methods. Recently, zero-shot NAS methods have been proposed for
evaluating language models without the need for training. However, prevailing
approaches to zero-shot NAS often face challenges such as biased evaluation
metrics and computational inefficiencies. In this paper, we introduce weight-
weighted PCA (W-PCA), a novel zero-shot NAS method specifically tailored
for lightweight language models. Our approach utilizes two evaluation proxies:
the parameter count and the number of principal components with cumulative
contribution exceeding η in the feed-forward neural (FFN) layer. Additionally, by
eliminating the need for gradient computations, we optimize the evaluation time,
thus enhancing the efficiency of designing and evaluating lightweight language
models. We conduct a comparative analysis on the GLUE and SQuAD datasets
to evaluate our approach. The results demonstrate that our method significantly
reduces training time compared to one-shot NAS methods and achieves higher
scores in the testing phase compared to previous state-of-the-art training-based
methods. Furthermore, we perform ranking evaluations on a dataset sampled from
the FlexiBERT search space. Our approach exhibits superior ranking correlation
and further reduces solving time compared to other zero-shot NAS methods that
require gradient computation.

1 INTRODUCTION
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Figure 1: Comparison of the run-
ning time between W-PCA and other
training-based NAS methods for
lightweight language models. Our
method achieves a substantial reduc-
tion in search time for the optimal
network structure by two to three
orders of magnitude, as we do not
need to train the supernet.

Large language models (LLMs) have shown exceptional per-
formance across various domains (OpenAI, 2023). How-
ever, their size and computational demands pose challenges
in resource-constrained environments like mobile devices and
edge computing. Therefore, there is a growing need to explore
lightweight language models that can operate efficiently on
these platforms. One approach to address this challenge is
through knowledge distillation (KD) (Liu et al., 2023; Li et al.,
2023c; Li & Jin, 2022; Li et al., 2023b; Li, 2022; Li et al.,
2024a), where a larger language model acts as a teacher to
train a smaller, more lightweight language model (Turc et al.,
2019; Sanh et al., 2020; Jiao et al., 2020; Sun et al., 2020;
Wang et al., 2020). However, the student models trained for
these tasks were manually designed. To effectively search for
student models, the use of neural architecture search (NAS)
has become essential.

NAS is a technique that automates the process of designing
neural networks, enabling the exploration of a wide range of
architectures to identify the most optimal ones for a given task.
Vanilla NAS approaches primarily used reinforcement learning
(Zoph & Le, 2016) or genetic algorithms (Real et al., 2019) to train neural networks from scratch,
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Figure 2: Plots depicting the evaluation of zero-shot proxy metrics on 500 randomly sampled
architectures from the FlexiBERT search space. As in literature (Serianni & Kalita, 2023), we
use the GLUE score of each neural network as the ground truth and evaluate the performance of
each zero-shot proxy metric based on its ranking correlation with the ground truth. The specific
calculations of PCA is described in Section 3.2, and the respective zero-shot proxies used for the
comparison are summarized in Section 2.3. Our metric W-PCA is calculated as the product of the
number of parameters (#params) and the principal component analysis (PCA).

but these methods were computationally expensive. Subsequently, one-shot NAS methods, such
as gradient-based (Liu et al., 2018) and single path one-shot (SPOS) methods (Guo et al., 2020),
were proposed. These methods are more efficient as they leverage pre-trained models or parameter
sharing, requiring the establishment of a supernet in advance from which to sample the optimal
subnetworks. Importantly, many lightweight model search tasks in natural language understanding
(NLU) are accomplished using one-shot NAS (Xu et al., 2021; Dong et al., 2021; Gao et al., 2022).
While one-shot NAS reduces training costs compared to training from scratch, it still requires various
training strategies to effectively train the supernet. However, to further enhance search efficiency, it is
necessary to introduce zero-shot NAS (Mellor et al., 2021a). Zero-shot, also known as training-free
NAS, is a promising approach that eliminates the need for training neural networks and directly
evaluates their performance using proxy metrics. This significantly reduces the training time and
computational resources required for NAS.

Existing zero-shot NAS methods (Abdelfattah et al., 2020; Wei et al., 2024; Dong et al., 2023a;b)
have primarily focused on ranking correlations on NAS benchmark datasets (Klyuchnikov et al.,
2022), with limited consideration for specific deep learning tasks. This limitation hinders their
applicability and effectiveness in practical scenarios. Additionally, these methods often solely
consider a single feature of the models, leading to biased evaluations and potentially overlooking
important characteristics.

In our research, we aim to address these limitations and improve the applicability of zero-shot NAS.
In Section 5, we conducted ranking correlation experiments. As illustrated in Figure 2, our attempts to
incorporate previous zero-shot proxies into language model evaluation yielded unsatisfactory results.
However, we observed a strong correlation in ranking between principal component analysis (PCA)
and the number of parameters (#params), with their product demonstrating even better performance.

Motivated by these findings, we propose a novel approach called Weight-Weighted PCA (W-PCA),
which takes into account both the parameter count and the number of principal components with
cumulative contribution exceeding a given η threshold in the model. By integrating these two factors,
our aim is to achieve a more accurate evaluation of language models in the context of zero-shot NAS.
Furthermore, we have designed a search space specifically for NLU tasks and applied our designed
zero-shot proxies, as well as the previous zero-shot proxies used in Transformer, to this search space.
To the best of our knowledge, this is the first work that applies zero-shot NAS to NLU tasks.
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2 RELATED WORK

2.1 LIGHTWEIGHT BERT MODELS

Turc et al. observed that distillation and pre-training + fine-tuning have mutually reinforcing effects.
DistilBERT (Sanh et al., 2020) utilizes a triple loss function for training the lightweight model.
TinyBERT (Jiao et al., 2020) applies distillation in both the pre-training and task-specific learning
phases. MobileBERT (Sun et al., 2020) proposes a bottleneck structure to reduce the parameter count.
MiniLM (Wang et al., 2020) introduces a compression method called deep self-attentive distillation.
In this study, we incorporate both the standard BERT-base (Devlin et al., 2019) and MobileBERT
models, along with their weight-sharing variations, where each layer is integrated into the supernet.

2.2 ONE-SHOT NAS FOR EFFICIENT MODELS

Numerous methods have been proposed for performing neural architecture search (NAS) (Hu et al.,
2021; Dong et al., 2022; Sun et al., 2024; Li et al., 2024d;c) to develop efficient models. NAS-
BERT (Xu et al., 2021) trains a large supernet on a carefully designed search space that includes
diverse architectures, generating multiple compressed models with adaptable sizes and latency.
EfficientBERT (Dong et al., 2021) proposes a three-stage coarse-to-fine search scheme to optimize
the combination of the multilayer perceptron (MLP) in the feed-forward network (FFN), ultimately
reducing the parameter count of the FFN. AutoBERT-Zero (Gao et al., 2022) devises a search space
that includes unary and binary math operators for constructing attention structures and backbones for
general pre-trained language models (PLMs) from scratch. To the best of our knowledge, it is the
most recent NAS method that incorporates lightweight BERT models in the experiment.

2.3 ZERO-SHOT NAS

Zero-shot NAS has been applied to transformer-based architectures in several ways. We provide a
summary of these applications below.

