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Abstract
Graph-based approximate nearest neighbor search (ANNS) algo-
rithms are widely used to identify the most similar vectors to a
given query vector. Graph-based ANNS consists of two stages: con-
structing a graph and searching on the graph for a given query
vector. While reducing the query response time is of great prac-
tical importance, less attention has been paid to improving the
online search method than the offline graph construction method.
This paper provides an extensive experimental analysis on the pop-
ular greedy search and other search optimization strategies. We
also propose a novel angular distance-guided search method for
graph-based ANNS (ADA-NNS) to improve search efficiency. The
key innovation of ADA-NNS is introducing a low-cost neighbor
selection mechanism based on approximate similarity score derived
from angular distance estimation, which effectively filters out less
relevant neighbors. We compare state-of-the-art search techniques,
including FINGER, on six datasets using different similarity metrics.
It provides a comprehensive perspective on their tradeoffs in terms
of throughput, latency, and recall. Our evaluation shows that ADA-
NNS achieves 34%-107% higher queries per second (QPS) than the
greedy search at 95% recall@10 on HNSW, one of the most popular
graph structures for ANNS.
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• Information systems → Information retrieval query pro-
cessing; • Theory of computation→ Nearest neighbor algo-
rithms.

Keywords
Approximate Nearest Neighbor Search, Similarity Search, Graph-
based Approximate Nearest Neighbor Search

ACM Reference Format:
. 2018. Angular Distance-Guided Neighbor Selection for Graph-Based Ap-
proximate Nearest Neighbor Search. In Proceedings of ACM Web Confer-
ence 2025 (WWW’25). ACM, New York, NY, USA, 10 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction
Nearest neighbor search (NNS), which returns database vectors
with the smallest distance to the query vector, has been widely used
in many application domains, such as database [19, 38], information
retrieval [12, 25], machine learning [2, 10], and recommendation
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Figure 1: Graph-based ANNS example
systems [11, 28]. Exact solutions to this problem do not scale well
to high-dimensional, large-scale data due to the phenomenon of
the so-called curse of dimensionality [36, 41]. Approximate nearest
neighbor search (ANNS) offers more practical solutions, retrieving
𝑘 nearest neighbors faster than the exact NNS algorithms at the
cost of a slight accuracy loss. Significant practicality of ANNS has
been drawn attention from production-level search engines, such as
Microsoft search engine (e.g., Bing, Outlook, and SharePoint) [29]
and Alibaba’s Taobao e-commerce platform [16].

The typical ANNS algorihtms can be classified into four ma-
jor types: tree-based [3, 6, 13, 17, 37], hash-based [1, 23, 26, 39],
quantization-based [22, 24, 32], and graph-based ones [9, 15, 16, 21,
27, 31, 40]. The tree- and hash-based algorithms divide the vector
space into multiple subspaces and index them using tree structures
such as KD trees and hash tables. Quantization-based methods aim
to reduce the complexity of distance computation through quan-
tization. However, these methods often fail to retrieve accurate
results due to the information loss or suboptimal partitioning of
vector spaces. On the other hand, graph-based ANNS achieves both
competitive query throughput and accuracy for large-scale datasets
and various service scenarios [9, 21].

Graph-based ANNS consists of two essential phases—graph
construction and search. To efficiently traverse large-scale vec-
tor datasets, it first constructs a graph that serves as the index for
searching in the offline phase. Then, as shown in Figure 1, when
the user queries a vector, starting from the seed vertices, the search
algorithm gradually navigates through the connections to find vec-
tors more relevant to the query vector. The search algorithm is
typically implemented with greedy heuristics to find more relevant
feature vectors step by step. The combination of graph construc-
tion and search algorithm plays an essential role in database query
throughput and output quality (recall) compared to exact NNS.

Greedy search is typically deployed during the search, which
evaluates similarity metrics of all neighbors at every selected vertex.
While improving the query response time of graph-based ANNS is
of great practical importance, less attention has been paid to im-
proving this search algorithm than the graph construction method.
Several proposals have addressed this problem by optimizing the
similarity computation [8, 18, 31, 40], which is the major perfor-
mance bottleneck. However, these approaches often fail to deliver
a balanced solution in the trade-off between lower query response
time and memory overhead.

To this end, we provide a detailed, quantitative analysis of a
popular graph-based ANNS algorithm, HNSW [27], from various
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perspectives. We observe that a large portion of computations are
unnecessarily wasted, exposing opportunities to avoid costly sim-
ilarity calculations. Building on these insights, we propose ADA-
NNS, a novel angular distance-guided search mechanism integrated
into a complete end-to-end graph ANNS system. Specifically, this
paper makes the following contributions:

• We identify opportunities for significantly improving search
efficiency with a minimal loss in precision by utilizing ap-
proximate similarity to filter out less relevant vertices on the
search path. We find that only less than 20% of the neighbors
at each vertex are pertinent to maintaining high accuracy
with the various search algorithms and graphs.

• We propose ADA-NNS, a novel guided search method with
advanced neighbor selection using approximate similarity
score. We derive the lightweight proxy similarity from the
angular distance between a neighbor vector and the query
vector estimated using Sign Random Projection (SRP) [7].
We also design various optimization techniques to boost the
performance of the guided search process effectively. Our
evaluation demonstrates the robust performance of ADA-
NNS across various datasets.

• We evaluate state-of-the-art searchmethods to identify trade-
offs regarding throughput and recall. ADA-NNS achieves
34%-107% higher QPS than the greedy search on HNSW at
95% recall@10. These benefits come at a relatively small
memory cost of 3.3%-11.7% of the original index, which in-
cludes both the graph and the vector dataset.

