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Abstract

Reinforcement learning (RL) has become an indispensable post-training step for
unlocking the full potential of Large Language Models (LLMs). Its core motivation
is to incentivize the model’s inference trajectory via a reward model, effectively
balancing the exploration–exploitation trade-off in scenarios where collecting ex-
haustive input–output ground-truth pairs is infeasible. This motivation naturally
extends to visual generation, where perfect alignment between an image and a
textual prompt is inherently ambiguous and often unattainable. However, exist-
ing visual generative models are not yet ready for RL due to the following two
fundamental drawbacks that undermine the foundations of RL:
• For diffusion-based models, the actual generation trajectories of sampled images
cannot be reliably rewarded, as diffusion inversion is notoriously difficult.
• For autoregressive (AR) models, we show that the widely used spatial visual
tokens do not satisfy the Bellman equation and thus violate the policy improvement
theorem of RL.
To this end, we propose to use Selftok (Self-consistency Tokenizer), which rep-
resents each image as a sequential 1D stream of discrete, autoregressive tokens.
Together with language, we train a pure AR vision-language model (VLM) for vi-
sual generation. Impressively, without using any text-image training pairs, a simple
policy gradient algorithm applied to Selftok tokens significantly boosts visual gen-
eration performance, surpassing existing models by a large margin. Implementation
details are provided in the Appendix.

1 Introduction

Recent advances in visual generative models have been driven by large-scale training on paired
text-image datasets [57, 13]. To produce high-fidelity image x given textual prompt y, these models
decompose the complex image generation process into a sequence of simpler steps. In diffusion-
based models [36, 15], this decomposition unfolds over continuous time-steps t ∈ [0, 1] by the
reverse diffusion process: starting from Gaussian noise x0 ∈ N (0, 1) with t = 0, the model
iteratively denoises each xt to form the trajectory x0 ⇝ x1, where x1 = x. In autoregressive
(AR) models [65, 74], x is represented as a sequence of discrete visual tokens VK = [v1, . . . , vK ]
(reasons not considering continuous visual tokens in this work included in Appendix A.1), and image
generation proceeds by sequentially predicting each token given previous ones. In both cases, models
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Figure 1: (a) The mismatch between the behavior policy q(xt|x1) and target policy (the reverse
trajectory of a diffusion model parameterized by θ) in Diffusion-DPO [69]. This leads to poor
action-space coverage, e.g., xt along the target policy trajectory is often outside the shaded 95%
confidence interval of q(xt|x1)). (b) Due to the anti-causal links (red) for spatial tokens, learning the
locally optimal policy π∗

4 for a later token (e.g., v4) can propagate backward and interfere with earlier
tokens that were already optimized (e.g., v1, v2, v3). In contrast, AR tokens without such links do not
have this issue. A more formal illustration is in Section 2.2.

are trained to follow the alignment of each paired training sample (x, y) over the entire generation
process: given y, each generation step is directly supervised to match a ground-truth specified by x,
i.e., its forward path in diffusion-based models or token sequence in AR models.

However, this form of supervised learning is fundamentally limited due to the one-to-many nature
of text-to-image mapping. For instance, a single text prompt may correspond to infinitely many
plausible images, yet the training dataset only includes a finite set of its typical looks (e.g., x =round
apple, y =“an apple”). Because perfect alignment between x and y is inherently ambiguous, models
trained through supervision eventually resort to mimicking the training distribution, rather than
faithfully following prompt y to generate a corresponding x. For example, we empirically observe
that in early-stage training, models can still follow prompts about an atypical look, such as “a squared
apple”, but as training converges, their generated images eventually collapse to typical examples in
the training dataset, such as round apples.

A straightforward remedy is to curate a supervised dataset that exhaustively covers all possible
alignments. Yet, this approach is unsustainable.

This motivates us to train visual generative models with Reinforcement learning (RL), which offers a
proven solution to this challenge, as demonstrated extensively on Large Language Models (LLMs) [66,
24]. Instead of supervising each generation step by the alignment in the training dataset, RL instead
imposes a task-specific reward only after the full generation process is complete, e.g., computing
the CLIP-based image-prompt similarity as the reward. This shift enables the model to explore
diverse generation trajectories and exploit those that yield high rewards, thereby incentivizing prompt-
following visual generation. For example, given y =“a square apple”, a model trained with RL is
incentivized to produce any image that is semantically consistent with the prompt, without being
constrained by the alignment in the training dataset.

Unfortunately, existing image representations have the following limitations for visual RL:

• Diffusion-based models induce an infinite Markov Decision Process (MDP) formulation with
high-dimensional, continuous state-action spaces (i.e., xt as a state, a denoising step as an action),
which complicates optimization in RL. Recent attempt [69] explores an off-policy approach, where
the key challenge is the lack of state-action trajectories available in the original Direct Preference
Optimization formulation [55], due to the intractable diffusion inversion [48]. As a workaround,
it samples from the forward diffusion process to approximate the behavior policy. However, as
shown in Figure 1a, this introduces a large mismatch between the behavior policy (a linear forward
path) and the target policy (a non-linear reverse trajectory), leading to poor action-space coverage
and hence inefficient learning [63].

• Current AR models use spatial visual tokens [9, 75, 74], where images are represented as grids of
patches, a convention dating back to early computer vision. However, we show that these spatial
tokens lack the true AR structure, which violates the policy improvement optimality in RL [63]
(Section 2.2), as illustrated in Figure 1b. First, spatial pixels (the cause) collectively form the image
(the effect), and observing any part of the image during encoding induces spurious dependencies
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Figure 2: Text-to-Image generation results by Selftok using the text prompts of DPG-Bench.

among tokens due to the collider effect [51], leading to a non-AR causal graph. Second, predicting
a token at a later step (action) affects the tokens predicted in earlier steps (earlier states), so the
later policy may contradict earlier policies that have already been optimized. Hence, RL applied to
spatial tokens is expected to be significantly less effective than when applied to AR tokens.

In this paper, we build an AR model that supports effective RL-based post-training for visual
generation. First, we completely abandon the long-standing spatial prior and introduce Selftok: Self-
consistency Tokenizer [70], which leverages the AR nature of the reverse diffusion process to encode
an image into autoregressive tokens corresponding to its diffusion generation trajectory (Section 2.1).
Next, thanks to its AR property, Selftok produces visual tokens that satisfy the optimality condition
of the policy improvement (Section 2.2). Motivated by this, we build Seltok-Zero (Section 3),
a Selftok-based AR model post-trained with visual RL. Without using any pairwise supervision,
Selftok-Zero achieves impressive image generation performances on GenEval: 92% (Table 1) and
DPG-Bench: 85.57 (Table 2). Comparisons of text-to-image generation with existing VLMs are
given in Figure 5.
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Figure 3: (a) The causal graph for AR, where each dotted direct edge represents a causation. (b) The
recursion of the AR causal graph. (c) The causal graph for learning V≥k(t) in Eq. (5).

2 Problem Formulation

We begin by introducing the Selftok tokenizer [70]—which encodes images into autoregressive (AR)
token sequences derived from the reverse diffusion process—and an AR model based on its visual
tokens (Section 2.1). We then formulate the visual reinforcement learning (RL) problem and show
why AR tokens are necessary for policy improvement in this setup (Section 2.2).