Synaptic Saliency (Tanaka et al., 2020) aims to prevent layer collapse during network pruning, as
this collapse can significantly reduce the accuracy of the network. The formulation for this approach
is expressed as follows:

S(θ) =
∂L
∂θ
⊙ θ

where L represents the loss function, θ denotes the network’s parameters, and ⊙ is the Hadamard
product. Abdelfattah et al. generalize synaptic saliency as a zero-shot metric for NAS by summing
over all n parameters in the network: S =

∑n
i=1 S(θi)

Synaptic Diversity builds upon previous research on rank collapse in transformers. In this phe-
nomenon, the output of a multihead attention block tends to converge to rank 1 for a given set of
inputs, which significantly impairs the performance of the transformer. Zhou et al. propose a method
that utilizes the nuclear norm of an attention head’s weight matrix Wm as an approximation of its
rank. This approach leads to the computation of the synaptic diversity score as follows:

SD =
∑
m

∥ ∂L
∂Wm

∥nuc ⊙ ∥Wm∥nuc

Activation Distance is a proxy metric introduced by Mellor et al. to assess the ReLU activations of a
network. By computing the Hamming distance between the activations within the initialized network
for each input in a minibatch, this metric determines the similarity of the activation maps. The authors
observe that when the activation maps for a given set of inputs exhibit higher similarity, the network
faces greater difficulty in disentangling the input representations during the training process.

Jacobian Covariance evaluates the Jacobian J =
(

∂L
∂x1

, . . . , ∂L
∂xN

)
of the network’s loss function

with respect to the minibatch inputs. Further details of this metric can be found in the original paper
(Mellor et al., 2021b).

Jacobian Cosine (Celotti et al., 2020) is proposed as an improvement to the Jacobian Covariance
metric, aiming to enhance computation speed and effectiveness. This improvement involves utilizing
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cosine similarity instead of a covariance matrix to measure similarity. The metric is computed as
follows:

S = 1− 1

N2 −N

N∑
i=1

|JnJT
n − I| 1

20

Here, Jn represents the normalized Jacobian, and I is the identity matrix. The metric is computed
using a minibatch of N inputs. In their large noise and more noised scores, the authors introduce
various noise levels to the input minibatch, hypothesizing that architectures exhibiting high accuracy
will demonstrate robustness against noise.

Attention Confidence, Importance, and Softmax Confidence "Confident" attention heads exhibit
high attention towards a single token, indicating their potential importance to the transformer’s task.
Researchers have proposed different approaches to calculating confidence, including examining the
softmax layer of the attention head and analyzing the sensitivity of the attention head to weight
masking by computing the product between the attention head’s output and the gradient of its weights.
Serianni & Kalita summarize the findings from (Voita et al., 2019; Behnke & Heafield, 2020; Michel
et al., 2019) regarding the following metrics:

Confidence: Ah(X) = 1
N

∑N
n=1 |max(Atth(xn))|

Softmax Confidence: Ah(X) = 1
N

∑N
n=1 |max(σh(xn))|

Importance: Ah(X) = |Atth(X) ∂L(X)
∂Atth(X) |

where X = {xn}Nn=1 represents a minibatch of N inputs, L denotes the loss function of the model,
and Atth and σh denote an attention head and its softmax, respectively. To obtain an overall metric
for the entire network, Serianni & Kalita extend these scores by averaging them across all H attention
heads: A(X) =

∑H
h=1

1
HAtth(X)

3 OUR GRADIENT-FREE WEIGHT-WEIGHTED PCA PROXY

3.1 MOTIVATION FOR USING PCA
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Figure 3: (a) and (b) show the PCA score curves for BERT (Devlin et al., 2019) and MobileBERT (Sun
et al., 2020), respectively, at different epochs during training (η=0.99). (c) presents the progression of
GLUE scores for BERT and MobileBERT over training epochs.

Inspired by the work in Pan et al. (2023), which leverages PCA to optimize the training of Vision
Transformers, we analyzed the trends in PCA variation during the training of BERT and MobileBERT.
From Figure 3, we can draw the following conclusions:

1. Tracking performance via PCA. As shown in Figure 3, the overall GLUE score and the PCA
values for each layer progressively increase with the number of training epochs. This indicates
that PCA values effectively reflect the performance of the neural network. Specifically, the steady
rise in PCA values suggests that the network’s internal representations become more structured and
discriminative.

2. Diminishing returns after peak performance. Our observations also revealed that after reaching
peak values, the PCA curves flatten out, indicating that further training yields diminishing returns.
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This aligns with the conclusions in Table 13, where we discussed that prolonged training results in
minimal performance gains.

3. Early PCA values as predictors. Notably, layers with higher PCA values at epoch 0 (i.e.,
before training begins) tend to maintain higher PCA values throughout training. This led us to
hypothesize that the initial PCA values could serve as effective indicators for comparing neural
network architectures during the NAS phase.

To validate these hypotheses, we conducted experiments as shown in Figure 2, which confirmed that
early PCA values correlate well with the final performance ranking of the networks. This insight
motivated us to further pursue accuracy comparison experiments, yielding promising results.

3.2 VANILLA PCA PROXY

For a given η, the distribution of PCA principal component values reflects the proportion of useful
information in the matrix. We attempt to use this distribution as a metric for evaluating neural network
performance. Our metric is computed as follows:

Sf (X) = PCA_dim(X, η) (1)

Here, X ∈ RB×N×D represents a minibatch of inputs, where B represents the batch size, N is the
token length, and D represents the embedding dimension. η represents the cumulative contribution
rate of principal components. We calculate the PCA values for the hidden states after the initial linear
transformation in the FFN layer. Specifically, if we express the FFN layer as:

FFN(X) = σ(XW1 + b1)W2 + b2 (2)

Then, we compute the PCA value of the XW1+ b1 part, denoted as H ∈ RB×N×D′
in the following

text, where D′ represents the hidden dimension. To compute the PCA values, we first reshape H into
a two-dimensional matrix H′ ∈ R(BN)×D′

. Then, we subtract the mean of each feature (column)
from the data to center it:

Hcentered = H′ −H′.mean(0) (3)

We then calculate the covariance matrix of the centered data as:

C =
1

(BN)− 1
HT

centeredHcentered (4)

Next, we perform an eigenvalue decomposition on the covariance matrix C ∈ RD′×D′
to obtain

eigenvalues (Λ) and eigenvectors (V):

C = VΛVT (5)

Here, Λ is a diagonal matrix of eigenvalues and V is the matrix of eigenvectors. After sorting each
eigenvalue λi in descending order, we determine the minimum number of eigenvectors k required to
explain at least η variance:

k = min{k′|
∑k′

i=1 λi∑D′

i=1 λi

≥ η} (6)

This value of k represents the required PCA_dim(X, η). By analyzing PCA_dim (the dimensions
with PCA values exceeding a threshold η), we can identify the dimensions that contain a higher
amount of valuable information.

The metric for an m-layer neural network model is obtained by summing Sf (X) over all layers,
resulting in:

S(X) =

m∑
f=1

Sf (X) (7)
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Here, the metric Sf (X) represents the PCA-based value for a specific layer f .

Finally, to compute the overall metric S(X) for an m-layer neural network model, we sum the
layer-specific metrics Sf (X) over all layers. By utilizing this methodology, we can effectively assess
the performance of candidate architectures based on their PCA values and identify the dimensions
that contribute significantly to the valuable information in the hidden states.

3.3 WEIGHT-WEIGHTED PCA PROXY

It is extremely challenging to discover or design a proxy that outperforms weight parameters (#Params)
in terms of stability and performance (Li et al., 2023a). After identifying PCA as an excellent proxy,
multiplying it with #Params is a worthwhile attempt, as the additional computation time for a proxy
is negligible compared to training neural networks. Thus, we propose a new metric called W-PCA,
which quantifies the amount of valuable information captured by each dimension relative to the
number of parameters in the architecture.