2 Background and Motivation
2.1 Approximate Nearest Neighbor Search
The objective of ANNS is to retrieve the most relevant 𝑘 vectors in
the database to a given query vector. Most ANNS algorithms share
a set of common similarity metrics correlating features of database
vectors and the query, utilizing them to find better candidates.
Consider a vector database 𝐷 with 𝑑-dimensional feature vectors
𝑣 . For a given query 𝑞 ∈ R𝑑 , ANNS finds candidate 𝑘 vectors in
𝐷 that maximize similarity metric 𝑠 . Since the final 𝑘 vectors may
not be accurate, recall@𝑘 is used for measuring quality, which is
defined as |𝐾∩�̂� |

|�̂� | , where �̂� and 𝐾 are the set of the ground truth 𝑘
nearest neighbors and the set of the 𝑘 nearest neighbors returned
by ANNS, respectively [14].

𝑠𝐿2 (𝑞, 𝑣) = −||𝑞 − 𝑣 | |2 = −
𝑑−1∑︁
𝑖=0

(𝑞 [𝑖] − 𝑣 [𝑖])2 (1)

𝑠𝐼𝑃 (𝑞, 𝑣) = 𝑞 • 𝑣 =
𝑑−1∑︁
𝑖=0

(𝑞 [𝑖] · 𝑣 [𝑖]) (2)

Similarity Metric. L2 distance is one of the most commonly used
similarity metrics (Equation 1). It is computed by summing the
squared value of element-wise difference of 𝑑-dimensional vectors
and then taking the square root of this sum. Since taking the squared
root does not affect the relative ordering of L2 distance, it is often
omitted. Additionally, negative values are used to indicate a stronger
correlation for higher similarity scores. Another widely used metric
is the inner product (Equation 2), computed as the dot product of

Algorithm 1 Canonical Greedy Search Algorithm

Input: Graph 𝐺 , query 𝑞, size of candidate list 𝑒 𝑓 𝑠
Output: top-𝑘 nearest neighbors in candidate list
1: 𝑖 = 0, visited neighbors 𝑉𝑛 = ∅, visited candidates 𝑉𝑐 = ∅,
2: candidate 𝐶 = initial random seed vectors
3: while 𝑖 < 𝑒 𝑓 𝑠 do
4: 𝑉𝑐 .add(𝑐𝑖 ∈ 𝐶)
5: for 𝑛 𝑗 in get_neighbor({𝑐𝑖 ∈ 𝐶 | 𝑐𝑖 ∉ 𝑉𝑛 ∪𝑉𝑐 }) do
6: 𝑉𝑐 .add(𝑛 𝑗 )
7: 𝑠 = similarity(𝑞, 𝑛 𝑗 ) // Eq. 1 or 2
8: 𝐶 .add(𝑛 𝑗 )
9: Sort 𝐶 in descending order of the similarity to 𝑞
10: if 𝐶 .size() > 𝑒 𝑓 𝑠 then
11: Drop the most irrelevant vector (low similarity) in 𝐶
12: end if
13: end for
14: 𝑖 = index of the first unchecked vertex in 𝐶
15: end while
16: return top-𝑘 IDs in 𝐶

vectors 𝑞 and 𝑣 . This operation involves performing an element-
wise multiplication of the two 𝑑-dimensional vectors, followed by
a summation of the products.

2.2 Graph-based ANNS
Recent research in graph-based ANNS has focused on constructing
high-quality graphs to improve search efficiency and precision.
These approaches leverage various techniques to create graphs that
ensure efficient connectivity with minimal edges, thus targeting
high precision and low query response time.
Canonical Greedy Search Process.Algorithm 1 presents a canon-
ical ANNS algorithm that outputs the top-𝑘 closest vectors to a
query vector. The search process begins by initializing the candi-
date list with either a given seed or random values (Line 1-2). Then,
it enters the while loop, inspecting all the neighbors of the seed
vectors 𝑐𝑖 in𝐶 . Candidates for which similarity scores have already
been computed are marked as 𝑐ℎ𝑒𝑐𝑘𝑒𝑑 to prevent redundant cal-
culations (Lines 3-4). Then, get_neighbor() fetches all neighbor
vertices of the current candidate vectors, avoiding redundant simi-
larity computation. Each iteration calculates the similarity between
neighbor vectors and the query (Line 6), and the candidate list is
updated and sorted accordingly (Line 9-10). This process iterates
until all candidates in the candidate list have been fully explored.

2.3 Bottleneck Analysis of ANNS
Breakdown of Query Response Time. To analyze the detailed
performance behaviors of ANNS, we decompose the search process
described in Algorithm 1 into three stages. Initialization stage (Line
1), similarity computation (Line 7 in Algorithm 1), and the sorting
stage that manipulates the candidate list, sorting, and candidate
selection (Line 9-12 in Algorithm 1). Figure 2 presents the query
response time on three representative datasets. Profiling results
indicate that similarity computation takes a significant portion of
query response time.
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Figure 2: Query response time breakdown of greedy search.
The larger the area under the curve, the more severe the
performance bottleneck it indicates.
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Figure 3: Redundancy in the similarity computation of the
greedy search. The higher the value, the less redundancy in
the similarity computation.