2.1 Selftok: Self-Consistency Tokenizer

Selftok encode an image I into K discrete tokens, i.e., Enc(I) = VK = [v1, v2, ..., vK ], which
can be decoded to reconstruct I while adhering to an autoregressive (AR) prior. We formulate the
following constrained optimization:

min
Enc(I)=VK , Dec

∥I −Dec (VK) ∥2,

s.t. P (VK)
AR
= P (v1) · P (v2|v1) · . . . · P (vK |v1, . . . , vK−1),

(1)

where we define AR
= as a special equality to indicate that the tokens VK conform to the AR causal

graph in Figure 3a, i.e., each token is generated from its predecessors1. This definition is necessary,
as the factorization is always valid for any token sequence through the chain rule of probability and
does not necessarily imply an AR structure per se.

As with other discrete compression problems [78], solving the constrained optimization in Eq. (1)
is inherently NP-hard due to the combinatorial nature of token assignment. To make this tractable,
we introduce an inductive bias grounded in the reverse diffusion process, which jointly satisfies the
AR constraint and the reconstruction objective. In particular, the term “Consistency” comes from
Consistency Model [60]. Similarly, we use a diffusion model and make the decoder consistent with
the image generation path, i.e., reconstructing x1 = I from any noisy inputs xt along the path.

Specifically, we show in Figure 3b that AR structure has an equivalent recursion, enabling a divide-
and-conquer approach that decomposes the challenging constraint in Eq. (1) into simpler ones:

P (VK)
AR
= P (V<i) · P (V≥i|V<i), (2)

where V<i = [v1, v2, ..., vi−1] and V≥i = [vi, vi+1, ..., vK ]. For example, we can recursively apply
Eq. (2) until it becomes a trivial learning problem P (V<K) · P (vK |V<K): if V<K is provided, it is
easy to encode the last token vK . Interestingly, the reverse diffusion process (in ODE form) has a
similar decomposition [43, 61]:

dxt

dt
= vt(xt), t ∈ [0, 1]

solution
=⇒ x1︸︷︷︸

destination

= xt︸︷︷︸
midway point

+

∫ 1

t

vs(xs)ds︸ ︷︷ ︸
path from midway

to destination: xt⇝x1

, (3)

where vt(xt) is the velocity field at time-step t that transports the noisy midway xt, starting from
x0 ∈ N (0, 1), towards the clean image x1 = I . This shows that, if the midway xt is provided, the
reconstruction of x1 starting from xt is easier than directly moving from x0 to x1.

1This can be written mathematically as P (V<i|do(V≥i)) = P (V<i) ∀i ∈ {1, . . . ,K} using the do-
calculus [51].
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Hence, we can establish a correspondence between the two recursions by aligning the provided
midway point (part 1) and what comes after it (part 2), respectively:P (VK)⇐⇒ x1︸ ︷︷ ︸

Whole

 =

P (V<i)⇐⇒ xt︸ ︷︷ ︸
Part 1

 +

P (V≥i|V<i)⇐⇒
∫ 1

t

vs(xs)ds︸ ︷︷ ︸
Part 2

 . (4)

Motivated by this, we aim to compose the AR constraint into the reconstruction in Eq. (1). Specifically,
we decompose the entire reconstruction (from pure noise x0 to x1) into two parts with a similar
recursion: Part 1: A given xt, sampled from the diffusion path q(xt|x1), encapsulates V<i, which
is assumed to be already encoded; and Part 2: The reconstruction from xt to x1 for learning the
tokens V≥i = [vi, vi+1, . . . , vK ]. Now, we present the Selftok training objective for an image sample
x1 = I:

Selftok objective : min
Enc(x1)=VK ,

Dec

E
t∈[0,1]

[
E

xt∼q(xt|x1)

[
∥x1 −Dec(xt,V≥k(t))∥2

]]
, (5)

where V≥k(t) = [vk(t), vk(t)+1, ..., vK ] and k(t) is a token schedule with k(1) = K+1 and k(0) = 1,
which maps each continuous time-step t to a discrete token index i in Eq. (4). The choices of q(xt|x1)
and k(t) are discussed in Section C. When the context is clear, we use k(t) and i interchangeably.
We highlight that our Sefltok is indeed non-spatial: VK discretizes the continuous velocity field of
the entire image generation path, which is beyond the naïve spatial visual cues. Seltok objective in
Eq. (5) optimizes the original one in Eq. (1) from three aspects: (1)Reconstruction; (2)AR Constraint
by Recursive Design; (3)AR Constraint by Causal Identification. Detailed explanation are provided
in Appendix A.2. Thus, the inner expectation of Eq. (5) can be rewritten as:

E
x0∼N (0,1)

[
∥x1 −Dec

(
σ(t) · x0 + µ(t) · x1,V≥k(t)

)
∥2
]
, (6)

We pre-train a VLM based on the AR tokens produced by Selftok. First, we initialize the VLM from
the pretrained Llama3-8B [2] model and expand its vocabulary with an additional |C| = 32, 768
Selftok visual words. As a result, the model’s vocabulary integrates both textual and visual tokens
into a unified embedding space. Next, the VLM is pre-trained using the standard language modeling
objective on interleaved language and visual tokens. We include additional details in Appendix B.

2.2 Visual RL

In visual RL, we aim to fine-tune a VLM (policy) that selects the next token (action) based on the cur-
rent sequence (state) to maximize a task-specific reward (e.g., the consistency between the text prompt
and generated image). Without loss of generality, we limit our discussion to visual tokens [v1, . . . , vK ],
as the same principle applies to language tokens. We discuss the recipe for visual RL in detail:

𝒔𝒌

𝒗𝒌+𝟏

𝒗𝒍
… … …

…
𝒔𝒌+𝟏

1 2 … |𝒞|

Figure 4: The recursive Bellman
equation fails when a child node
vl (i.e., future token) anti-causally
affects a parent node vk+1.

1) State: The state sk = [v1, . . . , vk] is the token sequence
generated by VLM at step k ∈ {1, . . . ,K}, and the initial state
s0 = [] is defined as an empty sequence.
2) Action: An action at step k selects the next token vk+1 from
the visual codebook C, i.e., at each step, there are |C| possible
actions to choose from.
3) State transition: P (sk+1|sk, vk+1) = 1 because sk+1 =
[sk, vk+1].
4) Reward: Generally, the reward r(sk, vk+1) received at step
k + 1 depends on the previous state sk (where the reward is
from) and the action as the next token vk+1, predicted at the
previous state (how the reward is obtained). With the state and
action defined above, sk+1 = [sk, vk+1], we can also write
r(sk+1) = r(sk, vk+1).
5) Policy: Given the current state sk, the policy π(vk+1|sk)
predicts an action as the next token vk+1. The goal of RL is to find an optimal policy π, which
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generates a trajectory s0 ⇝ sK that maximizes the cumulative reward (with omitted discount factor):

max
π

Vπ(s0), where Vπ(sk) = Eπ

[
K−1∑
i=k

r(si, vi+1)

]
. (7)

Vπ(sk) is the value function, accounting for the expectation of all the possible cumulative rewards
received along the trajectory sk ⇝ sK generated by π.