The W-PCA metric is computed as the product of the number of weight parameters (w) and the PCA
value for each dimension. Mathematically, it can be expressed as:

W-PCA(X) = w × S(X) (8)

Advantages of our method include:

1. Strong Correlation: The W-PCA metric captures the relationship between the number of
parameters and the valuable information in each dimension. This relevance is crucial in evaluating
the efficiency and effectiveness of candidate architectures. By considering the PCA values, we can
identify dimensions that contribute the most to the architecture’s performance, allowing for informed
decision-making during architecture search.

2. Gradient-Free: Unlike many traditional optimization methods that rely on gradients, our method-
ology is gradient-free. This eliminates the need for extensive backpropagation and derivative calcula-
tions, making the evaluation process more efficient and less computationally expensive.

3. One forward propagation only: Our methodology requires only forward propagation during
the evaluation of candidate architectures. This simplifies the implementation and reduces the com-
putational overhead, as it avoids the need for complex and resource-intensive operations such as
backpropagation.

By leveraging the advantages of strong relevance, gradient-freeness, and the use of only forward
propagation, our methodology based on the W-PCA metric provides an efficient and effective approach
for training-free architecture search. It enables researchers and practitioners to evaluate candidate
architectures based on their valuable information content relative to the number of parameters,
facilitating the exploration of architecture design space and aiding in the development of more
efficient and effective models.

4 SEARCH SPACE FOR NLU TASKS

To enhance the evaluation of W-PCA’s performance on NLU tasks, we have meticulously crafted
a search space. Drawing inspiration from SPOS (Guo et al., 2020), our search targets a model
comprised of multiple layers, with each layer capable of being a lightweight BERT model. The
hidden dimension of the FFN layer within each BERT block is determined through random selection.
This deliberate randomness aids in exploring a diverse range of architectures during the search
process.

5 RANKING EVALUATION

5.1 DATASETS

To assess the accuracy of the proposed proxy indicators for neural network evaluation, we employed
a benchmark consisting of a well-trained BERT structure suggested by Serianni & Kalita as the
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Figure 4: Overview of the W-PCA framework for NLU tasks. The search space consists of m
layers, each with 2 candidate blocks and n candidate dimensions, resulting in a total of (2 × n)m

combinations. A genetic algorithm (detailed parameterization provided in Section 6.2.1) is employed
to identify the optimal structure with the highest W-PCA value. This structure is subsequently refined
through additional training using knowledge distillation (KD). In the figure, FFN and MHA represent
the feed-forward network and multi-head attention, respectively.

testing dataset. Specifically, this benchmark selected 500 structures from the FlexiBERT (Tuli et al.,
2023) search space (as presented in Table 7) and utilized ELECTRA (Clark et al., 2020), rather than
the MLM method, for training to efficiently pretrain a compact BERT model. The training dataset
comprised 8,013,769 documents sourced from the OpenWebText (Gokaslan et al., 2019) corpus,
amounting to a total of 38GB. For detailed training information, please refer to Appendix B. After
training, the scores obtained by fine-tuning on the GLUE dataset will serve as the reference for
evaluating the correlation among different zero-shot proxies.

5.2 RESULTS AND ANALYSIS

Table 1: Comparison of different zero-shot proxies on the
FlexiBERT benchmark. "Time" represents the computa-
tion time for the metric calculated 1,000 times. Both τ
and ρ are computed to measure the ranking correlation
between each zero-shot proxy and the ground truth of the
neural networks, represented by their BLEU scores

Proxy Time ∇-free τ ρ

Synaptic Diversity (Zhou et al., 2022) 110 s 0.021 0.174
Synaptic Saliency (Abdelfattah et al., 2020) 121 s 0.130 0.185
Activation Distance (Mellor et al., 2021a) 68 s 0.081 0.123
Jacobian Cosine (Celotti et al., 2020) 103 s 0.116 0.149
Head Importance (Serianni & Kalita, 2023) 112 s 0.048 0.170
Head Confidence (Serianni & Kalita, 2023) 81 s 0.306 0.364

Vanilla PCA 61 s 0.466 0.677
W-PCA 74 s 0.526 0.698

The evaluation results include the
Kendall rank correlation coefficient
(Kendall τ ) and the Spearman rank cor-
relation coefficient (Spearman ρ). Ta-
ble 1 demonstrates that Vanilla PCA
has already surpassed the previous zero-
shot proxy in terms of ranking correla-
tion, and W-PCA performs even better
than Vanilla PCA. Furthermore, W-PCA
achieves higher computational efficiency
than proxies due to the absence of gra-
dient computation. In Appendix C, we
compare the ranking stability of W-PCA
with other zero-shot metrics using differ-
ent initialization weights and batch in-
puts.

6 ACCURACY COMPARISION

6.1 DATASETS

To enable an accurate comparison to other lightweight BERT models, we evaluate the performance of
W-PCA using the GLUE (Wang et al., 2018) and SQuAD (Rajpurkar et al., 2016) datasets and their
corresponding task-specific evaluations.
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Table 2: Performance comparison of the test set on the GLUE benchmark. The performance of all
zero-shot proxies is evaluated on the search space depicted in Figure 4. Latency measurements of the
models are conducted using the NVIDIA A100 GPU.

Model Type #Params Latency QNLI MRPC SST-2 CoLA STS-B MNLI-m/mm RTE QQP AVG

BERT-base (Devlin et al., 2019) manual 108.9M 274ms 90.5 88.9 93.5 52.1 85.8 84.6/83.4 66.4 71.2 79.6
BERT-base (ours) manual 108.9M 274ms 91.4 88.7 93.0 49.0 87.5 84.9/83.9 76.6 71.3 80.7

BERT-tiny (Turc et al., 2019) manual 14.5M 44ms 84.8 83.2 87.6 19.5 77.1 75.4/74.9 62.6 66.5 70.2
BERT-small (Turc et al., 2019) manual 28.8M 79ms 86.4 83.4 89.7 27.8 77.0 77.6/77.0 61.8 68.1 72.1
DistilBERT-6 (Sanh et al., 2020) manual 67.0M 151ms 88.9 86.9 92.5 49.0 81.3 82.6/81.3 58.4 70.1 76.8
TinyBERT-4 (Jiao et al., 2020) manual 14.5M 45ms 87.7 88.5 91.2 27.2 83.0 81.8/80.7 64.9 69.6 75.0
MobileBERT-tiny (Sun et al., 2020) manual 15.1M 62ms 89.5 87.9 91.7 46.7 80.1 81.5/81.6 65.1 68.9 77.0
EfficientBERT+ (Dong et al., 2021) one-shot 15.7M 62ms 89.3 89.9 92.4 38.1 85.1 83.0/82.3 69.4 71.2 77.9
EfficientBERT++ (Dong et al., 2021) one-shot 16.0M 65ms 90.6 88.9 92.3 42.5 83.6 83.0/82.5 67.8 71.2 78.0

Synaptic Saliency (Abdelfattah et al., 2020) zero-shot 15.7M 58ms 89.4 88.1 91.0 33.6 83.1 82.6/81.1 70.6 70.3 76.6
Activation Distance (Mellor et al., 2021a) zero-shot 15.6M 60ms 88.9 87.6 91.2 30.7 82.9 81.1/80.4 70.4 70.1 75.9
Synaptic Diversity (Zhou et al., 2022) zero-shot 15.6M 57ms 88.3 88.1 91.5 25.8 84.7 81.3/80.2 70.6 70.3 75.6
Head Confidence (Serianni & Kalita, 2023) zero-shot 15.6M 63ms 89.5 88.3 92.4 31.7 85.7 82.8/81.9 74.0 70.9 77.5
Softmax Confidence (Serianni & Kalita, 2023) zero-shot 15.6M 61ms 88.4 87.5 90.8 32.5 83.5 81.2/80.5 70.3 69.9 76.1

