Published in Transactions on Machine Learning Research (06/2025)

SCas4D: Structural Cascaded Optimization for Boosting
Persistent 4D Novel View Synthesis

Jipeng Lyu lvjipenglv@gmail.com
University of Illinois Urbana-Champaign

Jiahua Dong Jiahuad2@illinois.edu
University of 1llinois Urbana-Champaign

Yu-Xiong Wang yrw@illinois. edu
University of 1llinois Urbana-Champaign

Reviewed on OpenReview: https://openreview. net/ forum? id=YkycjbKjYP

Framet — 1 Frame ¢t

Articulated Objects
Segmentation

Efficient Training : Point-Tracking

Ours

Structural
Cascade

Figure 1: Our method achieves satisfying rendering results with 100 training iterations per frame. Leveraging
learned deformation information, we also demonstrate successful articulated object segmentation.

1 1
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

Build . ! !
Gaussians 1 Optlmlzel : :
1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

Abstract

Persistent dynamic scene modeling for tracking and novel-view synthesis remains challeng-
ing, particularly due to the complexity of capturing accurate deformations while maintaining
computational efficiency. In this paper, we present SCas4D , a novel cascaded optimization
framework that leverages inherent structural patterns in 3D Gaussian Splatting (3DGS) for
dynamic scenes. Our key insight is that real-world deformations often exhibit hierarchical
patterns, where groups of Gaussians undergo similar transformations. By employing a struc-
tural cascaded optimization approach that progressively refines deformations from coarse
part-level to fine point-level adjustments, SCasdD achieves convergence within 100 itera-
tions per time frame while maintaining competitive quality to the state-of-the-art method
with only 1/20th of the training iterations. We further demonstrate our method’s effec-
tiveness in self-supervised articulated object segmentation, establishing a natural capability
from our representation. Extensive experiments demonstrate our method’s effectiveness
in novel view synthesis and dense point tracking tasks. Please find our project page at
https://github-tree-0.github.io/SCas4D-project-page/.

https://openreview.net/forum?id=YkycjbKjYP
https://github-tree-0.github.io/SCas4D-project-page/

Published in Transactions on Machine Learning Research (06/2025)

1 Introduction

Dynamic novel-view synthesis provides a powerful framework for modeling dynamic 3D scenes, with ap-
plications in fields such as AR/VR, robotics, and autonomous driving. The ability to learn and render
dynamic scenes can enable immersive, interactive experiences. Recent advances (Chen et al., 2022; 2023a;
Fridovich-Keil et al., 2022; Hu et al., 2023; Miiller et al., 2022; Chen et al., 2023b; Garbin et al., 2021;
Hedman et al., 2021; Reiser et al., 2023; Wizadwongsa et al., 2021; Chen et al., 2021; Niemeyer et al., 2022;
Wynn & Turmukhambetov, 2023; Yu et al., 2021), inspired by Neural Radiance Field (NeRF) (Milden-
hall et al., 2020), have leveraged radiance fields for 3D scene modeling. However, the inherent limitations
of NeRF, including its high computational demand for network queries and volume rendering. Moreover,
its implicit representation restricts some downstream applications, such as precise tracking and articulated
object segmentation.

The recent development of 3D Gaussian Splatting (3DGS)(Kerbl et al., 2023) has notably improved efficiency
in rendering static scenes by representing the 3D world with a collection of Gaussians and employing efficient
rasterization. This insight has led to explorations of dynamic scene rendering with 3DGS(Wu et al., 2024;
Duan et al., 2024; Sun et al., 2024; Luiten et al., 2024), with some methods (Luiten et al., 2024; Abou-
Chakra et al., 2024; Zhang et al., 2022) focusing on learning transformations (e.g., position and rotation
changes) for each Gaussian between frames. These methods achieve realistic deformation tracking over time.
However, the structural information of 3DGS is underexplored. Specifically, the motion in 3D scenes often
follows different structural patterns, such as rigid parts, non-rigid parts, and static backgrounds. While
SCGS Huang et al. (2024) tries to apply sparse control points to represent motion, they fail to capture
accurate and dense point-level tracking. Their requirements for correctly distributed control points further
limit the application.

Inspired by these observations, we would like to answer the question that “Can 4D scenes directly benefit
from the structural information of vanilla 3DGS." Since objects in real-world scenes often consist of multiple
parts that exhibit similar deformations, we propose a structural cascaded optimization approach that orga-
nizes the Gaussians in a top-down manner. In the coarse-level, we optimize the 3D parts to approximate
their deformation in the new time frame. Following this, the fine-level optimization will further improve
the deformation of each Gaussian. To ensure appropriate scale change between different levels, we adopt
optimization with three levels that balance efficiency with the ability to capture fine-grained motion.

Without significant modifications to 3DGS, our methods show the great potential of the underlying struc-
tural information of 3DGS. By the structural cascaded optimization, we achieve a 20x speedup over Dy-
namic3DGS (Luiten et al., 2024) in training time. In the meanwhile, we maintain the ability to deliver
comparable tracking performance for dense points and further provide the capability of articulated object
segmentation, as shown in Figure 1. Extensive experiments demonstrate the effectiveness of our method in
different tasks.

In summary, our contributions can be concluded as:

e We explore the possibility of utilizing internal structural information from 3DGS for dynamic scenes,
significantly accelerating the convergence speed.

e We introduce a cascaded structural optimization strategy with a multi-level deformation function
that captures rotation, translation, and scaling. An articulated object segmentation method is
proposed for 3DGS.

e We achieve highly competitive performance in novel view rendering and point-tracking. Our method
also shows the ability of high-quality articulated object segmentation.

2 Related Works

Static Novel-View Synthesis has become popular in 3D vision in recent years. Specifically, given a set of
images from different camera poses, high-fidelity rendered images on novel views are expected. The potential
of achieving photorealistic results on this task is revealed by Neural Radiance Field (NeRF) (Mildenhall

Published in Transactions on Machine Learning Research (06/2025)

Inputs

Cluster Cluster Cluster Cluster
— — — —
Image Loss

N R

A 2
-3 H M H

il Il D =D;oD;oD;z--0Dg

Ground Truth Image !

Rendered Image @
o
EA‘

Figure 2: Our method first utilizes the Gaussians from the previous frame ¢t — 1 and the new inputs for
frame ¢ to learn the deformation D between these two frames. These Gaussians are organized into cascaded
clusters with K layers. For each cluster layer, we learn a deformation function. Finally, the deformation D
of each Gaussian is obtained by nesting these deformation functions.

K Layers:

Framet — 1

Framet — 1

Perform Deformation | I

o
—
— -
Gradient Flow
-

Frame t

et al., 2020), which encodes the scene as a fully connected deep network. Following this, a series of works are
proposed to improve the efficiency, rendering quality, storage consumption, and other aspects of NeRF (Chen
et al., 2022; 2023a; Fridovich-Keil et al., 2022; Hu et al., 2023; Miiller et al., 2022; Chen et al., 2023b; Garbin
et al., 2021; Hedman et al., 2021; Reiser et al., 2023; Wizadwongsa et al., 2021; Chen et al., 2021; Niemeyer
et al., 2022; Wynn & Turmukhambetov, 2023; Yu et al., 2021). However, the design of costly volume rendering
and neural networks makes the improvements very challenging, especially in balancing the time efficiency
and rendering quality. Recently, 3D Gaussian Splatting (Kerbl et al., 2023) is proposed to elegantly solve
this problem by explicit 3D Gaussian representation and differentiable rasterization.

Our work is highly inspired by this but extends from static scenes to dynamic scenes. In particular, we
start from static 3D Gaussians and optimize towards the dynamic scene. The natural representation of 3D
Gaussians allows for explicit modeling of deformation and high efficiency for both training and inference.