We show that only AR tokens can derive the Bellman equation, which underpins the optimality of
policy update that guarantees effective RL2. Vπ(s0) in Eq. (7) can be rewritten as:

Vπ(s0) =
∑
v1∈C

π(v1|s0) · [r(s1) + Vπ(s1)] . (8)

Therefore, we can recursively apply Eq. (8) and derive the Bellman equation:

Vπ(sk) =
∑

vk+1∈C
π(vk+1|sk) · [r(sk+1) + Vπ(sk+1)] . (9)

Thanks to the above equation, the optimized π in Eq. (7) can be step-by-step obtained:

argmax
vk+1

π′(vk+1|sk)← argmax
vk+1

[r(sk+1) + Vπ(sk+1)] . (10)

Although the above policy update is greedy, its optimality is guaranteed by the policy improvement
theorem [63], which shows that the locally optimal action vk+1 at step k does not affect the earlier
improved actions due to the AR property. Note that non-AR spatial tokens cannot satisfy the Bellman
equation, and therefore cannot support the policy update that relies on it. The key reason is that
Eq. (A15) cannot be derived, as the future action vl, where l > k + 1, influences earlier actions
through the anti-causal links (shown red in Figure 4). Therefore, spatial tokens are not compatible
with RL.

3 Selftok-Zero: Selftok-based Visual RL

We now describe the implementation details for Selftok-based visual RL for visual generation, such
as text-to-image and visual editing tasks, without using any pairwise supervision, including two
reward models for evaluating the quality of the generated images and training objectives for updating
the policy network.

3.1 Reward Model

The overall design philosophy of our reward model is to utilize visual comprehension models to
evaluate the generated image in visual RL and provide feedback for optimization. For tasks such as
text-to-image generation, the comprehension model should understand and evaluate the consistency
between the generated image and the textual prompt. In this paper, we categorize the comprehension-
based reward into two major types:
Program-based Reward: This type is useful for more structured tasks like object identification,
counting, and spatial relationships [20], where the prompt explicitly and unambiguously states the
desired generation, e.g., “3 clocks and 1 dog”, and thus we can use visual detectors [7] to evaluate the
generation quality. For example, we count the clocks based on the detector’s confidence, returning
1 if the count is correct and 0 otherwise. Each prompt has its own item sets to be tested, and the
average of the scores for each test is used as the reward score.
QA-based Reward: For more complex and ambiguous prompts, it is challenging to rely solely
on automated programs. To this end, we resort to more powerful visual comprehension models
like InternVL [11] or GPT-4o [32], which can comprehend nuanced prompts and generate accurate
answers. Specifically, inspired by [12], we first decompose the prompt to semantic tuples (e.g., entity,
attribute, and relation) and then generate questions (e.g., “Is the car red?”). The MLLMs are asked
to perform a VQA task for the prompt and generated image, returning a score of 0 to 1 (e.g., wrong
to correct) for each question. The reward is obtained by averaging the evaluation of the MLLMs

2Details of the derivation are provided in Appendix A.3
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on multiple questions for a prompt. We can also fine-tune such models to obtain more task-specific
reward functions.

As a preliminary study, we only validate the feasibility of the above two types. However, we believe
that there should be more effective comprehension tasks as reward models for better performance,
and we leave the exploration of them for future work.

3.2 Policy Gradient

We adopt a simplified version of GRPO [58] without importance sampling and encourage readers
to explore more advanced alternatives. For each prompt, the policy network π generates a batch of
outputs {si}Bi=1, where B represents the batch size and each si denotes the final state [v0, v1, . . . , vK ]
of the i-th visual sequence. For a batch, we calculate the total rewards {r(si)}Bi=1, where we slightly
abuse the notation that the total reward r(si) = r(siK) as all the intermediate rewards r(sik) = 0,
∀k < K. We also calculate the advantages {Ai}Bi=1, where each Ai measures the relative quality of
output si compared to the average reward:

Ai =
r(si)−mean({r(s1), r(s2), . . . , r(sB)})

std({r(s1), r(s2), . . . , r(sB))
, (11)

where mean(·) and std(·) are the mean and standard deviation of all rewards, respectively.

Then, we update the policy network parameters by the following training loss:

L = − 1

B

B∑
i=1

[Ai − λDKL(π||πold)] , (12)

where the KL divergence DKL(π||πold) = πold
π − logπold

π − 1 is to maintain training stability. It
measures the difference between the new policy π and the old policy πold, where the new policy π
is the up-to-date one after policy gradient; the old policy πold refers to the one used to generate the
token sequences before the policy gradient update.

4 Related Work

Most visual generative models are trained purely on paired text–image datasets via large-scale
pre-training [36, 18, 68], or additionally with supervised fine-tuning on curated high-quality data
pairs [9, 19]. Recent efforts have attempted to transition from supervised learning to reinforcement
learning (RL) to better align visual outputs with textual prompts. In the context of diffusion models,
DPOK [17] and DDPO [5] are the first to formulate RL training frameworks, but they do not
demonstrate visual generation capabilities in a fully open-vocabulary setting. Subsequent works
adapt Direct Preference Optimization (DPO)[69] to diffusion-based generation, but has a mismatched
behavior and target policy, leading to poor action-space coverage and inefficient learning. More recent
methods based on Guided Reward Policy Optimization (GRPO)[42, 77] report promising results, but
their policy networks impose restrictive Gaussian assumptions over denoising actions and operate
under limited RL horizons (e.g., 10 denoising steps), which we hypothesize may hinder exploration
and constrain the model’s maximum potential. For AR models, existing approaches are typically built
on either spatial visual tokens [74, 68, 85] or unstructured 1D token sequences [56] that lack explicit
constraints to enforce causal ordering. These designs violate the policy improvement optimality in
RL, which leads to significantly diminished gains from RL training. In contrast, our method builds on
AR visual tokens, which enables tractable RL by defining a proper policy via softmax over a discrete,
fixed-size action space. These ultimately lead to state-of-the-art performance in open-vocabulary
visual generation, as demonstrated in Section 5.

5 Experiment

In this section, we experimentally evaluate the text-to-image generation capabilities of the Selftok-
Zero, demonstrating the effectiveness of visual RL. We also provide details of the visual RL training
and analyze the impact of various factors on the model performance.
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Table 1: Evaluation of text-to-image generation ability on GenEval benchmark. Janus-Pro-7B†
represents the result of our evaluation. Janus-Pro-7B-Zero represents a model that has undergone the
same visual RL process as Selftok-Pre-Zero and Selftok-Zero.

Type Method Single Obj. Two Obj. Counting Colors Position Color Attr. Overall

Diffusion Only

PixArt-α [6] 98 50 44 80 8 7 48
SDXL [52] 98 74 39 85 15 23 55
FLUX.1-dev [36] 98 79 73 77 22 45 66
DALL-E 3 [59] 96 87 47 83 43 45 67
SD3-Medium [15] 99 94 72 89 33 60 74
CogView4-6B [3] 99 86 66 79 48 58 73
HiDream-I1 [26] 100 98 79 91 60 72 83

Hybrid Model

SEED-X [19] 97 58 26 80 19 14 49
Transfusion [82] - - - - - - 63
D-DiT [40] 97 80 54 76 32 50 65
Show-o [76] 98 80 66 84 31 50 68
GPT-4o‡ [49] 99 92 85 91 75 66 85

Pure dAR

Emu3-Gen [74] 98 71 34 81 17 21 54
TokenFlow-XL [53] 95 60 41 81 16 24 55
ILLUME+ [31] 99 88 62 84 42 53 72
Infinity [25] - 85 - - 49 57 73
Janus-Pro-7B [9] 99 89 59 90 79 66 80