W-PCA-Tiny zero-shot 9.6M 38ms 88.7 87.6 91.9 27.4 84.8 81.1/79.8 71.1 70.3 75.9
W-PCA-Small zero-shot 15.6M 54ms 90.3 88.7 91.5 38.4 86.4 82.8/82.2 73.8 70.8 78.3

6.2 IMPLEMENTATION DETAILS

6.2.1 SEARCH SPACE

The search space is illustrated in Figure 4, wherein we set the values of m and n to 12 and 6,
respectively. Each block possesses a hidden size of 528, with the inner hidden size of the MobileBERT
series blocks being one-fourth of the total hidden size. The hidden dimensions of the FFN increase by
a factor of 132 for each multiple ranging from 1 to n. To calculate the value of PCA_dim, we set η
to 0.99, with the selection process detailed in Appendix D. To identify the combination of blocks that
yields the highest PCA value, we utilize a genetic algorithm, the detailed implementation of which
can be found in Appendix E. This algorithm uses a population size of 50 and a generation count of
40. The crossover probability is set to 1, the mutation probability to 0.1, and the upper limit for the
model parameters is set to 15.7M, resulting in the W-PCA-Small model. By further reducing the
upper limit for the model parameters to 10M and halving the number of layers (m), we obtain the
W-PCA-Tiny model.

6.2.2 TRAINING

Once we obtain the desired architecture, we pretrain the model using the complete English Wikipedia
(Devlin et al., 2019) and BooksCorpus (Zhu et al., 2015). We then proceed to fine-tune the model
on each individual downstream task. During pretraining, the network is trained with a batch size set
to 256. For the fine-tuning phase of the downstream tasks, the network is trained with a batch size
set to 32. The CoLA task is trained for 50 epochs, while the other tasks are trained for 10 epochs.
The learning rate is set at 0.0001 during pretraining. In the fine-tuning phase, the learning rate is set
at 0.00005 for GLUE tasks and 0.0001 for SQuAD tasks. The training process utilizes the Adam
optimizer with β1 and β2 values set at 0.9 and 0.999, respectively. The weight decay is set to 0.01.
The learning rate decays linearly with a warm-up ratio set to 0.1. The KD loss function used in our
approach is described in Appendix F.

6.3 RESULTS ON GLUE

6.3.1 MODEL ACCURACY AND LATENCY

Table 2 presents the results of the GLUE scores and model latency for the KD-based methods. Among
them, except for the BERT-base teacher model we used ourselves, the results of all the manual and
one-shot methods in the table are from relevant papers. Since zero-shot NAS methods have not been
used in NLU tasks before, we applied the recent top-performing zero-shot proxy approaches on
Transformer language models to the search space shown in Figure 4.

As shown in Table 2, under the search space depicted in Figure 4, our W-PCA metric achieved higher
average scores on the GLUE test set compared to all baseline manual and one-shot methods. At
the same time, it outperformed the previous state-of-the-art (SOTA) method EfficientBERT (Dong
et al., 2021) in terms of parameter count, latency, and average score in the field of lightweight models.
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Table 3: Comparison of results on the GLUE dev set with other NAS methods. The "Time"
column represents the GPU days consumed by the NAS method search. It is not feasible to make a
subcomparison with AutoBERT-Zero-small as it does not provide individual scores for each task in
the GLUE dev set.

Model #Params Time QNLI MRPC SST-2 CoLA STS-B MNLI-m RTE QQP AVG

NAS-BERT-10 (Xu et al., 2021) 10.0M 96 d 86.3 79.1 88.6 34.0 84.8 76.4 66.6 88.5 75.5
NAS-BERT-30 (Xu et al., 2021) 30.0M 96 d 88.4 84.6 90.5 48.7 87.6 81.0 71.8 90.2 80.3
EfficientBERT-TINY (Dong et al., 2021) 9.4M 58 d 89.3 90.1 90.1 39.1 79.9 81.7 63.2 86.7 77.5
EfficientBERT (Dong et al., 2021) 15.7M 58 d 90.4 91.5 91.3 50.2 82.5 83.1 66.8 87.3 80.4
AutoBERT-Zero-small (Gao et al., 2022) 13.0M ~1,000 d - - - - - - - - 80.5

Synaptic Diversity (Zhou et al., 2022) 15.6M 0.7 d 88.9 87.6 91.4 32.0 84.1 81.0 73.4 88.2 78.3
Head Confidence (Serianni & Kalita, 2023) 15.6M 0.5 d 90.1 89.7 92.4 37.5 84.1 82.5 75.9 89.1 80.2
Softmax Confidence (Serianni & Kalita, 2023) 15.6M 0.5 d 89.4 88.3 92.0 32.6 84.7 81.6 73.9 88.9 78.9

W-PCA-Tiny 9.6M 0.4 d 89.2 89.2 92.0 33.2 84.0 80.5 71.1 88.0 78.4
W-PCA-Small 15.6M 0.5 d 90.8 90.5 92.8 44.0 85.3 82.9 76.1 88.8 81.4

Additionally, W-PCA achieved the highest score on the STS-B task. It is worth noting that, in the
same search space, the optimal structure found by W-PCA surpasses all previous zero-shot methods
(Abdelfattah et al., 2020; Mellor et al., 2021a; Zhou et al., 2022; Serianni & Kalita, 2023) applied
to Transformer language models, highlighting its exceptional ability in exploring optimal network
structures in zero-shot NAS methods.

6.3.2 SEARCH EFFICIENCY

As shown in Table 3, under our search space, the search efficiency of all zero-shot proxies (including
our W-PCA method) has been improved by two to three orders of magnitude compared to previous
training-based NAS, and achieved competitive performance. The three zero-shot proxies, Synaptic
Diversity (Zhou et al., 2022), Head Confidence (Serianni & Kalita, 2023), and Softmax Confidence
(Serianni & Kalita, 2023), can compete with the optimal structures found by previous training-based
NAS in our search space. Our W-PCA method surpasses all previous training-based methods in
the field of lightweight language models in terms of average score and achieves the best average
score. Moreover, in three out of eight tasks, W-PCA achieves the highest performance. Our method
discovers the latest SOTA effects in the field of lightweight models with almost negligible search
cost, reducing greenhouse gas CO2 emissions by two to three orders of magnitude 1, and significantly
improving the utilization of global energy resources.

It is also worth noting that in the internal comparison of zero-shot proxies, Head Confidence (Serianni
& Kalita, 2023), Softmax Confidence (Serianni & Kalita, 2023), and our W-PCA method require
shorter search time than the Synaptic Diversity (Zhou et al., 2022) method, which needs to compute
gradients, by an additional 0.2 GPU days. Additionally, our W-PCA-Tiny model has a lower parameter
limit set during the search, resulting in slightly lower computation time for the forward propagation
of each neural network individual, thus reducing the search time by 0.1 GPU days compared to the
W-PCA-Small model.

6.4 RESULTS ON SQUAD

Table 4: Results on SQuAD dev sets. ∗: our imple-
mentation.