However, due to the high dimensionality of the vectors, simi-
larity computation inherently requires significant computational
resources and memory usage, rendering naive optimization ap-
proaches either ineffective or impractical. Moreover, we observe
that similarity computations typically access each vector only once,
resulting in poor data reuse and hence limited opportunities for
cache-level optimization. Furthermore, it is challenging to improve
memory latency with conventional techniques, such as prefetching,
supported by commodity processors. In turn, the overall search
process exhibits many irregular memory access patterns to high-
dimensional data, which leads to substantial overhead and makes
them impractical. Approximation of the similarity computation is
one possible way to optimize, but naive approximation would suffer
from significant accuracy loss.
Redundancy in Similarity Computation. A few recent pro-
posals have attempted to avoid expensive similarity computation
by filtering candidate neighbors [31, 40]. This selective neighbor
calculation can be performed by extending get_neighbor() in
Algorithm 1 (Line 4). Instead of returning all possible neighbors,
some heuristics can choose only highly correlated ones for compu-
tation, functioning as select_neighbors. Unfortunately, however,
research in this area remains relatively unexplored.

If a neighboring vector has a low similarity score, falling below
the minimum candidate in the list, it will ultimately be discarded
without ever entering the candidate list. This ensures that it does
not influence the actual search path. Namely, such computation on
highly uncorrelated neighbors just wastes resources. Moreover, this
inefficiency is challenging to address during graph construction and
requires better search strategies. Most graph construction methods
are typically designed to provide high connectivity of vectors evenly,
ensuring efficient search across a wide range of queries. As a result,
if search algorithms do not adequately filter out target vertices,
they should pay all costs of expensive computations. According to

our experiments across various datasets in Figure 3, more than 80%
of the similarity computations are redundant during ANNS.

2.4 Related Work
Several strategies have been developed to improve the efficiency
and throughput of the greedy search. The first approach emphasizes
building an efficient graph while still employing the greedy search.
The second approach is the guided search, which refers to algo-
rithmic optimizations of canonical greedy search by filtering out
similarity computations for less relevant neighbors. The third strat-
egy focuses on using approximate similarity scores, which target
reducing the computational cost of each similarity computation.
Efficient Graph Construction. The recent trend of optimizing
graph-based ANNS has been reducing the number of similarity
computations by graph construction methods. HNSW [27] orga-
nizes the graph into multiple levels: a coarse graph at the higher
levels enables rapid navigation, while denser graphs at the lower
levels facilitate precise searching. Thus, HNSW also consists of
multi-level processes that continue searching in the lower-level
graph once no more promising candidates are in the higher level.
Other approaches such as NSG [16], Vamana [21], and NSSG [15]
utilize single-level graphs, but their graph construction methods
prune edges to build graphs that are sparse yet still maintain high
connectivity. NSG and NSSG prune edges from a pre-built 𝑘-NN
graph, which connects each element’s 𝑘 nearest neighbors in the
vector dataset. In NSG, by applying a similarity-based edge pruning
method, the graph becomes sparse to improve search performance.
NSSG takes into account the angle between vertices and similarity.
Vamana [21] is the graph construction method used in DiskANN,
which prunes edges from randomly initialized graphs. Vamana has
relatively high edge selection flexibility connecting even vectors
with lower similarity. Several studies [9, 21, 34] propose graph-
based ANNS solutions optimized for slow memory (e.g., SSD) on
memory-constrained environments (e.g., less than 64GB DRAM).
These works incorporate optimizations designed to mitigate the
high latency associated with slow memory. However, all of these
approaches can be unified into a single canonical form of the search
algorithm, as described in Algorithm 1, which remains suboptimal.
Guided Search.HCNNG [31] introduces the tree index to store the
subspace information of neighbors. HCNNG computes the similar-
ity only for neighbors in the query’s direction using the subspace
information. TOGG [40] uses either the KD-tree or K-Means clus-
tering to store the distribution of neighbors. TOGG divides the
search algorithm into two phases. The first phase aggressively fil-
ters out neighbor vectors to quickly move toward the query. Once
the candidate is close enough, TOGG switches to the normal search
phase, which investigates all neighbors. However, many less rele-
vant neighbors still survive for downstream computations, which
makes them perform a substantial amount of ineffectual exact simi-
larity computation, yielding suboptimal throughput.
Approximate Similarity Score. This approach improves effi-
ciency by adopting approximate similarity scores instead of exact
similarity scores to reduce the number of operations required per
similarity score. FINGER [8] improves query response time with
minimal precision loss by estimating similarity through angular dis-
tance, using the current candidate as the center. ADSampling [18]
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Figure 4: Illustration of neighbor selection technique of ADA-
NNS. It detects the neighbors toward the query.

achieves similar precision with fewer computations by applying
a random orthogonal transform to the dataset’s vectors and adap-
tively sampling the dimensions needed for approximate similarity
computation. However, FINGER incurs significant memory over-
head to store the projected values for every edge on the graph.
ADSampling is less suitable for CPU-based optimization techniques
such as prefetching and SIMD due to its incremental dimension
sampling scheme, which is hard to vectorize.

Our work focuses on in-memory vector database optimization,
which targets fast query response time by holding all required
data structures in memory. However, the proposed algorithm and
implementation are not fundamentally restricted to this setting and
are readily applicable to the scaled-up vector database.

3 Angular Distance-guided Search for
Graph-based ANNS (ADA-NNS)

We propose ADA-NNS, featuring a novel guided search algorithm
that dynamically filters out less relevant neighbors by employing
a lightweight proxy based on an approximate angular distance.
We first define angular distance and discuss its characteristics in
Section 3.1. Section 3.2 then explains how ADA-NNS leverages
this proxy metric to significantly reduce the number of operations
without sacrificing accuracy. Finally, Section 3.3 consolidates the
optimized search process with additional enhancements, deliver-
ing substantial performance improvements over state-of-the-art
methods.