Dynamic Novel-View Synthesis is a more challenging task in dynamic scenes. Inspired by the success
of NeRF (Mildenhall et al., 2020), various attempts have been made to model the dynamics (Attal et al.,
2023; Cao & Johnson, 2023; Fang et al., 2022; Li et al., 2022b;c; 2021; 2023; Park et al., 2021a;b; Pumarola
et al., 2021; Fridovich-Keil et al., 2023; Yang et al., 2022; Weng et al., 2022). These works solve the dynamic
problem by different routes. Specifically, some works (Li et al., 2022b; Weng et al., 2022; Yang et al.,
2022; Zhao et al., 2022) focus on certain scenarios like human motion and leverage prior knowledge, such
as human skeletons, to facilitate the synthesis. While achieving impressive results, the modeling strategy
cannot be applied to general cases. Deformation-based methods (Attal et al., 2023; Park et al., 2021a;b;
Pumarola et al., 2021) build a canonical stage and warp the other frames to this stage. This approach can
be applied to more general scenes but can’t work well on complex scenes with high variations. Impressed
by the high rendering speed of 3DGS (Kerbl et al., 2023), many recent works focus on dynamic scenes with
the idea of 3DGS (Wu et al., 2024; Luiten et al., 2024; Yang et al., 2024; Duan et al., 2024; Sun et al.,
2024). Dynamic3DGS (Luiten et al., 2024) optimize the attributes of existing Gaussians to deal with new
frames and perform tracking. 4DGS (Wu et al., 2024) build a multi-resolution voxel planet to compute voxel
feature with timesteps. Realtime4dDGS (Yang et al., 2024) build a 4D Gaussian structure and condition it
to 3D Gaussian with a given timestep. 3DGStream (Sun et al., 2024) focuses on online training and builds a
transformation cache for optimization. However, despite being an online method, 3DGStream continuously
prunes Gaussians during training, making it impossible to perform 3D point tracking across all time frames.
While all these methods benefit from the efficiency of differentiable rasterization, they fail to leverage the
internal structural information of the real world and still suffer from notable training time. SC-GS (Huang

Published in Transactions on Machine Learning Research (06/2025)

et al., 2024) utilizes control points to compress the motion information of Gaussians, but struggles to achieve
accurate per-point tracking and highly relies on the distribution of control points.

Our method is mainly inspired by Dynamic3DGS (Luiten et al., 2024) and focuses on the online dynamic
scenes (Sun et al., 2024; Li et al., 2022a; Wang et al., 2023; Song et al., 2023), where the method must
continually deal with new incoming frames. To make online training much more efficient, we propose a
multi-level structure for 3D Gaussians with a new deformation optimization strategy. In addition, our
explicit deformation format allows for broad applications like part segmentation.

Compared to Dynamic3DGS (Luiten et al., 2024), our method introduces a key change in deformation
modeling: we replace per-Gaussian updates with a coarse-to-fine, multi-layer deformation structure based
on clustering. This structural design brings two main advantages. First, by grouping Gaussians with
similar motion patterns, the optimization can move larger structures jointly, leading to significantly faster
convergence. Second, the multi-layer hierarchy enables refinement at different resolutions: the coarsest layers
optimize group-level transformations, while the finest layer retains full per-Gaussian parameter updates. As
a result, our method maintains the same level of granularity as Dynamic3DGS (Luiten et al., 2024), without
sacrificing the ability to represent details.

Dynamic Novel-View Synthesis Datasets for online methods must provide multi-view inputs for each
frame. As opposed to offline methods, online methods can only reconstruct one timestep of the scene at a
time, with each timestep being initialized using the previous timestep’s representation. Therefore, datasets
commonly used in offline dynamic synthesis, such as Pumarola et al. (2021) and Park et al. (2021b), cannot
be applied in our case. Moreover, our multi-layer, coarse-to-fine design offers a more efficient way to model
dynamic Gaussians. It significantly accelerates the convergence during training while preserving the ability to
model detailed deformations. Datasets such as Li et al. (2022¢) and Broxton et al. (2020), although appearing
complex, involve only small-scale movements. As a result, they are not suitable for evaluating our method’s
capability to model Gaussian dynamics. In the end, we selected accelerated versions of datasets Abou-Chakra
et al. (2024) and Luiten et al. (2024) for testing, which meet the aforementioned requirements. For further
details, please refer to Sec 4.1.

3 Method

Overview. In this section, we present the implementation details of our proposed structural cascaded
optimization approach. As outlined in the Introduction, our study aims to answer the question: “Can 4D
scenes directly benefit from the structural information inherent in vanilla 3DGS?” and to provide insights that
could inspire online applications. Offline methods, while effective for high-quality reconstructions, usually
do not have straightforward modeling of explicit point-level information. They also lack the potential for
online reconstructions. Therefore, we build upon the online method Dynamic3DGS (Luiten et al., 2024) as
our codebase and integrate our cascaded optimization approach where each frame’s Gaussian outputs are
generated solely based on the state of Gaussians from the previous frame and the 2D image inputs from the
current frame.

For the complete Dynamic Gaussian Splatting training task, we first perform a static scene reconstruction
based on the initial frame observations, following the standard 3D Gaussian Splatting (Kerbl et al., 2023)
procedure. Given multi-view observations of a static scene (Ip1,1o.z2,--.,Jlo,n) and their corresponding
camera poses (C1,Ca,...,Cy), we train a module ©(that represents the parameters of all Gaussians. This
module allows us to generate a predicted image I for any input camera pose C, such that I = 0(C).

Based on this, we can proceed with subsequent online dynamic scene reconstruction. To be more specific, we
use Sg,S1, - .., 97 to represent the dynamic scene from time frame 0 to time frame 7. For each time frame
t, we have a sequence of images Iy 1,1t 2,...,1; v from the cameras. Our goal is to train a representation
© that can fit the scenes Sy, S1,...,S7. Given an arbitrary camera C' at time frame ¢, we can predict the
image as I = ©,(C).

Throughout this process, we introduce a structural cascaded optimization approach that organizes the Gaus-
sians in a coarse-to-fine manner, significantly reducing the number of training iterations required between
consecutive frames. In the following sections, we provide a detailed explanation of each step in this approach.

Published in Transactions on Machine Learning Research (06/2025)

scale= tanh(c] (x — pf) +5,) + 1

Figure 3: Tllustration of the deformation function parameters: Rotation (second), translation (third), and
scaling (fourth) applied to a cluster. Initial state (first).

3.1 Preliminary

In this section, we outline the key concepts and steps involved in learning the dynamic scene representation
© for a sequence of dynamic scenes Sy, S, ..., S7. For online dynamic scene reconstruction, our method
focuses on predicting the deformation between two consecutive frames using the reconstruction results from
the previous frame and the current frame’s input observations.

Assuming that the Gaussians of frame ¢t — 1 have been reconstructed, we need to predict the deformation for
frame ¢ and obtain the scene representation ©; for it. To be concrete, we want to predict the deformation
Dy that satisfies the following equation:

O = D(O4_1). (1)

Thus, for any given t and C', we have

O(t, C) = Dy(Dy—1(- - D1(Bo) - -))(C). (2)

Consider the changes of a single Gaussian g; in the scene at time frame ¢ during deformation. Recall that
its representation is defined as

Gt,i(x) = e*%(Xfpt,i)Tz;}(X—ptyi). (3)

This is a probability density function of the position X in which p, ; is the centroid position, and ¥ ; is the
covariance matrix. In the deformation process D;, we assume that the corresponding deformation function
of position x is ®; which satisfies

(bt(ptfl,i) = D¢,i- (4)

According to the derivation in Xie et al. (2024), the eformed centroid position p, and the covariance matrix
>, as follows:

P = q)t<pt—1,i)7

(5)
Et,i = vpt—l,i (cbt)ztflaivptfl,i ((I)t)T'

This means that if we can learn the deformation function ®; of the scene, we can use Eq. (5) directly to
update the parameters of all the Gaussians. Thus, our task is transformed into learning ®;, which will be
discussed in the following sections.