Janus-Pro-7B† 98 88 58 88 76 65 79
Janus-Pro-7B-Zero 98+0 95+7 58+0 89+1 90+14 81+16 85+6

Selftok-Pre 99 57 58 81 22 43 60
Sefltok-Pre-Zero 99 +0 94 +37 58 +0 89 +8 89 +67 73 +30 84 +24

Selftok-SFT 100 79 66 91 45 62 74
Selftok-Zero 99−1 95+16 88+22 94+3 96+51 79+17 92+18

5.1 Implementation details

We perform visual RL (Section 3.1) on two pre-training checkpoints—Selftok-Pre trained purely on
image-text interleaved data and Selftok-SFT with additional fine-tuning on curated dataset—leading
to two final models Selftok-Pre-Zero and Selftok-Zero, respectively. We evaluate their performance
on Geneval [20] and DPG-Bench [30]. For program-based reward, we use MM-Detection [7] as the
detectors and set the threshold for detection to 0.6. For QA-based reward, we utilize InternVL [11]
and mPLUG [37] as the comprehension model. Note that we carefully deduplicate the training
prompts to ensure that there is no overlap with the test set. For the sake of reproducibility, after the
visual RL training, we do not incorporate any test-time scaling techniques during inference.

5.2 Main Results

The quantitative experimental results are summarized in Table 1 and Table 2, which evaluate the
performance of our Selftok-based approach on the GenEval and DPG-Bench benchmarks.

Selftok-Zero achieves state-of-the-art performance in text-to-image generation. As shown in
Table 1, Selftok-Zero obtains the highest overall score of 92 on the GenEval benchmark, surpassing
all previous models, including strong baselines such as CogView4-6B (73) and HiDream-I1 (83).
Selftok-Zero also outperforms across all major sub-tasks, e.g., Colors (94) and Position (96). Sim-
ilarly, on DPG-Bench (Table 2), Selftok-Zero achieves an overall score of 85.57, outperforming
SD3-Medium (84.08) and Janus-Pro-7B (84.19). The qualitative results are presented in Figure 5, the
images generated by Selftok-Zero exhibit high-quality alignment with the textual descriptions.

Visual RL significantly enhances image-text consistency. A direct comparison of Selftok-SFT
vs Selftok-Zero and Janus-Pro-7B† vs Janus-Pro-7B-Zero highlights the benefits of visual RL. On
GenEval, Selftok-Zero improves upon its supervised counterpart in nearly every metric, with notable
gains in Position (45→96) and Counting (66→88). On DPG-Bench, visual RL leads to a +3.77
increase in overall score, with improvements in Entity (from 88.15→91.78) and Relation (from
93.68→95.26). These results indicate that visual RL is effective in closing the gap between generated
images and complex textual prompts.

Selftok is more effective than spatial tokens in visual RL. The results in Table 1 and Table 2 show
that Selftok significantly outperforms spatial token-based methods in visual reinforcement learning
(e.g., Janus-Pro-7B-Zero +6 vs Selftok-Zero +18 on GenEval). We illustrate the reward score changes
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Figure 5: Qualitative experimental results of Selftok-based visual RL. Compared to existing text-to-
image generation models, the images generated by Selftok demonstrate better alignment with the
given prompts.
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Table 2: Performances on DPG-Bench. The methods in this table are all generation-specific models
except Show-o, Janus-Pro, and Selftok.

Type Method Global Entity Attribute Relation Other Overall

Diffusion Only

PixArt-α [6] 74.97 79.32 78.60 82.57 76.96 71.11
SDXL [52] 83.27 82.43 80.91 86.76 80.41 74.65
DALL-E 3 [59] 90.97 89.61 88.39 90.58 89.83 83.50
SD3-Medium [15] 87.90 91.01 88.83 80.70 88.68 84.08
FLUX.1-dev [36] 85.80 86.79 89.98 90.04 89.90 83.79
CogView4-6B [3] 83.85 90.35 91.17 91.14 87.29 85.13
HiDream-I1 [26] 76.44 90.22 89.48 93.74 91.83 85.89

Hybrid Model Show-o [76] - - - - - 67.48

Pure dAR

Emu3-Gen [74] 85.21 86.68 86.84 90.22 83.15 80.60
Janus [75] 82.33 87.38 87.70 85.46 86.41 79.68
Infinity [25] 93.11 - - 90.76 - 83.46
Janus-Pro-7B [9] 86.90 88.90 89.40 89.32 89.48 84.19

Janus-Pro-7B† 83.59 89.74 87.51 92.94 81.20 83.48
Janus-Pro-7B-Zero 84.50+0.91 90.13+0.39 87.29−0.22 93.44+0.50 82.40+1.20 84.49+1.01

Selftok-Pre 87.41 87.09 88.08 87.89 87.42 80.37
Selftok-SFT 82.07 88.15 87.69 93.68 80.40 81.80
Selftok-Zero 83.59+1.52 91.78+3.63 89.04+1.35 95.26+1.58 82.80+2.40 85.57+3.77

during visual RL evaluation on GenEval and DPG-Bench in Appendix. It is evident that although
Janus-Pro-7B† (79) outperforms Selftok-SFT (74) before visual RL, Selftok-Zero comes from behind
to surpass Janus-Pro-7B-Zero (e.g., +7 on Geneval), thanks to the AR properties of Selftok (see
Section 2.1). These results further highlight the significant impact of the image tokenizer design on
visual RL.

Program-based reward yields more substantial gains in visual RL. We observe that the improve-
ments on GenEval (program-based reward) are more pronounced than on DPG-Bench (QA-based
reward). While Selftok-Zero outperforms Selftok-SFT by +18 in overall score on GenEval (74→92),
the improvement on DPG-Bench is slightly smaller (+3.77, 81.80→85.57). This suggests that
program-based reward—enabled by structured detectors and precise matching—provides stronger
and more reliable training signals during reinforcement learning, especially for attributes like object
counting, color, and spatial layout.

Qualitative Examples. In Figure 2, we visualize the performance of Selftok-Zero on the DPG test
prompt. We also compare our model with MidJourney [67] and FLUX [36], showing that Selftok-
Zero performs well in both adhering to complex semantics and generating aesthetically pleasing
images. However, it should be noted that the current model can only generate images at a resolution
of 256× 256, indicating significant potential for improvement in image detail in future work.

6 Conclusion

In this paper, we introduce Selftok-Zero, an autoregressive (AR) visual generative model trained
with reinforcement learning (RL)), built upon Selftok’s AR visual token representation. Unlike prior
models based on spatial or unstructured token sequences, Selftok-Zero leverages the AR dependency
among Selftok tokens to enable stable and theoretically grounded policy improvement under RL.
By defining a well-structured policy over a tractable discrete action space, Selftok-Zero eliminates
the need for pairwise supervision and enables efficient, end-to-end RL optimization using task-
specific reward signals. Empirically, Selftok-Zero achieves strong results, significantly outperforming
existing models on GenEval and DPG-Bench benchmarks. To our knowledge, this is the first work
to demonstrate that RL-based post-training can substantially enhance the open-vocabulary visual
generation capabilities of AR models. As future work, we aim to improve the token generation speed
of Selftok-Zero by spatial-temporal compression, and extend Selftok-Zero toward high-resolution
generation and physics-aware visual reasoning.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, We discussed the flaws in current RL in
visual generation fields. And we introduce a new method to improve it in this paper, which
accurately match the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section 6, we point out that our work is limited to the speed of token
generation and image resolution. In the future work we will try to improve them.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: As shown in section2, we provide the full proof that our AR token can derive
the Bellman equation.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduce the details of our experiment in section5.1, which can help the
readers to reproduce our results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the relevant materials, including the source code, to help the
community reproduce our result in supplemental materials. The benchmark data comes
from the Geneval and DPG open-source benchmark.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the experiment details in section5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: To ensure a fair comparison with the baseline method, we strictly adhere to the
testing settings of the Geneval and DPG benchmark.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the detail about the compute resources in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully conform with the NeurIPS Code of Ethics in our code in every
respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the Broader Impacts in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work has no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include the license of each asset in Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use LLM as our backbone model and reward model, as the details we
introduced in section5.1.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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This appendix is organized as follows:

• In Section A, we include additional problem formulation, including the use of discrete visual tokens
in Section A.1 and the Self-consistency Tokenizer (Selftok) in Section A.2.