3.1 Estimating Similarity Scores with
Approximate Angular Distance

In this section, we derive a lightweight approximation of similarity
to filter out less relevant computations during the search process.
Specifically, we will demonstrate that, when the approximate an-
gular distance between the query and a neighbor exhibits minimal
error. By using this lightweight metric, a subset of highly relevant
neighbors can be identified at a low cost. To approximate two well-
known similarity metrics, L2 distance and inner product discussed
in Section 2, we first derive alternative forms.
L2 distance. Although L2 distance is described in Equation 1, we
consider an alternative form:

𝑠𝐿2 (𝑞, 𝑣) = −||𝑞 − 𝑣 | |2
(𝑎)
= 2 · |𝑞 | · |𝑣 | · cos𝜃𝑞,𝑣 − |𝑞 |2 − |𝑣 |2

(𝑏 )
≈ 2 · |𝑞 | · |𝑣 | · cos𝜃𝑞,𝑣 − |𝑣 |2 (3)

Here, (a) expresses the L2 distance in terms of the angle between
vectors. This formulation can be further simplified because |𝑞 |2
does not affect the relative ordering in the candidate list, and terms
containing 𝑣 can be pre-computed offline.We emphasize that during
the querying phase, the only term requiring computation is cos𝜃𝑞,𝑣 .
Inner product. Inner product in Equation 2 can be also written as:
𝑠𝐼𝑃 (𝑞, 𝑣) = 𝑞 • 𝑣 = |𝑞 | · |𝑣 | · cos𝜃𝑞,𝑣 (4)

Similar to L2 distance, |𝑣 | can be pre-computed and reused, while
|𝑞 | is calculated only once for each query. Therefore, in Equation 4,
the only important term is the cos𝜃𝑞,𝑣 .
Approximate Angular Distance. Both L2 and inner product (IP)
share the critical term cos𝜃𝑞,𝑣 ; thus, we can derive the approximated
similarity score by estimating the 𝜃𝑞,𝑣 . Super-Bit Locality-Sensitive
Hashing (SBLSH) [7] is well-suited for this objective. SBLSH is
based on the Sign Random Projection, which maps vector 𝑣 ∈ R𝑑

to binary vector 𝑏 ∈ {0, 1}𝑚 , where𝑚 ≪ 𝑑 capturing the difference
in angles. We have carefully adapted SBLSH to estimate 𝜃𝑞, 𝑣 with
parameters representing hash bit width𝑚. To project vector 𝑣 into
𝑏, the hash function ℎ(𝑣) performs the inner product between𝑚
random orthonormal vectors ∈ R𝑑 . Once 𝑏 is generated for both
query and vectors in the database, we can estimate the angular
distance 𝜃𝑞,𝑣 with the following equations:

𝜃𝑞,𝑣 ≈
𝜋

𝑚
× ℎ𝑎𝑚𝑚𝑖𝑛𝑔(ℎ(𝑞), ℎ(𝑣))

ℎ𝑎𝑚𝑚𝑖𝑛𝑔(ℎ(𝑞), ℎ(𝑣)) = 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 (ℎ(𝑞) ⊕ ℎ(𝑣)) (5)

Also, after retrieving 𝜃𝑞,𝑣 , we emphasize that the cosine values
can be pre-computed and efficiently handled with a lookup table
𝑇𝑐𝑜𝑠 , which will be detailed in Section 3.3.

3.2 Neighbor Selection of ADA-NNS
Neighbor Selection. Using the estimated angular distance and
the Equation 3 and 4, we compute an approximate similarity score.
Algorithm 2 presents overall operation of select_neighbor() op-
timizing get_neighbor() in Algorithm 1. The algorithm outputs
a selected set of𝑀 neighbor vectors, which will undergo the exact
calculation after return. After computing the approximate similar-
ity scores (Line 8-9), the scores are added to the selection candidate
set 𝑆 (Line 11). When the size of 𝑆 reaches its limit, the algorithm
checks if any neighbor vectors exceed theminimum similarity score,
𝑆 [𝑣𝑚𝑖𝑛], in the selected neighbor set 𝑆 (Line 15). Overall, we employ
Sign Random Projection as a proxy metric for filtering neighbors,
followed by the computation of exact similarity scores. Although it
is theoretically possible to entirely eliminate exact score computa-
tions in Algorithm 1, our experiments reveal that doing so results in
a significant decrease in accuracy. Therefore, we opt for a two-step
candidate selection process instead.
Preprocessing and Query Hashing. Before starting ANNS, we
perform the pre-computationmainly for 𝑣 and𝑞 to reduce expensive
operations, which is outlined in Section 3.1: the hash matrix ℎ, the
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Algorithm 2 select_neighbor() of ADA-NNS

Input: Graph with 𝑏𝑣 ∈ {0, 1}𝑚 , candidate 𝑐 , # of neighbors𝑚𝑎𝑥𝑀 ,
query 𝑏𝑞 ∈ {0, 1}𝑚 , unvisited set𝑈𝑉 , cos table 𝑇𝑐𝑜𝑠 , param 𝜏