3.2 Single-layer Deformation Function

The deformation function ®; can be a complicated non-linear one for the entire scene, making it hard for
us to directly learn it. An intuitive idea is that if we can cluster points that are close in space and make
an approximation that all the Gaussians within one cluster follow the same deformation function, then the
difficulty of learning the deformation function as a whole will be reduced. Also, with this clustering structure,
we can make the learning process more efficient than learning it for each Gaussian independently. Which
will be revealed in the experiment results. Furthermore, the deformation function within one cluster can be
constructed using deformations such as rotation, translation, and scaling, making it possible to parameterize
®, in an explicit form.

The intuition is that one small chunk of the object is nearly rigid, thus its movement can be represented by
a transformation and a rotation around its centroid. Also, to increase the flexibility, we can add a scaling

Published in Transactions on Machine Learning Research (06/2025)

factor. The deformation function ®; within one cluster j can be represented as
xg = (Rj(z — p§) + t;) - (tanh(c;—r(wfp;)Jrsj)Jrl), (6)

where z is the position of the point, x4 is the corresponding position after deformation, p§ is the centroid
of the cluster, R; is the rotation matrix (stored as a quaternion to ensure that it represents a rotation),

t; is the translation vector, and (tanh (c;'—(:c —p§)+ ;) + 1) as a whole is the scaling factor. The inner
term c;.'— (z— pj) + s; represents a simple linear mapping from the local coordinate to a scalar, with c; € R3
controlling the direction and sensitivity of the scaling, and s; € R acting as a bias. This design follows the
standard form of a linear transformation and introduces no special assumptions, while allowing each cluster
to flexibly learn a position-dependent scaling. The tanh design ensures the scaling factor remains in the
range (0, 2), preventing potential NaN problems during training. Additionally, the scaling factor is a flexible,
trainable linear function of (z — p§)7 with ¢; and s; as its parameters, allowing for adaptable scaling within
a single cluster. Fig. 3 illustrates the specific meaning of each parameter. In summary, to represent the

deformation function ®; within cluster j, we need to learn trainable parameters R;, t;, ¢; and s;.

3.3 Cascaded Structural Optimization Strategy

The previously discussed content addresses the deformation formulation problem within a single-layer cluster.
However, there is a trade-off: if clusters are too small, they provide limited acceleration, while if they
are too large, they group too many Gaussians, reducing the ability to capture detailed deformations. To
address this, we use a coarse-to-fine multi-layer cluster structure, starting with K-means clustering based
on centroids. Subsequently, by merging neighboring clusters, we acquire a coarser layer of clusters. This
process is iteratively repeated until we obtain the coarsest layer of clusters. Specifically, suppose a point p,_;

belongs to clusters j1, jo, ..., jix at each layer respectively (K is the number of layers), and the deformation
function within cluster jj is ¢y j,. Then, for the point p,_; at the ¢t — 1-th frame
Pr = Ok, jr (- (02,52 (01,5, (Pr1))) -+)- (7)

In our implementation, K = 3. The cascaded optimization framework is shown in Fig. 2.

At the coarsest level, clusters are expected to make broad approximations of the scene’s deformation. While
this coarse clustering might not always align perfectly with the underlying rigid parts, the purpose is to
rapidly bring the Gaussians closer to an optimal solution. Fine-level clusters, operating at higher resolutions,
can then start optimization from an improved baseline, requiring fewer iterations to refine the deformation.
This hierarchical approach reduces training cost while retaining the ability to express detailed motion.

To further enhance the fine-tuning capability of each Gaussian, we introduce three additional parameters
for each Gaussian, which are Ap, AR, and As, corresponding to delta in centroids positions, rotations, and
scalings. These delta values are applied to the Gaussians after they have been deformed by the deformation
function.

3.4 Optimization Process and Training Strategies

Optimization Pipeline. Based on the previously discussed deformation process, we present our complete
optimization pipeline for learning deformations, which consists of two main stages. In the initialization
stage, we first train Gaussians on the static scene using observations from the initial frame, followed by a
coarse-to-fine clustering of Gaussian centroids. This clustering generally only needs to be done once but can
be updated mid-training if there are significant scene changes. In the training stage, for each subsequent
frame, we refine the deformation parameters by combining the current input images with the Gaussians from
the previous frame. Through backpropagation of 2D loss, we iteratively update the deformation parameters,
using the previous frame’s parameters as a starting point to effectively capture gradual changes over time.

Loss Functions for Deformation. In addition to the 2D image losses used in most Gaussian Splatting
methods, following Luiten et al. (2024), we also use local-rigidity loss, isometry loss, and rotation loss to
restrict the movement of Gaussians in large regions of the same color. Furthermore, we add scale loss L3¢

Published in Transactions on Machine Learning Research (06/2025)

Metrics Method FastParticle Panoptic
B Robot Spring Wheel Pendulums Robot-Task Cloth | Basketball Boxes Football Juggle Softball Tennis
Oursigp 29.46 30.28 27.95 30.6 27.67 31.68 30.25 29.46 30.47 31.12 31.02 30.21
PSNRT Dynamic3DGS,(, (Luiten et al., 2024) | 21.28 23.66 24.14 24.98 23.41 21.44 29.48 29.20 30.05 30.96 30.64 29.77
Dynamic3DGSyg (Luiten et al., 2024) | 30.23 30.88 28.59 31.23 29.36 32.91 30.01 29.29 30.4 31.04 30.88 30.11
Oursygp 0.96 0.97 0.94 0.97 0.95 0.97 0.93 0.93 0.94 0.94 0.94 0.94
SSIMt Dynamic3DGS,, (Luiten et al., 2024) 0.90 0.93 0.89 0.94 0.92 0.92 0.92 0.93 0.93 0.94 0.94 0.94
Dynamic3DGSygo (Luiten et al., 2024) | 0.97 0.97 0.94 0.97 0.97 0.98 0.92 0.93 0.93 0.94 0.94 0.94
Oursigg 0.09 0.04 0.07 0.06 0.10 0.06 0.21 0.20 0.20 0.20 0.20 0.19
LPIPS| Dynamic3DGS,y, (Luiten et al., 2024) 0.15 0.08 0.11 0.09 0.13 0.11 0.22 0.21 0.21 0.20 0.21 0.21
Dynamic3DGSygo (Luiten et al., 2024) | 0.08 0.04 0.06 0.05 0.09 0.05 0.22 0.21 0.21 0.21 0.21 0.21

Table 1: Online methods rendering results on the FastParticle and Panoptic datasets. Values represent mean
metrics across all testing views. Top-2 methods are bolded.