• In Section B, we discuss additional implementation details, including the evaluation dataset in
Section B.1, Selftok implementation in Section B.2, autoregressive (AR) model pre-training in
Section B.3 and visual reinforcement learning (RL) in Section B.4.

• In Section C, we show additional results that demonstrate the AR structure of Selftok tokens,
ablation study on Selftok to justify our choice of hyperparameters, reward progression in visual
RL, qualitative results showing that visual RL reduces hallucination, and potential of visual RL in
image editing.

• In Section D and E, we discuss the current limitations of our work and broader impacts, respectively.

A Additional Formulation

A.1 Why Discrete?

pure dAR

<BOS> <𝒘𝟏> <𝒘𝟐> <BOV> <𝒗𝟏> <𝒗𝟐> <𝒗𝟑>

<𝒗𝟒><𝒘𝟏> <𝒘𝟐> <BOV> <𝒗𝟏> <𝒗𝟐> <𝒗𝟑>

...

...

XE loss

hybrid model (dAR + cAR)

...

...

MSE lossXE loss

(a) (b)

language tokens discrete visual tokens language tokens continuous visual tokens

<BOS> <𝒘𝟏> <𝒘𝟐> <BOV> <𝒗𝟏> <𝒗𝟐> <𝒗𝟑>

<𝒗𝟒><𝒘𝟏> <𝒘𝟐> <BOV> <𝒗𝟏> <𝒗𝟐> <𝒗𝟑>

B

Figure A6: Comparison of (a) pure discrete autoregressive model (dAR) and (b) hybrid model that
combines dAR and continuous autoregressive model (cAR). <BOS>/<BOV> indicates the start of a
sentence/image. <wi>/<vi> denotes the i-th language/visual token. Both models predict the next
token given all previous ones, e.g., [<BOS>, ..., <v3>]→<v4>.

We advocate the use of a pure discrete autoregressive model (dAR) (Figure A6a), rather than a
hybrid approach that combines a dAR for language and a continuous autoregressive model (cAR) for
images (Figure A6b) [82, 38]. The latter is widely adopted by proponents who argue that visual data
should be encoded as continuous tokens to minimize the compression loss, but this is just a minor
concern—there are many post-processing methods available to ensure the precision [14, 47, 64, 39].
However, using cAR (or hybrid) leads to major issues that cannot be fundamentally resolved without
adopting a pure dAR:
• cAR cannot inherit the successful infrastructure and training paradigm of LLMs. This is the

most common reason cited in existing dAR-based VLMs [65, 74, 1, 9, 35]. Yet, the following three
justifications are often overlooked by the community.

• cAR is more error-prone in next-token prediction. While dAR functions as a sequential token
classifier trained with cross-entropy (XE) loss, cAR operates as a sequential vector regressor trained
with mean squared error (MSE) loss, which is less stable and harder to optimize than XE [29, 8].
Perhaps this is the key reason why most cARs abandon the causal next-token prediction and
revert to bidirectional modeling, such as demasking [38, 79] or holistic reconstruction [82, 45].
Unfortunately, they undermine the core design philosophy of the decoder-only AR: the causal
dependency of tokens [54].

• cAR introduces unnecessary complexity into reinforcement learning (RL). It is widely known
that RL is an indispensable post-training step to unleash the power of LLMs [24]. However, cAR
turns the finite Markov Decision Process (MDP) formulation of dAR—with a discrete state-action
space—into an infinite MDP with a continuous state-action space, thereby complicating policy
optimization [46].

• Continuous representations are less disentangled than discrete ones. Disentanglement uncovers
the modular and true generative factors of data [27, 73], which are critical for: 1) Unbiased visual
comprehension, e.g., if “color” and “object” are disentangled, the model can still recognize a
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black swan as swan, even if all the training examples of swans are white; and 2) Controlled
generation, if such disentanglement holds, the model can generate a black swan without seeing
one in training. Since a real-valued vector is infinitely countable, a single continuous token may
theoretically entangle all the factor combinations. As a result, achieving disentanglement would
require an impractically large amount of training data to cover all the combinations [44], e.g., we
need O(NM ) images, where N is #values per factor and M is the #factors per image. In contrast,
discrete tokens, with their limited information bandwidth, serve as a strong inductive bias that
encourages disentanglement [28].

A.2 Selftok: Self-consistency Tokenizer

Here, we verify that the Seltok objective in Eq. (5) optimizes the original one in Eq. (1) from the
following three aspects:
1) Reconstruction: When t = 0, Eq. (5) already includes the reconstruction objective in Eq. (1)
by considering ∥I −Dec (VK) ∥2 = ∥x1 −Dec(x0,VK = V≥k(0)=1)∥2, because the latter decoder
only takes in a new non-informative input: the white noise x0.
2) AR Constraint by Recursive Design: Due to the correspondence between AR and diffusion
recursion in Eq. (4), Eq. (5) is a recursive breakdown of Eq. (1) by time-step t: V≥i is learned from
the reconstruction ∥x1 −Dec(xt,V≥k(t))∥2 that completes the path xt ⇝ x1; whereas the midway
point xt encapsulates V<i, which is considered to be already identified by x0 ⇝ xt. This satisfies
the probability factorization in Eq. (2) and the causal structure in Figure 3a.
3) AR Constraint by Causal Identification: To ensure that the learned VK is indeed of AR structure,
i.e., the encoder identifies the causal effect from V<i to V≥i, we need to justify that Eq. (5) is an
unbiased estimate of V≥i from xt (i.e., V<i) for all t ∈ [0, 1]. To this end, we show that Eq. (5)
induces the causal graph in Figure 3c: Causation x0 → xt ← x1 denotes that xt is sampled from
q(xt|x1) by mixing noise x0 and image x1; causation xt → V≥k(t) ← x1 denotes that the tokens
V≥k(t) are learned from x1 and xt. In this way, x0 serves as an instrument variable (IV) [51],
independent of the confounder x1. Recall the re-parametrization: xt = σ(t) · x0 + µ(t) · x1, where
σ(t) and µ(t) can be considered as time-specific constants [43]. Thus, the inner expectation of Eq. (5)
can be rewritten as:

E
x0∼N (0,1)

[
∥x1 −Dec

(
σ(t) · x0 + µ(t) · x1,V≥k(t)

)
∥2
]
, (A13)

which implies that V≥k(t) can be directly estimated from the IV x0, ensuring that V≥k(t) learned
from xt is unbiased, even in the presence of the confounder x1.