Model #Params SQuAD v1.1 SQuAD v2.0
EM/F1 EM/F1

BERT-base 108.9M 80.8/88.5 -/-
BERT-base∗ 108.9M 80.7/88.2 75.7/78.7

TinyBERT-4 14.5M 72.7/82.1 68.2/71.8
MiniLM-6 22.9M -/- -/72.7
EfficientBERT++ 16.0M 78.3/86.5 73.0/76.1

W-PCA-Tiny 9.6M 74.6/83.5 69.0/72.1
W-PCA-Small 15.6M 78.4/86.7 73.3/76.8

We compared the W-PCA proposed in this arti-
cle with manually designed lightweight models,
namely TinyBERT (Jiao et al., 2020), MiniLM
(Wang et al., 2020), and the one-shot NAS
method EfficientBERT (Dong et al., 2021), on
the SQuAD dataset. The results are presented in
Table 4. Despite having fewer parameters than
TinyBERT-4, MiniLM-6, and Efficient++, the
W-PCA-Small model outperforms these meth-
ods in terms of both EM and F1 scores on both
the SQuAD v1.1 and SQuAD v2.0 datasets.
This observation demonstrates the robust adapt-
ability of the investigated models across diverse
datasets.

1A reduction of 0.34k lbs and 3.4k lbs of CO2 emissions for every 100-fold and 1,000-fold, respectively
(Strubell et al., 2019).
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Table 5: Comparison results of W-PCA and its product counterparts as proxies on the GLUE dev set.

Proxy #Params QNLI MRPC SST-2 CoLA STS-B MNLI-m RTE QQP AVG

#Params 15.7M 89.3 88.8 90.7 43.8 83.6 82.6 76.1 87.5 80.3
V-PCA 15.6M 89.9 91.4 92.7 39.4 84.9 82.9 76.0 88.9 80.8
W-PCA 15.6M 90.8 90.5 92.8 44.0 85.3 82.9 76.1 88.8 81.4

6.5 ABLATIONS

In order to investigate the effects of each component of W-PCA on the experimental results, we
performed ablation experiments. Specifically, we utilized the components of W-PCA, as described
in Equation (8) where the first component is the number of parameters (#Params) and the second
component is the V-PCA value (defined in Equation (7)), as fitness values for the genetic algorithm
to explore the optimal network structure in Section 6.2.1. We then compared the performance of the
discovered network structures with W-PCA.

The results, presented in Table 5, demonstrate that by multiplying the number of parameters with the
V-PCA value and using W-PCA as the zero-shot evaluation metric, the performance of the searched
networks significantly improves compared to using either #Params or V-PCA alone as the evaluation
metric.

Encouragingly, the incorporation of an extra feature does not necessitate a significant rise in compu-
tational time, thereby rendering the multiplication approach highly efficient. For further ablations,
please refer to Appendix H.

7 CONCLUSION

In this paper, we propose W-PCA 2, and significantly improving the utilization of global energy
resources., a novel zero-shot NAS method specifically designed for lightweight language models. In
the ranking correlation experiments conducted on the search space of FlexiBERT, W-PCA achieves a
Kendall τ score that surpasses the previous method by 0.220 and a Spearman ρ score that surpasses
the previous method by 0.334. In the accuracy experiments conducted on GLUE and SQuAD,
W-PCA not only achieves the highest score, but also significantly improves search efficiency. On the
GLUE test set, W-PCA improves search efficiency by over a hundredfold compared to the previous
best-performing one-shot NAS method, with an average score improvement of 0.3. On the GLUE dev
set, W-PCA improves search efficiency by 2,000 times and achieves an average score improvement of
0.9 compared to the previous best-performing one-shot NAS method. In future work, we will extend
our approach to more compression tasks (Dong et al., 2024a; Li et al., 2024b;e; Dong et al., 2024b).
Our work contributes to the advancement of NAS methods for lightweight language models, enabling
the design and optimization of efficient and effective systems for natural language processing.

Limitations This work focuses on the ranking correlation tasks commonly addressed in prior zero-
shot NAS methods and on NLU tasks relevant to lightweight models. However, recent language
model research increasingly centers on generative models with over 1B parameters. In Appendix I,
we further discuss potential extensions related to these large-scale generative models.
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Table 6: Performance comparison on the GLUE test set for a model composed of 12 identical blocks.

Block Type #Params QNLI MRPC SST-2 CoLA STS-B MNLI-m/mm RTE QQP AVG

BERT (Devlin et al., 2019) 24.8M 90.9 89.0 92.9 46.7 87.2 84.4/83.5 71.0 71.9 79.7
MobileBERT (Sun et al., 2020) 10.4M 87.2 87.7 91.4 31.8 84.9 81.5/81.4 69.6 70.8 76.3
LiteTransformer (Wu et al., 2019) 34.6M 90.2 89.2 92.5 36.4 86.4 83.1/82.3 74.0 70.8 78.3
ConvBERT (Jiang et al., 2020) 37.4M 89.7 89.4 91.9 36.0 85.8 82.5/82.0 72.1 70.7 77.8

A WHY BERT AND MOBILEBERT?

As shown in Table 6, we have attempted to train a model by composing 12 blocks of the same type,
with a dimension of 528 for FFN. The results indicate that BERT and MobileBERT blocks outperform
other blocks in terms of the unit parameter performance. Therefore, we have included these two
fundamental blocks in our search space. In fact, if we construct a supernet as described in Section
H.3, the optimal network structure selected by the genetic algorithm will also only choose BERT and
MobileBERT blocks, without considering any other types of blocks.

B TRAINING DETAILS OF THE FLEXIBERT SEARCH SPACE

Table 7: The FlexiBERT search space comprises a total of 10,621,440 architectures.

Architecture Element Hyperparameters Values
Embedding dimension {128, 256}
Number of Encoder Layers {2, 4}
Type of attention operator {self-attention, linear transform, span-based dynamic convolution}
Number of operation heads {2, 4}
Hidden dimension {512, 1024}
Number of feed-forward stacks {1, 3}

Attention
operation

if self-attention {scaled dot-product, multiplicative}
if linear transform {discrete Fourier, discrete cosine}
if dynamic convolution convolution kernel size: {5, 9}

All transformer architectures within the search space were trained on TPUv2s with 8 cores and 64
GB of memory using Google Colaboratory. The entire process of pretraining and finetuning the
benchmark took approximately 25 TPU days. For the evaluation of training-free metrics, 2.8 GHz
Intel Cascade Lake processors with either 16 or 32 cores and 32 GB of memory were employed.

In terms of hyperparameter settings, except for setting the training steps to 100,000 during the
pre-training phase, everything else is the same as training ELECTRA-Small. Specifically, during the
pre-training phase, the generator size multiplier is set to 1/4, the mask percentage is set to 15%, the
warmup step is 10,000, the learning rate is 5e-4, and the batch_size is 128. During the fine-tuning
phase, the learning rate is 3e-4, the layerwise lr decay is 0.8, the warmup fraction is 0.1, the attention
dropout is 0.1, and the batch_size is 32. For the RTE and STS tasks, 10 epochs are trained, while for
other tasks, 3 epochs are trained. Both during pre-training and fine-tuning phases, the learning rate
decay is linear, the vocabulary size is 30522, the dropout is 0.1, the weight decay value is 0.01, the ϵ
value for the Adam optimizer is 1e-6, β1 value is 0.9, and β2 value is 0.999.