Output:𝑀 neighbor vectors w/ highest approx. similarities
1: // Starts with pre-computed 𝑏𝑞, 𝑏𝑣, |𝑞 |, |𝑣 |,𝑇𝑐𝑜𝑠
2: List of selected neighbors and scores 𝑆 = {}
3: # of final selected neighbors𝑀 =𝑚𝑎𝑥𝑀 × 𝜏
4: if 𝑈𝑉 .size() < 𝑀 then
5: return 𝑆 // Early exit
6: end if
7: for all unvisited neighbors 𝑣 ∈ 𝑈𝑉 do
8: ℎ_𝑑𝑖𝑠𝑡 = 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 (𝑏𝑞 ⊕ 𝑏𝑣) // Eq. 5
9: 𝑠′ = similarity𝑎𝑝𝑝𝑟𝑜𝑥 ( |𝑞 |, |𝑣 |,𝑇𝑐𝑜𝑠 , ℎ_𝑑𝑖𝑠𝑡) // Eq. 3 or 4
10: if 𝑆 .size() < 𝑀 then
11: S[𝑣] = 𝑠′
12: if 𝑆 .size() = 𝑀 then
13: 𝑏𝑣𝑚𝑖𝑛 = Find argmin𝑏𝑣 𝑆 [𝑏𝑣]
14: end if
15: else if 𝑆 [𝑏𝑣𝑚𝑖𝑛] < 𝑠′ then // Min-replace 𝑏𝑣𝑚𝑖𝑛

16: Replace 𝑏𝑣𝑚𝑖𝑛, 𝑆 [𝑏𝑣𝑚𝑖𝑛] with 𝑏𝑣, 𝑠′
17: 𝑏𝑣𝑚𝑖𝑛 = Find argmin𝑏𝑣 𝑆 [𝑏𝑣]
18: end if
19: end for
20: return 𝑆

norm of each vertex |𝑣 |, its square |𝑣 |2, and the hashed dataset
𝐻 that consists of binary vectors 𝑏𝑞 and 𝑏𝑣 derived from 𝐷 . We
use the Gram-Schmidt Process [35] to generate 𝑚 orthonormal
vectors ∈ R𝑑 in the hash matrix and apply Equation 5. On the other
hand, when a query arrives, ADA-NNS computes |𝑞 | and the binary
vector 𝑏𝑞 . This stage is performed once per query, and 𝑏𝑞 is reused
until it outputs the top-𝑘 neighbors, thus still saving substantial
computations.

3.3 Efficient Neighbor Selection of ADA-NNS
This section outlines the detailed optimization techniques of ADA-
NNS to maximize the performance of angular distance-guided
ANNS. Since the filtering operation in select_neighbor() intro-
duces an additional step compared to the baseline get_neighbor(),
analyzing the trade-off between the incurred overhead and perfor-
mance gain is essential. We implemented the following optimiza-
tions to minimize such overheads, which will be quantitatively
discussed in Section 4.
Min-replacement. The min-replacement algorithm maintains the
selected neighbor list, simply replacing the lowest approximate sim-
ilarity score𝑏 with the new neighbor. As the output does not require
sorting, this approach accurately identifies the top 𝑀 neighbors
with significantly reduced computations. Specifically, the number
of neighbors maintained in the selected list is limited to𝑀 (Line 3
in Algorithm 2). If the selected list is not full, the neighbor and its
approximate similarity score are added without computation (Line
10-11). Otherwise, the neighbor with minimum similarity should be
identified (Line 12-18). Then, if the score of a new neighbor vector
is higher than the minimum, it replaces the entry, and the mini-
mum similarity is updated (Line 20-23). Min-replacement has a time

complexity of𝑂 (𝑀) for each replacement, offering a more efficient
method than sorting, which has a complexity of 𝑂 (𝑀 · 𝑙𝑜𝑔(𝑀)).
Cosine Look-up and Early Exit. To efficiently save the compu-
tation of cos𝜃𝑞,𝑣 , ADA-NNS introduces a cosine lookup table 𝑇𝑐𝑜𝑠
exploiting a limited value range of hamming distance (0 to𝑚), where
each increment corresponds to an angular distance of 𝜋

𝑚 . Therefore,
we can precompute a cosine lookup table 𝑇𝑐𝑜𝑠 with𝑚 + 1 entries,
updating the table values based on the Hamming distance index.
This allows us to efficiently retrieve cos𝜃𝑞,𝑣 without heavy compu-
tations. In addition, since the objective of select_neighbor() is
to find𝑀 vectors, if this condition is already satisfied, the function
simply returns all the neighbor vectors (Line 4-6).
Hyperparameter Tuning. To find an optimized hash bitwidth𝑚
that estimates 𝜃𝑞,𝑣 with a sufficiently small error, we performed
exploration measuring the standard deviation of errors from ap-
proximated angular distances. In each iteration, we increment𝑚
by the multiple of SIMD width (e.g., 256-bit for AVX) to fully utilize
data parallelism during distance computation. Our finding is that
for𝐷 with relatively small vector dimensions (<= 300), the standard
deviation below 0.065 is enough to estimate the angular distance.
For base sets with relatively high dimensions (> 300), a standard
deviation below 0.035 is enough because of their high dimension.
A sensitivity study on parameters is presented in Section 4.5.
Neighbor Selection Threshold (𝜏). This parameter determines
the final portion of the neighbors that are selected for exact similar-
ity computation (Equation 1 and 2). The range of 𝜏 is from 0.0 to 1.0,
where 1.0 means all neighbors are selected and 0.0 means no neigh-
bors. Before computing the exact scores, the approximate similarity
score is calculated using estimated angular distances. Then, the 𝜏
portion of the neighbors with the highest approximate similarity
scores is selected for exact similarity computations. Setting high 𝜏
helps improve the recall by evaluating more neighbors. However,
increasing the value excessively leads to a significant degradation
in performance as it requires more similarity computations. We
analyzed the detailed behavior of this parameter in Section 4.5.