A.3 RL theoretical derivation

We now show that only AR tokens can derive the Bellman equation, which underpins the optimality
of policy update that guarantees effective RL. We start by rewriting our goal Vπ(s0) in Eq. (7):

Vπ(s0) = E
[v1∼π(·|s0),v2∼π(·|s1),...,vK∼π(·|sK−1)]

[r(s0, v1) + r(s1, v2) + . . .+ r(sK−1, vK)]

(A14)
= E

v1∼π(·|s0)
r(s0, v1) + E

v1∼π(·|s0)
E

[v2∼π(·|s1),...,vK∼π(·|sK−1)]
[r(s1, v2) + . . .+ r(sK−1, vK)]︸ ︷︷ ︸
Vπ(s1)

(A15)

=
∑
v1∈C

π(v1|s0) · [r(s1) + Vπ(s1)] . (A16)

Eq. (A14) holds because the transition probability P (sk+1|sk, vk+1) = 1. As shown in Figure 4,
Eq. (A15) holds because of the causal dependency of AR, where the choice of action vk+1 only
depends on sk and does not affect the former action vk that has already been chosen. Therefore, we
can recursively apply Eq. (A16) and derive the Bellman equation:

Vπ(sk) =
∑

vk+1∈C
π(vk+1|sk) · [r(sk+1) + Vπ(sk+1)] . (A17)
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Figure B7: Left: (a) Reconstructions with one-step renderer (512 or 1024 tokens) and multi-step
diffusion sampler (512 tokens, two seeds); Right: (b) Renderer architecture diagram.

B Additional Implementation Details

B.1 Dataset

We conducted experiments on GenEval [20] and DPG-Bench [30]. GenEval is an object-focused
framework to evaluate compositional image properties such as object co-occurrence, position, count,
and color, which is under MIT License. DPG-Bench is a benchmark used to evaluate the ability of
models to follow complex prompts, which is under Apache License. It contains diverse and complex
prompts and constructs QA pairs based on these prompts. These QA pairs are answered using a
MLM and then the final score is calculated.

B.2 Selftok

For encoder, We use a dual-stream transformer backbone like MMDiT [15], which consists of an im-
age stream (blue modules) and a token stream (yellow modules). Each stream has its own parameters,
specialized for processing patch-based image embeddings and AR-based token embeddings. The
backbone consists of N blocks with identical architecture. For quantizer, we use one based on cosine
similarity, which is updated through an exponential moving average instead of gradient descent.
For decoder, we use a diffusion model initialized from SD3 [15]. It is a dual-stream transformer
MMDiT architecture, where the input to the original language token stream is replaced with the
quantized embeddings. To remove the original language influence and better adapt to Selftok tokens,
the weights of our token stream are trained from scratch.

After training, we can apply a standard multi-step diffusion sampler [15, 56] to decode our tokens VK
into a reconstructed image. However, this process is slow as it requires multiple sequential forward
passes. To accelerate this, we build a renderer R(VK) that reconstructs I in a single forward pass. We
initialize R with the decoder weights. To remove its dependency on xt, we replace it with a sequence
of learnable “canvas” token embeddings as shown in Figure B7 (b), which becomes part of the model
parameters of R. Then with the learned token embeddings VK = Enc(I) frozen, we optimize R
jointly with an MSE loss for pixel-level reconstruction, LPIPS [81] and GAN [22] loss for perceptual
quality, as including the latter two resolves the well-known blurry reconstruction issue when training
a decoder with the MSE loss alone [34, 16]:

min
R(VK)=I′

max
D

∥I − I ′∥2︸ ︷︷ ︸
MSE loss

+λ1LPIPS(I, I
′)︸ ︷︷ ︸

perceptual loss

+λ2 (logD(I) + log(1−D(I ′))︸ ︷︷ ︸
GAN loss

 , (B18)

where λ1, λ2 are loss weights, D is the discriminator of the GAN. To improve training stability, we set
λ1 = 0.1, λ2 = 0 for the first 30k training iterations and λ1 = 0.5, λ2 = 0.5 afterwards. As shown
in Figure B7 (a), besides the improved visual perception, the one-step renderer brings two benefits:
1) it significantly reduces the image generation time, and 2) it eliminates the randomness introduced
by the random seed in diffusion-based generation (see Figure B7 (a)). We train the tokenizer on 32
Ascend 910B for 96 hours.

Please refer to [71] for the rest of details.

26



<BOS> an image <BOV> <v1> <v2> <EOS><EOV> <BOS> an image<BOV> <v1> <v2> <EOS><EOV>

<BOS> edit<BOV> <v1> <v1> <EOS><EOV> <BOV> <EOV>

Image Editing Visual Understanding
<BOS> question<BOV> <v1> <EOS><EOV> answer

Image-to-TextText-to-Image

<BOS> <BOV> <v1> <v2> <EOS><EOV> <BOS> an image <EOS>

Text-OnlyImage-Only
<v3> <v4> of cat with person

Figure B8: Illustration of the proposed data format for cross-modality and cross-task pre-training.

B.3 Pre-training

We initialize the VLM from the pretrained Llama3-8B [2] model, which is under META LLAMA 3
COMMUNITY LICENSE, and expand its vocabulary with an additional 32,768 Selftok visual words.
As a result, the model’s vocabulary integrates both textual and visual tokens into a unified embedding
space. The VLM is trained using the standard language modeling objective, which aims to maximize
the log-likelihood of multimodal token sequences in an AR fashion:

P (Y) =
|Y|∑
i=1

logPθ(yi|Y<i),

where the sequence Y may consist of interleaved language and visual tokens, and thus yi ∈ Y
denotes either a language token ⟨wi⟩ or a visual token ⟨vi⟩. Since both text and image content are
represented as discrete token IDs, the prediction head is shared and supervised at each position using
a cross-entropy loss. The training consists of the following two stages:

Stage1: Cross-modality Pre-training. In this stage, we aim to learn the correspondence between
visual tokens and language tokens, thereby facilitating the transition of the pre-trained Llama3 model
from LLM to VLM. To achieve this, we introduce four data formats designed to address the challenges
of cross-modality alignment. Each format helps the model process and integrate vision and language
inputs for coherent multimodal understanding and generation. The Text-to-Image format aligns
caption with visual data, enabling image generation from textual descriptions. Conversely, the Image-
to-Text format facilitates understanding tasks by associating visual data with textual descriptions. To
address potential misalignments that can occur during text-to-image tasks, the Image-Only format is
introduced, allowing the model to learn visual structure independently. Finally, the Text-Only data
ensures the preservation of the model’s linguistic capabilities, maintaining its ability to process and
generate text. These formats and their functions are summarized in Figure B8, with special tokens
such as [BOS] and [EOS] marking the sequence boundaries, and [BOV] and [EOV] indicating the
start and end of visual data. The training data is comprised of 530 million high-quality image-text
pairs and text sequences and we train the model on 400 Ascend 910B for 120 hours.

Stage2: Cross-task Pre-training. In this stage, we perform cross-task pre-training to enable the
model to learn human instructions across various tasks. This is accomplished through supervised
fine-tuning (SFT) on datasets from three distinct tasks: 1) text-to-image generation, 2) image editing,
and 3) image understanding. The instruction format follows the structure “USER: <Instructions>
ASSISTANT: <Answers>”, where only the content of <Answer> contributes to the loss function,
optimizing the model’s ability to provide accurate responses. In Stage2, we fine-tune the model using
8 Ascend 910B for 8 hours.