C ABLATIONS OF RANKING EVALUATION

To examine the stability of zero-shot metrics, we conducted a series of studies to investigate the
effects of random architecture initialization (Figure 5) and varying batch inputs (Figure 6) on the
evaluation of zero-shot metrics within the FlexiBERT search space. The range of fluctuations
observed in various zero-shot metrics in a neural network model demonstrates that, while the number
of parameters remains unaffected, other zero-shot metrics exhibit varying degrees of fluctuation
depending on the initialization of parameters and batch inputs. The figure indicates that PCA alone,
serving as a proxy metric, shows good stability, and W-PCA exhibits the same level of stability as
PCA due to multiplication by a constant parameter that does not alter the magnitude of the original
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Figure 5: Evaluation of zero-shot metrics with various initialization weights in the FlexiBERT search
space. Ten architectures are randomly sampled from the search space, representing decile ranges of
the GLUE score (e.g., 0-10%, 10-20%, ..., 90-100%). To ensure robustness, ten different random
seeds are employed for weight initialization.
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Figure 6: Evaluation of zero-shot metrics with various minibatch inputs in the FlexiBERT search
space. Ten architectures are randomly sampled from the search space, representing decile ranges of
the GLUE score (e.g., 0-10%, 10-20%, ..., 90-100%). The same ten minibatches, each with a size of
128, are randomly chosen from the OpenWebText dataset for each architecture and metric.

proxy metric’s fluctuation. When compared to other zero-shot metrics, PCA and W-PCA exhibit
slightly better stability than Activation Distance (Mellor et al., 2021a) and Head Softmax Confidence
(Serianni & Kalita, 2023), and significantly better stability than Synaptic Diversity (Zhou et al., 2022),
Synaptic Saliency (Abdelfattah et al., 2020), and Head Importance (Serianni & Kalita, 2023). These
findings demonstrate that our proposed method not only achieves superior ranking evaluation but
also demonstrates improved stability.
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D ROBUSTNESS WITH DIFFERENT η’S

Table 8: Principal component dimensions at differ-
ent η values for a neural network model composed
of 12 identical blocks during training.

Model η = 0.9 η = 0.99 η = 0.999 η = 1

BERT 91 (17.2%) 159 (30.1%) 286 (54.2%) 528
MobileBERT 58 (43.9%) 101 (76.5%) 125 (94.7%) 132

In our NLU task experiments, when train-
ing networks composed of 12 identical BERT
or MobileBERT blocks, we observed an ex-
tremely uneven distribution of principal com-
ponents. Specifically, the largest eigenvalues,
when sorted, are predominantly concentrated
at the beginning, while the remaining eigen-
values are close to zero. The dimensions re-
quired for each layer to achieve different η val-

ues when training these models are shown in Table 8. From the table, it is evident that the
BERT blocks exhibit a more uneven distribution compared to the MobileBERT blocks, as only
54.2% of the dimensions are needed to reach a 0.999 principal component contribution rate.
However, setting η to 0.999 would result in a loss of distinction for MobileBERT blocks, as
they would only have integer values between 125 and 132. Since our search space includes net-
works composed of both BERT and MobileBERT blocks, we compromised by setting η to 0.99.

Table 9: Results obtained from varying η values in
rank correlation experiments.

Proxy η = 0.9 η = 0.99 η = 0.999
τ ρ τ ρ τ ρ

Vanilla PCA 0.466 0.677 0.449 0.667 0.433 0.653
W-PCA 0.526 0.698 0.513 0.689 0.499 0.688

For the ranking correlation experiments, each
block has more combination possibilities. We
adjusted different η values and obtained the
following ranking correlations in Table 9. As
shown in the table, both V-PCA and W-PCA
maintain high rank correlation regardless of the
η value, demonstrating the robustness of the η
variable in the rank correlation experiments. Ad-
ditionally, W-PCA consistently outperforms V-

PCA in both Kendall’s τ and Spearman’s ρ correlations across different η values, further indicating
that incorporating the number of parameters as a factor in the proxy enhances the stability of the rank
correlation results.

E IMPLEMENTATION DETAILS OF GENETIC ALGORITHM

The genetic algorithm is a widely used classic algorithm for solving combinatorial optimiza-
tion problems. In Figure 7, we illustrate the flowchart of the genetic algorithm. Early NAS
algorithms (Real et al., 2019; Sun et al., 2019) often encoded each individual neural net-
work and then trained them from scratch. To efficiently identify the best combination of
lightweight BERT blocks, we encoded and solved the combination using a genetic algorithm.

initialize calculate select crossover mutate

several generations loop

Figure 7: Diagram of genetic algorithm.
In order to effectively solve practical prob-
lems using a genetic algorithm, it is crucial
to define a suitable method for encoding
the solutions. Additionally, in each genera-
tion, the fitness of every individual should
be calculated, and only the most excellent
individuals should be selected for the appli-
cation of crossover and mutation operators.
These operators are used to generate the
individuals that will make up the next gen-
eration.

E.1 ENCODE

When there are m layers in the combination, we use
an integer array of length m to encode the selection
method for each layer. Each integer in the array rep-
resents the type of block chosen for that layer. Taking
the 12-layer model of W-PCA-Small as an example, if
the number at a given position is less than or equal to 5,
it indicates the selection of a BERT-type block; other-
wise, a MobileBERT-type block is chosen. Each integer
represents the dimension of the hidden dimension. Let
x be the integer at the current layer position, then the
hidden dimension is calculated as 132× (x%6 + 1).
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E.2 CROSSOVER

Algorithm 1: Crossover operation in genetic algorithm
Input: Parent 1 encoding p1, Parent 2 encoding p2
Output: Offspring encoding

1 Function Crossover(p1, p2):
2 Create an empty offspring encoding child
3 for i← 1 to length(p1) do
4 if random number < 0.5 then
5 Add the gene from the corresponding position in the parent 1 encoding to the

offspring encoding
6 child[i]← p1[i]
7 else
8 Add the gene from the corresponding position in the parent 2 encoding to the

offspring encoding
9 child[i]← p2[i]

10 end
11 end
12 return child

We employ the single-point crossover method as outlined in Algorithm 1 to produce offspring
encodings. In each generation, parents are randomly chosen from the top 10 individuals, and
offspring are generated through crossover until the desired number of offspring is obtained.

E.3 MUTATION

We set the mutation probability to 0.1. When the current position mutation is triggered, the current
position will randomly mutate into another integer within the selection range.

F KD LOSS FUNCTION

The distillation loss function of EfficientBERT (Dong et al., 2021) forms the basis of our approach.
For the student model, we define Li

attn as the loss for the multi-head attention (MHA) output and
Li
hidd as the loss for the feed-forward network (FFN) output in the m-th layer. The embedding loss,

represented by Lembd, is also included. These losses are calculated using the mean squared error
(MSE) as follows:


Li
attn = MSE(AS

i Wa,A
T
j ),

Li
hidd = MSE(HS

i Wh,H
T
j ),

Lembd = MSE(ESWe,E
T )

(9)

Here, AS
i and HS

i represent the outputs of the MHA and FFN layers, respectively, in the i-th layer
of the student model. Similarly, AT

j and HT
j represent the outputs of the MHA and FFN layers,

respectively, in the j-th layer of the teacher model corresponding to the i-th layer of the student
model.

For our fixed teacher model, BERT-base, which comprises 12 layers, a one-to-one sequential corre-
spondence exists between the layers of the student and teacher models when both models have 12
layers. However, in the case of a student model with only 6 layers, the correspondence remains one-
to-one, but with a 2-layer interval. This implies that the first layer of the student model corresponds
to the second layer of the teacher model, and so forth, until the sixth layer of the student model aligns
with the twelfth layer of the teacher model.

The trainable matrices Wa, Wh, and We are used to adjust the dimensionality of the student and
teacher models. Additionally, we define Lpred as the prediction loss, which is calculated using soft
cross-entropy (CE):

Lpred = CE(zS , zT ) (10)
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Figure 8: Visualizations of the searched architectures, where d represents the hidden dimensions.