3.4 Overhead Analysis of ADA-NNS
As mentioned in Section 3.2, ADA-NNS requires precomputation of
a set of variables |𝑛 |, |𝑛 |2, ℎ, 𝐻 , and 𝑇𝑐𝑜𝑠 . To store |𝑛 | and |𝑛 |2, we
need |𝐷 | × 4 bytes each, assuming each value is represented using a
32-bit floating-point. The size of the hash matrixℎ occupies𝑚×𝑑×4
bytes. The hashed set 𝐻 requires 𝑚

8 × |𝐷 | bytes since each𝑚 bit
vector is packed into bytes. The cosine lookup table precomputes
(𝑚 + 1) × 4 bytes of data. Summing up all these, ADA-NNS requires
(8+𝑚

8 ) × |𝐷 | + (𝑚×𝑑 +𝑚+1) ×4 bytes of memory. We also provide
a detailed time complexity analysis on Appendix A.1

A million-scale dataset like SIFT1M (i.e., |𝐷 | = 106) with𝑚 = 512
results in an additional memory overhead of approximately 69MB.
Considering that the total bytes of the less complex graph in SIFT1M
is about 700MB, ADA-NNS presents a relatively small memory
overhead of less than 10%. Note that this is significantly smaller than
existing works, such as FINGER [8], which requires approximately
1300MB to store the projected values of all edges.
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Name Dim. No. of base No. of query Metric

SIFT1M 128 1, 000, 000 10, 000 L2
GIST1M 960 1, 000, 000 1, 000 L2
CRAWL 300 1, 989, 995 10, 000 L2
GLOVE-100 100 1, 183, 514 10, 000 IP
NYTIMES 256 290, 000 10, 000 IP
DEEP100M 96 100, 000, 000 10, 000 L2

Table 1: Datasets

4 Evaluation
4.1 Experimental Setup
Machine Configuration. We conduct experiments on a machine
with Intel i9-10920X CPU, 256GB DDR4 memory. All baselines
are compile by g++ 9.4.0 with -O3 flag under Ubuntu 18.04 LTS.
Microarchitectural optimizations including prefetching and SIMD
are enabled.
Datasets. We use six different real-world datasets: SIFT1M [22],
GIST1M [22], CRAWL [30], GloVe-100 [33], NYTIMES [4], and
DEEP100M [5]. Table 1 summarizes the features of these datasets.
SIFT1M and GIST1M are in the BIGANN dataset with images.
SIFT1M dataset is trained with the SIFT descriptor, and GIST1M
is trained with the GIST descriptor. CRAWL is the dataset trained
using fastText. GloVe-100 dataset is the vector representation of
words trained by GloVe algorithm. NYTIMES dataset is generated
from the bag-of-words. To evaluate the scalability to larger datasets,
we also perform experiments using DEEP100M [5] dataset. It is
an image-based dataset, which is a subset of the DEEP1B dataset.
DEEP1B is an image-based dataset trained with the DNN descriptor,
which consists of one billion 96-dimensional floating-point vectors.
The base set of DEEP100M consists of the first 100 million vectors
in DEEP1B. It is the largest dataset that we can accommodate on
our evaluation machine. Note that the size of DEEP100M vector
dataset is about 37GB, which is much larger than other one-million
scale datasets.
Search Algorithms. We compare the five algorithms whose de-
scriptions are provided below:

• Greedy Search (GS) is the method that computes distances
between all neighbors and queries. The greedy search can
use various graphs. We use HNSW to compare with other
baselines.

• TOGG-KMC [40] employs a two-phase guided searchmethod.
The first phase utilizes K-Means Clustering to create an ad-
ditional data structure, which helps filter out less relevant
neighbors to a query. The second phase then applies a greedy
search algorithm. We use the authors’ publicly available im-
plementation1, setting the number of neighbor clusters (𝐶𝑁 )
to 4.

• ADSampling [18] uses approximate similarity scores during
search instead of exact ones. They preprocesses the vector
dataset via random orthogonal transformation and adap-
tively samples the number of dimensions to compute the
approximate similarity score. We run their open-sourced

1https://github.com/whenever5225/TOGG

code2 to evaluate the performance using L2 distance only.
Inner product similarity metric is not implemented.

• FINGER [8] is a practical search method that employs ap-
proximation to enhance efficiency. It initiates with exact sim-
ilarity calculations for graph traversal during the first five
iterations. Subsequently, it transitions to an approximated
similarity metric, significantly reducing computational over-
head. FINGER approximates similarity scores by estimating
angles between neighboring vectors. In our implementation,
we set 𝑟=64, which is the hyper-parameter for low-rank ap-
proximation of edge vectors.

• ADA-NNS is the novel guided search method proposed in
this paper. Our method selects relevant neighbors based on
the similarity score estimated from angular distance between
vertex vector and query vector. Based on the observation in
Section 2.3, we set 𝜏 = 0.2, which denotes the ratio of relevant
neighbors to compute exact similarity score. We set𝑚 = 512
for SIFT1M, CRAWL, GloVe-100, NYTIMES, and DEEP100M,
while𝑚 = 1024 for GIST1M. Please refer to Section 3.2 for
details about setting the hyper-parameter𝑚.

Metrics.We evaluate the single thread performance of the search
methods above in terms of queries-per-second (QPS) versus recall.
QPS is inversely proportional to query response time, thus, for a
certain recall, higher QPS is better. We measure the throughput at
recall@10 and report the best throughput over 5 measurements.