Metrics Method FastParticle Panoptic
Robot Spring Wheel Pendulums Robot-Task Cloth | Basketball Boxes Football Juggle Softball Tennis
Ours 29.46 30.28 27.95 30.60 27.67 31.68 30.25 29.46 30.47 31.12 31.02 30.21
Dynamic3DGS (Luiten et al., 2024) 21.28 23.66 24.14 24.98 23.41 21.44 29.48 29.2 30.05 30.96 30.64 29.77
PSNRt RealTimedDGS (Yang et al., 2024) 2597 22.54 23.86 26.25 24.72 22.16 25.51 27.59 26.48 27.63 26.73 27.09
= 4DGS (Wu et al., 2024) 25.86 24.93 26.56 27.35 28.00 27.89 23.26 28.02 27.04 28.10 26.01 27.54
SC-GS(no-pretraining) (Huang et al., 2024) | 15.76 17.08 16.89 17.90 16.42 14.58 19.72 21.43 20.66 20.87 21.03 21.10
SC-GS(pretraining) (Huang et al., 2024) 22.31 25.60 24.10 27.32 26.49 26.95 19.42 21.02 20.17 20.62 21.11 21.02
Ours 0.96 0.97 0.94 0.97 0.95 0.97 0.93 0.93 0.94 0.94 0.94 0.94
Dynamic3DGS (Luiten et al., 2024) 0.90 0.93 0.89 0.94 0.92 0.92 0.92 0.93 0.93 0.94 0.94 0.94
SSIMt RealTimedDGS (Yang et al., 2024) 0.93 0.91 0.89 0.93 0.93 0.91 0.89 0.92 0.91 0.92 0.91 0.92
4DGS (Wu et al., 2024) 0.93 0.93 0.91 0.94 0.95 0.95 0.87 0.92 0.91 0.92 0.91 0.92
SC-GS(no-pretraining) (Huang et al., 2024) | 0.75 0.78 0.80 0.66 0.76 0.73 0.69 0.70 0.69 0.71 0.72 0.70
SC-GS(pretraining) (Huang et al., 2024) 0.90 0.95 0.87 0.95 0.94 0.94 0.68 0.69 0.68 0.71 0.71 0.70
Ours 0.09 0.04 0.07 0.06 0.10 0.06 0.21 0.20 0.20 0.20 0.20 0.19
Dynamic3DGS (Luiten et al., 2024) 0.15 0.08 0.11 0.09 0.13 0.11 0.22 0.21 0.21 0.20 0.21 0.21
LPIPS, Real TimedDGS (Yang et al., 2024) 0.13 0.11 0.12 0.10 0.13 0.13 0.26 0.22 0.23 0.22 0.23 0.23
4DGS (Wu et al., 2024) 0.12 0.08 0.10 0.09 0.11 0.09 0.32 0.25 0.27 0.25 0.26 0.25
SC-GS(no-pretraining) (Huang et al., 2024) | 0.27 0.17 0.15 0.21 0.26 0.25 0.44 0.44 0.43 0.42 0.41 0.42
SC-GS(pretraining) (Huang et al., 2024) 0.12 0.04 0.12 0.04 0.07 0.07 0.45 0.43 0.44 0.41 0.41 0.42
Table 2: General dynamic methods rendering results on the FastParticle and Panoptic datasets. Values
represent mean metrics across all testing views. The best method is bolded.
Metrics Method FastParticle Panoptic]
Robot Spring Wheel = Pendulums Robot-Task Cloth | Basketball ~Boxes Football ~Juggle Softball Tennis
2D MTE/ Oursygg 0.80% 0.17% 14.88% 0.50% 0.82% 0.24% 0.57% 0.22% 7.64% 8.15% 0.39% 1.72%
Dynamic3DGS,y, (Luiten et al., 2024) | 7.84% 2.26% 18.53% 3.51% 4.42% 2.33% 15.85% 4.95% 9.29% 12.42% 16.43% 25.19%

Table 3: 2D tracking results on the FastParticle and Panoptic datasets. Values represent mean metrics
across all testing trajectories. The best method is bolded.

to prevent the generation of Gaussians that are excessively large or elongated, helping to reduce artifacts
during the deformation process. The explicit form of the scale loss is

N
1
N Z max (0, scale; , — max_ scale),

i=1

Lscalc _

(8)

where scale; ; is the scaling vector of Gaussian ¢ at time ¢, and max_scale is a hyper-parameter. We use
fixed empirical weights of [0.19,0.10,0.19,0.48,0.05] for rigidity, isometry, rotation, scale, and RGB losses,
respectively.

Training Strategy and Appearance Modeling. After the first round of the static stage, we fix the
opacity and background logit of the Gaussians. For better rendering results, we make the color trainable,
allowing it to better adapt to different lighting conditions. Specifically, in terms of appearance modeling, we
follow the approach of Dynamic3DGS (Luiten et al., 2024), assigning each Gaussian a trainable 3D RGB
vector instead of using spherical harmonics (SH). Additionally, we add a soft RGB loss to constrain the
changes in color. Regarding the coarse-to-fine clustering, in our experiments, we use a structure with K = 3,
where the clusters in the coarser layer are obtained by merging clusters from the finer layer. The finest layer
clusters are obtained using KMeans of Gaussian centroid positions. The merging method involves calculating
the average centroid position of Gaussians in each cluster, and then performing Agglomerative Clustering
based on this. The final numbers of clusters at each layer are 64, 320, 1280.

Published in Transactions on Machine Learning Research (06/2025)

Cloth

Robot

Football

Figure 4: Visual comparison of rendering results

on FastParticle after 100 iterations per frame Figure 5: Articulated objects segmenta-
training. tion results.

4 Experiments

4.1 Dataset Preparation

We conduct our experiments on two datasets: the Panoptic dataset Joo et al. (2015; 2019), which includes
six real-world dynamic scenes (Basketball, Boxes, Football, Juggle, Softball, and Tennis), and the syn-
thetic FastParticle dataset (Abou-Chakra et al., 2024), containing six highly dynamic scenes (Robot, Spring,
Wheel, Pendulums, Robot-Task, and Cloth). As mentioned in Sec. 2, we deliberately chose these datasets
with challenging motion patterns to evaluate our method’s ability to quickly converge Gaussians in a very
short training period. The large motion between frames in these datasets increases the difficulty of rapid
convergence, making them ideal for testing the robustness of our approach. To further amplify this challenge,
we accelerated the motion in the FastParticle dataset. Additional details are available in the appendix.

4.2 Comparisons

In this section, we demonstrate the effectiveness of our proposed cascaded optimization approach in signifi-
cantly reducing the number of training iterations required. This is achieved by comparing our method with
four state-of-the-art dynamic Gaussian Splatting methods on view-synthesis tasks. These methods include
Dynamic3DGS (Luiten et al., 2024), RealTimedDGS (Yang et al., 2024), 4DGS (Wu et al., 2024), and SC-
GS (Huang et al., 2024). Notably, Dynamic3DGS (Luiten et al., 2024), which serves as our codebase, follows
the same online dynamic scene reconstruction approach as ours, while the other three are offline methods.

Evaluation Metrics. We use the PSNR, SSIM, and LPIPS (Wang et al., 2004; Zhang et al., 2018). In the
experiments, since training speed is greatly influenced by implementation and hardware, for a fair comparison,
it is most reasonable to compare the rendering results at the same iteration number. To eliminate concerns
about runtime speed. On our single NVIDIA A40 GPU, training 100 iterations takes 1-3 seconds.

Comparison with Online Methods. We conducted experiments comparing our method with Dy-
namic3DGS (Luiten et al., 2024) on both the FastParticle and Panoptic datasets. The results are shown
in Table 1. Since both methods follow the paradigm of first training a static scene and then performing
Gaussian Splatting training frame by frame, we fixed the number of training iterations between every two
frames to 100 and 2000 for comparison. Here, we provide the same static checkpoints for both methods for
fairness. As mentioned earlier, our method significantly reduces the number of iterations required to achieve
satisfactory rendering results. From the results in the tables, it can be seen that our method achieves results
comparable to Dynamic3DGS (Luiten et al., 2024) at 2000 iterations with only 100 iterations of training
between frames, and it far surpasses Dynamic3DGS (Luiten et al., 2024) at 100 iterations. Fig. 4 shows
the rendering results of both methods at 100 iterations, qualitatively demonstrating that our method can
converge and achieve satisfactory visual results after being trained for only 100 iterations per time frame.

Published in Transactions on Machine Learning Research (06/2025)

w/o Entangle w/ Entangle Ground Truth

Wheel

Robot

Figure 6: Left: Comparing our tracking result (blue)
to the ground truth (red). Right: Visualization of our
tracking results.