We denote the VLM after stage 1 and 2 as Selftok-Pre and Selftok-SFT, respectively.

B.4 Visual RL

We adopt GRPO [58] setting the coefficient of KL divergence β to 0.04 and the size of the group to
24 with synchronous sampling and update frequency. During training, the model is optimized using
the AdamW optimizer with a learning rate of 1.5e-6. We train the model on 64 Nvidia A800 GPUs
for 96 hours.
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Figure C9: Plots of the next-token prediction entropy versus token position for our Selftok, 2D spatial
tokens (VQGAN-LC [83]), 1D tokens (FlowMo [56]), multi-scale 2D tokens (VAR [68]), using the
original or shuffled sequences. Only Selftok exhibits a segmented decreasing trend that aligns with
the three sequence orders. Although VQGAN-LC also displays a segmented trend, each segment is
not decreasing. Conversely, while FlowMo shows a decreasing trend, it is not segmented under the
shuffled orders.

C Additional Results

Semantic interpretability. We find that tokens corresponding to smaller time-steps tend to capture
the overall background, color tone or composition of the image, those at middle ones tend to capture
object shapes and those at larger ones tend to capture fine-grained details and textures. This is because
the diffusion process itself is tightly linked with visual semantics [1,2,3], and Selftok simply encode
the process as tokens, as shown in Figure C10

AR structure. We empirically verify that the structure of Selftok is AR by plotting the token predic-
tion entropy curves w.r.t. token positions under three generation orders using a dAR model (Llama
3.1). Besides the normal sequential order [v1, v2, v3, ...], we use another two orders: 1) stride-one
shuffle, which is a concatenation of subsequence [v1, v3, ...] followed by subsequence [v2, v4, v6, ...],
and 2) stride-two shuffle, which is a concatenation of subsequence [v1, v4, v7, ...], [v2, v5, v8, ...], and
[v3, v6, v9, ...]. The design principle of these orders is simple: an ordered subsequence of an AR
sequence is still AR. As entropy measures the uncertainty in token prediction, if the sequence is AR,
the entropy trend is generally decreasing. Therefore, if the token sequence is AR, the two shuffled
orders should demonstrate a segmented decreasing curve. As shown in Figure C9, we can see that
only Selftok demonstrates such a segmented decreasing trend corresponding to the three sequence
orders.

Time sampler. For time sampler, besides the simple uniform sampling, SD3 [15] introduces the
logit-normal time-step sampler by assigning higher probability density to mid-range time-steps
(t ≈ 0.5). We compared the reconstruction performance when using uniform and logit-normal
sampling in Table C3, which shows that the simple uniform sampling performs the best for Selftok.
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Figure C10: Progressive reconstruction (left to right): Reconstructions by progressively masking out
a shorter sequence of tokens before inputting to the decoder. Interpolation (left to right): Reconstruc-
tions by gradually replacing tokens of the left image with those of the right one. All methods except
Selftok exhibit strong spatial characteristics (i.e., tokens⇔patches).
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Table C3: Ablation on time sampler and token schedules.
‘sampl.’ and ‘sched.’ denote ‘sampler’ and ‘schedule’.

Time sampl. Token sched. PSNR↑ SSIM↑ LPIPS↓
uniform custom 21.86 0.600 0.150
uniform uniform 21.10 0.564 0.177
uniform logit-normal 20.78 0.555 0.180
logit-normal custom 20.98 0.561 0.170
logit-normal uniform 19.89 0.498 0.205
logit-normal logit-normal 20.08 0.513 0.196
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Figure C11: Token schedule k(t).
“lognorm” denotes logit-normal.

Table C4: Reconstruction performance of different tokenizers on 256 × 256-resolution ImageNet
50k validation set. † Results from the original paper.

Tokenizer Type #Token #Code rFID↓ PSNR↑ SSIM↑ LPIPS↓

LlamaGen [62] 2D 16×16 214 2.19 20.67 0.589 0.132
Cosmos [1] 2D 32×32 ≈ 216 0.87 24.82 0.763 0.070
VAR [68] 2D 680 212 0.99 22.12 0.624 0.109
TiTok-S-128 [80] 1D 128 212 1.71 17.52 0.437 0.210
FlexTok [4] 1D 256 64, 000 1.45 18.53 0.465 0.222
FlowMo-Hi† [56] 1D 1,024 214 0.56 24.93 0.785 0.073

Selftok (Ours) 1D 1,024 215 0.54 26.30 0.805 0.063

Token schedule k(t). Recall that the AR constraint in Eq. (1) requires that every token must
conform to the decomposition P (VK)

AR
= P (V<i) · P (V≥i|V<i), ∀i ∈ [1,K + 1]. We achieve this

decomposition by diffusion time-steps, thanks to the recursive nature of the reverse diffusion process
in Eq. (4), denoted as V≥i ⇔ xt ⇝ x1 and V<i ⇔ x0 ⇝ xt. That is to say, the second-half tokens
V≥i can be learned recursively by the diffusion decoder, conditioned on xt, which represents the
already identified first-half tokens V<i. As we uniformly sample t ∈ [0, 1] in training, the best
token schedule should be a uniform assignment k∗(t) = ⌈t×K⌉ + 1 to ensure that every token
is involved in the recursive diffusion time-step. To better understand this, we provide three failure
cases: 1) If we allocate all the tokens to V≥1, i.e., k(t) = 1, ∀t ∈ [0, 1), this corresponds to a trivial
decomposition P (V<1 = []) · P (VK |V<1 = []), VK ⇔ x0 ⇝ x1, and [] ⇔ x0, where we always
input the full VK to the decoder. So, VK loses all the AR property. This case reduces to the FlowMo
approach [56]. 2) If we always allocate all tokens to V<1, i.e., k(t) = K + 1, ∀t ∈ (0, 1], this
corresponds to another trivial decomposition P (VK) · P ([]|VK), [] ⇔ x0 ⇝ x1, and VK ⇔ x0,
where we always send an empty sequence to the decoder. This case reduces to the unconditional
diffusion generation without learning VK at all. 3) Consider a non-extreme case where k(t) is not
uniformly aligned with t, e.g., k(t = 0.8) = ⌈0.2×K⌉, we disrespect the decomposition because
the majority of tokens V≥⌈0.2×K⌉ corresponds to dense time-steps in the short interval t ∈ [0.8, 1],
while the rest ones in V<⌈0.2×K⌉ corresponds to sparse time-steps, violating the balanced recursive
correspondence in Eq. (4). We explored three different choices for k(t): 1) the uniform one with
k(t) = ⌈t×K⌉+ 1; 2) a custom schedule that allocates few tokens to small t; and 3) a logit-normal
schedule that allocates few tokens to both small and large t. We plot k(t) in Figure C11 and compare
the performance of the models trained with each schedule in Table C3. However, in practice, we
empirically observe a better reconstruction quality by designing a schedule k(t) that allocates fewer
tokens to smaller t, i.e., k(t) < k∗(t) for t < 0.5. This aligns with the well-known trait of diffusion
models: the early path x0 ⇝ xt for a small t has minimal impact on the reconstruction xt ⇝ x1,
which can be omitted [72, 50].

Tokenizer metrics. Encoding and decoding a single image with the Selftok tokenizer requires only
0.86 s and incurs a computational cost of 2.59 TFLOPs, underscoring the efficiency of our approach.
Quantitative comparisons with other tokenizers are provided in Table C4; our tokenizer achieves
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(a) GenEval scores of different
methods.