4.2 Throughput Evaluation
Figure 5 illustrates the throughput improvements of ADA-NNS
on HNSW across all datasets. ADA-NNS consistently outperforms
other searchmethods in terms of throughput. Specifically, it achieves
a 2.07× speedup over greedy search to reach 95% recall@10 on
GIST1M, and a 1.71× speedup on CRAWL. FINGER generally per-
forms better than greedy search but slightly worse than ADA-NNS.
However, FINGER fails to execute on DEEP100M due to out-of-
memory, which we discuss further in Section 4.6. TOGG-KMC
shows mixed results, performing marginally better or sometimes
worse than greedy search on some datasets. This poor performance
can be attributed to the marginal reduction in similarity compu-
tations, as we explore in the following section. ADSampling con-
sistently performs worse than greedy search across all datasets.
Since their released code is not optimized for SIMD instructions,
preventing it from leveraging the abundant data-level parallelism
available when processing high-dimensional vectors.

4.3 Amount of Similarity Computations
In this section, we measure the amout of similarity computations
to compare the algorithm efficiency of search algorithms. For ADA-
NNS, the number of computations for approximate similarity com-
putations are also counted. To achieve 95% recall@10 on GIST1M,
ADA-NNS reduces the number of similarity computations to 41.6%,
33.5%, and 37.5% of those of greedy search method at 95% recall@10
on SIFT1M, GIST1M, and CRAWL. At 95% recall@10, we observe the
ADSampling reduces the number of computation to 65.0%, 27.1%,
and 54.9% of the greedy search for SIFT1M, GIST1M and CRAWL, re-
spectively. Thus, the performance gains of ADA-NNS are attributed
2https://github.com/gaoj0017/ADSampling
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Figure 5: Throughput versus Recall@10 plots for six datasets. SIFT1M, GIST1M, CRAWL, and DEEP100M use L2 distance as
similarity metric. GLOVE-100 and NYTIMES use inner product as similarity metric.
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Figure 6: Throughput versus Recall@10 results for ablation studies. ADA-NNS is the baseline with all optimizations. ADA-NNS-
sort uses sort to select 𝜏 relevant neighbors. ADA-NNS-compute_cos uses cosine function instead of using cosine lookup table.
ADA-NNS-unopt is ADA-NNS without optimizations.

to the reduction in similarity computation. Despite ADSampling
reducing computations more than our approach for GIST1M, it
achieves lower throughput gains due to its algorithm design, which
is not amenable to microarchitectural optimizations.

4.4 Ablation Study
In this section, we present an ablation study to analyze the effec-
tiveness of two optimization techniques on the throughput gains

of ADA-NNS: min-replacement and cosine look-up with early exit.
To demonstrate the impact of min-placement, we compare ADA-
NNS with a variant (ADA-NNS-sort) that uses sorting to manage
𝜏 neighbors instead of the proposed min-replacement technique.
To evaluate the technique of cosine look-up with early exit, we
compare ADA-NNS with a variant (ADA-NNS-compute_cos) that
uses the cosine function from the math library and disables the
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Figure 7: QPS vs recall@10 plots of ADA-NNS on HNSW
across three datasets with different hash bitwidth.
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Figure 8: QPS vs recall@10 plots of ADA-NNS on HNSW
across three datasets with different 𝜏 values.

early exit feature. We also include ADA-NNS-unopt, which is the
approach without any optimization techniques, as a baseline.

Figure 6 presents the results of our ablation study. ADA-NNS out-
performs ADA-NNS-sort by approximately 15% at 95% recall@10.
This improvement can be attributed to the significant reduction in
complexity achieved by using min-replacement instead of sorting,
as described in Section 3.3. ADA-NNS shows an 8% improvement
over ADA-NNS-compute_cos at 95% recall@10, demonstrating the
effectiveness of the cosine look-up table and early exit strategy
in reducing computational overhead. Overall, ADA-NNS achieves
a 15.5%-25.0% better throughput at 95% recall@10 compared to
ADA-NNS-unopt. These results confirm that both optimization
techniques contribute significantly to improving the performance
of ADA-NNS by reducing the overhead associated with our pro-
posed neighbor selection method.

4.5 Sensitivity Study
Hash Bitwidth (𝑚). In general, setting hash bitwidth (𝑚) to a
higher value would lead to higher precision in estimating the ap-
proximate similarity between two vectors. At the same time, it
would increase i) the cost of hashing query, ii) the cost of comput-
ing approximate similarity, and iii) the required memory space to
store the hash matrix ℎ and the hashed dataset 𝐻 .

Figure 7 shows the QPS vs recall with varying𝑚 across six differ-
ent datasets. We set 𝜏 to 0.2. Setting𝑚 to less than 512 (or 1024 for
GIST1M) leads to lower throughput. Although a low𝑚 may reduce
the latency for hashing queries and computing hamming distances,
it is not recommended. Because of the reduced precision of approx-
imation of similarity score between the query and the neighbors of
current candidate node, the search follows a suboptimal search path.
The peak achievable QPS is almost saturated when𝑚 is 1024 on
GIST1M and 512 on the other datasets. Further increasing𝑚 only

Dataset ADA-NNS FINGER TOGG-KMC

SIFT1M 70MB 1,289MB 1MB
GIST1M 134MB 1,518MB 1MB
CRAWL 139MB 2,034MB 2MB
GLOVE-100 82MB 1,526MB 1MB
NYTIMES 22MB 217MB 1MB
DEEP100M 6,867MB 148,011MB -

Table 2: Memory overhead for compared baselines. TOGG-
KMC fails on DEEP100M due to segmentation fault.

marginally improves the precision of the approximated similarity
score at best, while significantly increasing the computational cost.
Neighbor Selection Threshold (𝜏). The appropriate setting of
the neighbor selection threshold (𝜏) is crucial for simultaneously
achieving high recall and high QPS. Figure 8 shows the relationship
between QPS and recall for various 𝜏 values. A 𝜏 of 0.2 indicates
that only the top 20% of neighbors with the highest approximate
similarity to the query are selected for exact similarity computation.
Conversely, a 𝜏 of 1.0 prompts ADA-NNS to compute true similarity
to the query for all neighbors of the current candidate vertex. Our
results reveal that lower 𝜏 values lead to higher throughput but
may significantly reduce recall if set too low, as relevant neighbors
might be prematurely filtered out, whereas higher 𝜏 values enhance
recall at the cost of reduced throughput.