Figure 7: Ablation study of the entangled covariance
matrix.

Pendulums Spring Robot

£ 24

20 —— Ours 20 —— Ours —— Ours
Dynamic3DGS Dynamic3DGS Dynamic3DGS

0 30 60 90 100 300500 10002000 0 30 60 90 100 300500 10002000 0 30 60 90 100 300500 10002000
Iterations Iterations Iterations

Figure 8: Convergence speed comparison between our method and Dynamic3DGS (Luiten et al., 2024) on
the FastParticle dataset. The x-axis shows the number of training iterations per frame, and the y-axis
represents the mean PSNR across all testing views.

Comparison with Online and Offline Methods. We compared our method with the other four methods
on both datasets. For fairness, the two online methods trained 100 iterations per frame, while for the offline
methods, we set their total iterations to 100 multiplied by the total number of frames. Similarly, we provided
all methods with the same static scene checkpoints for fair comparisons. SC-GS (Huang et al., 2024) is a
special case because it involves two stages: the first stage requires 10,000 iterations solely to establish
control points, and the second stage begins the actual rendering training. Therefore, we provide two metrics:
pretraining refers to the scenario where SC-GS undergoes 10,000 iterations to establish control points before
continuing with the same number of iterations as our method, effectively adding 10,000 extra iterations. No-
pretraining refers to the case where we skip the additional 10,000 iterations and directly start the rendering
training. The results are shown in Table 2. As can be seen from the table, our method achieved the best
results across both datasets.

Point-Tracking. Additionally, we evaluated our method’s point-tracking capability. Due to the challenge
of obtaining 3D ground-truth tracking labels, we manually annotated keypoints for all frames from a selected
camera view in each scene, using these as ground-truth data. Details of the annotation process are provided
in the appendix. For tracking, we projected all Gaussian centroids in each frame onto the camera plane
to obtain predicted 2D points. We then selected candidate points within 10 pixels of the ground-truth 2D

. Particle
Metrics Method Robot Spring Wheel Pendulums Robot-Task Cloth
PSNR? Ours, K=3 | 29.46 30.28 27.95 30.60 27.67 31.68
Ours, K=1 | 24.56 26.16 25.12 25.94 24.73 27.77
SSIMt Ours, K=3 | 0.96 0.97 0.94 0.97 0.95 0.97
Ours, K=1 | 0.94 0.95 0.91 0.95 0.94 0.96
LPIPS| Ours, K=3 | 0.09 0.04 0.07 0.06 0.10 0.06
Ours, K=1 | 0.12 0.07 0.10 0.08 0.12 0.07

Table 4: Ablation study for the number of cluster layers.

Published in Transactions on Machine Learning Research (06/2025)

keypoint from the first frame, choosing the one with the highest metric value as the final tracked point.
This step was necessary because the candidates corresponded to different depths, and the 2D ground-truth
coordinates alone were insufficient for determining which point to track. The candidate with the best metric
was considered the 3D-consistently aligned point. We used the 2D Median Trajectory Error (MTE) as
the metric, following Dynamic3DGS (Luiten et al., 2024). In Table 3, we report the normalized MTE,
which is the pixel error normalized by the image diagonal length, along with visualizations of the tracking
results in Fig. 6. We compare our method against Dynamic3DGS (Luiten et al., 2024), selected for its
superior rendering performance and as the only baseline aligning with our settings. Our tracking outcomes
significantly outperform the baseline across all scenes with the same number of training iterations. Notably,
the “Wheel” scene exhibits a high 2D MTE due to the object’s strong symmetry, leading to ambiguity in its
rotational trajectory (see the appendix for the scene image).

4.3 Visualization of Part Segmentation

Next, we demonstrate another application of the learned deformation information: performing segmentation
on articulated objects without any semantic knowledge. Many objects in daily life, although not rigid as a
whole, are composed of many rigid parts. As humans, we can distinguish these parts by watching a dynamic
video and observing their motions. Similarly, our study shows how we can segment different parts of an
object based solely on their deformation information, without requiring any semantic knowledge.

After training, we can obtain the centroid positions and rotations of Gaussians at each time frame. We then
use KMeans clustering to group Gaussians into different clusters based on this information. Specifically, for
a given Gaussian i, we use the notations p; , and R;; to represent its position and rotation matrix at time
frame ¢, respectively. The KMeans feature for each Gaussian is a tensor of shape [T, 15|, where T is the total
number of time frames. This tensor is the concatenation of p, ;, flattened R;, and p, ; repeated T' times.
Additionally, we multiply three hyperparameters: Ay, Ar, and A, to these three parts before concatenation,
respectively, to balance their importance.

The intuition behind the KMeans design is that, (1) Gaussians belong to the same part of the object should
be close to each other at all times, and (2) the rotations of Gaussians within the same rigid part should be
the same.

As illustrated in Fig. 5, we present our segmentation results on the Panoptic and FastParticle datasets.
To enhance visualization, we assign different colors to Gaussians belonging to distinct categories before
rendering the final outcomes. Notably, our simple K-means algorithm yields highly intuitive segmentation
results, regardless of whether the scene comprises synthetic objects (left) or intricate real-world environments
(right). This observation serves as indirect evidence that the deformation information captured by our learned
Gaussians closely aligns with the actual motion of objects in dynamic scenes.

4.4 Ablation Study

In this section, we conduct ablation studies to analyze the effectiveness of our method. We first analyze the
convergence speed of our method and compare it with Dynamic3DGS (Luiten et al., 2024). Then, we study
the influence of the number of clustering layers on the rendering results. Finally, we analyze the effect of the
entangled covariance matrix on the rendering results.

Analyse of training iterations To compare the convergence speed of our method and Dy-
namic3DGS (Luiten et al., 2024), we trained both methods for different iterations and evaluated their
rendering results at these iterations. We trained both methods on the FastParticle dataset. We show the
results in Fig. 8, where the x-axis represents the number of training iterations between every two time
frames, and the y-axis represents the mean PSNR among all of the testing views. It can be observed that
our method converges much faster than Dynamic3DGS (Luiten et al., 2024), consistently outperforming
Dynamic3DGS (Luiten et al., 2024) at the same number of iterations. After 2000 iterations, both methods
converge at the same point, which also confirms that our method is very close to convergence after training
for just 100 iterations.

10

Published in Transactions on Machine Learning Research (06/2025)

Number of Cluster Layers In our cascaded optimization framework design, we choose the number of
layers K to be 3. Here, we conduct experiments to analyze the influence of K on the rendering results, and
also to validate the effectiveness of our multi-layer clustering design. We conduct our experiments on the
FastParticle dataset, and the results are shown in Table 4. It can be seen that the results of our method with
K = 3 are much better than those with K = 1 across all metrics and scenes, revealing that the coarse-to-fine
structure can significantly reduce the number of training iterations, validating the intuition that moving
large clusters of Gaussians at once can more quickly find suitable positions, thereby reducing unnecessary
adjustments of Gaussian positions. We also test larger values of K (e.g., 4 and 5), and observe no further
improvements. In fact, increasing K introduces more parameters to optimize, which may slow convergence.
Therefore, K = 3 strikes a good balance between efficiency and effectiveness. Detailed results are provided
in the appendix.

Entangled Covariance Matrix As shown in Eq. (5), in our method, our Gaussians’ covariance matrices
are not separately learned. Instead, they are coupled with the deformation of centroid positions, following
the strategy introduced by PhysGS Xie et al. (2024). This makes it easier for our method to learn the correct
rotations and scaling of the Gaussians. In Fig. 7, we show a comparison between learning the covariance
matrix separately from positions and our full implementation.