Methods GenEval Score

SDXL 53.8
SDXL + Diffusion-DPO 56.3 (+2.5)
Selftok-SFT 74
Selftok-Zero 92 (+18)

(b) DPG scores of different mod-
els. *Model trained only with the
program-based reward.

Model DPG Score

Selftok-SFT 81.80
Selftok-P* 82.43
Selftok-Zero 85.57

(c) Geneval scores of models trained
with different KL-divergence coeffi-
cients.

KL coefficient Geneval Score

0 –
0.05 92
0.1 87

B

Figure C12: Comparison of reward progression over steps for Selftok (Selftok-Zero) and spatial
tokens (Janus-Pro-7B-Zero) on GenEval and DPG-Bench.

state-of-the-art performance, attaining the best results to date on rFID (0.54), PSNR (26.30), SSIM
(0.805), and LPIPS (0.063).

Selftok is more effective than spatial tokens in visual RL. Figure C12 illustrates the reward
score changes during visual RL evaluation on GenEval and DPG-Bench. It is evident that although
Janus-Pro-7B† (79) outperforms Selftok-SFT (74) before visual RL, Selftok-Zero comes from behind
to surpass Janus-Pro-7B-Zero (e.g., +7 on Geneval), thanks to the AR properties of Selftok. These
results further highlight the significant impact of the image tokenizer design on visual RL.

Ablation Results. We conducted three categories of ablation studies: 1) Online vs. offline policy.
Using SDXL [52] with Diffusion-DPO [69] as the offline baseline, we observe in Table C5a that
Diffusion-DPO underperforms our method, likely because the sample trajectories are misaligned
with the model’s optimization trajectories. 2) Reward function comparison. We compare training
with only the program-based reward against training with both types of rewards. As shown in Table
C5b, combining the two rewards provides a more comprehensive learning signal and yields superior
performance. 3) KL-divergence ablation. We examine the effect of the KL divergence (Table C5c):
removing the KL term leads to highly unstable training, whereas increasing the KL coefficient slows
convergence. Accordingly, we set the KL coefficient to 0.05 in our experiments.

Hallucination in Text-to-Image Generation. One of the challenges in text-to-image generation
is the “hallucination” issue, where a Vision-Language Model (VLM) tends to generate images that
closely follow the training data distribution rather than genuinely reason about the text prompt. This
can lead to the model failing to generate certain objects or scenes that are less common or not well-
represented in the training set. In Figure C13, we provide examples where the Selftok-SFT model
fails to generate certain objects due to the rarity of these combinations in the training data. However,
after applying visual RL (Selftok-Zero), the model is able to generate these previously missing
combinations, showing a significant improvement in handling rare or complex prompts. The ability
of Selftok-Zero to generate these images after the visual RL phase highlights how reinforcement
learning can effectively overcome the hallucination problem, improving the model’s generalization
and reasoning capabilities beyond the initial supervised training.

Visual RL for Image Editing. To further unlock the potential of our model, we also incorporate Vi-
sual RL into the image editing task, where we utilize a Vision-Language Model (VLM)—specifically,
InternVL2.5-78B [10]—as the reward model. This model evaluates whether the generated image
strictly follows the instructions and accurately modifies the source image. Inspired by the work
of [23, 18], we ask the reward model to return a score between 0 and 5, with 5 indicating the highest
level of adherence to the instructions. In a few hundred steps, our Selftok-Zero model shows a
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Figure C13: More examples of failures in the Selftok-SFT model due to distributional biases in the
training data during vision-language supervised training.

Replace the vase 
with a plant

Change the cat 
sitting location 
to rocks

Remove the pink 
and white flowers

Remove the 
rainbow flag 
from the woman

Add red color to 
the lights

Make the red 
squirrel reading 
a book

Change the 
woman's hair to 
straight 
instead of curly

Change the 
surface from 
wood to glass

Input Selftok-SFT Selftok-Zero Input Selftok-SFT Selftok-Zero

Figure C14: Qualitative experimental results of Selftok-based visual RL on image editing. Compared
to the Selftok-SFT, the images generated by Selftok-Zero demonstrate better alignment with the given
instructions and better visual fidelity.

significant improvement over the Selftok-SFT model. As shown in Figure C14, our model can
correctly correspond to the instructions and generate appropriate edited images.

Unlike text-to-image generation, image editing involves more nuanced transformations, making it
significantly more challenging to evaluate automatically. The complexity arises from the need to
assess both the fidelity of the edits to the original image and the accuracy of the applied changes
according to the given instructions. Therefore, to provide a more general and accurate reward
for image editing tasks, we plan to explore more sophisticated reward models that can handle the
intricacies of image modification. Additionally, we aim to develop refined evaluation principles that
can better capture the subtlety and precision required in image editing. This will be a key focus in our
future work, where we hope to improve the reliability of automated assessments and provide more
meaningful feedback.

D Limitations

The primary limitation does not lie in Selftok itself, but rather in the significantly slower token
generation speed of LLMs compared to diffusion models. For instance, when using 512 tokens per
frame, generating a one-minute video clip at 24 fps would require generating 512×24×60 = 737, 280
tokens—posing a substantial throughput challenge. Fortunately, we are optimistic that this issue will
be mitigated by introducing spatial-temporal compression, in conjunction with the rapid progress in
real-time massive token generation within the LLM community [21]. Another limitation of this work
stems from the restricted model scale. Due to limited capacity, we have not yet demonstrated Selftok’s
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Figure C15: Qualitative results of 512× 512 resolutions.

ability to transfer visual knowledge to language and realize multimodal emergent capabilities. If
resources permit, we plan to investigate the scaling laws of multimodal training with Selftok, aiming
to validate its potential for cross-modal synergy. Next, we highlight our two ongoing works for
Selftok:

Multi-resolution Selftok. The current resolution of Selftok is limited to 256× 256, which constrains
the quality of visual generation. Our design follows an incremental principle: higher-resolution
images are supported by increasing the number of tokens, while reusing the tokens extracted from
their lower-resolution counterparts. This enables efficient scalability, allowing higher-resolution
data to leverage a dAR model pre-trained on lower-resolution inputs. This approach is particularly
appealing, as it parallels the practice in LLM training, where longer document training benefits from
prior training on shorter texts. Figure C15 presents our preliminary results, which will be included in
the future work.

Physics-aware Post-training Inspired by the impressive performance gains of visual RL by using
the program-based reward, our next step is to incorporate physical laws into Selftok-based video
generation. For example, we can track the trajectories of moving objects and evaluate whether
they conform to fundamental motion principles. This direction has great potential in addressing the
ever-lasting criticisms that large visual models struggle to learn a true world model [84, 33]. In our
recent work, we demonstrated that Selftok can achieve near-perfect object motion generation in a toy
visual environment [41].

E Broader Impacts

Ethical Impacts. Our work does not raise any ethical concerns. The research does not involve
subjective assessments or the use of private data. Only publicly available datasets and models are
utilized for experimentation.

Expected Societal Implications. Our work proposes an effective method to apply reinforcement
learning in visual generation. A major societal concern with this method lies in its potential for
misuse. For example, some malicious individuals may exploit our method to train model to generate
violent or pornographic images. To counteract such threats, it is crucial to develop strong ethical
standards and stricter regulation.
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