4.6 Memory Overhead
Unlike greedy search, ADA-NNS employs approximate similarity
scores for neighbor selection, necessitating additional data struc-
tures to estimate angular distances using Sign Random Projection.
Table 2 illustrates the memory space required to store pre-computed
values (|𝑣 |, |𝑣 |2, ℎ, and 𝐻 ) as described in Section 3.1. These pre-
computed values occupy a relatively small portion (3.3%-11.7%)
of the total index size, which includes both the graph and vector
dataset. While FINGER achieves comparable throughput gains to
ADA-NNS, it incurs significant memory overhead. For instance,
FINGER requires some 288GB of memory to perform searches on
the DEEP100M dataset, exceeding our experimental machine’s ca-
pacity. Specifically, about 144GB is allocated to store auxiliary data
structures, nearly equivalent to the space occupied by the original
graph and vector dataset combined. In contrast, TOGG-KMC in-
curs negligible memory overhead, and ADSampling requires no
additional memory. However, as demonstrated in Section 4.2, their
performance gains are marginal or even inferior to greedy search.

5 Conclusion
This paper provides a quantitative analysis on the widely used
greedy search method for graph-based ANNS. We propose ADA-
NNS, an efficient search method on graph-based ANNS. We provide
extensive experiment results across six million-scale datasets with
different similarity metrics. Experimental results show that ADA-
NNS not only achieves state-of-the-art throughput gain for various
datasets with relatively small memory cost. Our approach does
not modify the graph, which maintains good compatibility with
existing graph construction methods.
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A Appendix
A.1 Time Complexity Analysis
Time complexity of the greedy search on a graph is𝑂 (𝑐 × 𝑠 × 𝑙)[27],
where 𝑐 is the average number of neighbors on the proximity graph,
𝑠 is the search path length of greedy search, and 𝑙 is the number
of graph layers, which is HNSW-specific parameter and set to 1
for other single layer graphs such as NSG [16], Vamana [21], and
NSSG [15]. We can derive the time complexity of the ADA-NNS
from that of greedy search from the following basis. First, we do
not modify the graph, thus the parameters 𝑐 and 𝑙 does not change.
Second, the filtering scheme in ADA-NNS targets on excluding
exact similarity computations that would not be included in the
candidate list, thus having no impact on the search path. Thus, we
use time complexity of greedy search, denoted to 𝑂𝐺𝑆 , to derive
the time complexity of ADA-NNS.

Neighbor Selection involves calculating the hamming distance,
computing the approximate similarity, and replacing the entry with
the minimum similarity in the selected list, followed by recalcu-
lating the new minimum. In the worst-case scenario, where all
neighbors are unvisited and replacement occurs consistently in
the selected list, the hamming distance and approximate similarity
computation occurs 𝑐 times, while replacement occurs 0.8×𝑐 times.
By utilizing bitwise operations on a 64-bit register (e.g., 𝑢𝑖𝑛𝑡64_𝑡 ),
hamming distance calculations consist of 𝑚

64 XOR operations, 𝑚64
popcount operations, and 𝑚

64 − 1 additions. When computing the

approximate L2 similarity score (Equation 3), three multiplications
and one subtraction are performed, followed by 0.2 × 𝑐 compar-
isons to determine the minimum similarity. In contrast, the exact
similarity computation using L2 distance (Equation 1) involves 𝑑
subtractions, 𝑑 multiplications, and 𝑑 − 1 additions.

Let 𝑥 , 𝑝 , �̄�, 𝑎, 𝑠 , and 𝑐 represents CPU cycles for XOR, popcount,
multiplication, addition, subtraction, and comparison, respectively.
The CPU cycles for Neighbor Selection is given by:

𝑐 × (𝑚
64

× (𝑥 + 𝑝) + (𝑚
64

− 1) × 𝑎 + 3 × �̄� + 𝑠 + 0.16 × 𝑐) (6)

Meanwhile, the CPU cycles of greedy search similarity computa-
tion is:

𝑐 × (𝑑 × (𝑠 + �̄�) + (𝑑 − 1) × 𝑎) (7)
According to Intel Optimization Reference Manual [20], CPU’s

cycles for serial execution of subtraction and multiplication is simi-
lar to that for serial execution of XOR and popcount, which means
𝑥 + 𝑝 ≃ 𝑠 +�̄�. By ignoring the minor impact of approximate similar
term and comparator term, the complexity of Neighbor Selection
is roughly 𝑚

64× that of the greedy search similarity computation,
making its complexity approximately 𝑚

64×𝑑 × 𝑂𝐺𝑆 . Furthermore,
since the exact similarity computations in ADA-NNS are reduced
by 80% through Neighbor Selection, the overall search complexity
of ADA-NNS becomes as follows:

𝑂𝐴𝐷𝐴−𝑁𝑁𝑆 ≃ ( 𝑚

64 × 𝑑 + 0.2) ×𝑂𝐺𝑆 (8)
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