Using the wheel as an example, it should rotate around its own center. As shown in the left, without
coupling, although the positions of the Gaussians are learned correctly, the Gaussians themselves do not
rotate accordingly with the wheel, resulting in suboptimal final rendering. In our full implementation, as
long as the deformation function is learned correctly, the rotations and scalings of the Gaussians are naturally
adjusted accordingly, preventing artifacts where the Gaussians are incorrectly oriented.

5 Conclusion

In this paper, we presented SCas4D , a cascaded optimization framework for dynamic scene modeling,
focusing on efficient tracking and novel-view synthesis. By leveraging hierarchical deformation patterns,
our method refines adjustments from part-level to point-level, achieving convergence within 100 iterations
while maintaining competitive quality with only 1/20th of the training iterations. We also demonstrated its
effectiveness in self-supervised articulated object segmentation. Extensive experiments highlight its strong
performance in novel view synthesis and dense point tracking, with potential for further improvement through
other 3D Gaussian Splatting variants.

Acknowledgments

We thank Pavel Tokmakov for valuable discussions. This work was supported in part by NSF Grant 2106825,
NIFA Award 2020-67021-32799, the Toyota Research Institute, Amazon, the IBM-Illinois Discovery Accel-
erator Institute, and Snap Inc. This work used computational resources, including the NCSA Delta and
DeltaAl supercomputers through allocations CIS230012 and CIS240370 from the Advanced Cyberinfras-
tructure Coordination Ecosystem: Services & Support (ACCESS) program, as well as the TACC Frontera
supercomputer and Amazon Web Services (AWS) through the National Artificial Intelligence Research Re-
source (NAIRR) Pilot.

References

Jad Abou-Chakra, Feras Dayoub, and Niko Siinderhauf. ParticleNerf: A particle-based encoding for online
neural radiance fields. In WACV, 2024.

Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael Zollhoefer, Johannes Kopf, Matthew O’Toole,
and Changil Kim. HyperReel: High-fidelity 6-dof video with ray-conditioned sampling. In CVPR, 2023.

Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew DuVall, Jason
Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. Immersive light field video with a layered mesh
representation. In SIGGRAPH, 2020.

11

Published in Transactions on Machine Learning Research (06/2025)

Ang Cao and Justin Johnson. Hexplane: A fast representation for dynamic scenes. In CVPR, 2023.

Anpei Chen, Zexiang Xu, Fugiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi Yu, and Hao Su. MVSNeRF:
Fast generalizable radiance field reconstruction from multi-view stereo. In ICCV, 2021.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance fields. In
ECCYV, 2022.

Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su, and Andreas Geiger. Dictionary fields: Learning
a neural basis decomposition. ACM Transactions on Graphics (TOG), 42(4):1-12, 2023a.

Zhigin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. MobileNeRF: Exploiting the
polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In CVPR, 2023b.

Yuanxing Duan, Fangyin Wei, Qiyu Dai, Yuhang He, Wenzheng Chen, and Baoquan Chen. 4D Gaussian
Splatting: Towards efficient novel view synthesis for dynamic scenes. arXiv preprint arXiv:2402.03307,
2024.

Jiemin Fang, Taoran Yi, Xinggang Wang, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Matthias Niefiner, and
Qi Tian. Fast dynamic radiance fields with time-aware neural voxels. In SIGGRAPH Asia, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa.
Plenoxels: Radiance fields without neural networks. In CVPR, 2022.

Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbak Warburg, Benjamin Recht, and Angjoo Kanazawa.
K-planes: Explicit radiance fields in space, time, and appearance. In CVPR, 2023.

Stephan J Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. FastNeRF:
High-fidelity neural rendering at 200fps. In ICCV, 2021.

Peter Hedman, Pratul P Srinivasan, Ben Mildenhall, Jonathan T Barron, and Paul Debevec. Baking neural
radiance fields for real-time view synthesis. In ICCV, 2021.

Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao, Xiao Liu, and Yuewen Ma. Tri-MipRF: Tri-Mip
representation for efficient anti-aliasing neural radiance fields. In ICCV, 2023.

Yi-Hua Huang, Yang-Tian Sun, Ziyi Yang, Xiaoyang Lyu, Yan-Pei Cao, and Xiaojuan Qi. SC-GS: Sparse-
controlled Gaussian Splatting for editable dynamic scenes. In CVPR, 2024.

Hanbyul Joo, Hao Liu, Lei Tan, Lin Gui, Bart Nabbe, Tain Matthews, Takeo Kanade, Shohei Nobuhara, and
Yaser Sheikh. Panoptic studio: A massively multiview system for social motion capture. In ICCV, 2015.

Hanbyul Joo, Tomas Simon, Xulong Li, Hao Liu, Lei Tan, Lin Gui, Sean Banerjee, Timothy Godisart, Bart
Nabbe, Iain Matthews, et al. Panoptic studio: A massively multiview system for social interaction capture.
IEEE Transactions on Pattern Analysis & Machine Intelligence, 41(01):190-204, 2019.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3D Gaussian Splatting for
real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1-14, 2023.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping Tan. Streaming radiance fields for 3D video
synthesis. Advances in Neural Information Processing Systems, 35:13485-13498, 2022a.

Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhéfer, Jirgen Gall, Angjoo Kanazawa, and Christoph
Lassner. Tava: Template-free animatable volumetric actors. In ECCV, 2022b.

Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green, Christoph Lassner, Changil Kim, Tanner
Schmidt, Steven Lovegrove, Michael Goesele, Richard Newcombe, et al. Neural 3D video synthesis from
multi-view video. In CVPR, 2022c.

Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang. Neural scene flow fields for space-time view
synthesis of dynamic scenes. In CVPR, 2021.

12

Published in Transactions on Machine Learning Research (06/2025)

Zhengqi Li, Qianqian Wang, Forrester Cole, Richard Tucker, and Noah Snavely. Dynibar: Neural dynamic
image-based rendering. In CVPR, 2023.

Jonathon Luiten, Georgios Kopanas, Bastian Leibe, and Deva Ramanan. Dynamic 3D Gaussians: Tracking
by persistent dynamic view synthesis. In 3DV, 2024.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren
Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1-15, 2022.

Michael Niemeyer, Jonathan T Barron, Ben Mildenhall, Mehdi SM Sajjadi, Andreas Geiger, and Noha
Radwan. RegNeRF: Regularizing neural radiance fields for view synthesis from sparse inputs. In CVPR,
2022.

Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman, Steven M Seitz, and
Ricardo Martin-Brualla. Nerfies: Deformable neural radiance fields. In ICCV, 2021a.

Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T Barron, Sofien Bouaziz, Dan B Goldman,
Ricardo Martin-Brualla, and Steven M Seitz. HyperNeRF: A higher-dimensional representation for topo-
logically varying neural radiance fields. arXiv preprint arXiv:2106.13228, 2021b.

Albert Pumarola, Enric Corona, Gerard Pons-Moll, and Francesc Moreno-Noguer. D-NeRF: Neural radiance
fields for dynamic scenes. In CVPR, 2021.

Christian Reiser, Rick Szeliski, Dor Verbin, Pratul Srinivasan, Ben Mildenhall, Andreas Geiger, Jon Barron,
and Peter Hedman. MeRF: Memory-efficient radiance fields for real-time view synthesis in unbounded
scenes. ACM Transactions on Graphics (TOG), 42(4):1-12, 2023.

Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen, Lele Chen, Junsong Yuan, Yi Xu, and Andreas Geiger.
NeRFplayer: A streamable dynamic scene representation with decomposed neural radiance fields. IEEFE
Transactions on Visualization and Computer Graphics, 29(5):2732-2742, 2023.