Here, z represents the predicted logit vector.

The total loss is a combination of the above terms:

L =

m∑
i=1

(Li
attn + Li

hidd) + Lembd + γLpred (11)

The coefficient γ is used to control the contribution of the predicted loss. It is set at 0 during the
pretraining phase and 1 during the fine-tuning phase.

G VISUALIZATION OF ARCHITECTURES

Figure 8 illustrates the schematic diagram of the network structure. It is observed that all models
preferentially choose MobileBERT as the candidate block, suggesting that MobileBERT is better
suited for lightweight language models in comparison to BERT-base. Furthermore, with the exception
of the searched model that solely relies on parameter count as the search evaluation metric, the
candidate blocks of MobileBERT are predominantly located in the higher layers, indicating that this
architecture is more adept at analyzing high-level semantic information.

H MORE ABLATIONS ON ACCURACY COMPARISION

H.1 DIFFERENT INITIALIZATIONS

Table 10: Statistical significance tests based on average scores from 3 runs with different random
seed initializations on the GLUE dev set.

Proxy #Params V-PCA W-PCA

GLUE 80.3±0.0 80.9±0.09 81.5±0.14

To validate the stability of each component of W-PCA, we conducted multiple runs using #Params,
V-PCA, and W-PCA as proxies. The results are presented in Table 10. As shown in the table, under
different weight initializations, the structures identified using #Params as a proxy remain identical
across runs since #Params does not change. However, when V-PCA and W-PCA are used as proxies,
the genetic algorithm identifies different structures, resulting in varying GLUE scores after training.
On average, W-PCA demonstrates a clear advantage over V-PCA, and both W-PCA and V-PCA
outperform #Params. This further validates the effectiveness of the proposed proxy.

19



Published as a conference paper at ICLR 2025

Table 11: Performance comparison of larger-scale models on the GLUE test set.

Model #Params QNLI MRPC SST-2 CoLA STS-B MNLI-m/mm RTE QQP AVG

TinyBERT-6 (Jiao et al., 2020) 67.0M 89.8 89.0 92.0 38.8 83.1 83.8/83.2 65.8 71.4 77.4
EfficientBERT (Dong et al., 2021) 70.1M 90.4 89.0 92.6 46.2 83.7 84.1/83.2 67.7 74.4 78.7
W-PCA-Large 66.9M 90.9 88.7 93.0 40.0 87.5 84.6/83.3 75.6 71.5 79.5

H.2 COMPARISON OF LARGER-SIZED MODELS

In the main body of the paper, we primarily focus on lightweight language models with parameter
sizes of approximately 15M and 10M. To investigate the applicability of W-PCA on larger language
models in search processes, we carried out experiments by utilizing a larger model that expanded the
size of the search space as described in Section 6.2.1. Specifically, we doubled the hidden_size and
the hidden_dimension of n candidate dimensions. Moreover, we increased the parameter limit in the
genetic algorithm to 67M, resulting in the creation of our W-PCA-Large model. Our model, presented
in Table 11, outperforms TinyBERT-6 (Jiao et al., 2020) and EfficientBERT (Dong et al., 2021)
models of similar scale in terms of average GLUE score, despite having a slightly lower parameter
count. This indicates that W-PCA also exhibits strong adaptability in larger search spaces.

H.3 COMPARISON WITH ONE-SHOT NAS

Table 12: Comparison of search and training stages for one-shot and zero-shot methods.

Method Search Stage Training Stage

one-shot
Pretrain

the
supernet

Finetune the
supernet for

downstream tasks

Finding the optimal
neural network structure
using genetic algorithm

Re-pretrain the optimal
network structure

Fine-tune for each
downstream task

zero-shot Finding the optimal neural network structure using genetic algorithm

In Section 4, we refer to the composition method of the supernet in the one-shot NAS method SPOS
(Guo et al., 2020), and construct the combination method of the lightweight BERT model in our
zero-shot NAS search space. In order to compare its performance with the one-shot NAS, we now
build a real supernet, as shown in Figure 4, with a total of m layers and 2× n candidate blocks in
each layer. Before searching for the optimal structure using a genetic algorithm, we performed one
round of pre-training and fine-tuning based on the SPOS method. During each batch, a random path
is selected from the (2×n)m combinations for forward propagation and backward parameter updates.
After completing the pre-training and fine-tuning process, we proceeded with the workflow described
in the zero-shot NAS experiment. This involved searching for the optimal network architecture on the
supernet using a genetic algorithm, and then re-pretraining and fine-tuning this optimal architecture
for downstream tasks.

Implementation Details. We first pretrain the supernet on English Wikipedia (Devlin et al., 2019)
and BooksCorpus (Zhu et al., 2015), then utilize 90% of the training set from each GLUE task for
fine-tuning. We reserve the remaining 10% of the MNLI task to evaluate the accuracy of architectures
in the search. During the pre-training and fine-tuning process, the number of epochs is set to 10, and
the batch_size is set to 256 for both. The learning rate for pre-training is set to 1e-4, and the learning
rate for fine-tuning is set to 4e-4. The optimizer, weight decay, and learning rate adjustment strategy
are the same as in the training section. The loss function used is still the MSE loss function described
in Appendix F.

Results & Analysis. As displayed in Table 13, despite extensive computational resources devoted to
the one-shot NAS search, the performance enhancement for various-sized models of W-PCA is not
significant. To further investigate the reasons behind this, we outline the steps of one-shot NAS and
zero-shot NAS in Table 12. Both approaches involve finding the optimal network structure through a
search stage, followed by training this structure in the subsequent training stage. In the search stage
of one-shot NAS, a supernet training is necessary, whereas zero-shot NAS only requires temporary
construction of a neural network at each sampling step to compute the zero-shot proxy. Consequently,
the memory overhead for zero-shot NAS is minimal. Contrasting with zero-shot NAS, one-shot NAS
incurs additional time overhead due to pre-training the supernet on the corpus and performing global
fine-tuning on downstream tasks. Additionally, one-shot NAS possesses extra pre-trained weights
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Table 13: Comparison of zero-shot and one-shot methods on the GLUE test set in the same search
space. "Time" also refers to the GPU time consumption in the NAS stage.

Model Type #Params Time QNLI MRPC SST-2 CoLA STS-B MNLI-m/mm RTE QQP AVG

W-PCA-Tiny zero-shot 9.6M 0.4 d 88.7 87.6 91.9 27.4 84.8 81.1/79.8 71.1 70.3 75.9
one-shot 9.7M 24 d 89.2 87.5 92.3 28.9 83.7 81.4/80.5 71.4 70.5 76.2

W-PCA-Small zero-shot 15.6M 0.5 d 90.3 88.7 91.5 38.4 86.4 82.8/82.2 73.8 70.8 78.3
one-shot 15.6M 28 d 90.3 88.9 92.5 36.1 86.7 83.7/82.5 74.4 70.6 78.4

Table 14: Comparison of zero-shot NAS methods on the GLUE dev set within the EfficientBERT
search space.