Jiakai Sun, Han Jiao, Guangyuan Li, Zhanjie Zhang, Lei Zhao, and Wei Xing. 3DGStream: On-the-fly
training of 3D gaussians for efficient streaming of photo-realistic free-viewpoint videos. arXiv preprint
arXiv:2403.01444, 2024.

Liao Wang, Qiang Hu, Qihan He, Ziyu Wang, Jingyi Yu, Tinne Tuytelaars, Lan Xu, and Minye Wu. Neural
residual radiance fields for streamably free-viewpoint videos. In CVPR, 2023.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004.

Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira Kemelmacher-Shlizerman.
HumanNeRF: Free-viewpoint rendering of moving people from monocular video. In CVPR, 2022.

Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn Suwajanakorn. Nex:
Real-time view synthesis with neural basis expansion. In CVPR, 2021.

Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng Zhang, Wei Wei, Wenyu Liu, Qi Tian, and
Xinggang Wang. 4D Gaussian Splatting for real-time dynamic scene rendering. In CVPR, 2024.

Jamie Wynn and Daniyar Turmukhambetov. DiffusioNeRF: Regularizing neural radiance fields with denois-
ing diffusion models. In CVPR, 2023.

Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang. PhysGaussian:
Physics-integrated 3D Gaussians for generative dynamics. In CVPR, 2024.

Gengshan Yang, Minh Vo, Natalia Neverova, Deva Ramanan, Andrea Vedaldi, and Hanbyul Joo. Banmo:
Building animatable 3D neural models from many casual videos. In CVPR, 2022.

13

Published in Transactions on Machine Learning Research (06/2025)

Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. Real-time photorealistic dynamic scene representation
and rendering with 4D Gaussian Splatting. In ICLR, 2024.

Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. PixelNeRF: Neural radiance fields from one
or few images. In CVPR, 2021.

Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz, and Felix Heide. Differentiable point-based radiance
fields for efficient view synthesis. In SIGGRAPH Asia, 2022.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness
of deep features as a perceptual metric. In CVPR, 2018.

Fuqgiang Zhao, Wei Yang, Jiakai Zhang, Pei Lin, Yingliang Zhang, Jingyi Yu, and Lan Xu. HumanNeRF:
Efficiently generated human radiance field from sparse inputs. In CVPR, 2022.

14

Published in Transactions on Machine Learning Research (06/2025)

A Appendix

In this appendix, we offer additional details regarding our FastParticle and Panoptic datasets, which provide
the necessary context for our experiments. We delve into our method for articulated objects segmentation,
presenting full qualitative results that demonstrate its effectiveness across various scenarios. Additionally,
we clarify our rationale for maintaining the same number of iterations in our comparisons and present a
comparison under equal wall-clock time, showing that our method still outperforms Dynamic3DGS Luiten
et al. (2024). We also include visualizations illustrating the multi-layer clustering structure we employ, as
well as the manually annotated tracking labels used for evaluating 2D tracking results. Furthermore, we
discuss our approach to learning the deformation, emphasizing the two-phase training strategy. Finally, we
reflect on limitations, identifying potential areas for future improvement.

A.1 FastParticle and Panoptic Datasets

In this section, we introduce the FastParticle and Panoptic datasets used in our experiments in details. The
real-world Panoptic dataset includes six scenes: Basketball, Boxes, Football, Juggle, Softball, and Tennis.
Each frame in these scenes comes with segmentation provided by the original authors. Following Luiten
et al. (2024), we distinguish between foreground and background in these scenes and utilize background loss
and floor loss accordingly. Each scene in this dataset contains 150 frames captured by a total of 31 cameras,
with 27 cameras used for training and 4 for testing.

The synthetic FastParticle dataset, which we have accelerated, contains six dynamic scenes: Robot, Spring,
Wheel, Pendulums, Robot-Task, and Cloth. After acceleration, these scenes respectively have 35, 18, 38,
24, 35, and 35 frames. As illustrated in Fig. 9, we show the dynamic evolution of some scenes, highlighting
the significant changes between frames. This dataset includes 40 cameras in total, from which we randomly
select 4 as testing cameras and the remaining 36 as training cameras.

For all experiments, we provide the same static checkpoints to all baselines. For the 12 scenes across the
two datasets, we train for 20,000 iterations to obtain the checkpoints. Due to the varying complexity of the
static scenes, 3,000 iterations are sufficient for most FastParticle scenes.

A.2 Articulated Objects Segmentation

As mentioned in Sec. 5.1. The intuition behind the KMeans design is that, (1) Gaussians belong to the
same part of the object should be close to each other at all time, and (2) the rotations of Gaussians within
the same rigid part should be the same. The first one can be trivial, here we provide more explanations
about the second point. As shown in Fig. 10, suppose we have a rigid body with its centroid denoted as Cj.
This rigid body can be considered as a combination of two smaller rigid bodies, with their centroids denoted
as C7 and Csy, respectively. After rotation, C; and Cy move to C] and Cj. Taking Cj as the origin of the
coordinate system, the movement of the rigid body can only be a rotation R around Cy, and the two smaller
rigid bodies move accordingly. When considering the left smaller rigid body alone, its motion should consist
of a translation of its centroid C; and a rotation R; around C;. We aim to prove that R; = R. Therefore,
consider a point P on the left rigid body, which moves to point P’ after the movement. From the perspective

of Cy, we have
—
CoP’ = R CoP. (9)

Also, from the perspective of C7, we can have

C()P/ = RlCllj-\ + C()Ci

— RGP+ R CoC).

Therefore, we have

RCP =R, C\P. (11)

Published in Transactions on Machine Learning Research (06/2025)

Cloth Robot

Robot-Task

Figure 9: This figure shows the evolution of three scenes from the FastParticle dataset, demonstrating the
high dynamic characteristics of the accelerated dataset.

Figure 10: Ilustration of a rigid body rotating R around its centroid. When considering the rigid body as
composed of two smaller rigid bodies, it can be shown that the rotation of each smaller rigid body around
its own centroid is the same with R.

Since the choice of P is arbitrary, we can conclude that Ry = R. Similarly, we can prove that the rotation
of the smaller rigid body on the right is also R. The above demonstrates the case where the rigid body is
divided into two parts. This conclusion can be generalized to any case of multiple divisions, meaning that
all parts of the same rigid body have the same rotation. Returning to our problem, since the rotation of
Gaussians is around their centroids, the Gaussians belonging to the same rigid body should have the same
rotation.

Published in Transactions on Machine Learning Research (06/2025)

Dynamic3DGS Ours Ground Truth

Pendulums Spring Robot-Task Robot Cloth

Wheel

Figure 11: Qualitative results on FastParticle

Published in Transactions on Machine Learning Research (06,/2025)

Dynamic3DGS Ours Ground Truth

Softball Boxes Juggle Basketball Football

Tennis

Figure 12: Qualitative results on Panoptic

Published in Transactions on Machine Learning Research (06/2025)

. FastParticle
Metrics Method Robot Spring Wheel Pendulums Robot-Task Cloth
PSNR1 Oursigo 29.46 30.28 27.95 30.60 27.67 31.68
Dynamic3DGSso, Luiten et al. (2024) | 27.66 27.16 26.67 29.57 26.79 30.41
SSIMt Oursioo 0.96 0.97 0.94 0.97 0.95 0.97
Dynamic3DGS3q, Luiten et al. (2024) | 0.95 0.95 0.93 0.96 0.95 0.97
LPIPS, Oursioo 0.09 0.04 0.07 0.06 0.10 0.06
Dynamic3DGS;, Luiten et al. (2024) | 0.10 0.06 0.08 0.06 0.10 0.07

Table 5: Comparison of our method trained with 100 iterations per time frame against Dynamic3DGS.