Proxy #Params Time QNLI MRPC SST-2 CoLA STS-B MNLI-m RTE QQP AVG

Synaptic Diversity (Zhou et al., 2022) 15.6M 1.0 d 84.1 85.2 86.1 21.1 76.5 77.2 66.5 78.2 71.9
Head Confidence (Serianni & Kalita, 2023) 15.7M 0.8 d 83.1 84.4 86.8 21.8 80.9 76.3 66.1 84.6 73.0
Softmax Confidence (Serianni & Kalita, 2023) 15.6M 0.8 d 84.0 83.0 87.3 21.2 78.7 76.7 68.3 77.6 72.1

W-PCA 15.6M 0.8 d 86.0 85.3 90.1 24.4 80.1 76.5 65.8 86.2 74.3

apart from the different searched network structures. After the network structure is searched by
zero-shot NAS, no pre-training weights are used, and the weights are randomly initialized, resulting
in relatively minor effects on accuracy. Therefore, zero-shot NAS remains the most cost-effective
search solution.

H.4 EXPERIMENTS ON EFFICIENTBERT SEARCH SPACE

Previous zero-shot NAS studies have primarily assessed performance on NAS Benchmark datasets,
using rank correlation to evaluate the effectiveness of these zero-shot proxies. To facilitate a com-
parison with other zero-shot proxies applied to Transformer models in text tasks, we designed the
search space described in Section 4 and compared our method within this context. To further ensure
robustness, we conducted additional comparisons using the EfficientBERT search space, with the
results shown in Table 14. The data demonstrate that our proposed zero-shot proxy maintains a
significant advantage in accuracy across various search spaces.

I CAUSAL LANGUAGE MODELING TASK

To validate our performance more sufficiently, we further transfer our method to causal language
modeling (CLM) task.

I.1 SETUP

Searching. We use some 1B~3B parameter OPT (Zhang et al., 2022) and LLaMA3 (Dubey et al.,
2024) models as baseline models, keeping the number of layers unchanged while searching for the
optimal combinations of MHA blocks and FFN dimensions in each layer of the models. For a fair
comparison, we set the maximum parameter limit for the searched models to be the same as that of
the baseline models.

Pretraining. We pretrain the models for causal language modeling (CLM) using a randomly selected
1% of texts from the SlimPajama dataset (Soboleva et al., 2023). For this task, we train the models
generated by each zero-shot proxy on 8 NVIDIA V100 GPUs, with a total batch size of 64 for 3
epochs. A cosine annealing schedule is applied to the learning rate, starting at 5×10−4. Optimization
is performed using the AdamW optimizer with a weight decay of 0.1. To accommodate the differences
in configurations, such as the tokenizer and training loss, between OPT and LLaMA3, we train two
separate models for each proxy.

Instruction finetuning. To obtain models suitable for chat applications, we finetune each pretrained
model using the instruction dataset databricks-dolly-15k (Conover et al., 2023) with the KD method
MiniLLM (Gu et al., 2024). Specifically, we use OPT-13B and LLaMA3.2-11B as the teacher model
to supervise other models. The training data and strategies employed are consistent with those of
MiniLLM.
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Table 15: Evaluation results referring to the average GPT-4 feedback scores (GPT4) and Rouge-L
scores (R-L) obtained from 5 runs.

Teacher Proxy #Params DollyEval SelfInst VicunaEval S-NI UnNI
GPT4 R-L GPT4 R-L GPT4 R-L R-L R-L

OPT-13B

OPT-1.3B (baseline) - 60.7 26.7 47.0 14.8 50.6 17.9 28.6 33.4

Synaptic Diversity (Zhou et al., 2022) 1.3B 60.4 26.9 47.3 15.2 51.8 17.6 29.1 34.2
Head Confidence (Serianni & Kalita, 2023) 1.3B 61.5 27.3 48.0 15.3 51.5 18.1 29.5 34.3
Softmax Confidence (Serianni & Kalita, 2023) 1.3B 61.2 27.1 47.5 14.6 50.8 18.2 28.9 33.9

W-PCA 1.3B 62.0 27.6 47.9 16.1 52.3 19.0 29.2 35.0

OPT-13B

OPT-2.7B (baseline) - 63.2 27.4 52.7 17.2 55.9 19.1 30.7 35.1

Synaptic Diversity (Zhou et al., 2022) 2.7B 63.8 27.5 52.9 17.8 56.2 18.9 31.5 35.8
Head Confidence (Serianni & Kalita, 2023) 2.7B 64.0 27.8 53.2 17.5 56.5 19.4 31.6 35.9
Softmax Confidence (Serianni & Kalita, 2023) 2.7B 63.2 27.8 53.0 17.3 56.1 19.2 31.0 35.4

W-PCA 2.7B 64.5 28.3 53.9 18.1 57.2 20.1 32.1 36.2

LLaMA3.2-11B

LLaMA3.2-3B (baseline) - 74.0 29.8 69.1 23.6 64.6 25.2 36.2 43.9

Synaptic Diversity (Zhou et al., 2022) 3B 73.8 30.5 70.1 23.8 65.0 25.4 36.7 44.8
Head Confidence (Serianni & Kalita, 2023) 3B 74.4 30.9 71.4 24.2 65.2 26.2 37.1 45.6
Softmax Confidence (Serianni & Kalita, 2023) 3B 74.1 30.1 70.4 23.6 64.9 25.9 37.2 44.3

W-PCA 3B 75.1 31.4 71.8 24.7 65.9 26.8 37.6 45.2

Each model required approximately 20 GPU days for pretraining and around 28 GPU hours for
finetuning in our experiments.

Quantitative evaluation. We perform a numerical evaluation on five instruction-following datasets:

• DollyEval: This is a 500-sample test set that we extracted from the databricks-dolly-15k
dataset.

• SelfInst (Wang et al., 2022a): A user-oriented instruction-following set comprising 252
samples.

• VicunaEval (Chiang et al., 2023): The evaluation includes 80 challenging questions used
in the Vicuna project.

• S-NI: The test set of Super-NaturalInstructions (Wang et al., 2022b), which consists of
9,000 samples across 119 tasks.

• UnNI: The core set of UnnaturalInstructions (Honovich et al., 2022), which contains 60,000
samples.

I.2 QUANTITATIVE RESULTS ON LANGUAGE BENCHMARKS

We evaluated the performance of the W-PCA model by comparing it with other models trained
using MiniLLM. As shown in Table 15, across various model sizes, W-PCA consistently identifies
architectures that outperform the baseline in all evaluation metrics. Compared to other zero-shot NAS
methods, W-PCA leads in 6 out of 8 metrics for the OPT-1.3B size, all metrics for the OPT-2.7B size,
and 7 out of 8 metrics for the LLaMA3.2-3B size. These results demonstrate the effectiveness of our
method in transferring performance to CLM tasks.

22


	Introduction
	Related Work
	Lightweight BERT Models
	One-shot NAS for Efficient Models
	Zero-shot NAS

	Our Gradient-free Weight-weighted PCA Proxy
	Motivation for using PCA
	Vanilla PCA Proxy
	Weight-weighted PCA Proxy

	Search Space for NLU Tasks
	Ranking Evaluation
	Datasets
	Results and Analysis

	Accuracy Comparision
	Datasets
	Implementation Details
	Search Space
	Training

	Results on GLUE
	Model Accuracy and Latency
	Search Efficiency

	Results on SQuAD
	Ablations

	Conclusion
	Why BERT and MobileBERT?
	Training Details of the FlexiBERT Search Space
	Ablations of Ranking Evaluation
	Robustness with Different 's
	Implementation Details of Genetic Algorithm
	Encode
	Crossover
	Mutation

	KD Loss Function
	Visualization of Architectures
	More Ablations on Accuracy Comparision
	Different Initializations
	Comparison of Larger-sized Models
	Comparison with One-shot NAS
	Experiments on EfficientBERT Search Space

	Causal Language Modeling Task
	Setup
	Quantitative Results on Language Benchmarks