Method Particle
Robot Spring Wheel Pendulums Robot-Task Cloth
K=2 29.48 30.40 27.86 30.54 27.35 31.51
K=4 29.39 30.09 27.87 30.38 27.55 31.48
K=5 29.17 30.00 27.79 30.36 27.60 31.43

Table 6: More ablation study results for the number of cluster layers. The reported metric is PSNR.

A.3 Full Qualitative Results

In this section, we provide qualitative results on all 12 scenes from the two datasets. As shown in Fig. 11
and Fig. 12, both our method and Luiten et al. (2024) are trained 100 iterations between two consecutive
frames.

A.4 Same Wall-clock Time Comparisons

In our experiments, we use the same number of iterations across different methods for consistency. While
wall-clock time may vary depending on the specific implementation (e.g., whether CUDA acceleration is
employed), the number of iterations reflects the convergence speed of the algorithms. A lower number of
iterations indicates faster convergence, showing that the optimization problem is easier to solve. This practice
is commonly used in the evaluation of online methods, as demonstrated in the Dynamic3DGS Luiten et al.
(2024) comparison (see Table 1 in their paper), where different methods are also compared using the same
number of iterations.

Even when comparing with equivalent wall time, our method remains superior. To further illustrate this,
we provide a comparison of our method trained for 100 iterations per frame versus Dynamic3DGS Luiten
et al. (2024) trained for 300 iterations per frame on the FastParticle dataset. The results show that our
method has an average training speed per iteration approximately twice as fast as Dynamic3DGS Luiten
et al. (2024). As seen in Table 5, despite the difference in iteration count, our method still outperforms
Dynamic3DGS Luiten et al. (2024) in terms of both efficiency and final performance.

A.5 Ablation Study on Number of Cluster Layers

We test layer numbers K from 1 to 5 on the FastParticle dataset. As shown in Table 6, K = 3 performs
best. We find that increasing the number of cluster layers from 3 does not bring additional performance
gains. On the contrary, it introduces more parameters to optimize, which may increase the required number
of iterations and lead to diminishing returns. Therefore, we conclude that K = 3 offers the best trade-off
between efficiency and performance in our framework.

A.6 lllustration of the Multi-Layer Structure

In Fig. 13, we show the coarse-to-fine multi-layer clustering structures for two objects in the FastParticle
dataset. Different colors in the figure represent different clusters, and for clarification, the same color in
different layers does not indicate any correlation between the clusters.

Published in Transactions on Machine Learning Research (06/2025)

Cloth

Robot

Figure 13: Coarse-to-fine multi-layer clustering structures for two objects in the FastParticle dataset.

A.7 Tracking Labels

Here, as shown in Fig. 14, we present all manually annotated 2D tracking ground truths. Since the human
eye can only track points with distinct features across multiple frames, we only selected such points for
annotation.

A.8 Learning the Deformation

Algorithm 1 summarizes our training process. Initially, we train our Gaussians on the static scene using ob-
servations from the first frame. Subsequently, we perform multilevel coarse-to-fine clustering for the centroids
of the Gaussians. For each input in every time frame, we use an optimization approach to backpropagate
loss and subsequently update our deformation functions.

Algorithm 1: Deformation-based Dynamic Scene Reconstruction Algorithm

Input: Images from all frames
Oprev < Initialization stage (Static Gaussian Splatting);
Do Clustering;
for t in time_frames do
Initialize the Deformation D;
for iter in maz_iters do
@curr — D(@prev);
Images < Render(©Ocur);
loss « Loss(gt_Images, Images);
Backpropagate(loss);
end

end

Published in Transactions on Machine Learning Research (06/2025)

Figure 14: Illustration of our manually annotated tracking ground truths.

Published in Transactions on Machine Learning Research (06/2025)

Method Particle
Robot Spring Wheel Pendulums Robot-Task Cloth
N=16 29.76 30.43 27.97 30.84 27.69 31.56
N=32 29.63 30.43 2791 30.77 27.87 31.62
N=48 29.49 30.36 28.00 30.70 27.62 31.61

Table 7: PSNR results when varying the number of clusters in the first layer.

For potential negative impacts, since LayeredGS can learn deformation information and be used for creating
new motions or inserting objects, such applications can be used for fake news to convince people by multi-view
renderings. More censorship needs to be established in such cases.

A.9 Robustness to the number of clusters in the first layer

To further examine the robustness of our method to the initial clustering configuration, we conducted an
additional experiment by varying the number of clusters in the first layer. The default number of clusters
used in the main experiments is N = 64. Reducing the number of clusters leads to coarser groupings,
potentially introducing more clustering errors at the coarse level. Despite this, our model achieves comparable
performance across different settings, as summarized in Table 7. These results indicate that our structural
cascaded optimization remains robust even when the initial clustering is coarser, thanks to the refinement
provided by the multi-layer hierarchy and per-Gaussian updates at the finest level.

A.10 Effect of the Max Scale Constraint

To further examine the role of the max scale constraint in our method, we conducted an experiment by varying
the value of max_scale. The scale loss is designed to prevent Gaussians from becoming excessively large
during deformation, which may otherwise introduce rendering artifacts. We found that setting a reasonable
threshold (in our main experiments, max_scale = 0.02) is sufficient to maintain rendering quality.

Our experiment shows that disabling this constraint (i.e., setting max_scale to a very large value) leads to
significant PSNR degradation, as summarized in Table 8. These results demonstrate the importance of the
max scale constraint in preserving stability during optimization.

Method Particle
Robot Spring Wheel Pendulums Robot-Task Cloth
max_ scale=0.02 | 29.46 30.28 27.95 30.60 27.67 31.68
max_scale=2.0 | 15.86 19.86 22.42 18.86 18.15 21.53

Table 8: PSNR results under different values of the max scale constraint.

A.11 Additional Experiment on Per-Gaussian Deformation for Segmentation

We provide an additional experiment to examine the difference between our method and Dy-
namic3DGS Luiten et al. (2024) for segmentation purposes. Specifically, we trained Dynamic3DGS Luiten
et al. (2024) for 2000 iterations and extracted per-Gaussian deformation (without any layered structure) to
perform segmentation, similar to our approach. While this method produces visually reasonable motion, we
found that the per-Gaussian rotations are significantly noisier, leading to worse segmentation quality.

Published in Transactions on Machine Learning Research (06/2025)

Dynamic3DGS

Figure 15: Visual comparison of segmentation results using per-Gaussian deformation (Dynamic3DGS Luiten
et al. (2024)) and our multi-layer deformation structure.

In contrast, our multi-layer structure encourages Gaussians to move coherently with their parent clusters,
resulting in more stable and interpretable rotations. This structural regularization improves segmentation
accuracy by reducing noise in the estimated motion. Please refer to Figure 15 in the updated appendix for
visual comparisons.

A.12 Limitations

While our method significantly reduces training iterations to 100 per frame, achieving real-time training and
rendering remains a challenge. Additionally, the learned deformation information is not fully utilized, and the
presented articulated object segmentation results are not well refined. Future work will focus on addressing
these limitations by exploring real-time training approaches, refining deformation utilization techniques, and
developing more sophisticated segmentation methods.

	Introduction
	Related Works
	Method
	Preliminary
	Single-layer Deformation Function
	Cascaded Structural Optimization Strategy
	Optimization Process and Training Strategies

	Experiments
	Dataset Preparation
	Comparisons
	Visualization of Part Segmentation
	Ablation Study

	Conclusion
	Appendix
	FastParticle and Panoptic Datasets
	Articulated Objects Segmentation
	Full Qualitative Results
	Same Wall-clock Time Comparisons
	Ablation Study on Number of Cluster Layers
	Illustration of the Multi-Layer Structure
	Tracking Labels
	Learning the Deformation
	Robustness to the number of clusters in the first layer
	Effect of the Max Scale Constraint
	Additional Experiment on Per-Gaussian Deformation for Segmentation
	Limitations

